Leaching of pathogens from manure to drainage water - assayed using classic and DNA/mRNA based methods

Publication date:
2009

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
III International Conference on Environmental, Industrial and Applied Microbiology

Fostering Cross-disciplinary Applied Research in Microbiology and Microbial Biotechnology

BioMicroWorld 2009

2 - 4 December 2009
Lisbon, Portugal

http://www.formatex.org/biomicroworld2009
BioMicroWorld-2009
III International Conference on Environmental, Industrial and Applied Microbiology
Lisbon, Portugal, 2-4 December 2009
http://www.formatex.org/biomicroworld2009

TOPICS
• Environmental Microbiology, Geomicrobiology
• Agriculture, Soil, Forest Microbiology
• Food Microbiology • Industrial Microbiology - Future Bioindustries
• Methods - Analytical & Imaging Techniques • Medical & Pharmaceutical Microbiology, Antimicrobial Agents.
• Microbial Physiology, Metabolism and Gene Expression • Biofilms & Antimicrobial surfaces
• Bioremediation • Biotechnologically Relevant Enzymes and Proteins • Microfactories - microbial Production of Chemicals and Pharmaceuticals

LOCAL ORGANIZING COMMITTEE
A. Méndez-Vilas, Formatex Research Center, Badajoz, Spain (General Coordinator)
J. A. Mesa González, Formatex Research Center, Badajoz, Spain (Secretariat)
A. Solano Martín, Formatex Research Center, Badajoz, Spain (Secretariat)
J. Mesa González, Formatex Research Center, Badajoz, Spain
J. Díaz Álvarez, University of Extremadura, Spain
A. Agudo Rodríguez, Formatex Research Center, Badajoz, Spain

INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE
Jose Luis Martínez, National Center for Biotechnology, Spain
Kaarina Sivonen, University of Helsinki, Finland
Nuno F. Azevedo, University of Porto, Portugal
Yan Zhang, Peking University, China
Pei-Yuan QIAN, The Hong Kong University of Science and Technology, Hong Kong
Sergey V. Kalyuzhnyi, Moscow State University, Russia
Hong Kai WU, The Hong Kong University of Science and Technology, Hong Kong
Yves Blache, Université du Sud Toulon-Var, France
Megharaj Mallavarapu, University of South Australia, Australia
Kostas Koutsoumanis, Aristotle University of Thessaloniki, Greece
Gerardo R. Vasta, University of Maryland, USA
Elke Nevoigt, Catholic University of Leuven, Belgium
Peter Gerner-Smidt, Centers for Disease Control and Prevention, USA
Rosario Muñoz, Institute of Industrial Fermentation, Spain
Jan Michiels, Catholic University of Leuven, Belgium
Alban Ramette, Max Planck Institute for Marine Microbiology, Germany
Sigrid De Keersmaecker, Catholic University of Leuven, Belgium

Nigel Robinson, Newcastle University, United Kingdom
Ramesh C Kuhad, University of Delhi South Campus, India
Raeid M. M. Abed, Sultan Qaboos University, Sultanate of Oman
Petr Baldrian, Institute of Microbiology ASCR, Czech Republic
Joseph Kreit, Mohammed V University, Morocco
Pilar García, Asturias Dairy Products Institute, Spain
Wim Crielard, Academic Center for Dentistry Amsterdam, Netherlands
R. Kumar Malik, National Dairy Research Institute, India
Juan José Valdez Alarcón, Michoacana University of Saint Nicolas Hidalgo, Mexico
Rakesh K. Jain, Institute of Microbial Technology, India
Badal C. Saha, National Center for Agricultural Utilization Research, USA
Bo Mattiasson, Lund University, Sweden
Essaid Ait Barka, University of Reims, France
Ibrahim Banat, University of Ulster, United Kingdom
Ece Karatan, Appalachian State University, USA
Hermann J. Heipieper, Helmholtz Centre for Environmental Research - UFZ, Germany
Carme Plumed-Ferrer, University of Kuopio, Finland
Filip Boyen, Gent University, Belgium
Chao-Ying Chen, National Taiwan University, Taiwan
Rosario Donlan, Centers for Disease Control and Prevention, USA
Bruce A. Maguire, Pfizer Global Research and Development, USA
Jan Díaz Alarcón, National Center for Biotechnology, Spain
Megharaj Mallavarapu, University of South Australia, Australia
Kostas Koutsoumanis, Aristotle University of Thessaloniki, Greece
Gerardo R. Vasta, University of Maryland, USA
Elke Nevoigt, Catholic University of Leuven, Belgium
Peter Gerner-Smidt, Centers for Disease Control and Prevention, USA
Rosario Muñoz, Institute of Industrial Fermentation, Spain
Jan Michiels, Catholic University of Leuven, Belgium
Alban Ramette, Max Planck Institute for Marine Microbiology, Germany
Sigrid De Keersmaecker, Catholic University of Leuven, Belgium

Sponsored by
http://www.bertin.fr/
<table>
<thead>
<tr>
<th>Environmental Microbiology. Geomicrobiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>A new Bacteroides host strain for the detection of bacteriophages indicating human faecal contamination in water</td>
</tr>
<tr>
<td>Agrobacterium radiobacter / Agrobacterium tumefaciens human isolates form a sub-population distinct from the environmental strains</td>
</tr>
<tr>
<td>Antimicrobial activity of soft coral Sinularia compressa from Hengam Island, the Persian Gulf</td>
</tr>
<tr>
<td>Aquatic hyphomycetes: what can they tell us about stream ecological integrity?</td>
</tr>
<tr>
<td>Archaea from Algerian Hypersaline Environments producing Archaeocins</td>
</tr>
<tr>
<td>Assessing the viral pollution in Korean water environments by using Integrated cell culture-PCR and real-time PCR</td>
</tr>
<tr>
<td>Automated detection and quantification of total bacteria in liquid samples based on the MPN method</td>
</tr>
<tr>
<td>Bacterial sulfate reduction in the oxic zone of acidic gold mine tailings contaminated with arsenic and other metals</td>
</tr>
<tr>
<td>Bacterial Trade-off between Antibiotic Resistance and Biological Fitness</td>
</tr>
<tr>
<td>Bactericidal and amoebicidal activities of the free living amoeba Willaertia magna</td>
</tr>
<tr>
<td>Bioconversion of the residue from cachaça production (vinasse) into Saccharomyces and Candida biomass</td>
</tr>
<tr>
<td>Biodegradation of aromatic amines in a packed bed biofilm reactor</td>
</tr>
<tr>
<td>Biodegradation of organic matter in lake water in different temperature conditions (mesocosms experiment)</td>
</tr>
<tr>
<td>Bioeffects and biotransformation of selenite in Chlorella sorokiniana.</td>
</tr>
<tr>
<td>Biofertilization and phytostimulation in wheat by cyanobacteria</td>
</tr>
<tr>
<td>Bioluminescent monitoring of radiotoxicity in solutions of alpha-radionuclides</td>
</tr>
<tr>
<td>Bioprospection and characterization of endophytic fungi from tropical mangrove forests</td>
</tr>
<tr>
<td>Can microbial decomposers of plant litter be used as bioindicators of anthropogenic stress in streams?</td>
</tr>
<tr>
<td>Characterization of halophilic microorganisms from the Brazilian Northeast saline soil</td>
</tr>
<tr>
<td>Chemically treated fig tree leaves as low-cost biosorbent for removal heavy metal lead from aqueous solutions</td>
</tr>
<tr>
<td>Chitinolytic Bacteria Isolated from Chili Rhizosphere: Chitinase Characterization and Application As Biocontrol for whitefly (Bemisia tabaci Genn.)</td>
</tr>
<tr>
<td>Chromobacterium sp. from the tropics: detection and diversity of phytase Activity</td>
</tr>
<tr>
<td>Comparative analysis of three molecular techniques used in the biodiversity study of a thermomineral spring cyanobacterial mat</td>
</tr>
<tr>
<td>Comparison of Antibiotic Resistant Staphylococci on Hands of College-aged and Preschool Aged Students</td>
</tr>
<tr>
<td>Comparison of antimicrobial activity in Sinularia compressa from two different ecological conditions of the Persian Gulf</td>
</tr>
<tr>
<td>Comparison of experimental methods for determination of toxicity and biodegradability of xenobiotic compounds</td>
</tr>
<tr>
<td>Correlation between PRTF1-F2 and macrolide resistance in Streptococcus pyogenes strains</td>
</tr>
<tr>
<td>Correlation between growth rate and donor/recipient ability in natural E. coli</td>
</tr>
<tr>
<td>Decolorization of a real textile wastewater by marine Aspergillus niger</td>
</tr>
<tr>
<td>Degradation of 2,4-dichlorofenoxiacetic acid (2,4-D) by a microbial community in a packed bed column reactor (PBCR).</td>
</tr>
<tr>
<td>Denitrifiers community abundance, structure and function associated with salt marshes sediments.</td>
</tr>
<tr>
<td>Desulfurization of Crude Oil by Rhodococcus erythropolis cells</td>
</tr>
<tr>
<td>Detection of D/N functional genes during a biotreatment of mixed olive oil and winery wastewaters</td>
</tr>
<tr>
<td>Detection of potentially pathogenic yeast on environmental sources in Portugal</td>
</tr>
<tr>
<td>Detoxification of Olive Mill Wastewaters Using a Packed-Bed Batch Reactor</td>
</tr>
<tr>
<td>Dissipatrophic bacteria, which develop in community with xylolytic fungi in the ultrafresh conditions.</td>
</tr>
<tr>
<td>Diversity and abundance of bacteria community associated with rhizosediment and uncolonized sediments in salt marshes of two Portuguese estuaries.</td>
</tr>
<tr>
<td>Diversity of bacteriophages and their hosts in the marine sediments: the combined approach using metagenomics and electron microscopy</td>
</tr>
<tr>
<td>Diversity of foaming producing nocardioform actinomycetes from wastewater treatment plants in Spain</td>
</tr>
<tr>
<td>Page</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>43</td>
</tr>
<tr>
<td>44</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>47</td>
</tr>
<tr>
<td>48</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>51</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>57</td>
</tr>
<tr>
<td>58</td>
</tr>
<tr>
<td>59</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>61</td>
</tr>
<tr>
<td>62</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>64</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>67</td>
</tr>
<tr>
<td>68</td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>71</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>73</td>
</tr>
<tr>
<td>74</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>76</td>
</tr>
<tr>
<td>77</td>
</tr>
<tr>
<td>78</td>
</tr>
<tr>
<td>79</td>
</tr>
</tbody>
</table>
Isolation of the extreme halophiles from rock salt

Isolation, Identification and Comparison of Cyanobacteria from Two Rivers Polluted with Different Chemicals

Joint culture of two defined methylotrophic strains for denitrification of ground water with natural gas as carbon source

Methane production and oxidation in immobilized activated sludge from aerobic wastewater treatment plant

Methanothiol accumulation exacerbates N2O emissions in estuarine sediments and bacterial cultures

Microbial diversity in a uranium contaminated environment: the Urgeiriça mine (Central Portugal) as a case study

Microbial populations and CTX-M1 resistance in Escherichia coli isolated from wastewater treatment bioaerosol

Microbial Screening from Activated Sludge in Degradation of Dimethyl - Sulfoxide in Airlift Bioreactor

Microbiological Indicators of Organic Pollution of Nworie River, in Imo State Nigeria

Molecular assessment of microbial community structure and dynamics along mixed olive oil and winery wastewaters biotreatment

Morphological and ultrastructural peculiarities of ‘Euhalothece natronophila’ cells under different Cl concentrations

Morphological changes induced by iron in Chlamydomonas acidiphila.

Natural populations of dominant species and laboratory cultures of cyanobacteria: comparative analysis of amino acid composition and putative significance for primary consumers in aquatic environments

Neustonic versus epiphytic bacteria of eutrophic lake and their ability to biodegradation of insecticide deltamethrin

Nitrification potential in three different kinds of the Ariake sea sediment and Water

Nitrogen isotope composition of particulate organic matter (POM) in Lake Kinneret, Israel

Optimization of reaction conditions in binding of magnetic nanoparticles over Flavobacterium ATCC27551

Pepton hydrolysates of silver carp (Hypophthalmichthys molitrix) head as a nitrogen source for Aeromonas salmonicana and optimization using Central Composite Design (CCD) and Response Surface Method (RSM)

Photocatalysis / biotreatment coupling for the removal of biorecalcitrant Compounds

Procaryotic biodiversity in anaerobic digester treating municipal solid waste

Production of Prodigiosin for Serratia marcescens in Residues Agro industrials

Prokaryote-Virus Coexistence Model in the Deep Ocean

Protozoan community dynamics in an intermittent feeding and aeration Bioreactor

Pseudomonas arsenicodan sp nov., arsenite-oxidizing strain, isolated Atacama desert

Quantification and microbial toxicity testing of pharmaceuticals in tropical marine sediments, All Saints Bay, Bahia, Brazil

Red pigments producing novel marine bacterial species Zooshikella rubidus S1-1T

Relationships between hydrophobicity and biofilm formation in Streptococcus agalactiae strains

Response of Pseudomonas to low iron concentrations in presence of sodium Benzoate

Responses of pseudomonas to low iron concentrations in presence of sodium Benzoate

Robust microbial community for treatment of ammonium-rich wastewater

Role of Catalases in Isolates of Comamonas from a Polluted Environment

Role of Photochemically-Induced Oxidative Stress in Determining the Biological Effects of UV Radiation in Bacteria

Saccharomyces cerevisiae UE-ME3 is a good strain for isoproturon bioremediation?

Seasonal Monitoring of the Microbial and Physico-Chemical Quality of Two Rivers in Durban, South Africa

Simultaneous degradation of atrazine and simazine by Arthrobacter sp and Stenothrophomonas sp., in a packed bed reactor.

Simultaneous biological removal of ammonia nitrogen, phenol and formaldehyde from high-concentration wastewaters using an MSCR system

Soil Microbes and their Beneficial Roles to Improve the Environmental Quality

Structure of bacterial consortia in glacier lagoons (King George Island, Antarctica)

Structures, activities and biosynthesis of cyanobacterial peptides

Studies on extremophilic Bacillus SB1 isolated from n-butanol enriched mangrove sediment
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>Study of photocatalysis as a pre-treatment for azo dyes removal</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Study on efficiency of activated sludge system by using fireclay as sorbent</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>The Bacterial Consortium Alleviated a Low-dose Gamma-Irradiation in Kalanchoe Plantlets</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>The diversity and distribution of sulfate reducing microorganisms in a high temperature</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>The Diversity of Bacteria Associated with Sponges Clathria rugosa and Clathria vulpina</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>The effect of sodium selenite and selenate on the quality of lettuce and soil microbiological activity</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>The role of fungi in the oxalate-carbonate pathway</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>The role of salinity in shaping inorganic nitrogen and N2O dynamics in estuarine sediments.</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Thermophilic bacteria isolated from a personal-use composting reactor</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Thermophilic Co-Digestion of Cellulose and Microalgal Biomass for Hydrogen Production</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Ultrastructural Behavior of Rhodotorula mucilaginosa Induced by the Growth in Presence of Pyrene</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Use of hydrolysates from silver carp (Hyphophthalmichthys molitrix) head as a peptone for Vibrio anguillarum and optimization using Central Composite Design (CCD) and Response Surface Method (RSM)</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Utilization and pretreatment of dairy industry wastewater by Candida bombicola for the production of sophorolipids</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Vanadium pentoxide: an oxidative stress agent which disturbs glutathione conjugates</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Vanadium pentoxide: an oxidative stress agent which disturbs glutathione conjugates</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Vertical profile of bacterial community in the sediment of Ulleung Basin: Implication of the presence of methane-driven community</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Yeasts from acidic aquatic environments: towards an ecological understanding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agriculture, Soil, Forest Microbiology</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>16S Ribosomal Ribonucleic Acid Analysis of Pathogenicity in Autothermal Thermophilic Aerobic Digestion Treated Swine Manure</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>158</td>
<td>Characterization of rhizospheric bacteria isolated from maca (Lepidium meyenii W.) in the highlands of Junin-Peru</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Cicer arietinum growth promotion by Ochrobactrum intermedium and Bacillus cereus</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Colonization and migration abilities of Erwinia amylovora in host plants inoculated by irrigation</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Colonization pattern of Methyllobacterium suomiense CBMB120 isolated from rhizosphere of and its effect on red pepper growth under green house condition to optimize efficiency of organic manure and lime management</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>Comparison of conventional and molecular methods for analyzing soil fungal diversity to determine the impact of soil use purpose</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Composted olive mill pomace as organic fertiliser in organic olive oil groves</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Corn (Zea mays L.) growth as affected by soil compaction and arbuscular mycorrhiza</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Database construction of Basidiomycetes Genetic Resource using ITS region</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>Denitrification rate and relative production of denitrification products N2O and N2 are driven differently by proximal and distal control of soil pH</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>Design of xanthomonads-specific molecular markers using CUPID and Insignia</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Detection of group I and group II introns in a Mexican Bacillus thuringiensis Collection</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Determination of soil microbial community fluctuations by different techniques in a maize field</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>Differences Between Microbial Communities in Worm Guts and the Soils They Inhabit</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Diversity of endophytic fungal community of Vitis labrusca L. (var. Niagara Rosada) and biological control of Fusarium sp. and Botrytis sp.</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Ecology of coarse wood decomposition by the saprotrophic fungus Fomes fomentarius</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>Effect of PGPR with AMF on tomato lycopenes and antioxidant content</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Effect of pseudomonas and azotobacter with mycorrhiza on Two varieties of tomato plant growth</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>Effect of biofumigation with manure amendments and repeated biosolarization on Fusarium densities in pepper crops</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Effect of DFO-B siderophore on lead sorption by Na-montmorillonite</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>Effect of different rhizobia on Pullar (Phaseolus lunatus L.) in the Valley of Nazca in Peru</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>Effect of different rhizospheric bacteria in the growth of Gossypium barbadense L. in Peru</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Effect of essential oils on decay resistance of wood</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Effect of in vivo passage on germination and virulence of entomopathogenic fungi, Verticillium lecanii</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>Effect of preservation methods on Beauveria bassiana viability</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>Effect of the irrigation by worn water on some physiological and biochemical parameters of the bread wheat (Triticum aestivum L.) in the region of Guelma (Algerian East)</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>Effects of PGPR on tomato plant growth and nutrients uptake</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Effects of Pseudomonas, Azotobacter and Azospirillum on tomato potassium content and fruit quality</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>Effects of drought stress and arbuscular mycorrhiza on maize (Zea mays L.) growth characteristics.</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>Endophyte screens from Taiwan native Aneoctochilus formosanus Hayata roots.</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Endophytic bacteria associated with tropical mangrove forests: characterization and biotechnological applications</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>Entomopathogenic fungi to control the cherry fruit fly Rhagoletis cerasi Loew (Diptera: Tephritidae) in Shahrood region, northeast of Iran</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Erwinia aphidicola on Phaseolus vulgaris and Pisum sativum: a new pathogen in Spain</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Evaluation of flow cytometry of assess Erwinia amylovora viability under different stress conditions</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>Evaluation of plant growth promoting and colonization ability of bradyrhizobia isolated from sweet potato.</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>Fiber degrading potential of rumen fungi isolated from cattle</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Fungal diversity associated to Prays oleae in Trás-os-Montes (Northeastern region of Portugal). A survey of potential entomopathogenic fungi</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>Fungal microbiota from rain water and pathogenicity of the isolated Fusarium Species</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>Fungi and actinomycetes isolated from plant-parasitic nematode infested soils and their biocontrol potential, indole-3-acetic acid and siderophore production</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>Genetic and Functional Diversity among phosphate-solubilizing bacteria from pea rhizosphere in the cold deserts of the Indian trans-Himalayas</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>Genetic relationship in the isolates Chromobacterium violaceum by rep-PCR Fingerprinting</td>
<td></td>
</tr>
</tbody>
</table>
Genetic Variability Analysis of entomopathogenic fungi isolated from citrus-growing areas of Mexico

Genetic variation within AMF morphotypes from mycorrhizosphere of plants from undisturbed, industrial and agricultural land: An investigation through LSU rDNA sequencing

Glomalin production and microbial activity in soils impacted by gypsum mining in the semi arid of Pernambuco

Host specificity and pathogenic ability of *Phytophthora parasitica* and *P. Capsici* on tomato and sweet pepper.

Identification of virulence genes in *Fusarium oxysporum* f. sp. *lycopersici* the causal agent of tomato wilt disease

Impact of Biological Control Agents on Fusaric acid concentrations in *Gladiolus grandiflorus* infected with *Fusarium oxysporum* f. sp. *gladioli*

In vitro assessment of fungal endophytes’ ability to confer drought and heat tolerance to wheat

Indole-3-acetic acid production by plant associated bacteria: potential to alter endogenous IAA content and growth of *Triticum aestivum* L.

Influence of organic and conventional soil tillage system on soil respiration and enzymatic activity.

Influence of the C:N ratio and pH on ectomycorrhizal fungal growth

Influence of the non-symbiotic soil basidiomycete, *Streptococcus bovis*, on enzymatic activities in tissues of white mustard plants under natural conditions

Isolation and comparative molecular diversity analysis of fluorescent pseudomonads by using four DNA fingerprinting techniques.

Leaching of pathogens from manure to drainage water – assayed using classic and DNA/mRNA based methods

Microbial analysis of soils from avocado crop modified by organic amendments

Microbial characterization of a heavy metal polluted soil phytoremediated with *Populus euroamericana*

Microbiological and chemical properties of Tarhana during fermentation

Modeling of nitrogen leaching by using urea fertilizer in sandy loam soil

Molecular and classical approaches to understand the effect of wildfires on microbial diversity from Mediterranean forests

Molecular characterization of *Fusarium oxysporum* f. sp. *lycopersici* causing wilt of tomato

Molecular identification of endophytic actinomycetes isolated from *Aquilaria crassna* Pierre ex Lec and their plant growth promoters substances

Molecular properties and significance of phosphoenolpyruvate carboxykinase in a ruminal bacterium, *Streptococcus bovis*

Multiple associations involving ectomycorrhizal and endomycorrhizal fungi, nitrogen fixing bacteria and the leguminous species *Dimorphandra wilsonii*, a threatened species from the Brazilian Cerrado

Mycobiota predominant and aflatoxins content in shell and shelled Brazil Nuts

N2O and N2 emissions from pasture soils differing in pH – does the linkage between the gas fluxes, denitrifying activity and size of the denitrifier community exist?

Nematicidal activity of *Solanum sisymbriifolium* and *S. nigrum* extracts against the root-lesion nematode *Pratylenchus goodeyi*

Nitrifying microorganisms biodiversity in different soils types of the European part of Russia.

Nodulation process and nitrogen fixation effectiveness in field beans (*Vicia faba*)

Nucleotide Sequence analysis of the fusion protein gene of Newcastle disease viruses isolated from chicken in Iran

Occurrence of Methicilin-resistant *Staphylococcus aureus* at a Dairy Farm

Pathogenic bacteria can produce exopolysaccharides and use them as carbon source under stress conditions: the case of *Erwinia amylovora*

Phenotypic characterization and the application of the rep-PCR technique in a study of new strains of *Bacillus thuringiensis* in the South of Brazil

Phylogenetic characterization of *Beauveria bassiana* isolates originated from different insects hosts

Polybiotrophy of *Serratia marcescens*, a causative agent of an onion disease in arid zone of the South of Ukraine

Polyphenol oxidase in golden chanterelle (*Cantharellus cibarius*) mushroom

Population diversity of *Cryphonectria parasitica* in Croatia

Potential for biocontrol of *Anthonomus grandis* using a chitinolytic extract of endophytic *Streptomyces* sp.

Prevalence and Pathogenicity of Airborne *Fusarium* species in south east coast of Spain

Production of beer using sorghum and sorghum malt

Production of *Prodigiosin* in *Serratia marcescens* PTCC1111 in Different Mediaes

Production of *Prodigiosin* in *Serratia marcescens* PTCC1111 in Different Mediums and Study of Its Antimicrobial Effect as Biocontrol Some of Phytopathogenic bacteria
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas fluorescens S1P1Rif increases plant tolerance to chrysanthemum yellows phytoplasmia infection (“Candidatus Phytoplasma asteris”)</td>
<td>239</td>
</tr>
<tr>
<td>Risk characterization of selected contaminants in sewage sludge: microorganisms, total phenols and heavy metals</td>
<td>240</td>
</tr>
<tr>
<td>Role of Pseudomonas fluorescens containing ACC-deaminase and organic fertilizer on growth promotion of maize and sorghum under water stress field conditions</td>
<td>241</td>
</tr>
<tr>
<td>Sequencing of the region of ribosomal internal transcribed spacer (ITS) of Metarhizium anisopliae in Pernambuco State</td>
<td>242</td>
</tr>
<tr>
<td>Silicate weathering potential of bacteria isolated from different soil profiles</td>
<td>243</td>
</tr>
<tr>
<td>Soil bioremediation of atrazine pesticide by two strains of soil microorganism</td>
<td>245</td>
</tr>
<tr>
<td>Soil Characteristic Affecting the Mycorrhizal Spore Density in Alluvial Soil of Raniganj Coalfield Areas</td>
<td>246</td>
</tr>
<tr>
<td>Some virulence aspects of Pseudomonas syringae pv. syringae strains isolated from mango trees</td>
<td>247</td>
</tr>
<tr>
<td>Study on the effect of Nitrogen, Glucose and Plant residues on soil microbial C</td>
<td>248</td>
</tr>
<tr>
<td>Tannin degradation potential and tannase purification from Enterococcus faecalis, an isolate from goat faeces</td>
<td>249</td>
</tr>
<tr>
<td>Temporal variations in soil fungi communities after biosolarization and its repeated use in pepper crops in Southeast Spain</td>
<td>250</td>
</tr>
<tr>
<td>The efficiency of Trichoderma harzianum and Aneurinobacillus migulanus in the control of Gladiolus corn rot in a soilless culture system</td>
<td>251</td>
</tr>
<tr>
<td>The importance of the biomicroworld on macroproduction</td>
<td>252</td>
</tr>
<tr>
<td>The role of fungi in the decomposition processes in forest soils</td>
<td>253</td>
</tr>
<tr>
<td>The role of plant growth promotion rhizobacteria on sustainable field crop Production</td>
<td>254</td>
</tr>
<tr>
<td>The toxicity and histopathology of Bacillus thuringiensis Cry1Ba toxin to Spodoptera frugiperda (Lepidoptera, Noctuidae)</td>
<td>255</td>
</tr>
</tbody>
</table>

Food Microbiology

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptation of edible mushrooms to produce feruloyl oligosaccharides from wheat bran by fermentation</td>
<td>256</td>
</tr>
<tr>
<td>An assessment of the microbial diversity present in water from three Parisian surface water treatment plants</td>
<td>257</td>
</tr>
<tr>
<td>Antibacterial activity of extracts from different Origanum vulgare clones grown in Latvia.</td>
<td>258</td>
</tr>
<tr>
<td>Antifungal potential of Cladosporium cladosporioides (Fres) De Vries metabolites in reduction of coffee contamination by toxigenic Aspergillus genera</td>
<td>259</td>
</tr>
<tr>
<td>Antimicotic potency of Drosophila intermedia extracts on fungi and yeasts causing biodeterioration on food commodities</td>
<td>260</td>
</tr>
<tr>
<td>Antimicrobial susceptibility of Campylobacter jejuni isolated from poultry products and human cases of campylobacteriosis</td>
<td>261</td>
</tr>
<tr>
<td>Antimicrobial activity of rhamnolipids from P. aeruginosa PA01 against L. monocytogenes</td>
<td>262</td>
</tr>
<tr>
<td>Antimicrobial and physical and mechanical properties of composite whey protein and starch edible films</td>
<td>263</td>
</tr>
<tr>
<td>Antimicrobial Properties of Nanostructured Chitosan-Silver Membranes</td>
<td>264</td>
</tr>
<tr>
<td>Application of Quantitative RT-PCR in expression study of the ammonium and hexose transporters during the rehydration of Saccharomyces cerevisiae in active dried form</td>
<td>265</td>
</tr>
<tr>
<td>Aspects of the regulatory mechanisms in the Alkali-Tolerance Response (ATR) in Listeria monocytogenes</td>
<td>266</td>
</tr>
<tr>
<td>β- Glucans Production and Manoproteins Release in Yeasts</td>
<td>267</td>
</tr>
<tr>
<td>Bacteriocin production by Lactobacillus sp.V69 and some aspects of its mode of action against Listeria monocytogenes ScottA</td>
<td>268</td>
</tr>
<tr>
<td>Bacteriophage contamination and fermentation of Natto by Bacillus subtilis(natto) – Study of phage related key enzyme that spoils sticky texture of natto–</td>
<td>269</td>
</tr>
<tr>
<td>Bee pollen-containing culture media can stimulate production of patulin by Penicillium expansum</td>
<td>270</td>
</tr>
<tr>
<td>Behavior of shiga-toxin-producing Escherichia coli (STEC) of serotype O113:H21 to front pH, water activity, time and temperature.</td>
<td>271</td>
</tr>
<tr>
<td>Betalactam resistance in food Escherichia coli isolated from broilers</td>
<td>272</td>
</tr>
<tr>
<td>Biocontrol of the patulin-producing Penicillium expansum by yeast: in vitro and in vivo assays</td>
<td>273</td>
</tr>
<tr>
<td>Characterization and identification of a bacteriocin produced by Leuconostoc pseudomesenteroides KM432BZ</td>
<td>274</td>
</tr>
<tr>
<td>Characterization and Purification of Natural Food–Biopreservative Produced from Bacillus subtilis A12 Isolated from a Refreshing Drink Whey</td>
<td>275</td>
</tr>
<tr>
<td>Characterization of Bacillus bacteriophage isolated from the fermented soybean, hungkookjang</td>
<td>276</td>
</tr>
<tr>
<td>Chitosan Matrices as Carriers for the Delivery of Natural Volatile Antimicrobials</td>
<td>277</td>
</tr>
<tr>
<td>Comparison between Lactic Acid Bacteria populations present in two greentable olives fermentative processes</td>
<td>278</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Comparison of eleven Escherichia coli quantitative methods for Malaysian ready-to-eat food (poultry)</td>
<td>279</td>
</tr>
<tr>
<td>Cronobacter sakazakii, Enterobacteriaceae and microbial population of infant formula milk</td>
<td>280</td>
</tr>
<tr>
<td>Dairy using kefir grains: production and development</td>
<td>281</td>
</tr>
<tr>
<td>Damages to cattle dairy by intake of a corn based concentrate contaminated by Aspergillus flavus</td>
<td>282</td>
</tr>
<tr>
<td>Detection and antibiotic susceptibility of coliform bacteria in fresh vegetables</td>
<td>283</td>
</tr>
<tr>
<td>Detection and Characterization of Pathogenic Vibrios in Seafood by a PCRLDR-Universal Array Approach.</td>
<td>284</td>
</tr>
<tr>
<td>Detection of Lactobacilli from Fecal Flora of Some Infants</td>
<td>285</td>
</tr>
<tr>
<td>Development and Evaluation of a Real–Time Quantitative PCR Assay for Detection and Enumeration of Pathogenic Yeast in Dairy Products</td>
<td>286</td>
</tr>
<tr>
<td>Discrimination of bacteria using optic fiber-based in situ synchronous fluorescence spectroscopy of colonies</td>
<td>287</td>
</tr>
<tr>
<td>Effect in vitro of lactic acid bacteria isolated from guirra sheep against Salmonella spp</td>
<td>288</td>
</tr>
<tr>
<td>Effect of methyl-2-benzimidazol carbamate and physicochemical factors on the growth and ochratoxin A production by Aspergillus ochraceus in bee pollen medium</td>
<td>289</td>
</tr>
<tr>
<td>Effect of pure and mixed cultures of the main wine yeast species on grapemust fermentations</td>
<td>290</td>
</tr>
<tr>
<td>Effect of the characteristics of the winery in the ecology and biodiversity of Saccharomyces in two vine-growing areas in Andalusia (Southern Spain)</td>
<td>291</td>
</tr>
<tr>
<td>Effect of the inoculum characteristics on the first stages of a growing yeast population in beer fermentations by means of an Individual-based Model</td>
<td>292</td>
</tr>
<tr>
<td>Effects of oxidative stress on viability and selected characteristics of probiotic bacteria</td>
<td>293</td>
</tr>
<tr>
<td>Evaluation of the activity of different fungicides against ochratoxigenic Aspergillus spp. in barley-based medium</td>
<td>294</td>
</tr>
<tr>
<td>Evaluation of the persistence of viable Listeria monocytogenes cells in chlorinated water</td>
<td>295</td>
</tr>
<tr>
<td>Fluorescence in situ hybridisation for direct quantification of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentations</td>
<td>296</td>
</tr>
<tr>
<td>Fungi associated with coffee berries in different ripening stages and submitted to five bagging times</td>
<td>297</td>
</tr>
<tr>
<td>Fusarium spp. occurrence in feeds and cereal grains (Portugal-2007)</td>
<td>298</td>
</tr>
<tr>
<td>Genetic diversity of Streptococcus thermophilus strains isolated from plant sources</td>
<td>299</td>
</tr>
<tr>
<td>Glucosidases of Lactobacillus brevis and Oenococcus oeni for aroma release in wine</td>
<td>300</td>
</tr>
<tr>
<td>Growth Kinetics of Biopigment Production by Thal isolated Monascuspurpureus in a Stirred Tank Bioreactor</td>
<td>301</td>
</tr>
<tr>
<td>Haloarchael Fermentation Technology for Recovery of Nutrients from Fishwaste</td>
<td>302</td>
</tr>
<tr>
<td>Heat stress adaptation of Escherichia coli under dynamic conditions: effect of inoculum size and heating rate</td>
<td>303</td>
</tr>
<tr>
<td>Heterogeneity of heat resistant proteases from milk spoiling Pseudomonas spp.</td>
<td>304</td>
</tr>
<tr>
<td>Host responses to Saccharomyces cerevisiae isolates: new criteria to select safe strains</td>
<td>305</td>
</tr>
<tr>
<td>Identification and Characterization of Yeasts Isolated from Oleic Ecosystems</td>
<td>306</td>
</tr>
<tr>
<td>Inability to resuscitate viable-but-nonculturable cells of Escherichia coli and Listeria monocytogenes</td>
<td>307</td>
</tr>
<tr>
<td>Influence of Bacteriocin producing Lactobacillus casei RN 78 in Growth Control of L.monocytogenes in Experimental Cheese samples</td>
<td>308</td>
</tr>
<tr>
<td>Influence of different photoperiods on the incidence of Aspergillus niger in coffee beans stored</td>
<td>309</td>
</tr>
<tr>
<td>Influence of pesticides on the growth kinetics of yeasts used as starter cultures in green table olives</td>
<td>310</td>
</tr>
<tr>
<td>Interactions between Saccharomyces cerevisiae and non-Saccharomyces winerelated strains: inhibitory activity of small peptides produced by S. cerevisiae CCM 885</td>
<td>311</td>
</tr>
<tr>
<td>Investigation of the ochratoxin A levels in plasma from Valencian Community healthy citizens and relationship with their diet</td>
<td>312</td>
</tr>
<tr>
<td>Isolation and characterisation of exopolysaccharide producing lactic acid bacteria</td>
<td>313</td>
</tr>
<tr>
<td>Isolation and characterization of cysteine biosynthetic gene in Lactobacillus casei encoding cysteine lyase and synthase activity</td>
<td>314</td>
</tr>
<tr>
<td>Isolation and identification of molds associated with table olives</td>
<td>315</td>
</tr>
<tr>
<td>Killer toxin of Pichia anomala strains isolated from olive brine and active against human pathogens</td>
<td>316</td>
</tr>
<tr>
<td>Lactic acid bacteria from wines from Ribeira Sacra (Spain): Isolation, identification and characterization of some oenological properties</td>
<td>317</td>
</tr>
<tr>
<td>Microbial conversion of major ginsenosides to pharmaceutically active minor ginsenoside C-K by Dyella sp. QGC -49</td>
<td>318</td>
</tr>
</tbody>
</table>
Microbiological Changes in Cheese of Algarvian Goat Breed during Ripening 319

Microbiological control of wines from Denomination of Origin Rías Baixas in Galicia (NW Spain) 320

Microbiological risk assessment of Staphylococcus aureus in sandwich products consumed by airline passengers 321

Modulation of the gut microflora by dietary fibres and characterization of extracellular metabolites and fermentation products by GC-MS analyses 322

Molecular and convencional identification and characterization by ARDRA and DGGE of the microbiota associated to semi-dry coffee (Coffea arabica L.) 323

Molecular characterization and biodiversity of Saccharomyces cerevisiae in spontaneous fermentation in D. O. “Condado de Huelva” (Southern Spain) 324

Molecular identification of yeast species associated with green table olive production 325

New antifungal bacteriocin synthesizing strains of Lactococcus lactis ssp. lactis as the perspective biopreservatives for protection of raw smoked sausages 326

Non-selective and selective isolation of DNA from food matrices and other real samples by magnetic particles 327

Occurrence of spoilage bacteria Pseudomonas and Pectobacterium on Finnish carrots 328

Ochratoxin A and ochratoxigenic fungi in coffee (Coffea arabica L.) in southern Minas Gerais State-Brazil (1998 to 2005) 329

Optimization of honey-musts alcoholic fermentation to obtain high quality mead 330

Partial fermentation of must from Tempranillo dried grapes by selected yeasts 331

Phylogeny of gamma-polyglutamic acid-producing Bacillus strains isolated from fermented bean foods manufactured in Asian and West African countries 332

Polyphasic study of Lactococcus lactis isolates from diversified sources 333

Preliminary selection of autochthonous Saccharomyces strains from Ronda (Malaga, Southern Spain) based on their oenological characteristics 334

Presence of Arcobacter spp. contamination in fresh lettuces for human consumption 335

Prevalence of Salmonella among foodhandlers in Owerri metropolis 336

Prevention of food-transmitted human pathogen virus and bacteria in fruits and vegetables by use of indicator organisms 337

Production of lactic acid, biosurfactants and bacteriocins by Lactococcus lactis using trimming vine shoots and vinasses as substrates for fermentation 338

Production of sweet probiotic milk using mixed culture of Lactobacillus and Bifidobacterium strains and studying its effect on IBD. 339

Pulsed light treatment for the shelf-life extension of packaged cooked ham slices 340

Quantifying the effect of (in)organic acids on the thermal inactivation of Escherichia coli 341

Quinolone resistance in nontyphoidal Salmonella enterica: role of chromosomal mutations and plasmid-mediated determinants 343

Red Bacterial Cellulose Production by Fermentation of Monascus purpureus 344

Risks of Vibrio parahaemolyticus in black tiger shrimps (Penaeus monodon) 345

Screening of lactic acid bacteria from wine and grapes for malolactic and glycosidase activities 346

Selection of a broad lytic spectrum phage for Salmonella detection 347

Selection of lactic acid bacteria for the production of phenyllactic acid for food conservation 348

Selection of Oenococcus oeni strains to employ as starters in malolactic fermentation. 349

Spatial distribution of bacterial colonies in a model cheese 350

Species specific PCR detection protocol for the main mycotoxin-producing Aspergillus species in paprika. 351

ß-lactam resistance and extended-spectrum ß-lactamas in Salmonella strains isolated from animals. 352

Study of cell envelope proteinase systems of natural isolated thermophilic lactobacilli 353

Sublethal injury, growth and inactivation rates of stressed E. coli O157:H7 354

Sugar Cane Waste as Alternative Medium for Astaxanthin Production by Mucor javanicus 355

Supercritical fluids for pasteurization - on-line investigation of the inactivation mechanisms 356

Survey, identification and control of aflatoxigenic fungi and aflatoxins in grains and nuts. 357

New antibacterial molecules produced by endophytic Paenibacillus polymyxa 358

Synergism of natural compounds in struggle for safe and healthier food 359
The prevalence of *Vibrio parahaemolyticus* in sea foods in Isfahan, Iran

Use of interdelta polymorphisms of *Saccharomyces cerevisiae* strains to monitor the population evolution during wine fermentations

Use of the E-beam radiation to diminish the late blowing of cheese slices

Variability analysis of microbial inactivation by different preserving treatments.

Wine ecological practices increase the chromosomal polymorphism of yeasts

Yeast, beer and fermentation an opportunity to involve young students in biotechnology.

Industrial Microbiology - Future Bioindustries

A Biodegradation Study of Forest Biomass by *Aspergillus niger* Strain Showing Correlation Between Enzymatic Activity, Hydrolysis Percentage and biodegradation Index

Ability of xilitol production by new yeast strains

Activated carbon production from brewer’s spent grain lignin

Acute toxicity evaluation of several compounds involved in fossil fuels biodesulphurisation studies

Alternative method for biological airborne agents detection in only few hours / Innovative microbial air sampler

Amino acid uptake profiling of *Streptomyces lividans* batch fermentations

ANN-based Software Sensor for Emulsification Activity Estimation in Biosurfactant Production Process by *Candida lipolytica* UCP 0998

Antibacterial activity and probiotic properties of Algerian strains of lactic acid bacteria

Antifungical potential of *Cladosporium cladosporioides* (Fres) De Vries metabolites in reduction of coffee rust (*Hemileia vastatrix* Berk & Br.)

Assessment of the use of biological material on technological development – a patent approach

Bacteria exhibiting antimicrobial activities; screening for antibiotics and the associated genetic studies

Biocidal potential of essential oils of *Piper aduncum*, *Piper hispidinervum* and *Syzygium aromaticum* on important pathogenic and toxigenic microorganisms important for food

Biocompatibility Assessment of PHB, Random and Block copolymer of P(3HBco-3HV)s produced by *Paracoccus denitrificans*

Bioconversion of wheat straw to value added cattle feed by RCK –1 fungal isolate

Biofouling community of a lubrication oil tank from a supply vessel

Biological detoxification of different hemicellulosic hydrolyzates using *Isatschenkia occidentalis* CCTCC M 206097 yeast

Biological polyhydroxybutyrate production from waste glycerol at bench scale

Biosynthesis and Biocompatibility of polyhydroxalkanoates by *Caprivusus necator* strain A-04 and recombinant *Escherichia coli*

Biosynthesis of the lipids by the yeasts *Rhodotorula gracilis*

Changes in the stability and catalysis of fungal enzymes produced in submerged and solid-state fermentation: the case of tannase

Clavulanic Acid Degradation in an Aqueous Two Phase System

Cloning and expression of an aspartate aminotransferase from *Xanthomonas oryzae* pv. *Oryzae*

Cultivation of *Salmonella enterica* Typhimurium in bioreactor and development of flagellin purification process

Degradation assay of lignocellulosic compounds in combination with polyurethane resin by CECT fungi

Detection of PKS genes from a Brazilian sugarcane endophytic *Aspergillus* sp.

E. coli under pressure – stress monitoring in large scale protein production

Effect of coating materials upon organic acid production by immobilized *B. animalis* subsp. *lactis* Bb12, in both batch and continuous cultures

Effect of oxidized cellulose on probiotic bacteria

Effect of pH and Inoculum Percentage on Canthaxanthin Production by *Dietzia maris*

Effects on static magnetic field in *Saccharomyces cerevisiae* cultures under aerobic and anaerobic conditions

Estimation of Colony Forming Units in 3 minutes for individual cell types in a mixed culture using Methylen Blue Dye Reduction Test

Ethanol fermentation of Carob pods extract by “*Zymomonas mobilis*” bacteria

Evaluation of different microbial expression systems for therapeutic peptide production
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Fed-batch and fed-batch followed by perfusion cultivation to produce capsular polysaccharide by Haemophilus influenzae type b.</td>
</tr>
<tr>
<td>401</td>
<td>Fermentation characteristics as criteria for selection of cachaça yeast</td>
</tr>
<tr>
<td>402</td>
<td>Fermentation characteristics of Saccharomyces cerevisiae strains to produce banana’s brandy</td>
</tr>
<tr>
<td>403</td>
<td>From in silico to in vitro: Modelling and production of Trichoderma reesei endoglucanase 1 mutants in Pichia pastoris for textile biofinishing</td>
</tr>
<tr>
<td>404</td>
<td>From shake flasks to laboratory scale: Production of a bioemulsifier/biosurfactant production process by Candida lipolytica UCP 0988</td>
</tr>
<tr>
<td>405</td>
<td>Hydrolysis of spruce wood and sugarcane bagasse by cellulases and hemicellulases</td>
</tr>
<tr>
<td>406</td>
<td>Improving bioethanol production by Saccharomyces cerevisiae strains, using agro-industrial by-products</td>
</tr>
<tr>
<td>407</td>
<td>Inhibitory action of the toxic compounds present in lignocellulosic hydrolysates on xylose-to-xylitol biocconversion by Candida guilliermondii</td>
</tr>
<tr>
<td>408</td>
<td>Investigating the 3-dimensional structure of family 43 glycoside hydrolase (CtGH43), a cellulase from Clostridium thermocellum structure for possible interactions using molecular docking and other bioinformatics tools</td>
</tr>
<tr>
<td>409</td>
<td>Isolation and Characterization of a Locally Isolated Soil Microbe Capable of Producing Polyhydroxyalkanoate Bioplastic from Renewable Resources</td>
</tr>
<tr>
<td>410</td>
<td>Isolation and characterization of cellulase producing bacteria from pruning tree compost and soil</td>
</tr>
<tr>
<td>411</td>
<td>Isolation and identification of chitinolytic bacteria from pruning tree compost</td>
</tr>
<tr>
<td>412</td>
<td>Isolation of Feather Degrading Bacillus spp. from Poultry Waste that Produce Keratinase in Iran</td>
</tr>
<tr>
<td>413</td>
<td>Kinetic and metabolic characterization of a mezcal-mash-isolated yeast growing in sugar cane bagasse hydrolysates for ethanol production.</td>
</tr>
<tr>
<td>414</td>
<td>Metabolically engineered E. coli gene expression: Efficient conditional gene silencing can be achieved using artificial convergent transcription protected from Rho-dependent termination</td>
</tr>
<tr>
<td>415</td>
<td>Method of Lysine extraction from the culture fluid of producer</td>
</tr>
<tr>
<td>416</td>
<td>Microalgae from The Salar de Atacama (Northern Chile), as a potential resource of fatty acids of industrial interest</td>
</tr>
<tr>
<td>417</td>
<td>Microbial Adaptation to Toxic Organic Solvents—Mechanisms and Biotechnological Applications</td>
</tr>
<tr>
<td>418</td>
<td>Microbial Enzymes - An Alternative to Harsh Chemicals in Industry</td>
</tr>
<tr>
<td>419</td>
<td>Microbial production of lactate-based polyesters</td>
</tr>
<tr>
<td>420</td>
<td>Microbiological aspects of water retting in kenaf (Hibiscus cannabinus) processing</td>
</tr>
<tr>
<td>421</td>
<td>Microbiological characterization and disposal issues of table olive wastewaters</td>
</tr>
<tr>
<td>422</td>
<td>Mixture design of agricultural waste substrates for lacase production from white rot fungal</td>
</tr>
<tr>
<td>423</td>
<td>Molecular Characterization of Escherichia coli (E. coli) mercuric reductase (merA) gene</td>
</tr>
<tr>
<td>424</td>
<td>Multigenic family coding for endo-1,4-beta-xylanases in Penicillium canescens</td>
</tr>
<tr>
<td>425</td>
<td>Old Yellow Enzymes: Powerful biocatalysts for the asymmetric hydrogenation of C=C bond</td>
</tr>
<tr>
<td>426</td>
<td>Optimization of a fermentation process for butanol production using Particle Swarm Optimization</td>
</tr>
<tr>
<td>427</td>
<td>Optimization of a protoplast transformation method for Bacillus Subtilis, Bacillus megaterium, and Bacillus Cereus by a plasmid pHIS1525.SplpA</td>
</tr>
<tr>
<td>428</td>
<td>Optimization of Dilute Acid and Alkali Pretreatment of Sweet Sorghum Bagasse for Microbial Saccharification Using Response Surface Methodology</td>
</tr>
<tr>
<td>429</td>
<td>Optimization of the Continuous Clavulanic Acid Adsorption Process</td>
</tr>
<tr>
<td>430</td>
<td>PCR clone of novel L-asparaginase II gene from Escherichia coli (YG 001)</td>
</tr>
<tr>
<td>431</td>
<td>PHA production by mixed culture from a by-product of paper industry</td>
</tr>
<tr>
<td>432</td>
<td>Physiologic diversity in Debaryomyces hansenii</td>
</tr>
<tr>
<td>433</td>
<td>Physiological characterization of mannitol overproducing strains in carob based medium</td>
</tr>
<tr>
<td>434</td>
<td>Production of ethanol from agroindustrial waste: cassava bagasse and malt bagasse</td>
</tr>
<tr>
<td>435</td>
<td>Production of xanthan gum by Xanthomonas campestris and Optimization its production process</td>
</tr>
<tr>
<td>436</td>
<td>Purification, immobilization and application of tannase for beverage clarification</td>
</tr>
<tr>
<td>437</td>
<td>Relations between methanol metabolism pathway enzymes and β-galactosidase activities during a fed-batch fermentation of Pichia pastoris</td>
</tr>
<tr>
<td>438</td>
<td>Salmonella enterica Typhimurium: Establishment of cultivation condition on shake flask and flagellin purification strategy by using tangential Ultrafiltration</td>
</tr>
<tr>
<td>439</td>
<td>XXI</td>
</tr>
<tr>
<td>440</td>
<td>XXII</td>
</tr>
</tbody>
</table>
Methods - Analytical & Imaging Techniques

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale-up of a Solid-State Bioconversion Process for Lovastatin Production in a 1200 Liter Reactor</td>
</tr>
<tr>
<td>Screening and characterization of lactic acid bacteria for the production of mannitol in carob based syrups</td>
</tr>
<tr>
<td>Screening for antibiotics from indigenous Streptomyces, their genetic and mutational analysis</td>
</tr>
<tr>
<td>Searching for proteins that influence biotransformation of VitaminD3 in Rhodococcus erythropolis</td>
</tr>
<tr>
<td>Separation of catalytically active enzymes through foam fractionation</td>
</tr>
<tr>
<td>Strains selection on aliphatic substrates: first step for omega-oxidation of C9- C18 fatty acids to obtain biopolymers from waste.</td>
</tr>
<tr>
<td>Studies on the of specificity of some lipase-catalysed hydrolysis and esterification reactions</td>
</tr>
<tr>
<td>Synthesis of cellulases and xylanases from mutant PR-22 of Cellulomonas flavigena under catabolic repression conditions.</td>
</tr>
<tr>
<td>The application of PCR methods and gas chromatography for detection of specific non-pathogenic bacteria of the genus Clostridium</td>
</tr>
<tr>
<td>The production of volatile compounds by yeasts isolated from artisanal brazilian cachaça distilleries</td>
</tr>
<tr>
<td>The specificity of an Enterobacter aerogenes 13 lipase</td>
</tr>
<tr>
<td>Towards a consolidate bio-processing for the conversion of agroindustrial wastes into optically pure lactic acid</td>
</tr>
<tr>
<td>Use of the branched-chain amino acid biosynthetic pathway for conversion of sugars into higher alcohols</td>
</tr>
<tr>
<td>Utilization of Organic Wastes from Biodiesel process for Production of Biodegradable Polyhydroxyalkanoates by newly isolated bacteria screened from oil contaminated soils in Thailand</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advances in detection of inorganic pollutants</td>
</tr>
<tr>
<td>Aggregation-based in silico study for better understanding of related membrane interfering analogous of Amphotericin B</td>
</tr>
<tr>
<td>Assessment of imazalil activity on the growth of Penicillium expansum and production of patulin in potato-glucose-agar medium</td>
</tr>
<tr>
<td>Assessment of physiological heterogeneity of a population in multi-species microbial community by fluorescence techniques</td>
</tr>
<tr>
<td>Bacterial growth as a nonlocal coherent phenomenon</td>
</tr>
<tr>
<td>Bacterial liquid-like envelopes detected by dynamic atomic force microscopy: false capsules/EPS.</td>
</tr>
<tr>
<td>Characterisation of initial degradation stage of Scots pine (Pinus sylvestris L.) sapwood after attack by brown-rot fungus Coniophora puteana</td>
</tr>
<tr>
<td>Color measurements as a reliable method for estimating chlorophyll degradation to phaeopigments</td>
</tr>
<tr>
<td>Comparison of several methods for DNA isolation from Aspergillus flavus and DNA quantification on nanodrop and conventional spectrophotometer</td>
</tr>
<tr>
<td>Design of predictive models for deoxynivalenol accumulation in barley grain cultures of Fusarium culmorum under different conditions</td>
</tr>
<tr>
<td>Determination of cell cycle parameters by flow cytometry in bacteria: practical Considerations</td>
</tr>
<tr>
<td>Differences in stationary phase cells of Saccharomyces cerevisiae var. bayanus grown in aerobic and hypoxic bath cultures assessed by electric particle analysis, light diffraction and flow cytometry</td>
</tr>
<tr>
<td>Dissecting Gene Expression in Micro-Colonies of Aspergillus niger</td>
</tr>
<tr>
<td>DTAF: An Efficient Probe to Study Cyanobacterial-Plant Interaction Using Confocal Laser Scanning Microscopy (CLSM)</td>
</tr>
<tr>
<td>Ethanol biosensor based on rhodium dioxide and alcohol dehydrogenase</td>
</tr>
<tr>
<td>Flow cytometry for analysis and sorting of large particles, sized from 20-1,500 microns (e.g. Aspergillus, Daphnia, Aquatic Larvae, Pollen).</td>
</tr>
<tr>
<td>Generation of computational metabolic models of three strains of Escherichia coli and growth comparisons in the presence or absence of oxygen</td>
</tr>
<tr>
<td>Location sites of nucleic acid intercalators in yeast cells: computer-aided fluorescence microscopy study</td>
</tr>
<tr>
<td>Metabolic reconstruction of Synechococcus elongatus, towards a minimal photautotrophic cell</td>
</tr>
<tr>
<td>Nanocurvatures induced by ethidium bromide in yeast plasma membrane</td>
</tr>
<tr>
<td>Title</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Natural product mining by nanoliter-scale cultivation of single actinomycetes spores in a microfluidic system</td>
</tr>
<tr>
<td>Neutron activation analysis for applied microbiology</td>
</tr>
<tr>
<td>Probabilistic modelling of the growth of spoilage bacteria on chilled food Products</td>
</tr>
<tr>
<td>Quantifying the heterogeneous response of E. coli at temperatures close to the maximum growth temperature</td>
</tr>
<tr>
<td>Selectivity-refined in silico analogue finding method for new antifungal molecules based on amphotericin B molecular features</td>
</tr>
<tr>
<td>Sensitivity analysis of Campylobacter spp. in poultry based meat preparations</td>
</tr>
<tr>
<td>Single Live-Bacterial Cell Assay of Promoter Activity and Regulation: Escherichia coli gcl promoter</td>
</tr>
<tr>
<td>The MiST2 database: a genomics resource on microbial signal transduction</td>
</tr>
<tr>
<td>Theoretical design study for new β-lactamase inhibitors</td>
</tr>
<tr>
<td>Two-dimensional toxicological screening by massive parallel microcultivation in nanoliter fluid segment sequences</td>
</tr>
<tr>
<td>Unraveling hyphal heterogeneity in Aspergillus niger by genome-wide expression analysis of single hyphae</td>
</tr>
<tr>
<td>Validation of serological test for diagnosing Helicobacter pylori infection in dyspeptic H. pylori culture positive children in Georgia</td>
</tr>
<tr>
<td>Viscosity assessment in yeast vacuoles by Brownian motion of polyphosphate Complexes</td>
</tr>
<tr>
<td>Medical & Pharmaceutical Microbiology. Antimicrobial Agents.</td>
</tr>
<tr>
<td>Activity of Flourquinolones on Staphylococcus aureus and S. saprophyticus strains: Post-antibiotic Effect (PAE)</td>
</tr>
<tr>
<td>An efficient molecular typing assay for Alternaria spp. Isolates</td>
</tr>
<tr>
<td>Anatomopathological and mycological findings in two wild seagulls (Larus sp) infected with Aspergillus fumigatus</td>
</tr>
<tr>
<td>Anti-herpes simplex virus activity of a medicinal plant</td>
</tr>
<tr>
<td>Antibiotics processed by Supercritical Fluids: antibacterial activity assessment</td>
</tr>
<tr>
<td>Antimicrobial activity of Thymus vulgaris, Matricaria chamomilla, Croton lechleri, Caléndula officinalis L., Julliana adstringens Schl against periodontopathogens microorganisms</td>
</tr>
<tr>
<td>Assessment of mutagenic and carcinogenic of PTFE (Ames test)</td>
</tr>
<tr>
<td>Beneficial effects of HIV peptidase inhibitors on Fonsecaea pedrosoi: promising compounds to arrest key fungal biological processes and virulence</td>
</tr>
<tr>
<td>Capsular Types of Haemophilus influenzae Isolated from CSF of Children with Meningitis and Pneumonia, in Iran</td>
</tr>
<tr>
<td>Chemical and pharmacological study of Brazilian marine Streptomyces.</td>
</tr>
<tr>
<td>Colicin E1 production is associated with bacteriocin multiproducer strains in uropathogenic Escherichia coli</td>
</tr>
<tr>
<td>Comparative Study on the Sensitivity of Daptomycin Against Vancomycin by MRSA from Hospital</td>
</tr>
<tr>
<td>Conjugation of Haemophilus Influenzae type b capsular polysaccharide and tetanus toxoid using DMT-MM as activating agent</td>
</tr>
<tr>
<td>Convergent acquisition of bacterial Antibiotic resistance determinants from experimental animals</td>
</tr>
<tr>
<td>Degradation of Sgs1 in response to rapamycin treatment in yeast Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>Determination of mode of action for novel synthetic antifungal agents using reversal assay method</td>
</tr>
<tr>
<td>Development of Antibacterial Preparations Containing Fermented Products from Some Thai Herbs</td>
</tr>
<tr>
<td>Effect of plants used in Mexican traditional medicine on Candida albicans biofilm formation</td>
</tr>
<tr>
<td>Effects of endocannabinoids and 3-deazaadenozine on the growth of free-living amoebas and their phagocytosis activity</td>
</tr>
<tr>
<td>Ethnomedicinal survey of medicinal plant species used as remedy for HAV/HBV/HCV by the ethnic groups of Bangladesh</td>
</tr>
<tr>
<td>Functional analysis of the widely conserved cytoplasmic domain of Spa24 in the T3SS assembly</td>
</tr>
<tr>
<td>Genotypic variability in the sequence encoding SpaP and mut II of cariogenic Streptococcus mutans strains in saliva samples intra and inter family members</td>
</tr>
<tr>
<td>Genotyping of Human Papillomavirus in abnormal cervical samples from the North-Eastern Croatia</td>
</tr>
<tr>
<td>Heterologous expression of hydrophobins RodA and RodB from Aspergillus fumigatus in host Pichia Pastoris</td>
</tr>
<tr>
<td>Human pathogens, nosocomial infections, heat-sensitive textile implants and an innovative approach to deal with them</td>
</tr>
<tr>
<td>Page</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>518</td>
</tr>
<tr>
<td>519</td>
</tr>
<tr>
<td>520</td>
</tr>
<tr>
<td>521</td>
</tr>
<tr>
<td>522</td>
</tr>
<tr>
<td>523</td>
</tr>
<tr>
<td>524</td>
</tr>
<tr>
<td>525</td>
</tr>
<tr>
<td>526</td>
</tr>
<tr>
<td>527</td>
</tr>
<tr>
<td>528</td>
</tr>
<tr>
<td>529</td>
</tr>
<tr>
<td>530</td>
</tr>
<tr>
<td>531</td>
</tr>
<tr>
<td>532</td>
</tr>
<tr>
<td>533</td>
</tr>
<tr>
<td>534</td>
</tr>
<tr>
<td>535</td>
</tr>
<tr>
<td>536</td>
</tr>
<tr>
<td>537</td>
</tr>
<tr>
<td>538</td>
</tr>
<tr>
<td>539</td>
</tr>
<tr>
<td>540</td>
</tr>
<tr>
<td>541</td>
</tr>
<tr>
<td>542</td>
</tr>
<tr>
<td>543</td>
</tr>
<tr>
<td>544</td>
</tr>
<tr>
<td>545</td>
</tr>
<tr>
<td>546</td>
</tr>
<tr>
<td>547</td>
</tr>
<tr>
<td>548</td>
</tr>
<tr>
<td>549</td>
</tr>
<tr>
<td>550</td>
</tr>
<tr>
<td>551</td>
</tr>
<tr>
<td>552</td>
</tr>
<tr>
<td>553</td>
</tr>
<tr>
<td>554</td>
</tr>
<tr>
<td>555</td>
</tr>
<tr>
<td>556</td>
</tr>
<tr>
<td>557</td>
</tr>
</tbody>
</table>
Microbial Physiology, Metabolism and Gene Expression

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A comparison between growth and adherence capacity in vitro: a preliminary evidence for pneumococci to exhibit virulence properties best at their mid- and late-log phases of growth</td>
<td>559</td>
</tr>
<tr>
<td>A novel method for Direct Cloning of large size gene or gene clusters from genomic DNA by Red/ET recombineering</td>
<td>560</td>
</tr>
<tr>
<td>A novel respiratory complex in Desulfovibrio vulgaris Hildenborough</td>
<td>561</td>
</tr>
<tr>
<td>Active ATPase ClpV(HslU), a homologous subunit of the eukaryotic 26S proteasome, is required to maintain replication in a nrdA101ts mutant of Escherichia coli at restrictive temperature</td>
<td>562</td>
</tr>
<tr>
<td>Aerobic biodegradation of dichloromethane: new findings</td>
<td>563</td>
</tr>
<tr>
<td>Alterations by transition metals nickel, cadmium and mercury in Salmonella typhimurium growth and membrane proteins</td>
<td>564</td>
</tr>
<tr>
<td>Ammonium assimilation in the eukaryotic microalga Chlamydomonas acidophila</td>
<td>565</td>
</tr>
<tr>
<td>Analysis of carbon source and pH-dependent transcriptional regulation of Humicola grisea var. thermoea lignocellulosytic system</td>
<td>566</td>
</tr>
<tr>
<td>Assaying the Single and Combined Genotoxicity of Calotropis procera Ait Latix and Chlorelarin Aspergillus terreus.</td>
<td>567</td>
</tr>
<tr>
<td>Availability of CO₂ concentrating mechanism in extremely haloalkaliphilic cyanobacteria Eubhatholceae natronophila from soda lake Magadi (Kenya)</td>
<td>568</td>
</tr>
<tr>
<td>Berberine vs. P. polychaetum alkaloit extract for antimicrobial activity</td>
<td>569</td>
</tr>
<tr>
<td>Biotechnology Pseudomonas strain early defence gene expression correlates to pathogenic potential</td>
<td>570</td>
</tr>
<tr>
<td>Cadmium effect on KIHH4 strain DNA binding factors</td>
<td>571</td>
</tr>
<tr>
<td>Characterisation of the NrfH cytochrome c quinol dehydrogenase from Desulfovibrio vulgaris</td>
<td>572</td>
</tr>
<tr>
<td>Characterization of KITup1 repressor</td>
<td>573</td>
</tr>
<tr>
<td>Construction of a plasmid vector for thermoacidophilic crenarchaeon Sulfolobus acidocaldarius</td>
<td>574</td>
</tr>
<tr>
<td>Construction of auxotrophic mutants of Methylphilus methylotrophus AS1 by recombination-mediated marker exchange between linear DNA and bacterial chromosomes in cells carrying the Escherichia coli araP transporter gene: application for Phe production from methanol</td>
<td>575</td>
</tr>
<tr>
<td>Deficient activity of DnaA protein allows proficient replication at restrictive conditions for ribonucleotide reductase mutants</td>
<td>576</td>
</tr>
<tr>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td></td>
</tr>
<tr>
<td>597</td>
<td>Mechanisms of SigH activation in minor cell population: a stochastic process or gene activation by short junction duplication</td>
</tr>
<tr>
<td>598</td>
<td>Molecular characterization of light sensitive mutants of the microalga Chlamydomonas reinhardtii</td>
</tr>
<tr>
<td>599</td>
<td>Multiple promoters of stress-responding genes of Corynebacterium glutamicum</td>
</tr>
<tr>
<td>600</td>
<td>Plant Cell Contact-dependent Virulence Regulation of hrc Genes in Pseudomonas syringae pv. tabaci 11528</td>
</tr>
<tr>
<td>601</td>
<td>Proteome Analysis of the Responses to Phenol Concentration Variations in Moderately Halophilic Bacteria Halomonas sp. MU12</td>
</tr>
<tr>
<td>602</td>
<td>Proteomic analysis of antibiotic resistance in Salmonella spp. strains from wild rabbits and boars</td>
</tr>
<tr>
<td>604</td>
<td>Regulation of ectoine biosynthesis in halotolerant methanotroph Methylobacterium alcaliphilum 20Z</td>
</tr>
<tr>
<td>605</td>
<td>Role of the nemRA operon of Escherichia coli K-12 in reducing ubiquinone as well as glyoxal ROS production and cell cycle arrest in Saccharomyces cerevisiae during nitrogen-depleted alcoholic fermentation</td>
</tr>
<tr>
<td>607</td>
<td>Screening of Halobacterium salinarum DNA sequences coding for salt resistance in a yeast model</td>
</tr>
<tr>
<td>608</td>
<td>Screening of novel bacteria for biohydrogen production</td>
</tr>
<tr>
<td>609</td>
<td>Structural Instability in Plasmid Vectors for DNA Vaccination</td>
</tr>
<tr>
<td>610</td>
<td>Studies of internal structure of multicellular microbial community by twophoton confocal microscopy</td>
</tr>
<tr>
<td>611</td>
<td>Studies on the expression levels of the carotenogenic enzymes in the microalga Chlamydomonas reinhardtii</td>
</tr>
<tr>
<td>612</td>
<td>The effects of a calpain inhibitor upon human and plant trypanosomatids life cycles</td>
</tr>
<tr>
<td>613</td>
<td>The Genotoxicity of Three Synthetic Pesticides: Chlorpyrifos, Cypermethrin and Their Mixture Chlorycin in Aspergillus terreus</td>
</tr>
<tr>
<td>614</td>
<td>Thermocidalphilic archaean of Acidilobales ord. nov.: metabolic properties based on genomic data</td>
</tr>
<tr>
<td>615</td>
<td>Thymol affects expression of dnaK, groEL, htpG and tf genes of Salmonella enterica serovar Thompson</td>
</tr>
<tr>
<td>616</td>
<td>Toxicity differences between Cr(VI) species in strain Ochrobactrum tritici 5bvl1</td>
</tr>
<tr>
<td>617</td>
<td>Transcriptional regulation of ADE2 and PUT2 genes in Kluyveromyces lactis</td>
</tr>
<tr>
<td>618</td>
<td>Vital staining of yeast acidified vacuoles using neutral red</td>
</tr>
<tr>
<td>619</td>
<td>Volatile ammonia, the signaling molecule in different stages of multicellular yeast community development</td>
</tr>
<tr>
<td>620</td>
<td>Vph1p, the vacuolar subunit of the V-ATPase in Saccharomyces cerevisiae, can compensate the lack of Stv1p, the Golgi subunit, to allow proper N-glycosylation of proteins</td>
</tr>
<tr>
<td>621</td>
<td>Biofilms & Antimicrobial surfaces</td>
</tr>
<tr>
<td>622</td>
<td>Alternative electron sinks of Deinococcus geothermalis</td>
</tr>
<tr>
<td>623</td>
<td>Anaerobic Baffled Tank (ABR) and Role of biofilm</td>
</tr>
<tr>
<td>624</td>
<td>Antibacterial activity of quaternary ammonium monomers in solution and in non leaching coatings</td>
</tr>
<tr>
<td>625</td>
<td>Antimicrobial and photocatalytic effect of silicate and silicone hygienic Coatings</td>
</tr>
<tr>
<td>626</td>
<td>Biocides tolerance and architecture of opportunistic pathogens biofilms using the Calgary device</td>
</tr>
<tr>
<td>627</td>
<td>Biofilm development during an anaerobic wastewater treatment process</td>
</tr>
<tr>
<td>628</td>
<td>Biofilm formation by algae on sandstone monuments and their inhibition: A case study of Agra (India)</td>
</tr>
<tr>
<td>629</td>
<td>Biofilm formation by kefir micro-organisms</td>
</tr>
<tr>
<td>630</td>
<td>Biofilm Formation of Listeria monocytogenes on Various Surfaces</td>
</tr>
<tr>
<td>631</td>
<td>Cell-surface hydrophobicity and corrosion characteristics of hydrocarbon degrading bacteria Bacillus cereus ACE2 and Serratia marcescens ACE4</td>
</tr>
<tr>
<td>632</td>
<td>Characterization of corrosive bacterial consortia isolated from a cooling tower</td>
</tr>
<tr>
<td>633</td>
<td>Comparison of methods for detection of biofilm in Coagulase-Negative Staphylococci</td>
</tr>
<tr>
<td>634</td>
<td>Confocal analysis of 60 biofilms structure using a microplate based high throughput method</td>
</tr>
<tr>
<td>635</td>
<td>Culturing phototrophic biofilms on surfaces: what determines biomass accumulation and species succession</td>
</tr>
<tr>
<td>636</td>
<td>Differences between clinical and food isolates of Listeria monocytogenes in biofilm formation</td>
</tr>
<tr>
<td>637</td>
<td>Disruption of Glucanacetobacter diazotrophicus levansucrase encoding gene (lsdA) alters tolerance to abiotic stress, biofilm formation and sugarcane colonization</td>
</tr>
</tbody>
</table>
Ecological approaches for dairy wastewater treatment

Effect of chromium on biofilm formation: bacterial biofilms in association with cyanobacterial strain.

Effect of different synthetic and naturally occurring biocides on bacteria isolated from biofilms of dental unit water: their biofilm forming ability

Effect of tyrosol in *Candida* species biofilm development

Evaluation of chemical and physical disinfection of process water and the treatment of biofilms in a pilot plant

Growth Phase-Dependent Regulation of *csgD*, the Master Regulator of Biofilm Formation: Interplay between Multiple Transcription Factors

Impact of peptidoglycan modifications on bacterial virulence: functional analysis of two *Shigella flexneri* genes; *orf185* and *orf186

In vitro activities of the minocycline and EDTA solutions (CATH-SAFE®) against microorganisms embeded in biofilm on the surface of hemodialysis catheters

Microbial cell surface hydrophobicity and surface energy obtained using the sessile droplet technique: identification of sources of inaccuracies due to the topography and chemical heterogeneity of microbial lawns.

Microbial corrosion inhibition of steel by a catonic surfactant synthesis

Microphytobenthic biofilms in the Cabras lagoon (Sardinia, Italy)

Monoculture and mixed biofilms of *Listeria monocytogenes* and *Pseudomonas fluorescens* – evidences of antagonism and self-repression

Motility and biofilm formation ability of isolated vs collection *P. aeruginosa*: effect of single and combined antimicrobial application

On site monitoring of biofilm formation on quartz quarries using colorimetric Techniques

PAH degrading Bacterial community from the Sea Surface Microlayer in an estuarine system

Phosphomonoesterase and phosphodiesterase activities of cultured phototrophic biofilms

Plasmids, antibiotics and their influence on the formation of dynamic *Escherichia coli* biofilms

Pseudomonas fluorescens ER74508 adherence to polymer networks made of polydimethylsiloxane and/or cellulose acetate butyrate

Quantification of stone biofilms: incomplete factorial designs for the optimization of phytopigment extraction in dimethyl sulfoxide.

Quantification of stone biofilms: phytopigments extraction improvement by application of ultrasonic methods.

Role of planktonic and sessile extracellular signals on interspecies relationships

Survival of *Listeria monocytogenes* in a desserts factory: evaluation of the sanitization treatments employed and of its infrastructure.

Use of Biosurfactants to reduce adhesion of *Staphylococcus aureus* to plastic surfaces.

Bioremediation

Adaptation of *Novosphingobium* sp. PP1Y to grow on complex mixtures of aromatic compounds dissolved in oil phases

Advances on Pentachlorophenol Bioremediation by the Ascomycota fungus *Penicillium glandicola*

An integrated approach involving chemical and ecotoxicological evaluation of the efficacy of a bioremediation tool based on bioaugmentation with *Pseudomonas* sp. ADP in soils contaminated with atrazine commercial Formulations

Applied genetic engineering in the removal of heavy metals

Bacterial Reduction of Polycyclic Aromatic Hydrocarbons and Heavy metals in Bonny Light Crude oil Using some Common organic wastes as Biostimulants

Bias in analytical procedure of microorganism’s community structure in soil

Bioaugmentation of a rotating biological contactor with a bacterial strain able to degrade fluorinated phenols

Biodegradation of Polyvinyl chloride (PVC) by newly isolated fungal strain of *Lentinus tigrinus* PV2

Biodegradation of two herbicides: Metribuzin and Linuron by some Fungal Species isolated by a Polluted soil in the North - East Algerian

Bioremediation of heavy metals through symbiosis between leguminous plant and rhizobium with engineered metallothionein and phytochelatin synthase genes

Bioremediation of Polyethylene

Biosorption of mercury by bacteria and potential applications for bioremediation

Biosurfactant production by *Pseudomonas fluorescens* – Physico-chemical characterization and solubilization of a model organic compound, naphthalene

Changes in microbial populations over time in an AMD affected field site

Characterization of Ni-resistant plant growth promoting bacterium *Bacillus megaterium* for microbial-assisted phytoremediation of Ni contaminated soils

Chlorpyrifos degradation in a biomix of biobed system with allophonic top soil
Colonisation and Biodegradation of Expanded polystyrene beads by indigenous isolated fungal strains 676

Complete Dechlorination of Tetrachloroethene and Trichloroethene by Korean Dehalococcoides spp. in a Chloroethene-contaminated Freshwater Sediment 677

Degradation of fluoroanilines by the wild strain *Labrys portucalensis* 678

Degradation of hydroquinone in *Sphingomonas* sp. strain TTNP3 679

Degradation of vapour phase toluene in a sustainable organic biofilter media 680

Degradation of methylotrophic bacteria isolated from mangrove species and their potential for bioremediation of heavy metals 681

Dynamic model of multi-trophic interactions in bioremediation food webs 682

Enhanced Dideoxination of 1,2-Dichloroethane in Soil Contaminated with Heavy Metals under Different Bioremediation Strategies 683

Evaluation of toxic compounds effects on aerobic granule activity 684

Extracellular production of hydroxyl radical by *Streptomyces cyaneus* CECT 3335 via quinone redox cycling: a new strategy for BTEX degradation. 685

Fed-batch and repeated fed-batch cultures of *Candida* sp. in an airlift bioreactor for the removal of Cr(VI) from aqueous solutions 686

Functional expression and substrate specificity of three ring-hydroxylating dioxygenases from the PAH-degrading strain *Mycobacterium* 6PY1 687

Fungal strains capable to use polyurethane as sole carbon source 688

Genetic engineering of *Cupriavidus metallidurans* CH34 for bioremediation of heavy metals in wastewater. 689

Growth of *Trametes versicolor* on nitro- and hydroxyl-phenol derivates 690

Hexavalent chromium detoxification of *Bacillus pumilus*-S4, *Pseudomonas doudoroffii*-S5 and *Exiguobacterium*-S8 in association with Hydrophytes 691

High Throughput Anlaysis of Aromatic Dioxygenase Gene Amplicons from a Tidal Mudflat Using Titanim-Pyrosequencing 692

Impact of fungus bioaugmentation on diesel-contaminated soil bioremediation by co-composting 693

Influence of predation by flagellates on the bacterial response to crude oil input in unpolluted oligotrophic and chronically oil-polluted mesotrophic Mediterranean sites. 694

Influence of readily assimilated carbon sources on the phenol degradation by *Trichosporon cutaneum* R57 strain 695

Inoculation of selected Rhizobacteria favours plant growth under stress Conditions 696

Interactions microorganism-salt marsh plants in the presence of Cu and PAHs Contamination 697

Isolation and characterization of Ni resistant endophytic bacteria from *Alyssum serpyllifolium* and their potential in promoting plant growth and Ni accumulation by host and non-host plants 698

Isolation and screening of bacteria to decolorize Azo-dyes 699

Isolation and selection of phenol-degrading bacteria from the astewatercontaminated soils in Iran 700

Microbes and their contribution in environmental sustenance: Multipotent microbes from East Calcutta Wetland 701

Microbial biotransformation of fluorinated biphenyls 702

Monitoring of oil-degrading bacteria during bioremediation by foodborn Compost 703

NAA for studying effects of potentially toxic metals (Cr, Hg) on *Arthrobacter Globiformis* 704

New proteins expression by PGPR *Pseudomonas fluorescens* under arsenic-induced stress conditions 705

Ni, Pb and Cd tolerance by *Phanerochaete chrysosporium* in industrial Wastewater 706

Nickel(II) biosorption by *Rhodotorula glutinis* 707

Novel microbes from East Calcutta Wetland: Implications for environmental Sustenance 708

Plant-microorganisms associations in salt marshes: influence on hydrocarbon Degradation 709

Preferential utilization of aromatics: modulation of glucose transport proteins in *Pseudomonas putida* CSV86 710

Reactive Violet 12 dye decolorization by mycelial culture of *Trametes versicolor* 711

Removal of bentazon by liquid and solid state cultures of *Ganoderma lucidum* 712

Removal of Heavy Metals in Wastewater Effluents in an Integrated Mode Using Supercmacroporous Gels for Enrichment and Biogenic Sulphide for Subsequent Precipitation 714

Response of a denitrifying *Pseudomonas* to sodium benzoate 715

Screening of pentachlorophenol degradation ability of several fungi isolates from Tunisian soils 716
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening of Potential Biosurfactant Producing rizospheric Microorganisms of fique (Furcraea sp) for potential soil bioremediation</td>
<td>717</td>
</tr>
<tr>
<td>Sequential Photo-Biodegradation of MCPA with the Use of Exilamps</td>
<td>718</td>
</tr>
<tr>
<td>Simultaneous decolorization and detoxification of Black Reactive 5 using TiO2 deposited over glass</td>
<td>719</td>
</tr>
<tr>
<td>Soil microcosms for determination of growth by Streptomyces mirabilis P16B1 in heavy metal contaminated soil</td>
<td>720</td>
</tr>
<tr>
<td>Soluble Sulfate Removal from Effluent Water by Sulfate Reducing Bacterial Consortia</td>
<td>721</td>
</tr>
<tr>
<td>Spent mushroom substrate from the industrial cultivation of P. ostreatus for discoloring complex chromo-baths for the textile industry: white rot fungi for a sustainable approach to wastewater treatment</td>
<td>722</td>
</tr>
<tr>
<td>Stimulation of polycyclic aromatic hydrocarbon biodegradation by nitrate and sulfate amendment to sediment along a natural salinity gradient</td>
<td>723</td>
</tr>
<tr>
<td>Sustainable remediation of polycyclic aromatic hydrocarbon contaminated soils using a two step bioremediation process.</td>
<td>724</td>
</tr>
<tr>
<td>Synthetic dye degradation by complex pellets of white-rot fungus Trametes versicolor</td>
<td>725</td>
</tr>
<tr>
<td>Taxonomically distinct ETBE-degrading communities, originated from the same site, are dominated by novel Mesorhizobium and Hydrogenophaga species</td>
<td>726</td>
</tr>
<tr>
<td>The decolorization of azo - dyes by Trametes versicolor under the influence of different glucose concentrations</td>
<td>727</td>
</tr>
<tr>
<td>The remarkable adaptability of Rhodococcus erythropolis cells</td>
<td>728</td>
</tr>
<tr>
<td>Thermophilic Bacteria Degrading Poly(Vinyl Alcohol)</td>
<td>729</td>
</tr>
<tr>
<td>Tolerance and stress response of the saprobe macrofungi Macrolepiota procera to nickel</td>
<td>730</td>
</tr>
<tr>
<td>Uranium adsorption by Articulospora tetracladia: can aquatic hyphomycetes be natural bioremediators of uranium contaminated streams?</td>
<td>731</td>
</tr>
<tr>
<td>Biotechnologically Relevant Enzymes and Proteins</td>
<td></td>
</tr>
<tr>
<td>A method for detection of Rhizomucor miehei lipase activity</td>
<td>732</td>
</tr>
<tr>
<td>A new lipase-catalyzed biodiesel by response surface methodology using Rhizopus oryzae derived lipase</td>
<td>733</td>
</tr>
<tr>
<td>Bacillus popilliae: Detection and Biochemical Characterization of Pectinolytic Activity</td>
<td>734</td>
</tr>
<tr>
<td>Bacillus subtilis CwIP in the SP-beta prophage comprises two novel cell wall hydrolase domains</td>
<td>736</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Laccase Production by Basidiomycetes Isolated from Forest in Nuevo León, México</td>
<td>757</td>
</tr>
<tr>
<td>Lignin degradation by complex pellets of white-rot fungus Anthracophyllum discolor in airlift reactor</td>
<td>758</td>
</tr>
<tr>
<td>Microbial lipase purification using aqueous two-phase system</td>
<td>759</td>
</tr>
<tr>
<td>Optimisation of production of therapeutic peptides in Escherichia coli</td>
<td>760</td>
</tr>
<tr>
<td>Optimization of growth media for economical β-glucanase production by Bacillus sp.</td>
<td>761</td>
</tr>
<tr>
<td>Optimizing the production of biodiesel through the use of pork pancreatic lipase (PPL)</td>
<td>762</td>
</tr>
<tr>
<td>Partial purification and characterization of five alpha amylases from a wheat local variety (Balady) during germination</td>
<td>763</td>
</tr>
<tr>
<td>Phosphoglucomutase GlmM of Streptococcus pneumoniae is activated by endogenous eukaryotic-type protein kinase StkP</td>
<td>764</td>
</tr>
<tr>
<td>Production and characterization of thermostable phytase from Bacillus strain isolated from rhizosphere of Acaea cyanophylla Lindley</td>
<td>765</td>
</tr>
<tr>
<td>Production of a new biodiesel by using a low cost lipase derived from Thermomyces lanuginosus and a response surface methodology</td>
<td>766</td>
</tr>
<tr>
<td>Production of Amylases, CMCases, Xylanases and Ligninolytic Enzymes by White-rot Fungi in Solid and Liquid Fermentation</td>
<td>767</td>
</tr>
<tr>
<td>Production of lipase and esterase by Aspergillus tubingensis capable of degrading polyurethane</td>
<td>768</td>
</tr>
<tr>
<td>Role of valine residue conserved at extra-sugar binding space in hydrolysis and transglycosylation activities of cyclomaltoolactonase-family enzymes</td>
<td>769</td>
</tr>
<tr>
<td>Structural characterization of the propeptide NH2-terminal of the precursor of pulmonary surfactant protein B (SP-B)</td>
<td>770</td>
</tr>
<tr>
<td>Structural characterization of Xylanase II from Trichoderma reesei QM9414</td>
<td>771</td>
</tr>
<tr>
<td>The NiFeSe hydrogenase from Desulfovibrio vulgaris Hildenborough shows tolerance to oxygen inactivation</td>
<td>772</td>
</tr>
<tr>
<td>The ratio laccase/Mn peroxidase in solid state cultures of Pleurotus pulmonarius affects the ability to decolourize industrial dyes.</td>
<td>773</td>
</tr>
<tr>
<td>Utilization of agroindustrial residues as substrates for production of pectinolytic enzymes by biological agent “G088”.</td>
<td>775</td>
</tr>
<tr>
<td>Microfactories - Microbial Production of Chemicals and Pharmaceuticals</td>
<td></td>
</tr>
<tr>
<td>A novel epoxide antibiotic isolated from Pantoea agglomerans 48h90 inhibits economically important plant pathogens and the human pathogen Candida albicans</td>
<td>776</td>
</tr>
</tbody>
</table>

Amine Derivatives of Fungal Monascus Pigment Inhibiting the Adipogenesis of 3T3-L1 Cells | 777 |
<p>| Bacillus cereus hemolysin II and its various applications | 778 |
| Bacteriocin Production by Bean Root Bacteria | 779 |
| Biopolymerization of Carvacrol and Optimization of Reaction Conditions Through Surface Response Methodology (RSM) | 780 |
| Biosurfactant Production by Candida pelliculosa and C. sphaerica Isolated from Soil Contaminated with Lead | 781 |
| Biosurfactant production by Chromobacterium violaceum using alternative sources: corn steep liquor (industrial waste), lactose and corn oil | 782 |
| Biosynthesis of amino acids sulfur in Saccharomyces cerevisiae is affected by fermentation conditions in beer production | 783 |
| Characterisation of Polyhydroxyalkanoate Produced by Haloarchaea Isolated from Saltpans of Goa-India. | 784 |
| Characterization of marine isolates with extracellular protease production and their commercial application | 785 |
| Chitin and chitosan produced by Mucoralean fungi using a new economic medium-Corn Steep | 786 |
| Compared production of lutein-enriched biomass from a new strain of microalgae in different photobioreactors | 787 |
| Development of a carob based medium for mannitol production by Leuconostoc fructosum NRRL B-2041 | 788 |
| Effect of culture conditions on the production of an extracellular protease by a Bacillus sp isolated from soil samples of Tehran park | 789 |
| Effect of different nitrogen sources on the growth and production of canthaxanthin by Dietzia natronolimnaea in batch culture | 790 |
| Enhanced growth and lipid anabolism in iron exposed cultures of Chlamydomonas acidophila isolated from an acidic environment | 791 |
| Extraction of clavulanic acid in aqueous two-phase systems followed by separation through ultrafiltration | 792 |
| Fermentation of grape marc for production of bioactive phenolic compounds | 793 |
| Green microalgae: source for healthy foods, novel biofuels and CO2 abatement | 794 |
| Growing kinetics of antimicrobial activity of Streptomyces tubercidicus brute Extracts | 795 |
| High concentration production of L-cysteine from the precursor D,L-ATC using the enzymes of Shinella zoogloeoides | 796 |</p>
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification and Emulsification Properties of a Biosurfactant</td>
<td>797</td>
</tr>
<tr>
<td>Produced by Bacteria from Soil, Chiang Mai, Thailand</td>
<td></td>
</tr>
<tr>
<td>Isolation and antimicrobial activity of Streptomyces tubercidicus</td>
<td>798</td>
</tr>
<tr>
<td>against pathogenic bacteria and fungi</td>
<td></td>
</tr>
<tr>
<td>Isolation, phenotypic identification and bioactivity of endophytic</td>
<td>799</td>
</tr>
<tr>
<td>microorganisms intrinsically associated with Miconia albicans in</td>
<td></td>
</tr>
<tr>
<td>Brazilian tropical savannah tree in Sao Carlos – SP</td>
<td></td>
</tr>
<tr>
<td>Phosphate solubilization of low solubility sources in liquid medium</td>
<td>800</td>
</tr>
<tr>
<td>by an isolate of Aspergillus niger</td>
<td></td>
</tr>
<tr>
<td>Polyhydroxybutyrate production from cheese whey by recombinant E.</td>
<td>801</td>
</tr>
<tr>
<td>coli</td>
<td></td>
</tr>
<tr>
<td>Prevention of L-tyrosine by-production and improved performance of</td>
<td>802</td>
</tr>
<tr>
<td>an Escherichia coli L-phenylalanine-producing strain using tyrA</td>
<td></td>
</tr>
<tr>
<td>ssRA-like tagged Alleles</td>
<td></td>
</tr>
<tr>
<td>Production of mycotoxins Zearelenones and Aflatoxins by selected</td>
<td>804</td>
</tr>
<tr>
<td>strains of Fusarium sp. and Aspergillus flavus</td>
<td></td>
</tr>
<tr>
<td>Production of lipids in different operational conditions by several</td>
<td>805</td>
</tr>
<tr>
<td>marine and freshwater microalgae</td>
<td></td>
</tr>
<tr>
<td>Production of micro-organisms and metabolites for the food industry</td>
<td>806</td>
</tr>
<tr>
<td>and agribusiness in a bio-factory in Brazil</td>
<td></td>
</tr>
<tr>
<td>Productivity of Chlorella sorokiniana in a short light-path (SLP)</td>
<td>807</td>
</tr>
<tr>
<td>panel photobioreactor under high irradiance</td>
<td></td>
</tr>
<tr>
<td>Screening of Algerian lactic acid bacteria on their antilisterial</td>
<td>808</td>
</tr>
<tr>
<td>activity</td>
<td></td>
</tr>
<tr>
<td>Screening of polyhydroxyalkanoates-producing bacteria from different</td>
<td>809</td>
</tr>
<tr>
<td>Environments</td>
<td></td>
</tr>
<tr>
<td>Solar UV radiation quality and nitrogen starvation induce changes in</td>
<td>810</td>
</tr>
<tr>
<td>the commercial carotenoid profile of a Dunaliella bardawil mutant</td>
<td></td>
</tr>
<tr>
<td>Synthesis of small RNA-bacteriophage coat protein derived rod-like</td>
<td>811</td>
</tr>
<tr>
<td>and spherical mosaic nanoparticles in Escherichia coli</td>
<td></td>
</tr>
<tr>
<td>The catalytic potential of bacterial multicomponent monooxygenases</td>
<td>812</td>
</tr>
<tr>
<td>ToMO and PH for the synthesis of antioxidants tyrosol and hydroxytyrosol.</td>
<td></td>
</tr>
<tr>
<td>The potential of thermophilic Fe(III)-reducing prokaryotes to produce</td>
<td>813</td>
</tr>
<tr>
<td>novel types of proteinaceous nanowires.</td>
<td></td>
</tr>
<tr>
<td>Transformation of nerol with Aspergillus niger in Czapek-Dox</td>
<td>814</td>
</tr>
<tr>
<td>medium</td>
<td></td>
</tr>
<tr>
<td>Use of volatile acids waste in the production of xanthan gum in a</td>
<td>815</td>
</tr>
<tr>
<td>culture of Xanthomonas campestris pv campestris - CBMAI 199</td>
<td></td>
</tr>
<tr>
<td>(ATCC 33913)</td>
<td></td>
</tr>
<tr>
<td>UV-A mediated modulation of photosynthetic efficiency, xanthophyll</td>
<td>816</td>
</tr>
<tr>
<td>cycle and fatty acid production of Nannochloropsis</td>
<td></td>
</tr>
<tr>
<td>Xylitol production from dilute-acid hydrolysis of bean group shells</td>
<td>817</td>
</tr>
</tbody>
</table>
A new Bacteroides host strain for the detection of bacteriophages indicating human faecal contamination in water

Melanie Wicki1,2, Adrian Auckenthaler3, Richard Felleisen1, Marcel Tanner2 and Andreas Baumgartner1
1Federal Office of Public Health, 3003 Bern, Switzerland
2Swiss Tropical Institute, 4002 Basel, Switzerland
3Office for the Environmental Protection and Energy, Basel-Landschaft, 4410 Liestal, Switzerland

Faecal contamination of water used as drinking water, for recreation or for food production may lead to waterborne diseases and economic losses. It is therefore important to protect water resources. In many countries, the faecal indicator organisms, E. coli and enterococci, are used for the description of the microbiological quality of water. Based on these organisms it is not possible to distinguish between human and animal faecal pollution. Such discrimination, however, is crucial for water management because it is generally assumed that pathogens with impact on human health are more frequently transmitted through human faecal pollution. To differentiate between various types of contamination and to trace their origin, effective and easy to handle methods should therefore be established to determine whether the water is contaminated by human or animal faeces. In this study a new Bacteroides host strain termed Bacteroides thetaiotaomicron ARABA 84 was isolated which is specific for bacteriophages of human origin. Moreover, the strain is applicable for the detection of human faecal contaminations in water.

The specificity of the strain was determined by examination of human and animal wastewater. Bacteriophages were exclusively found in human wastewater and never detected in animal waste. Analysis of surface water samples showed that bacteriophages infecting the novel host strain are present in the environment. In river water samples taken after a wastewater treatment plant, bacteriophages of human origin were present in all samples analysed. In addition, the new host strain was used for investigation of a spring located in the north western part of Switzerland. The spring, which is part of a karst aquifer, is vulnerable for faecal contamination because of hydrogeologic characteristics. Previous studies showed that after heavy rainfall the spring was contaminated with E. coli, enterococci and even pathogens. Bacteriophages of the newly isolated Bacteroides host strain were present after three rain events thus indicating the presence of human faecal contaminations. Based on these results, it can be concluded that the new host strain, Bacteroides thetaiotaomicron ARABA 84, is a promising tool for the use in microbial source tracking.

Keywords: bacteria; contamination; indicator; pollution; source tracking

Agrobacterium radiobacter / Agrobacterium tumefaciens human isolates form a sub-population distinct from the environmental strains

F. Aujoulat1, C. Teyssier1, A. Masnou1, F. Salle1, D. Faure2, C. Segonds3, H. Marchandin1,4, E. Jumas-Bilak1
1Université Montpellier 1, EA3755-DIBOP Montpellier, France
2ISV-CNRS, Gif-sur-Yvette, France
3Laboratoire de Bactériologie, CHU de Toulouse, France
4Laboratoire de Bactériologie, CHRU de Montpellier, France

The genus Agrobacterium groups environmental bacteria, some of them are phytopathogenic causing crown gall. Agrobacterium is also recognized as an agent of human opportunistic infections even if its pathogenicity remains to be investigated. Taxonomy and nomenclature is controversial in the genus Agrobacterium. As a rule, clinical strains are named Agrobacterium radiobacter whereas Agrobacterium tumefaciens is preferred for the phytopathogenic strains. The complete genomic sequence of A. tumefaciens and A. radiobacter is available. Their genomes are composed of a large circular chromosome associated with a linear one. We proposed phylogenetic and Multi Locus Sequence Analyses (MLSA) in order to study the population structure of clinical and environmental isolates of A. tumefaciens / A. radiobacter. Forty-two phytopathogenic and non phytopathogenic plant isolates, 45 clinical isolates and reference strains of the species A. radiobacter and A. tumefaciens are investigated. A MLSA scheme is proposed for the first time for this bacterial species. The scheme was based on the partial sequences of 6 housekeeping genes (atpD, zwf, trpE, groEL, rpoB and dnaK) distributed around the large circular chromosome. Clonal complexes were defined using e-burst program and minimum spanning treeing. Each major clonal complexes contained either plant or human isolates. The phylogenetic analyses were performed by maximum likelihood method implemented with the General Time Reverse model. Tree reconstruction based on the concatenated sequences showed the existence of two major robust clades corresponding to the environmental and clinical strains, respectively. Phylogeny and population structure segregated the clinical and environmental sub-populations. This organization suggested the adaptation of clades and/or clonal complexes to man and to the opportunistic pathogen behaviour.
Antimicrobial activity of soft coral *Sinularia compressa* from Hengam Island, the Persian Gulf

Z.Zohari1, S.Dobretoș2, M.Emtiazjoo1, M.Rabbani1 and K.Samimi Namin1

1Islamic Azad University, Tehran North Branch, Yong Researchers Club, Tehran, Iran
2Department of Marine Science and Fisheries, Sultan Qaboos University, Oman
3Islamic Azad University, Tehran North Branch, Tehran, Iran
4National Museum of Natural History, P.O.Box 9517, 2300 RA Leiden, The Netherlands

Antimicrobial activity was examined in the soft coral, *Sinularia compressa*, from Hengam Island, the Persian Gulf. Extraction and assay protocols were developed to identify antimicrobial activity in some fractions of extract. Detection was determined by disc assay method with antibiotic as control, using two gram positive bacteria, *Staphylococcus aureus* and *Bacillus sp* and four gram negative bacteria, *Pseudomonas sp*, *Klebsiella sp*, *Salmonella sp* and *Shigella sp*. TLC, ninhydrin and vanillin/sulfuric acid reagents and GC-MS were used to isolate, identify and characterize metabolites in fractions. The results demonstrate that some fractions of *S. compressa* extract such as butanol and ethyl acetate fractions exhibited appreciable antimicrobial activity on some bacteria, while some fractions had little or no antimicrobial activity. Acetone and hexane fractions had no antimicrobial activity on any of the bacteria tested. Detection was determined by disc assay method with antibiotic as control, using two gram positive bacteria, *Staphylococcus aureus* and *Bacillus sp* and four gram negative bacteria, *Pseudomonas sp*, *Klebsiella sp*, *Salmonella sp* and *Shigella sp*. TLC, ninhydrin and vanillin/sulfuric acid reagents and GC-MS were used to isolate, identify and characterize metabolites in fractions. The results demonstrate that some fractions of *S. compressa* extract such as butanol and ethyl acetate fractions exhibited appreciable antimicrobial activity on some bacteria, while some fractions had little or no antimicrobial activity. Acetone and hexane fractions had no antimicrobial activity on any of the bacteria tested.

Keywords: antimicrobial activity; *Sinularia compressa*; Hengam Island; Persian Gulf

Aquatic hyphomycetes: what can they tell us about stream ecological integrity?

V. Ferreira, and M. A. S. Graça

IMAR-Institute of Marine Research & Dept. Zoology, Universidade de Coimbra, 3004-517 Largo Marquês de Pombal, Coimbra, Portugal

Aquatic hyphomycetes are a group of freshwater fungi, composed by the anamorphs (asexual stages) of ascomycetes and basidiomycetes. Even though this is a phyllogenetically heterogeneous group, there are common features to most species: (a) they are saprophytic, using submerged leaves and wood as substrates and sources of carbon, (b) they can retrieve nutrients (e.g. N and P) from both the water column and the organic substrates, (c) they inhabit preferentially well aerated and turbulent freshwater systems, and (d) they produce numerous conidia (asexual spores) with distinctive shapes and sizes (Fig. 1). This ecologically homogeneous group of microorganisms (decomposers) constitutes a key component of small woodland streams, where the basis of aquatic food webs is litter decomposition. However, human induced changes on water quality or on riparian vegetation can affect the activity and community structure of these organisms, with consequences on litter decomposition and aquatic food webs. It is therefore urgent to deepen our understanding on how anthropogenic activities affect these microorganisms; if their responses to a given stress factor are predictable this might even help us to detect early impairments to freshwaters using fungal activity or structural variables as bioindicators.

Here we assessed the effect of stream water nutrient enrichment (cultural and experimental) and substitution of native forests by eucalyptus plantations on (a) fungal biomass built up (determined after extraction of the membrane lipid ergosterol from a given amount of colonized litter), (b) conidial production rate (determined after counting the number of conidia produced after incubating a given amount of colonized litter under laboratory conditions) and (c) community structure (determined after identification and counting of conidia) of aquatic hyphomycetes associated with submerged litter.

Increases in dissolved nutrients (100–1100 μg/L) in stream water generally increased (15–100%) fungal biomass built up, although significant difference between reference and impacted sites depended on litter identity. Conidial production rate was stimulated by nutrient enrichment, but more for nutrient poor substrates (e.g. balsa veneers, 7–25 times the peak value at the reference site) than for nutrient rich substrates (e.g. alder litter, 2–4 times). Even though there was a tendency for nutrient enrichment to stimulate fungal production, the extent of this stimulation was species specific, which resulted in changes in community structure. However, these changes were more marked for communities associated with fast decomposing litter (e.g. alder litter) since here time was not an important factor, than for those on slow decomposing litter (e.g. oak litter) where time, and ecological succession, has a strong effect on structuring fungal communities which overrides the effect of nutrient enrichment.

Substitution of native forests by eucalyptus plantations in Central Portugal led to increased instream organic matter storage (due to slower decomposition rates of eucalyptus leaves, higher amount of bark, and higher litter fall during summer when flow is low) and increased water temperature (due to open canopies), which resulted in higher fungal biomass built up and higher conidial production in eucalyptus streams than in reference streams. However, the fungal community structure was most affected by forest change with a reduction of 20–25% in the total number of species.

The activity and community structure of aquatic hyphomycetes were sensitive to both anthropogenic factors studied here, suggesting that they can give important information on both the functional and structural components of ecological integrity of freshwaters.

Keywords: aquatic hyphomycetes; biomass; community structure; eucalyptus; eutrophication; sporulation

Fig. 1 Conidia of aquatic hyphomycetes. From leaf to right: *Casarea spathularum*, *Lemonniera terrestris*, *Tetrachaetum elegans* (2), *Tricladium chaetocladium*, *Tumularia aquatica* (4), *Clavariopsis aquatica*, *Heliscus lagunensis* (3), and *Tetrachaetum marchalianum*. Conidia are not to scale.
Archaea from Algerian Hypersaline Environments producing Archaeocins

N. Imadalou-Idres1, A. Carré-Mlouka2, H. Yahiaoui1, S. Benallaoua1 and S. Rebuffat1

1Laboratory of Applied Microbiology and Microbial Biochemistry, University of Abderahmane Béjaia Targua Ouzemour Béjaia 06000, Algeria
2Laboratory of Communication Molecules and Adaptation of Microorganisms, FRE 3206 CNRS-MNHN, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France

This study aimed to characterize and identify archaeal strains producing bacteriocin-like substances, with a focus on halophilic species.

Over 150 microbial strains have been isolated from different hypersaline environments of Algeria: salt lakes, seawater, seaweed, and salted foods. Fifty per cent presented an antagonistic activity towards at least one of the other strains isolated along this study, while most of these were also capable of inhibiting the growth of eu-bacterial reference strains. Complete inactivation or significant reduction in activity was observed after treatment of active cell-free supernatants with trypsin, pepsin or papain, thus suggesting production of bacteriocin-like substances.

Eight archaeal isolates were identified by PCR amplification of 16S ribosomal DNA. Purification of the active substances from four of these strains revealed that they are short hydrophobic peptides, presumably microhalocins. Growth and production of potent microhalocin was optimized for one of the strains, SM5. Different conditions of temperature, pH, salt concentration and a variety of carbon sources were tested. An optimal artificial medium was defined. Culture and production of active compounds was shown to be possible in bioreactors, using food industry by-products (molasses and lactoserum) as growth media. Growth was maximal in molasses supplemented with yeast extracts, thus suggesting possible waste recycling for future production of the microhalocin.

The microhalocins exhibited original features, such as a capacity to adsorb onto the surface of producer cells, thus suggesting a cationic nature. This particularity might be correlated with their unprecedented inhibitory activity on several eu-bacterial strains, with different degrees of specificity. This is the first report that archaeocins, the archaeal pendant of bacteriocins, can inhibit the growth of members of another domain of life, the Bacteria.

Keywords Saltrens, Algeria; halophilic archaee; microhalocins; bacteriocin; antibacterial activity; production; agricultural by-products.

Assessing the viral pollution in Korean water environments by using Integrated cell culture-PCR and real-time PCR

Sung Won Song,1 Hee-Jung Lee,2 Cheonghoon Lee,1 Weon Choon Choi,1 Sooryun Cheong1, Eun-Gyoung Oh2, Hong-Sik Yu1, Soon-Bum Shin1, and Sang-Jong Kim1

1School of Biological Sciences, College of Natural Sciences, Seoul National University
2Food Safety Research Division, National Fisheries Research & Development Institute

Enteric viral pollution was studied in Korean water environments (river water, wastewater treatment plant effluent, beach water, sea water) by using Integrated cell culture-PCR (ICC-PCR) and real-time PCR. Water samples were collected five times at water environments near Gangneung City in 2008. The enteric viruses (adenovirus and enterovirus) were detected in all sites. The main location of the viral pollution source was different between ICC-PCR and real-time PCR. ICC-PCR results showed that source of the infectious enteric viruses was located on the upstream of the river whereas the main source of viral pollution seemed to be wastewater treatment plant effluent by using real-time PCR. These results indicate that real-time PCR may be rapid and sensitive method for detecting viruses, but there is a limit that it can’t assure where the main location of the infectious virus source is, so the methods based on cell culture assay are necessary to make up the deficits of the real-time PCR for assessing the viral pollution.

Supported by granted from BK21 and National Fisheries Research & Development Institute
Automated detection and quantification of total bacteria in liquid samples based on the MPN method

C. Fuchsinger, M. Preims, and I. Fritz
Institute for Environmental Biotechnology, Department for Agrobiotechnology, IFAT-Tulln, University of Natural Resources and Applied Life Sciences

Quantification of culturable bacteria is a widely used measure not only for water analysis but also for food. Especially in terms of drinking water analysis, testing for microorganisms is strictly regulated by the European Drinking Water Directive including quality criteria for the methods to be used and detection limits (Council Directive 98/83/EC, EN ISO 8199).

The most common method for a total bacteria count is the pour plate method (EN ISO 6222), which can be labour intensive as well as user-dependent in terms of enumeration of visible colonies. Additionally, the fact that hot agar (45 ± 1 °C) is poured on the sample containing microorganisms adapted to psychrophilic environments, may lead to heat shock (Sartory et al. 2008) or simply bad distribution of the sample, if the agar is cooling down too quickly during the mixing process.

The method presented in this study is based on the Most Probable Number (MPN) method which was adapted to comply with the need for a quick and easy screening tool for different kinds of liquid samples as well as varying microbial load. The use of 24 well titer plates instead of tubes for cultivation of bacteria drastically reduces the amount of culture media and also simplifies incubation. Aliquots of 1 ml sample mixed with 1 ml double concentrated media showed to be a good compromise between precision and handling, which can be further simplified by use of dispensers.

Photometric detection of turbidity instead of visual evaluation of bacterial growth avoids misinterpretation of users and provides additional information through absorbance values. Definition of a threshold ensures user-independent determination of microbial growth. Calculation of the MPN itself is done using a program provided by the FDA (U.S. Food and Drug Administration, Blodgett 2003) that also provides basic statistics and allows good flexibility concerning sample volume, number of dilutions and replicates within certain dilutions (Garthright & Blodgett 2003).

Validation criteria for this method were carefully established and evaluated. This includes assessment of applicability for various sample materials, utilisation of different dilution proportions and implementation of varying numbers of replicates per dilution as well as tests for accuracy, repeatability, sensitivity and robustness. Thus, an SOP (Standard Operating Procedure) for the quantification of microbial contamination of water, coloured and turbid aqueous samples was established and can be used as an alternative screening technique to the pour plate method.

Keywords total bacteria count, MPN, automated detection, quantification

Bacterial sulfate reduction in the oxic zone of acidic gold mine tailings contaminated with arsenic and other metals

A. L. Gerasimchuk1, O. P. Butorova1, D. Banke1, P. Orme2, N. V. Pimenov3, A. S. Yanenko1, O. V. Karnachuk1
1 Department of Plant Physiology and Biotechnology, Tomsk State University, Lenina Av. 36, 634050, Tomsk, Russia
2 Holymoor Consultancy Ltd., 8 Heaton St., Chesterfield, Derbyshire, S40 3AQ, United Kingdom
3 Winogradsky Institute of Microbiology RAS, 60-let-Oktiabrya Av. 7/2, 117312, Moscow, Russia,

The most common method for a total bacteria count is the pour plate method (EN ISO 6222), which can be labour intensive as well as user-dependent in terms of enumeration of visible colonies. Additionally, the fact that hot agar (45 ± 1 °C) is poured on the sample containing microorganisms adapted to psychrophilic environments, may lead to heat shock (Sartory et al. 2008) or simply bad distribution of the sample, if the agar is cooling down too quickly during the mixing process.

The method presented in this study is based on the Most Probable Number (MPN) method which was adapted to comply with the need for a quick and easy screening tool for different kinds of liquid samples as well as varying microbial load. The use of 24 well titer plates instead of tubes for cultivation of bacteria drastically reduces the amount of culture media and also simplifies incubation. Aliquots of 1 ml sample mixed with 1 ml double concentrated media showed to be a good compromise between precision and handling, which can be further simplified by use of dispensers.

Photometric detection of turbidity instead of visual evaluation of bacterial growth avoids misinterpretation of users and provides additional information through absorbance values. Definition of a threshold ensures user-independent determination of microbial growth. Calculation of the MPN itself is done using a program provided by the FDA (U.S. Food and Drug Administration, Blodgett 2003) that also provides basic statistics and allows good flexibility concerning sample volume, number of dilutions and replicates within certain dilutions (Garthright & Blodgett 2003).

Validation criteria for this method were carefully established and evaluated. This includes assessment of applicability for various sample materials, utilisation of different dilution proportions and implementation of varying numbers of replicates per dilution as well as tests for accuracy, repeatability, sensitivity and robustness. Thus, an SOP (Standard Operating Procedure) for the quantification of microbial contamination of water, coloured and turbid aqueous samples was established and can be used as an alternative screening technique to the pour plate method.

Keywords total bacteria count, MPN, automated detection, quantification

Bacterial sulfate reduction in the oxic zone of acidic gold mine tailings contaminated with arsenic and other metals

A. L. Gerasimchuk1, O. P. Butorova1, D. Banke1, P. Orme2, N. V. Pimenov3, A. S. Yanenko1, O. V. Karnachuk1
1 Department of Plant Physiology and Biotechnology, Tomsk State University, Lenina Av. 36, 634050, Tomsk, Russia
2 Holymoor Consultancy Ltd., 8 Heaton St., Chesterfield, Derbyshire, S40 3AQ, United Kingdom
3 Winogradsky Institute of Microbiology RAS, 60-let-Oktiabrya Av. 7/2, 117312, Moscow, Russia,

Microbial sulfate reduction (MRS) is instrumental in precipitating metal sulfides and generating alkalinity in mining sites impacted by acid drainage waters. MRS has traditionally been regarded as an anaerobic process and most earlier studies of sulfate-reducing bacteria activity and diversity focused on the reduced subsurface zone of mine tailings. The aim of this study was to assess the activity and diversity of sulfate-reducing microorganisms in the oxidized surface layer of a gold mine tailings deposit heavily polluted with metals.

A multiphase approach, encompassing molecular, microbiological and geochemical analysis, was used to study bacterial sulfate reduction in the oxic zone of an abandoned gold mine tailings deposit in the Kuzechnik Basin (southwestern Siberia). The leachate produced in the tailings was highly acidic (pH 2) and contained elevated metal concentrations: Fe up to 9,100 mg/l, As up to 1,900 mg/l, Zn up to 351 mg/l, and Cu up to 35 mg/l. The sulfate-reduction rate measured with 35SO4-tracer reached up to 60 nm/cm3/day. Molecular cloning only revealed spore-forming Firmicutes, capable of dissipatory sulfate reduction, to be present in the tailings. Na Desulfoproteobacteria were found by cloning, denaturation gradient gel electrophoresis of 16S rRNA genes (PCR-DGGE), or cultivation. Molecular cloning of the dsrAB gene, a functional gene marker of sulfate reduction, and subsequent phylogenetic analysis, revealed three distinct groups of clones. Two of them have no close cultivated relatives and cannot be assigned to any known taxon containing microorganisms capable of dissipatory sulfate reduction. The third group branches among Gram-positive Desulfosporosinus. Cultivable Desulfosporosinus-like organisms have been retrieved from the tailings. The 16S rRNA gene sequence homology of isolated phyotypes with known Desulfosporosinus was, however, 90% or lower.

Our study shows that a microbial consortium of active sulfate-reducing bacteria, tolerating extremely high metal and proton concentrations, occurs in the oxic zone of mine tailings. The consortium includes spore-forming sulfate-reducing bacteria, and most likely new undescribed organisms whose presence can be tracked by dsrAB genes.

We acknowledge support from the Russian Fund for Fundamental Research (Grants 09-04-01256-a and 07-04-90833-mob_s). We are indebted to Alexander Loy for his help with phylogenetic analysis of dsrAB genes.

Keywords 16S rRNA; bacterial sulfate reduction; Desulfosporosinus; DGGE; dsrAB; mine tailings; molecular cloning; sulfate-reducing bacteria;
Bacterial Trade-off between Antibiotic Resistance and Biological Fitness

Woojun Park
Korea University

Antibiotics have been widely used in the many fields of human health and agriculture. However, an indiscriminate use of antibiotics brings about the increased frequencies of antibiotics resistant bacteria in the environment. Antibiotic resistance in bacterial cells may cause some unexpected results, such as the alterations of phenotypic and physiological characteristics. These bacterial adaptations on antibiotics challenges are called the “biological fitness cost”. However, phenotypic and genetic changes associated with antibiotic resistance other than growth-defect have been poorly characterized. To address this in more detail the effect of antibiotics on biological fitness cost, we studied a recent environmental isolate, Acinetobacter sp. strain DR1 which was proven to be a diesel oil degrading bacterium. Genome sequencing of strain DR1 is in progress and will be discussed. Rifampicin, a bactericidal antibiotic drug, is routinely used to make an environmental recipient selective on laboratory-conjugation experiment. Accidentally, we noticed that rifampicin-resistant strain DR1 showed substantial loss of quorum sensing signal. Domesticated ampicillin-resistant strain DR1 displayed more dramatic phenotypic changes than rifampicin-resistant cells: complete loss of quorum sensing, loss of swimming and swarmin motilities, the poor expression of fimbrate, change of membrane fatty acid composition to be more rigid, and decreased capability of hecdecane degradation. Interestingly, the motility of strain DR1 grown next to a streptomycin-producing Streptomyces griceus permanently disappeared, where this change was heritable and other phenotypic changes could not be noticeable. Our data demonstrated that each antibiotic has different degree of phenotypic and genetic alteration. Systematic analysis of these genetic alterations in antibiotic-resistant bacteria using proteomics and microarray techniques will be discussed. Our report is significant because we provide important evidence of phenotypic and genetic changes in antibiotic resistant bacteria no matter where this acquisition of antibiotic resistance happens: laboratory-acquired or environment-acquired. Our data also suggested that domestiating environmental isolates should be cautious because there are phenotypic variations of antibiotic resistant cells, which could not be noticeable even if all phenotypic assays are tested.

Bactericidal and amoebicidal activities of the free living amoeba Willaertia magna

R. Dey1,2, M. O. Mamerti1,2, P. Pernin1,2, and J. Bodenne1,2
(1) Université de Lyon, Lyon, F-69003, France
(2) CNRS, UMR 5123, laboratoire de Physiologie Intégrative Cellulaire et Moléculaire, Villeurbanne, F-69622, Université Lyon 1, France.
(3) Faculté de Pharmacie-ISPB, Lyon, F-69373, Université Lyon 1, France.

Autobacterium, the causative agent of Legionnaire’s disease, is a facultative intracellular parasite of some mammalian cells such as macrophages and monocytes. In freshwater environment, the bacterium is known to replicate within protozoan such as ciliates and free-living amoebas. More and more evidences show that free living amoebas are playing a crucial role in the ecology of Legionella pneumophila. Hence, in freshwater, high bacterial concentrations are often associated to elevated levels of free-living amoebas and the presence of amoebas is able to trigger the revival of Legionella strains that were noncultivable. Although, Fields reported that 13 amoebic species are able to support Legionella pneumophila, most of in vitro experiments addressing the bacterium/amoebic interactions have been performed using two genera of amoebae, namely Acanthamoeba and Hartmanella. We isolated from freshwater two strains of the free-living amoeba Willaertia magna (strain c2c Maky and strain d2 Nata) that display a particular resistance toward the bacterium Legionella pneumophila not affected when cultured in presence of different strains of Legionella pneumophila serogroup 1 (strains Lp Paris, lens and Philadelphia) and no obvious bacterial cytotoxic effects could be observed. At the opposite, when Willaertia magna strains were cocultured with the amoeba Acanthamoeba castellanii and Hartmanella vermiformis (two known vectors of the bacterium) a strong cytotoxic effect towards the protozoan hosts was observed. Moreover, Willaertia magna strains were able to inhibit the growth of Legionella pneumophila at the opposite to Acanthamoeba and Hartmanella. These observations highlight the two strains of Willaertia magna as particularly resistant to the bacterium Legionella pneumophila. Electron microscopy observations show that the occurrence of bactericidal effect of Willaertia magna towards Legionella pneumophila was also demonstrate the occurrence of interamoebic phagocytoisis inasmuch the free living amoeba Acanthamoeba castellanii and Willaertia magna were able to phagocyte and digest other amoebic specie such as Hartmanella vermiformis. We investigated the putative consequences of this interamoebic phagocytoisis on the outcome of Willaertia magna proliferation. Our results show that Legionella pneumophila proliferation is highly dependant on the ability of the predator amoeba to sustain it. To our knowledge it is the first time that the phagocytoisis of an amoebic specie by another one is reported. These observations may have important implications for understanding the ecology of Legionella pneumophila and highlight the Willaertia magna isolated strains as a putative tool in a strategy of biological struggle against the bacterium.

Keywords: Free-living amoebas, Legionella pneumophila
Bioconversion of the residue from cachaça production (vinasse) into Saccharomyces and Candida biomass

C. F. Silva,1 S. L. Arcuri,1 C. R. Campos,1 D. M. Vilela,1 M. I. Rodrigues,1 J. G. L. F. Alves2 and R. F. Schwan1
1Department of Biology, Federal University of Lavras, Lavras, MG, Brazil
2Department of Food Science, Federal University of Lavras, Lavras, MG, Brazil.

The residue (vinasse) formed during the distillation of cachaça, a traditional rum-type spirit produced from sugar-cane in Brazil, is highly harmful if discharged into the environment. One possibility for minimizing the impact of vinasse in soils and waters is to use the residue in the production of microbial biomass for use as an animal feed supplement. This paper reports the results obtained following the fermentation of isolates of Saccharomyces cerevisiae and Candida parapsilosis, originating either from cachaça-distillation units or from fuel alcohol-producing industries, in culture medium containing up to 50% (v/v) of vinasse. Assays were conducted under twelve different culture conditions involving variations in the concentrations of glucose, yeast extract and potassium sulphate, and at different temperatures and pH values. In each case, the microbial biomasses obtained following 168 h of incubation were evaluated with respect to production, productivity, nitrogen content and acid nucleic contents. None of the conditions tested influenced significantly the characteristics of the microbial biomass produced. Of the S. cerevisiae isolates tested, two (VR1 and PE2) originating from fuel alcohol-producing plants were identified as offering the best potential for the industrial production of single cell protein from vinasse.

Keywords vinasse, microbial protein, bioconversion, Plackett-Burman.

Biodegradation of aromatic amines in a packed bed biofilm reactor

D. Rodríguez Rangel, A. Salazar Huerta, O. Ramos Monroy, F. Santoyo Tepole, C. Juárez Ramírez, N. Ruiz Ordaz, D. de los Cobos Vasconcelos and J. Galíndez Mayer

Sulfonated aromatic amines (SAAs), widely used for chemical synthesis, can be released to the environment by the Chemical Industry. However, the main SAAs pollution sources derive from the synthesis and biodegradation of textile azo dyes. It is well known that microbial azo dye reduction usually generates recalcitrant byproducts such as 4-amino benzenesulfonilic acid (4-ABS) or sulfamic acid) or 4-amino-naphthalene sulfonic acid (4-ANS), after the azo-linkage cleavage of Acid Orange 7, or Acid Red 88, respectively. Both SAAs are frequently used as constituents of many azo dyes; thus, in azo dyes degradation processes, 4-ABS and 4-ANS are frequently found. By these reason, a mixture of these aromatic amines was used to evaluate their biodegradation by a bacterial association attached to porous volcanic stone.

The biodegradation process was carried out in an aerobic-packed-bed column continuously fed with a mineral salts medium plus SAAs as the sole nitrogen, sulphur and carbon source. Volumetric loading rates \(BV_{SAA} \) were varied from 5.5 to 50 mg L\(^{-1}\) h\(^{-1}\). SAAs removal efficiencies were calculated after residual amines were measured by liquid chromatography (HPLC) and by Chemical Oxygen Demand (COD).

When the packed bed reactor was operated at \(BV_{SAA} \) values lower than 27 mg L\(^{-1}\) h\(^{-1}\), the bacterial association, composed by five morphologically distinct bacterial strains, was able to remove 100% of 4-ABS and 98% of 4-ANS, with a COD removal efficiency of 96%. At higher loading rates, the removal efficiencies decay.

Keywords: 4-amino benzene sulfonate, 4-amino naphthalene sulfonate, biodegradation, biofilm.
Biodegradation of organic matter in lake water in different temperature condition (mesocosms experiment)

D. A. Górnia, J. A. Dunalska, and B. Jaworska

The main subject of the study was to determine the degree to which elevated water temperature in nutrient-poor and nutrient-rich aquatic environments has effect on the intensification primary production and on the organic matter transformations by bacteria. The studies were conducted in experimental conditions. The experimental system consisted of six mesocosms, and a heating and cooling system. In three mesocosms there was water from a eutrophic lake, in another three mesocosms from a mesotrophic lake. The system kept three different temperatures: one was the same as in the lake (20°C - the control temperature), in two other mesocosms the temperature was 5°C higher, and in the remaining two mesocosms it was 10°C higher than the control temperature. Any changes in temperature were controlled by a measurement system and temperature regulated by cooling or heating the water. To provide sunlight the mesocosms were placed outdoors. Temperature regulation system measured temperature in each mesocosm. Depending on the measured temperature, a control system started the heating or the cooling system.

Two lakes were studied, differing by the trophic status, located in the Great Mazurian Lakes (Poland) area:

- Lake Mikolajskie – eutrophic (surface area – 497.7 ha, max depth – 25.9 m, mean depth – 11.2 m)
- Lake Majcz Wielki – mesotrophic (surface area – 163.5 ha, max depth – 16.4 m, mean depth – 6.0 m).

Water sampled from the lakes was transported to the mesocosms and after setting the parameters, the system was left for one day to stabilize. The second day of the experiment was treated as “initial sample” and thereafter the analyses were done every second day during ten days. We measured primary production (14C-bicarbonate), phytoplankton composition, total number (TNB) and biomass of bacterioplankton (BB), bacterial secondary production (14C-thymidine), bacterial community composition (PCR-DGGE), bacterial liveliness (Live/Dead BacLight), DOC (Dissolved Organic Carbon) content, SUVA (Specific UV Absorbance), and nitrogen and phosphorus content.

The study revealed that regardless of the lake’s trophic condition rise in water temperature causes an increase of the primary production. However, the phenomenon occurred more dynamically in the mesotrophic lake, at the temperature rise to 25°C. Water stability of these ecosystems. Increase of the temperature may disturb this mechanism, as revealed in the experiment. In the mesotrophic lake TNB and BB dropped when temperature rose. The highest reduction was observed at the temperature rise to 25°C. In the eutrophic lake at the water temperature of 20 and 30°C in the following days of the experiment DOC rose while TNB and BB decreased. At the temperature rise to 25°C the system was more dynamic, yet the amount of organic matter constantly increased (high values of DOC, organic N and P). We concluded that Mezotrophic lakes are therefore more vulnerable to temperature changes not only because organic matter increases which intensifies eutrophication but also because transformation processes by bacteria may be disturbed. In the mesotrophic lake at 20°C organic matter was actively utilized in microbiological processes, as indicated by the clear growth of TNB and BB on the 4th day of the experiment, at the parallel decrease of the DOC and increase of the SUVA parameter value on the 6th day. In the first place bacteria utilized labile organic C, leaving in the water the DOC with a high number of aromatic rings in the molecule (higher SUVA).

In the global warming conditions the negative effect of such phenomenon may show through the reconstruction of the lake phytoenocenes structure, characterized by an increased occurrence of invasive, stenothermal and heavily toxic blue-green algae.

Keywords: temperature, biodegradation, organic matter, bacteria, DOC, lake

Bioeffects and biotransformation of selenate in Chlorella sorokiniana.

I. Garbayo 1, V. Ondruska 2, F. Moreno 3, T. Garcia-Barrera 1, J.L. Gomez Ariza 1 and C. Vilchez 1

Selenium is a trace element that acts either as an essential micro-nutrient or as a toxic element depending on its concentration in the medium. It is also of fundamental importance to human health; selenium bioeffects are mainly involved in immune function, reproduction, metal toxicity resistance and other biological functions in humans. Besides, selenium has been proved to be an effective antiacner agent when supplied in a suitable bioactive form. Microalgae can accumulate selenium. Selenium toxicity and accumulation in aquatic systems are difficult to study because of the complex aqueous chemistry of Se forms. In nature, selenium is present in three oxidation states (selenate (VI), selenite (IV) and elemental selenium (0)) over a range of natural water chemical conditions. Selenium is the dominant dissolved form, representing more than 67% of the total dissolved selenium concentration. Both selenates and selenites are taken up by microalgae and converted to protein-bound selenocysteine and selenomethionine, soluble inorganic forms, several free aminoacids, and volatile organoselenium compounds.

In the present work, Chlorella sorokiniana was chosen as a representative green microalgae to evaluate the effect of selenium in selenate form on different growth parameters in order to produce Se-rich Ch. sorokiniana cultures: growth, photosynthetic activity and selenium distribution with emphasis on the organic nature of the accumulated Se-molecules using HPLC/ICP-MS. The aim of our study was to evaluate the effect of Se (+VI) on these parameters and to develop hypotheses about selenate’s mode of action on algae, particularly with regard to biotransformation characteristic of selenium.

Ch. sorokiniana was found to be resistant to concentrations of sodium selenite up to 100 ppm for 120 hours. Increasing the concentration above 100 ppm resulted in a toxic effect, since the culture collapsed after 48 hours. Algal growth rate decreased as selenate concentration increased. Our results revealed that most of inorganic selenate was biotransformed into organic selenium species consisted of selenocysteine, selenomethionine and seleniummethionine during the culture, either as protein-bound or free se-metabolites. These organic selenium-bounds are probably involved in the mechanism(s) for selenium tolerance of this alga and, moreover, give us key information to drive algal Se-metabolism toward accumulation of the desired Se-metabolites, mainly selenomethionine.

Keywords: selenium compounds, Chlorella sorokiniana, biotransformation

Acknowledgements: This work has been supported by the Ministerio de Educación y Cultura (Proyecto AGL2006-12741).
Biofertilization and phytostimulation in wheat by cyanobacteria

Anwar Hussain1,2, Thomas Roitsch2, Basharat Ali1 and Shahida Hasnain1
1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore
2Department of Pharmaceutical Biology, Julius van Sachs Institute, Wurzburg University, Germany

Cyanobacteria are commonly used for phytostimulation and biofertilization of agriculture crops due to their nitrogen fixing ability however contribution by their phytohormones has been neglected. The study focuses on screening of rhizospheric and free living cyanobacteria for in vitro phytohormones production and growth stimulation in wheat. Selected isolates were shown to release as well as accumulate cytokinin and IAA by using UPLC coupled with MS/MS via electrospray interface. Maximum cytokinin and IAA concentration was 22.7 pmol mg⁻¹ ch⁻¹ and 35.1 pmol mg⁻¹ ch⁻¹ respectively in the culture medium of Chroococcidiopsis sp. Ck4 and Anabaena sp. Ck1. Growth of wheat inoculated with cyanobacterial strains was stimulated under axenic as well as field conditions. Seed germination, shoot length, tillering, number of lateral roots, spike length and grain weight were significantly enhanced in inoculated plants. Maximum increase in grain weight (43%) was demonstrated in wheat plants inoculated with Chroococcidiopsis sp. Ck4 under natural conditions. Positive linear correlation of cyanobacterial cytokinin with shoot length, tillering, spike length and grain weight was recorded. Cyanobacterial IAA on the other hand was positively correlated to the number of lateral roots. Endogenous phytohormones pool of the plant was enhanced significantly as a result of plant-cyanobacteria association in the rhizosphere. It was concluded that cyanobacteria used phytohormones as a major tool by to improve growth and yield in wheat.

Keywords: Cyanobacteria, cytokinins, IAA, UPLC-MS/MS, Phytostimulation, Biofertilization, Wheat
Bioprospection and characterization of endophytic fungi from tropical mangrove forests

F. Luiza Souza Sebastianes¹, P. Teixeira Lacava², J. Lúcio Azevedo¹ and A. Aparecida Pizzirani-Kleiner³

¹ Department of Genetics, University of São Paulo – ESALQ-USP, Piracicaba, SP, Brazil
² Department of Biological and Earth Sciences, Federal University of Alfenas - UNIFAL/MG, Alfenas, MG, Brazil

Microorganisms from mangroves open up new areas of biotechnological exploitations, which drive the need to isolate and cultivate these organisms. The objective of this work was to evaluate genetic diversity of fungal endophytic community from mangrove forest in Bertioga, SP, Brazil. To accomplish this study, fungi were isolated from superficially disinfected tissues of three mangrove species (Rhizophora mangle, Avicenia schaueriana, Laguncularia racemosa). Fungal diversity was assessed by Amplified Ribosomal DNA Restriction Analysis (ARDRA) technique (Figure 1). In this study 1200 endophytic fungi were isolated from branches and leaves of the mangrove species. It was observed at least 7 different morphological groups. Both leaves and branches presented all these groups. However, it was observed difference when the isolation frequency from leaves and branches were compared, that is, branches had higher colonization density than leaves. ARDRA analysis showed that 80 fungi isolated were separated in 21 different haplotypes (Figure 1). The comparative analysis of the different haplotypes suggested that mangrove associated fungal community from Bertioga is compounded from the haplotypes that occur in all treatments (place, species and tissue). As for the biotechnological potential some endophytic isolated were tested for production of antibiotic against Staphylococcus aureus, Escherichia coli and Xanthomonas citri (Figure 2). ITS1-5.8S-ITS2 rDNA region sequence revealed that the endophytic fungal community isolated from mangrove species include the following genera: Gibberella, Colletotrichum, Hypocrea, Phomopsis, Fusarium, Xylaria, Diaporthe, Alternaria, Gelatinospora, Trichoderma, Cylindrocladium, Cytospora, Phaeoaspephytis, Colletotrichum, Botryosphaeria, Guignardia, Glomerella, Dothidea, Arthothelium, Penicillum, Neurospora, Ceprichelas, Gladoscladium, Coniothyrium, Pleospora, Lepiota, Phaeosphaeria, Amorobia, Nodulisporium, Phaeoramularia, Botryosphaeria, Nigrospora, Pseudallescheria, Periconia, Microthia, Neofuscoascum, Pestalotiopsis, Cryphonectria, Epicoccum, Valsa, Sordariomycete, Dothideomycete, Massarina, Pichia, Basidiomycete, Cladosporium. The study of the fungal community is now focused on investigating of the chemical structure of antibiotics produced by these isolated.

Keywords: ARDRA; antibiotic; fungal diversity; Rhizophora; Avicenia; Laguncularia

Figure 1. Restriction profile (ARDRA) of some haplotype found in the endophytic fungal community isolated from mangrove species.

Figure 2. Antagonistic activities using concentrated extract of endophytic fungi isolated from mangrove against Escherichia coli. Inhibition halo indicated by white arrows.
Characterization of halophilic microorganisms from the Brazilian Northeast saline soil

T. C. F. Cunha¹, S. T. Farias¹ and M. Bucciarelli-Rodriguez¹

¹ Depto. Biologia Geral, ICB, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-090, Brazil.

Salt tolerance and osmotic regulation mechanisms from several organisms are still the subject of many studies. Their understanding is interesting for academic and biotechnological purposes, especially because of the worldwide increase of saline soils. Therefore, the characterization of halophilic organisms is important to unravel the salt tolerance mechanisms. In this work we present the initial characterization of two microorganisms isolated from soil of salt evaporation ponds in Mossoró, Rio Grande do Norte, Brazil. The isolates were able to grow on rich media with 2.56 M NaCl (15% w/v) but unable to grow on 3.42M NaCl (20% w/v), and grew very poorly or didn’t grow (depending on the experiment) in media without salt, which stresses the importance of high salinity for their metabolism. However, these isolates could not grow on rich media with 15% w/v KCl or 15% w/v KCl plus 2% w/v glucose or 2% w/v sucrose, indicating that the KCl was somewhat toxic. These results suggest the existence of a Na⁺/K⁺ antiporter whose activity is important for salt tolerance. This hypothesis will be tested with the use of pump inhibitors. The isolates were considered bacteria because there was amplification of a 1.6Kb DNA band from their total DNA when bacterial 16S ribosomal gene primers were used, whereas no amplification was detected with Archaeal 16S ribosomal gene primers. These amplified DNAs will be sequenced to allow primary identification. Another undergoing approach to identify the tolerance mechanisms is the screening of genomic sequences that would confer higher salt tolerance on yeast. The genomic library on yeast expression vector is currently being constructed.

Keywords salt tolerance; bacterial characterization

Supported by FAPEMIG (CBB APQ-2337-3.12.07)

Chemically treated fig tree leaves as low- cost biosorbent for removal heavy metal lead from aqueous solutions

M. Mazaheri Tehrani¹, R. Dabbagh¹, and A. R. Nafar¹

¹ Nuclear Biotechnology Department, Nuclear Science Research School, Nuclear Science and Technology Research Institute, North Karegar St., P. O. Box: 11365-3486, Tehran, Iran

Contamination of the environment by lead is recognized throughout the world as one of the major environmental problems. This study was focused on the application of some low- cost biosorbents for removal of heavy metal lead from aqueous solutions. After the screening some locally available agricultural waste materials containing rice husk, tea waste, orange peel, tamarind seeds, tea leaves, fig tree leaves and tamarind fruit shell as potential low- cost biosorbents in a metal synthetic solution containing 85.5 mg/l Pb²⁺ ion and at varied pH, the best adsorbent was selected. The metal binding capacity differed for the applied adsorbents ranging from 10.95 to 37.55 mg/g dry wt. Some of the biosorbents showed higher rate of Pb²⁺ adsorption but the biomass prepared from fig leaves was more effective for removal of Pb²⁺ ions in compared with other biosorbents. As a result 88% of Pb²⁺ ions removed using fig leaves. It was observed that the adsorption capacity of fig leaves increased (41.95 mg/g dry wt) after treated with nitric acid (65% w/w) so the other experiments were carried out with modified fig leaves. Batch experiments were conducted to determine the factors affecting adsorption of Pb²⁺ ions such as adsorbent dosage and initial lead concentration. pH dependence of metal uptake and kinetics of metal adsorption were investigated. The adsorption of lead was found to be maximal at pH in the range of 4-4.5. The experimental studies showed the time about 2 hours is sufficient for removal of 97.55% of Pb²⁺ ions from solutions with concentration 85.5 mg/l Pb²⁺ ion by chemically treated fig leaves. The Langmuir and Freundlich models were used to analyze the experimental data.

Keywords: Heavy metals, Low- cost agricultural products, Biosorption, Modified fig leaves, Lead

Supported by FAPEMIG (CBB APQ-2337-3.12.07)
Chitinolytic Bacteria Isolated from Chili Rhizosphere: Chitinase Characterization and Application As Biocontrol for whitefly (Bemisia tabaci Genn.)

Nisa Rachmania Mubarik1, Irni Mahagiani1, Amaryllis Putri, Sugeng Santoso2, Iman Rusmana1
1Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Jalan Agatis, Dermaga, Bogor 16628, Indonesia.
2Departmen of Plant Protection, Faculty of Agricultural, Bogor Agricultural University, Dermaga, Bogor 16628, Indonesia.

Chitin which is a common constituent of insects exoskeleton could be hydrolyzed by chitinase. The research was conducted to select rhizobacteria isolated from the rhizosphere of chili pepper which could produce chitinase and examine their chitinase activity in degrading chitin of whitefly, Bemisia tabaci Genn. (Hemiptera: Aleyrodidae). The whitefly is recognized as an important pest on many crops. It attacks more than 500 species of plants from 63 plant families including chili pepper. A total of 25 isolates rhizobacteria formed a clear zone when they are grown on solid chitin media. Two of isolates had the highest chitinolytic index, i.e. I.5 and I.21. Based on sequencing the 16S rRNA gene, the isolate I.5 and I.21 was identified as Bacillus sp. and Bacillus cereus, respectively. The highest chitinolytic index and specific activity of strain I.5 was 0.94 and 0.11 U/mg proteins, respectively. Maximum production of I.5 chitinase was occurred after 36 hours cultivation under 30°C and pH 7.0. The highest chitinolytic index and specific activity of strain I.21 was 0.75 and 0.11 U/mg proteins, respectively. Maximum production of I.21 chitinase was occurred after 36 hours cultivation under 55°C and pH 7.0. The cell culture and the enzyme of two isolates were tested on B. tabaci and the result in microscopic observation was compared to control by using sterile water. Hydrolytic analysis showed that enzyme of the I.21 isolate could be degraded the chitin of B. tabaci exoskeleton was better than I.5 isolate. Chitinase produced by Bacillus cereus strain I.21 is potential as biocontrol agents for B. tabaci.

Keywords: Chitinolytic; rhizobacteria; chitinase; biocontrol; Bemisia tabaci Genn.

Chromobacterium sp. from the tropics: detection and diversity of phytase activity

Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais.
Av. Antonio Carlos, 6627, Belo Horizonte-MG, Brazil, CEP: 31.270-901

Phytases are a group of enzymes that catalyze phytic acid hydrolysis with release of P, and are found in many organisms including bacteria. Despite the expanding use of phytase for biotechnological applications, information on phytase-producing bacteria is limited. The ability of Brazilian Chromobacterium sp. isolates to produce phytase was evaluated. Altogether, 125 candidate bacteria isolated from Brazilian Savannah (Cerrado), Atlantic Rain Forest and Amazon Rain Forest were tested. Qualitative assays revealed 115 phytase-producing isolates. The phytase production by Chromobacterium isolates was also confirmed by quantitative tests through detection of free P. Although the genome of a Chromobacterium violaceum type-strain has been sequenced, this is the first report revealing the genus Chromobacterium as phytase producer. The results presented in this paper suggest great diversity of phytase production among the Brazilian isolates and indicate a potential use of them for commercial prospects.

Keywords: Chromobacterium sp.; phytase; phytate; diversity; tropical bacteria

Supported by FAPEMIG and CNPq
Comparative analysis of three molecular techniques used in the biodiversity study of a thermomineral spring cyanobacterial mat

C. Coman1,2, B. Druga1, Adriana Bica1,2, Ana Nicoara1 and N. Dragos1,2
1 Babes-Bolyai University, 1 Kogălniceanu street, Cluj-Napoca, Romania
2 Institute of Biological Research, 48 Republicii street, Cluj-Napoca, Romania

Naturally occurring cyanobacterial mats were highly investigated in the last decades due to their resistance and productivity, especially in extreme environments, which are practically inaccessible to eukaryotic organisms. The structure of bacterial communities in the environment has been investigated by culture-dependent methods for many years. However, since in ecological studies of cyanobacteria it is essential to be able to identify closely related organisms and because it is difficult to culture most bacteria from environmental samples, evaluation of changes in the structure of bacterial communities using only culturing methods is inadequate. A recent approach in the study of cyanobacterial communities is represented by the use of molecular techniques, this approach leading to the discovery of unique and previously unrecognized microorganisms. The majority of these studies are using partial sequence from the rrs operon as markers (the 16S rRNA gene and the Internal Transcribed Spacer-ITS). The degree of sequence heterogeneity, as well as a considerable number of published sequences, make the rRNA-ITS fragment very suitable for high resolution analysis of cyanobacteria. This study discusses the suitability of Denaturing Gradient Gel Electrophoresis (DGGE) technique in the study of a cyanobacterial mat associated to a thermonineral spring from the Western Plain of Romania, alongside with two additional techniques: Automated Ribosomal Intergenic Spacer Analysis (ARISA) and Amplified Ribosomal DNA Restriction Analysis (ARDRA).

For DGGE, the 16S rDNA variable regions V3 and V4 were amplified, the resulting 8 bands excised and sequenced. Due to ambiguous peaks obtained after sequencing, a clone library was constructed for every individual band. 40 clones (5 clones for each of the 8 bands) were re-analyzed by DGGE and sequenced. The electrophoretic profile and the DNA sequences obtained revealed a variety of disadvantages regarding this technique which can easily lead to improper interpretation of the results: multiple melting domains in the same sequence, multiple rrs operons in the same genome and unspecific hybridization among DNA fragments from different species. To see if the results obtained in DGGE are caused by certain PCR amplification bias, the species abundance and their identification was done using both the ARISA and ARDRA methods.

As stated in other ecological studies, ARISA is a rapid and effective quantitative method for assessing microbial community variety. The ITS fragment was amplified by PCR and the amplification products were discriminated by capillary electrophoresis using the ABI Prism 310 genetic analyzer. A total of 13 different ITS fragments were obtained, corresponding in theory to 13 different cyanobacterial species. This step is very important for further ARDRA analysis because it offers an overall view of the number of species in the mat, so that the appropriate number of clones will be selected in order to gain optimal results after restriction profiling.

For ARDRA, a clone library for the 16S rDNA-ITS fragments was constructed. Plasmids from 46 colonies were tested positive after the blue-white selection were isolated and used as template for the re-amplification of the 16S rDNA-ITS fragments. The amplification products were digested with TaqI restriction endonuclease and migrated on an agarose gel. Estimating the size of the fragments obtained after restriction, a cluster analysis was performed for the restriction profiles. The different 16S rDNA-ITS fragments were sequenced and the sequences obtained compared to one sequence existing in the international nucleotide databases using blastn algorithm (NCBI) for species identification. The investigated mat presented 8 cyanobacterial species, Phormidium and Leptolyngbya being dominant.

This study demonstrates that DGGE, even though has many advantages, can lead to an incorrect and overestimated species diversity in specific cyanobacterial mats with closely related species due to multiple rrs operons, multiple DNA melting domains and unspecific hybridization. Our results suggested that, despite using more variable regions in the 16S rRNA gene and very specific primers as indicated by other authors, in certain conditions a single DGGE band can represent a mixture of different species or that bands which migrated at different positions in the gel represent the same DNA fragment with multiple melting domains. Using multiple molecular techniques alongside with DGGE, such as ARISA and ARDRA, can improve the microbial biodiversity studies, thus providing optimal results.

Keywords cyanobacterial mat, 16S rRNA, DGGE, ARDRA, ARISA

Comparison of Antimicrobial Resistant Staphylococci on Hands of College-aged and Pre-school Aged Students

E. Oaks¹, D. Dus¹, and D. Aruscavage¹
¹ State University of New York at Potsdam, 4 Pierrpoint Dr. Potsdam, NY 13676, USA

The increased resistance of bacteria like Staphylococcus, a typically harmless bacteria of our natural flora, to antibiotics has become a concern in the general community with particular regard to protecting our children. Stress to the natural flora over time can increases the resistance of the natural flora. Stress can cause favorable gene mutations to be selected for and increase gene transfer between bacteria. This study was conducted to determine if there is a difference in antibiotic resistance of the natural flora on the hands of College-aged students and Daycare-aged students.

To ascertain the potential role age plays in the resistance of our natural flora to antibiotics, samples of hand bacteria were collected from both daycare age students of 3-5 and college-age students of 18-22 using a sterile sponge and 20ml of sterile saline solution. Twenty µL of each sample were incubated for 24 hr in solutions of the 10 different antibiotics at their minimum inhibitory concentration (MIC). The antibiotics included linzolid, chloramphenicol, ampicillin, streptomycin, nisin, vancomycin, ceftriaxone, ciprofloxacin, oxacillin and rifampicin. After 24hr that samples were plated on mannitol salt agar to select for Staphylococcus. Where growth was seen resistance was recorded.

Average Antibiotic Resistance per-Person

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Child</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linzolid</td>
<td>27.87</td>
<td>34.65</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>9.84</td>
<td>17.82</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>96.72</td>
<td>98.02</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>32.79</td>
<td>51.49</td>
</tr>
<tr>
<td>Nisin</td>
<td>100</td>
<td>98.02</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>13.11</td>
<td>43.56</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>18.03</td>
<td>34.65</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>21.51</td>
<td>42.56</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>11.48</td>
<td>18.81</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>3.28</td>
<td>0.01</td>
</tr>
</tbody>
</table>

These results show significantly that in this test population college-aged students natural flora are resistant to more antibiotics than daycare-aged students natural flora. However some have high resistance in both test populations. It is possible that exposure to the environment over time does increase the antibiotic resistance of natural flora on human skin.
Comparison of antimicrobial activity in *Sinularia compressa* from two different ecological conditions of the Persian Gulf

Z. Zohari1, S. Dobretsov2, K. Samimi Namin3, M. Entiajo3 and M. Rabbani4

1Islamic Azad University, Tehran North Branch, Yong Researchers Club, Tehran, Iran
2Department of Marine Science and Fisheries, Sultan Qaboos University, Oman
3National Museum of Natural History, P.O.Box 9517, 2300 RA Leiden, The Netherlands
4Islamic Azad University, Tehran North Branch, Tehran, Iran

Patterns of intraspecific variation in composition, concentration and bioactivity of secondary metabolites among geographic regions or habitats have been well documented for terrestrial plants. In the marine environment, however, chemical variation has received less attention.

In this study, samples of *Sinularia compressa* were collected from two different zones: air-exposed from Larak Island and non-air-exposed from Hengam Island using SCUBA equipments in 8-10 m depth. Extraction and assay protocols were developed to identify antimicrobial activity in some fractions of extracts. Detection was determined by disc assay method with antibiotic as control, for each sample, using two gram positive bacteria, *Bacillus* sp., and four gram negative bacteria, *Pseudomonas* sp., *Klebsiella* sp., *Salmonella* sp. and *Shigella* sp. TLC, ninhydrin and vanillin/sulfuric acid reagents and GC-MS were used to isolate, identify and characterize metabolites in fractions. Also production of biofilm by *Pseudomonas* sp., quorum sensing inhibition test by Chromobacterium violaceum and brine shrimp toxicity test were used to compare the extracts. The results demonstrated that extracts of *Sinularia compressa* show different characteristics due to their ecological habitats. For example some fractions of *S. compressa* extract from Larak Island, such as acetone and water fractions exhibited appreciable antimicrobial activity on some bacteria, while these fractions of *S. compressa* extract from Hengam Island had little or no antimicrobial activity. The outstanding feature of these different effects is the qualitative variation in the chemistry of colonies from different habitats, which appears to be genetically fixed, raising the question of what selective agents maintain the variation in chemistry and bioactivity among different habitats.

Keywords antimicrobial activity; *Sinularia compressa*; ecological conditions; Persian Gulf

Comparison of experimental methods for determination of toxicity and biodegradability of xenobiotic compounds

A. M. Polo, M. Tobajas, S. Sanchis, A. F. Mohedano and J. J. Rodriguez

UAM, Sección de Ingeniería Química. Facultad de Ciencias. Universidad Autónoma de Madrid. c/ Francisco Tomás y Valiente, 7. 28049 Madrid, Spain.

Chlorophenols are a group of organic pollutants present in the environment as a result of several industrial (like bleaching of pulp with chlorine) and man-made activities, such as waste incineration and uncontrolled use of wood preservatives, etc. They have obtained notoriety as hazardous substances, because most of them are toxic, and present long persistence in the environment. Other important environmental problem is the pollution of soils and aquatic systems by chemicals used in agriculture, such as herbicides. Those compounds, with widespread use all over the world, low solubility in water, strong persistence and possible toxic intermediates, are clearly bound to seriously contaminate soil and aquatic environments.

Chlorophenols are a group of organic pollutants present in the environment as a result of several industrial (like bleaching of pulp with chlorine) and man-made activities, such as waste incineration and uncontrolled use of wood preservatives, etc. They have obtained notoriety as hazardous substances, because most of them are toxic, and present long persistence in the environment. Other important environmental problem is the pollution of soils and aquatic systems by chemicals used in agriculture, such as herbicides. Those compounds, with widespread use all over the world, low solubility in water, strong persistence and possible toxic intermediates, are clearly bound to seriously contaminate soil and aquatic environments.

Patterns of intraspecific variation in composition, concentration and bioactivity of secondary metabolites among geographic regions or habitats have been well documented for terrestrial plants. In the marine environment, however, chemical variation has received less attention.

In this study, samples of *Sinularia compressa* were collected from two different zones: air-exposed from Larak Island and non-air-exposed from Hengam Island using SCUBA equipments in 8-10 m depth. Extraction and assay protocols were developed to identify antimicrobial activity in some fractions of extracts. Detection was determined by disc assay method with antibiotic as control, for each sample, using two gram positive bacteria, *Bacillus* sp., and four gram negative bacteria, *Pseudomonas* sp., *Klebsiella* sp., *Salmonella* sp. and *Shigella* sp. TLC, ninhydrin and vanillin/sulfuric acid reagents and GC-MS were used to isolate, identify and characterize metabolites in fractions. Also production of biofilm by *Pseudomonas* sp., quorum sensing inhibition test by Chromobacterium violaceum and brine shrimp toxicity test were used to compare the extracts. The results demonstrated that extracts of *Sinularia compressa* show different characteristics due to their ecological habitats. For example some fractions of *S. compressa* extract from Larak Island, such as acetone and water fractions exhibited appreciable antimicrobial activity on some bacteria, while these fractions of *S. compressa* extract from Hengam Island had little or no antimicrobial activity. The outstanding feature of these different effects is the qualitative variation in the chemistry of colonies from different habitats, which appears to be genetically fixed, raising the question of what selective agents maintain the variation in chemistry and bioactivity among different habitats.

Keywords antimicrobial activity; *Sinularia compressa*; ecological conditions; Persian Gulf

In our work 4-chlorophenol (4CP), 4-chlorocatechol (4CC), pentachlorophenol (PCP), 2,4-dichlorophenol (2,4DPC), 3,5-dichlorophenol (3,5DCP) and 2,4,6-trichlorophenol (TCP) are studied as representative of xenobiotics occurring in many industrial wastewaters whereas atrazine, alachlor, diuron, MCPA and 2,4-D are analyzed as representative of pesticides. As they constitute a threat to human health and produce a public concern, several of those compounds are included in the list of priority hazardous substances of the European Union (Directive 2008/105/EC).

The aim of this work is to compare different microbiological methods for determination of toxicity and biodegradability of toxic compounds. Toxicity was estimated in terms of EC_{50} and evaluated by two of the most utilized methods: a simple respirometric procedure set up on the basis of OECD Method 209 and by the Microtox® bioassay. For determination of ready biodegradability an easier and faster alternative to the OECD Method 301 is proposed. When this test was negative, Zahn-Wells test (OECD 302B) was performed in order to evaluate inherent biodegradability. Both tests were performed with an initial concentration below the corresponding EC_{50} value.

The activated sludge was obtained from a municipal treatment plant. Chlorinated compounds and pesticides were analyzed by HPLC with UV detection. Total organic carbon (TOC) was analyzed by direct injection of the filtered samples into a Shimadzu TOC-VCSH analyzer.

Comparisons of EC_{50} data obtained with the two methods showed that in both cases chlorinated compounds (respirometric EC_{50} = 14-117, Microtox EC_{50} = 0,06-12) are more toxic than the pesticides (respirometric EC_{50} = 139-250, Microtox EC_{50} = 11-292) investigated and alachlor had a very low toxicity value. Moreover, the Microtox EC_{50} values were generally much lower than the respirometric ones.

The biodegradability test proposed indicated that only 4CP and 4CC among chlorinated compounds are ready biodegradable, whereas Zahn-Wells test showed a complete biodegradation for TCP and 2,4 DCP. 3,5 DCP appears to be the most recalcitrant phenolic compound, with a extent of degradation of only 15% after 28 days. Among pesticides, only biodegradation of alachlor was achieved to an appreciable extent (80%) using the Zahn-Wells test. Although chlorinated compounds, in general, showed higher toxicity than pesticides, surprisingly they appeared to be more biodegradable for a partially adapted microbial community.

In conclusion, the comparison of these toxicity methods shows that both can be usefully applied for toxicity detection in wastewater treatment plants. Respirometry is a specific method since the toxicity effects are evaluated directly on the plant activated sludge. Nevertheless, as biodegradability data shows, the evaluation of toxicity values in not enough to classify a wastewater as easily biodegradable.

Keywords chlorinated compounds, pesticides, toxicity, biodegradability, respirometry measurements, Microtox®, test Zahn - Wellsens

Acknowledgements

This work was financially supported by Comunidad de Madrid - Universidad Autónoma de Madrid through the project CCG08-UAM/AMB-4436 and by the Spanish Ministerio de Ciencia e Innovación through the project CMT2007-60959.
Correlation between PRTF1-F2 and macrolide resistance in *Streptococcus pyogenes*

C. Ferranti, G. Tempera, L. S. Roccasalva, and P. M. Furneri
Department of Microbiological and Gynaecological Sciences, University of Catania, Italy

Eightyeight strains of *Streptococcus pyogenes*, isolated from tonsillar infections in children and young adults during a national multi-centric study in various regions of Italy, underwent genotypic-phenotypic investigations to establish the genetic determinants of erythromycin-resistance and the possible correlation with the virulence factors *prt*F1-F2.

The most frequent resistance phenotype to erythromycin was cMLSb (40.91%), followed by iMLSb (36.36%) with the resistance determinant *erm*(B) more prevalent with respect to *erm*(A) and *mef*(A), and well as with respect to those of *erm*(B) was found exclusively or simultaneously in the same strain. The phenotype M (22.72%) was, as was predictable, characterized in 100% of the cases by the presence of *mef*(A), and in almost all cases (95%) its presence was exclusive with respect to *erm*(B) and/or *erm*(A).

The genetic determinants *prt*F1 and *prt*F2 encoding the FBP*s, adhesion proteins were present in a high percentage and comparable to both the sensitive GAS, and to the GAS resistant to erythromycin. In particular, *prtf*F1 was found in 100% of the strains with phenotype M. Moreover, *Multilocus Sequence Typing*, carried out on a pool of representative strains allowed the examination of the genetic background of the strains and discovered four new ST 461, 462, 463, 464, of which two from new variants of the locus of the *housekeeping* genes *gtr* and *mut*.

Keywords: *Streptococcus pyogenes*, virulence factors, genetic determinants

Correlation between growth rate and donor/recipient ability in natural *E. coli* strains

S. Mendonça, A. M. Reis and F. Dionísio
Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal

In this work we intend to measure growth rate values for *Escherichia coli* strains and relate these values with information regarding these strains behavior in plasmid conjugation.

E. coli strains used in this study were randomly chosen from a collection of natural isolates and used in a study for the determination of conjugation rates among themselves with plasmid R1. Donors and recipients were distinguished by isolating spontaneous antibiotic resistant mutants before the introduction of plasmid R1. Donors are resistant to nalidixic acid and mecillinam and the presence of plasmid R1 confers additional resistance to ampicillin, chloramphenicol and kanamycin.

Maximum growth rate values for donor strains with and without plasmid R1 are expected to vary accordingly to the plasmid cost. We anticipate a relation between growth rate and the strains donor/receptor abilities, which were already obtained in a previous study and found to reveal great diversity. We expect that the worst donors will have a lower growth rate because they are not spending much effort in passing the plasmid to other strains. The worst receptors will probably also have a lower cost because they might have lost another plasmid due to incompatibility with R1 during its acquisition.

Keywords growth rate; conjugation rate; plasmid cost; plasmid R1
Decolorization of a real textile wastewater by marine Aspergillus niger

M. Mazaheri Tehrani1, M. Mazaheri Asadi2, T. Sattary3, A. Nohei3
1. Nuclear Biotechnology Department, Nuclear Science Research School, Nuclear Science and Technology Research Institute, North Kargar St., P. O. Box: 11365-3486, Tehran, Iran
2. Biotechnology Departments, Iranian Research Organization for Science and Technology, Tehran, Iran
3. Microbiology Department, Faculty of science, Tehran University, Tehran, Iran

Wastewater originating from the textile-processing industries is a complex mixture of potentially polluting substances consisting of textile dyes, heavy metals associated with dyes and the other auxiliaries used during dyeing process (Sharma et al., 2004). It is estimated that from 1 to 15% of the dye is lost during dyeing section of a textile industry process and is released in wastewaters (Barka et al., 2009) And most of the azo dyes, which are released into the environment, originate from the textile industry and the dyestuff manufacturing industry. In this study a real wastewater from Barka Textile Company in Tehran was decolorized by a fungal biomass. A strain of Aspergillus niger that was isolated from marine showed a high capacity for rapid decolorization of textile dyes solutions and textile effluent. The optimization experiments demonstrated that decolorization was as much as 96% when sucrose was as carbon source at concentration 5g/liter of effluent. Addition of various nitrogen sources showed the best source is NH4Cl but different concentrations of NH4Cl had not significantly effect on decolorization. The reduction of dyes was maximal at original pH of effluent (7.5-9) and at 30 °C. Under optimal conditions, also 97% of dyes were adsorbed from textile effluent in 22 hours by approximately 1g dry weight of cells per liter of effluent. The kinetics of decolorization in batch culture showed that more than 90% of dyes in effluent removed in the first 10 hours after contact. Dyes strongly bound to the fungal biomass required sonication in dH2O, Triton X-100 and extraction with methanol for their removal. The results of cell fractionation showed decolorization by fungus were via surface and internal cell adsorption. Although, surface adsorption was significant (65.14% of decolorization).

Keywords: Fungal biomass, Textile wastewater, Decolorization, Azo dyes, Decolorization kinetics

References

Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by a microbial community in a packed bed column reactor (PBCR).

Soil samples collected from the central region of Veracruz, Mexico were used as a source of microorganisms able to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), and two of its biodegradation byproducts, 4-chlorophenol (4-CP) and 2,4-chlorophenol (2,4-CP). The microbial community were enriched by successive transfer of microbial cells batch cultivated in basal medium to which the above mentioned compounds were added as carbon and energy sources. The microbial community immobilized in a packed bed column reactor (PBCR) was used to evaluate the biodegradation kinetics of several proportions of the mixed chloroaromatic compounds (4-CP, 2,4-CP and 2,4-D). The packed bed column was aerobically operated at low dilution rate (D = 0.005 h–1), sampling the liquid and fragments of the porous support containing attached biomass at six different levels. To evaluate the axial change in composition along the PBCR, liquid samples were analyzed by HPLC and COD. It was observed that the increase of 4-CP and 2,4-DCP in the mixture of chloroaromatics reduced the overall and individual removal-efficiency of the aromatic compounds. In particular, byproducts accumulation in PCBR was noteworthy when 2,4-DCP proportion was increased in the medium fed to the PCBR.

As the liquid stream fed to the packed bed column flows upwards, concurrently with the injected air, an axial gradient in biomass concentration attached to the porous support was also observed. Biomass attached to the porous support was quantified by nitrogen content and viable cell count determinations. Biofilm growth was confirmed also by microscopic observation of stone samples obtained at each one of the different packed bed strata. Micrographs obtained showed coccolid and rod-shaped bacteria. Species richness (the number of species present in a sample) was determined in the packed bed column by PCR-TGGE. Five different species prevailed in the biofilm reactor from the microbial biofilm selected, bacterial strains were isolated and identified by sequencing fragments of their bacterial 16S rDNA. Their bacterial genera were: Acrobacterium, Burkholderia, Leifsonia, Klebsiella and Stenotrophomonas. Bacterial strains were studied, searching for catabolic plasmids containing the tfdA gene that encodes the enzyme 2,4- dichlorophenoxyacetic acid:alpha-ketoglutaric acid dioxygenase (TfdA). With the exception of Klebsiella sp., the remaining strains possessed one or more plasmids. The isolated Burkholderia sp. strain contains the tfdA gene.

The five bacterial strains were separately evaluated in batch culture for their biodegradation rates and removal efficiencies of each one of the chloroaromatics used, and Burkholderia sp. showed the best kinetic behavior.

Keywords: biodegradation; herbicide, biofilm, packed bed reactor.
Denitrifiers community abundance, structure and function associated with salt marshes sediments.

Ana Machado1, Catarina Magalhães1, Ana P. Mucha1 and Adriano Bordalo1,2

1Laboratory of Hydrobiology, Institute of Biomedical Sciences (ICBAS-UP), University of Porto, Porto, Portugal
2Centre of Marine and Environmental Research (CIBMAR), Porto, Portugal

Denitrification in eutrophic coastal systems influences the nitrogen budget and may result in increased fluxes of nitrous oxide (N2O), a potent greenhouse gas that also contributes to the destruction of the ozone layer. Denitrification can be physically and biochemically influenced, since sediment characteristics and organic carbon availability may be affected by the presence of plants. In this study, denitrifier communities abundance structure and activity were studied in salt marshes colonized (rhizosediments) and un-colonized sediments with different degrees of contamination: one in the Cávado estuary (NW Portugal), and two (Lisnave and Comporta) in the Sado estuary (SW Portugal).

Rhizosediments from Halimiones portulacoides meadows and un-colonized sediments from the same locations were sampled seasonally during one year. Denitrification and nitrous oxide (N2O) production rates were measured in sediment slurries experiments using the acetylene block technique. Total number of bacteria was estimated by means of direct microscopic count of DAPI-stained cells. The diversity of genotypes of nitrate (nirG), nitrite (nirS and nirK) and nitrous oxide reductase (nosZ) genes were evaluated by DGGE and cloning and quantitative analysis of nirS and nirK was performed by real time PCR.

Denitrification potential presented a strong temporal variation, with higher rates during the summer and fall. Rates of N2O production were found to be higher in sediments colonized with plants than in un-colonized sediments. This fact can reflect differences in the abundance and structure of the microbial community. In the majority of the samples bacteria were more abundant in rhizosediments than in un-colonize sediments. Moreover, cluster analysis of DGGE profiles showed differences in denitrifier assembles compositions; while in Cávado estuary seasonal differences in denitrifying community structure reflected seasonality; in Sado estuary differences between rhizosediments and un-colonized sediments surpassed seasonal differences in denitrifiers community.

These results suggest that denitrifier communities are adapted to distinct environmental pressures and that community structure alone cannot explain all the differences in denitrification rates. Moreover, denitrifier communities in rhizosediment can have an important contribution to the greenhouse effect through N2O emissions. Since salt-marshes can colonize large areas in temperate estuaries, the dynamic of denitrification pathway in these sediments should not be disregarded.

This work was partially funded by Fundação para a Ciência e Tecnologia (FCT), Portugal, through project POCTI/CTA/48386/2002.

Keywords salt marshes; denitrification; rhizosediments

Desulfurization of Crude Oil by Rhodococcus erythropolis cells

IFilipa Ferreira1, Carla C.C.R. de Carvalho1, Daniel L.C. Wang1, M. Raquel Aires-Barros1

1IBB- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering. Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal.
2MIT- Massachusetts Institute of Technology. Chemical Engineering Department, 77 Massachusetts Avenue, 02139. Cambridge, USA.

The refinery industries are facing nowadays the challenge of simultaneously keeping production yields high while limiting the release of toxic elements, such as sulphur dioxides, into the environment. Scientists all over the world have been targeting at the discovery of new economic and efficient methods for desulfurization of recalcitrant sulfur-containing organic compounds. Biodesulfurization (BDS) is a process that uses microorganisms such as Rhodococcus erythropolis, as the catalyst for fuel desulfurization. R. erythropolis cells are gram-positive and are known to be resistant to a large number of recalcitrant compounds. These cells have the ability to degrade hydrophobic natural compounds and xenobiotics, including dibenzothiophenes (DBTs) [1] and therefore are important tools for successful bioconversions and bioremediation. DBT is one of the most abundant sulfur components in the crude and has been widely used as the model compound for crude oil desulfurization research studies. The feasibility of using two different strains of R. erythropolis for the desulfurization of crude was investigated. The experiments showed that both R. erythropolis DCL14 and R. erythropolis IGTS8 were able to use DBT as sole sulfur source. A concentration of 0.1mM of DBT was used and HPLC chromatograms showed that both strains were able to metabolize rapidly the compound. For R. erythropolis IGTS8 resting cells were able to completely metabolize 0.1mM DBT in less than two hours whilst growing cells took up to 15 hours to metabolize the same DBT concentration.

Keywords: Desulfurization, Rhodococcus, Crude oil

References:

Acknowledgements: This work has been performed under the MIT-Portugal program. I.F.F acknowledges Fundação para a Ciência e Tecnologia for the BD 38941/2007 PhD fellowship.
Detection of D/N functional genes during a biotreatment of mixed olive oil and winery wastewaters

A. Eusébio1, A. Vaz1, M. Tacão1, M. Eusébio3, C. Ribeiro2, R. Tenreiro1,5, and E. Almeida-Vara1,5

1 LNEG, Unidade de Bioenergia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
2 Universidade dos Açores, Departamento de Biologia, Secção de Biologia Celular e Molecular, R. Mão de Deus, 59, 9501-801 Ponta Delgada, Portugal
3 CQFB/REQUINTE, Departamento de Química, FCT, Universidade de Lisboa, P-2825-516 Caparica, Portugal
4 Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Edifício ICAT, Campus da FCLUL, Campo Grande, 1749-016 Lisboa, Portugal
5 BioFIG (Centro de Biodiversidade, Genómica Integrativa e Funcional), FCL, C2, Campo Grande, 1749-016 Lisboa, Portugal

Several yeast may cause human and animal opportunistic infections, like the genera Cryptococcus and Candida. Cryptococcosis is a systemic fungi infection that may be acquired by inhalation of airborne particles contaminated with capsulated yeasts of the Cryptococcus genera. This disease has worldwide distribution. The prevalence of Portuguese wineries and olive oil mills are often located in the vicinity of each other which makes possible to share human and animal cryptococcosis has increased in the past 20 years for several reasons, including AIDS and FIV, wastewaters treatment plants (WWTP) to treat both effluents, before being discharged into municipal collectors and/or transport to one WWTP. This economy of resources is very important since Portuguese wine and olive oil is produced by small or medium companies.

Biotreatment monitoring is the unavoidable factor to characterise, control and improve the process, which will lead to new strategies for better treatments efficiency.

In order to optimize biotreatments for mixtures of the two referred effluents, a study was carried out in a jet-loop aerobic reactor, adding a winery effluent during the final phase of an olive oil wastewater biotreatment. On-line determination of the main physical/chemical parameters (pH, NOx, temperature, and %O2) was performed by sensors connected to new software developed to this aim associated with an acquisition data system plate (National Instruments). Off-line determination of COD, VSS and TSS was done following standard methods, and off-line NH4 measurements were done with a probe (Crisson) selective for NH4 ion.

Bioreactor started-up under a batch phase, followed by a continuous regimen, testing two hydraulic retention times (HRT) of 6.0 and 4.5 d, corresponding to feeding flow rates of 3.75 L/d and 5.0 L/d, respectively. Winery effluent was fed at a HRT of 6.0 d (3.75 L/d). COD olive oil wastewater removal rates reached more than 65%, at a loading charge of 16.1 g COD.l-1.d-1 with a HRT of 4.5 d.

Effluent biotreatments efficiency also depends upon biological nitrogen removal carried out by denitrifying/nitrifying (DN) microorganisms. To detect the functional genes involved in the nitrogen cycle (N/D processes), samples were collected at selected phases of the treatment, and total DNA was extracted, and was amplified by PCR with specific primers for nifH, napH, nirK, norB, nosZ, amoA and norB genes.

The relevance of the molecular methods is nowadays recognized as the most important set of tools to identify unknown microorganisms but this methodology does not provide cultures of a desired microorganism. To access and identify cultivable members of the consortia, some samples were also subjected to a cultivation, isolation and typification experimental procedure using classical microbiological techniques. For sequencing analysis, 16S-DNA of isolates was amplified by PCR with universal primers for Eubacteria. To determine the phylogenetic affiliation, similarity search was performed using the BLAST program. The nucleotide sequences were aligned by the CLUSTAL program and the phylogenetic tree was constructed. Eleven sequences of isolates affiliated with phyllum Firmicutes, one with Actinobacteria, and one with sub-class alpha-Proteobacteria.

Acknowledgments Funding from FCT Project MOTIVE (ITQB/AMB/56616/2004). Authors wish to thank J. C. Duarte from LNEG (Unidade de Bioenergia) for availability of jet-loop reactor.

Keywords olive oil wastewater; winery effluent; microbial consortia; jet-loop reactor; D/N functional genes
Detoxification of Olive Mill Wastewaters Using a Packed-Bed Batch Reactor
S.M. Paixão, M.C. Sáágua, L. Baeta-Hall, A. Correia, B. Ribeiro, and J.C. Duarte

Olive oil production is a traditional agricultural industry in Mediterranean countries and Portugal is one of the ten major producers. This industry generates an effluent, olive mill wastewater (OMW), which does not undergo any treatment and, usually, is stored in evaporation lagoons or spread on the land. Disposal of olive oil mill wastewaters is a serious environmental problem due to its high-organic loading, presence of polyphenols and tannins, high content in suspended solids and acidity, which contributes to its ecotoxicity.

In this work, a biological treatment system: a packed-bed batch reactor was applied to a Portuguese OMW using its autochthon microbial population as inoculum. Thus, the biodegradation potential of OMW microorganisms naturally present in these wastewaters was assessed monitoring several physico-chemical parameters along the process. Ecotoxicity tests (Pseudomonas putida growth inhibition test and Vibrio fisheri growth inhibition test) were carried out to follow the detoxification capacity of the system as well as its potential to be used in the treatment of this type of agriindustrial effluent.

In this aerobic treatment, an active microbial community with high degradation ability for the OMW organic load was detected, accounting for 80%, 71% and 61% removal of COD, TSS and phenols, respectively. In addition, a significant decrease in the chronic toxicity of the treated OMW to both bacteria, V. fisheri (62.8%) and P. putida (64.3%), was also observed after 140 days of treatment, highlighting the detoxification potential of the system studied.

Keywords: OMW; detoxification; packed-bed batch reactor; ecotoxicity tests.

Dissipatrophic bacteria, which develop in community with xylolytic fungi in the ultrafresh conditions.

Winogradsky Institute of Microbiology RAS, pr-t 60-letiya Oktyabrya, 7/2, 117312 Moscow, Russia

Wood decomposition is one of scale processes in carbon circulation in boreal zone of Russia. The basic destructors of wood are xylolytic fungi which activity leads to form dystrophic waters in forest and marsh ecosystems. Bacteria are not capable to destruct chemically inert lignin, but they are capable to use low-molecular products of lignin hydrolysis by fungi. Thus, bacteria and fungi form miko-bacterial community which is characterized by close interrelation of its components (bacteria and fungi).

Acidic dystrophic waters are formed during an initial stage of wood decomposition. Studying of bacterial community from such environment is of great value for water use.

The purpose of the present work is:

1) to study a specific variety of bacteria developing in ultrafresh acidic waters, generated by xylolytic fungi in the course of wood decomposition and
2) to establish a functional role of these bacteria in conditions of laboratory model.

Different xylolytic fungi such as Aspergillus ustus, Penicillium decumbens Penicillium sp., Paecilomyces sp., Trichoderma harzianum, Cladosporium sp. were revealed in investigated community.

Oligotrophic bacteria with characteristic morphology belonging to genera: Caulobacter sp., Prathecobacter sp., Hyphomicrobium sp. were found out in wash waters of laboratory model at pH 4.3 and electroconductivity 140μS.

A number of pure cultures of acidophilic dissipatrophic bacteria was isolated. These bacteria are indicator strains for the given stage of wood decomposition. Eco-physiological characteristics of nine of them are under detailed study at present.

On the basis of phones and phylogenetic analysis of 16S rRNA gene sequences isolated cultures were identified as genera: Xanthobacter (strain Z-0055, which is described as X. xylophilus sp. nov.), Methylobacterium sp. (strain Z-0033), Hyphomicrobium sp. (strains Z-0045), Micrococcus sp. (strain Z-0066), Alphia sp. (strain Z-0043), Spirosoma sp. (strain Z-0088), Ancylobacter (strain Z-0056, which is a new species of this genus).

Also two acidophilic representatives of order Planctomycetes (strains Z-0078 and Z-0077) were isolated.

The investigated group of bacteria is characterised by following features: acidophilia (pHmin for growth within 5.0-6.5); ability to grow only at low concentration of NaCl in medium (not above 0.25%, with the exception of strain Z-0088) and low electroconductivity of medium (from 44 μS to 0.8 mS).

The isolated organisms are subdivided into three groups according to their food requirements: saccharolytic bacteria (strains Z-0033, Z-0066, Z-0077, Z-0088), which use carbohydrates, acido trophic bacteria (strains Z-0055, Z-0005, Z-0056), which use organic acids and methylotrophic bacteria (Hyphomicrobium sp.). Optimal concentration of substratum for representatives of acido trophic group is 0.2 g/l. Concentration of a substratum above 10 g/l renders inhibitory action. The isolated bacteria are steady against antibiotics of a penicillinic group and group of cephalosporins which are produced mainly by fungi.

Thus the isolated microorganisms are representatives of group of acidophilic bacteria which use substances formed in the course of wood decomposition by xylolytic fungi as a source for carbon and energy. All investigated bacterial components of community are adapted for existence in ultrafresh conditions in close interrelation with fungi.

Keywords dystrophic waters; xylolytic fungi; dissipatrophic bacteria; oligotrophic bacteria.
Diversity and abundance of bacteria community associated with rhizosediment and un-colonized sediments in salt marshes of two Portuguese estuaries.

Ana Machado1, Catarina Magalhães1, Ana P. Mucha2 and Adriano Bordalo1,2

1 Laboratory of Hydrobiology, Institute of Biomedical Sciences (ICBAS-UP), University of Porto, Porto, Portugal
2 Centre of Marine and Environmental Research (CIIMAR), Porto, Portugal

The influence of salt marsh plants colonization (Halimione portucaloides) and the spatial and temporal distribution of prokaryotic was investigated in two Portuguese estuarine systems with different degrees of contamination: Cávado (41.5 N; 8.7 W) and Sado estuaries. In Sado, two salt marshes were preferred: Lisnave (38.4 N; 8.7W) and Comporta (38.4 N; 8.8W). In literature, Câvado River estuary was described as a contaminated estuary, Lisnave site was classified as a highly polluted site with a high impact potential and high risk to cause adverse effects on the biota and Comporta site was presented as a low contaminated site with low to moderated impact potential.

Total community DNA was extracted from 0.25 to 1 g of sediment or rhizosphere (colonized sediment) collected seasonally during one year. Diversity of bacterial community was evaluated by PCR-DGGE approach and quantitative real time PCR was conducted to determine bacterial 16S rRNA gene copy numbers. Total number of prokaryotic cells was also estimated by means of direct microscopic count of DAPI-stained cells. In addition, environmental characteristics (% of organic matter, grain size, and metals concentration - Pb, Ni, Zn, Cu, Cr, Cd, Fe and Mn) were related to bacteria assemblage composition.

Total microbial cells were found to be higher at Cávado estuary, with a general trend in all salt marshes of higher abundances in rhizosediment samples. Results revealed that high metal concentrations affect negatively the abundance of prokaryotic cells, since a negative correlation was observed between all metals tested and total cell counts. However, the increase of Zn and Cd levels were positively correlated with higher Shannon Weaver diversity index (H'). Principal components analysis (PCA) based on the environmental variables, total cell counts and H' identified two major groups. The first contained samples from Cávado estuary characterized by high DAPI counts and lower metals concentration (especially Zn, Cr and Fe). The second grouped all samples from Sado estuary with higher diversity index (H'). Hierarchical cluster analysis of all DGGE profiles did not show different diversity patterns between the three salt marshes. However, when DGGE profiles were analysed within each sampling site, samples were separated according to season, in Cávado estuary, and according to sediment type, in Sado estuary.

We can conclude that differences in salt marshes contaminant levels and the presence of salt marsh plants led to the selection of different microbial populations. Salt marshes may colonize large areas in temperate and subtropical estuaries and the presence of plants can modify the abundance and composition of the microbial community. Thus this influence should be taken into account in future studies to demonstrate the potential of the salt marsh plants for biological remediation and sustainable management of these ecosystems.

This work was partially funded by Fundação para a Ciência e Tecnologia (FCT), Portugal, through project POCTI/CTA/48386/2002.

Keywords salt marshes; rhizosediment; microbial diversity; abundance
Diversity of foaming producing nocardioform actinomycetes from wastewater treatment plants in Spain

G. Cuesta1, A. Soler2, J.L. Alonso3, J.J. Morenillo2 and Bernacer I.1

1Departamento de Biotecnología, Universidad Politécnica de Valencia 46022 Valencia, Spain.
2Instituto de Ingeniería del Agua y Medio Ambiente, Universidad Politécnica de Valencia 46002 Valencia, Spain.
3Entidad Pública de Saneamiento de Aguas Residuales de la Comunidad Valenciana, 46010 Valencia, Spain.

The problem of foaming in wastewater treatment plants (WWTPs) is a worldwide problem, and to become a better understanding what microorganisms causes this foam and to cure it, there is a need to identify the species present in the activated sludge basins. Microscopically, this foam usually contains large number of nocardioform actinomycetes containing mycolic acids, the so called mycolata. Mycolic acid-containing actinomycetes belong to suborder Corynebacterineae which contains the genera Corynebacterium, Dietzia, Gordonia, Millisia, Mycobacterium, Nocardia, Rhodococcus, Segnilipta, Scherma, Tsukamurella and Williamsia grouped in seven families. In Spain the problem of foaming is not well understood and detailed investigations of nocardioforms in such foams has not been carried out. The aim of this study was isolate and identify mycolic acid-containing actinomycetes by analysis of 16S rRNA sequences to understand the biodiversity of these microorganisms in Spanish WWTPs with foaming problems.

Mycolata strains were isolated onto modified Czapeck medium from twenty two WWTPs. DNA from pure culture colonies was extracted and 16S rDNA were amplified with universal primers. The 16S rDNA gene sequences were assembled using the PHYDIT program. The sequences were presumptively identified using the program BLAST. The almost complete sequences were aligned manually against sequences of representative strains of genus Corynebacterium, Dietzia or Gordonia. Phylogenetic trees were inferred using the neighbour-joining algorithm from the PHYLIP suite programs and evolutionary distances matrices prepared. The topologies of the resultant unrooted trees were evaluated in a bootstrap analysis based on 1.000 resamplings of the neighbour-joining dataset using the PHYLIP package. The isolates of mycolic acid, mycolic acids and sugar composition of whole-cell walls were analyzed following standard procedures as well as phenotypic properties.

Twenty five representative isolated strains were selected in this work. All of them were filamentous, cocci or irregular rods Gram positive mycolic acid containing bacteria. All of the strains contained meso-diaminopimelic and arabinose, and galactose as characteristic whole cell sugars. Mycolic acids from the isolated strains co-migrated with those from the correspondent type strains of the genera Gordonia, Rhodococcus, Tsukamurella, Mycobacterium and Dietzia. Comparison of the nearly complete 16S rRNA nucleotide sequences from the isolated strains with corresponding nucleotides sequences of representative’s of the suborder Corynebacterineae confirmed that the isolates belonged to the species Dietzia maris, D. natroilamiae, Rhodococcus ruber, Gordonia sp., G. polyisoprenivorans, G. terrae, G. malaguea, G. amurae, G. effusa, G. alkanivorans, G. jacobaeae, Tsukamurella spumae, T. pseudospumae, T. tyrosinosolvens and Mycobacterium vanbaalenii. In all the cases, the nucleotide sequences similarity values among the isolated strains and type strains were between 98.52% and 100%. Results of the phenotypic test were coherent with the identification obtained with analysis of 16S rRNA sequences. From all the isolated studied in this work, the 48% belongs to the genus Gordonia, and the 30% belongs to the genus Tsukamurella. The rest of the isolates belong to Rhodococcus (4%), Dietzia (8%), and Mycobacterium (4%). It’s interesting to emphasize that the nine Tsukamurella strains were isolated from nine different WWTPs showing the great importance that this genus may have in spanish WWTPs.

To our knowledge, this is the first study about the diversity of mycolata in Spanish WWTPs. We have isolated fifteen different species of mycolata from twenty two activated sludge plants. These results show a high diversity of mycolata in WWTPs. The results showed the isolation of mycolata species not related with activated sludge process such as Gordonia sp., G. polyisoprenivorans or T. tyrosinosolvens. This is the first step to understand the complexity of the populations of mycolata in our country.

Keywords: mycolata; wastewater treatment plants; 16S rDNA

Acknowledgements This work was supported by grants from the Entidad de Saneamiento de Aguas de la Comunidad Valenciana. and Conselleria de Educacion y Ciencia de la Generalitat Valenciana.

Diversity of marine fungi on substrata collected in sandy beaches on Portuguese western coast

Azevedo, E., Caeiro, M.F. and Barata, M.

1Centro de Biologia Ambiental (CBA)

Marine fungi are common in marine, estuarine and mangroves habitats worldwide. They are major decomposers of wood and herbaceous substrata, and their role is vital for marine ecosystems. In those environments a wide range of substrata are available for the colonization and growth of marine fungi. Having Portugal a large coast with temperate waters it is important to survey the occurrence of marine fungi associated with the substrata found in sandy beaches.

In the present work, the diversity of marine fungi from 4 sandy beaches on west coast of Portugal was assessed during 8 months. At each field visit the abiotic parameters of sea water, temperature, pH and salinity were recorded. Out of 720 samples, intertidal wood and stems of herbaceous plant were collected for the detection of marine fungi, by direct observation of substrata. The identification of fungi was based on illustrated dichotomous keys of Kohlmeyer and Kohlmeyer (1979, 1991), Hyde and Sarma (2000) and Jones et al. (2009). For the assemble of the surveyed beaches, 66 taxa were recorded (35 Ascomycota, 21 anamorphic Fungi and 3 unidentified taxa) out of which 9 taxa were common to the four beaches surveyed: 6 Ascomycota (Corexosporia halina, Coriolospora maritima, Lignincola laevis, Luwlworthia sp., Pleospora sp., Paesophaedra ocearamicis) and 3 anamorphic fungi (Halosporaria variis, Phoma sp., and Sphaeropsis sp.). It was determined for each environment and type of substratum, the average number of fungi per substratum, frequency of occurrence of each taxa and diversity and similarity indices for marine mycota. One taxon (Coriolospora maritima) was frequent and all the others were infrequent. The average number of fungi per substratum and Shannon and Evenness indices were respectively 1.10, 3.47 and 0.83.

The pattern of geographic distribution of species was also registered and analyzed. Finally the collected data were compared with those from national and international works.

Keywords: diversity; marine fungi; sandy beaches; intertidal substrata

References

Acknowledgements This work was supported by grants from the Entidad de Saneamiento de Aguas de la Comunidad Valenciana. and Conselleria de Educacion y Ciencia de la Generalitat Valenciana.
Effect of a respiratory inhibitor on the bioconversion of a xenobiotic by activated sludge

A. M. T. Mata1,2, N. D. Lourenço1, and H. M. Pinheiro1

1 IBB – Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
2 ESTS-IPS – Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setúbal, Portugal

The bioconversion of xenobiotics often involves oxidation-reduction reactions and one representative example is the reductive decolorization of azo dyes. The bioreduction of an azo dye (as model xenobiotic) by a mixed microbial culture (activated sludge) was thus chosen as a model system in the present study. The general aim was to investigate the effect of a respiratory inhibitor, namely sodium azide, on this bioconversion, when carried out by different microbial inocula.

In this study, the xenobiotic used was the azo dye Acid Red 14 and two mixed cultures were employed, one coming from an aerobic, laboratory-scale sequential batch reactor, fed with glucose, and another from the aeration tank of a municipal wastewater treatment plant. The bioconversion runs were carried out in closed recipients, with reduced headspace to induce anaerobic conditions, and using glucose as electron donor. All experiments were conducted in duplicate, and dye bioreduction was followed by UV-visible spectrometry. Dye adsorption onto the biomass was also measured, and accounted for 1 to 5% of the total quantified xenobiotic removal.

Dye bioconversion yield values above 90% were observed with both mixed cultures after 48 hours, in the presence or absence of added glucose, but bioconversion inhibition by azide showed different patterns, depending on biomass previous conditioning, i.e., freshly harvested or after aerobic incubation in the absence of carbon source (starved). Inhibition depended also on glucose availability during the bioconversion experiments.

Azide inhibition of dye bioconversion was observed with the fresh cultures from both sources, with 60 and 200mM inhibitor concentrations. When the biomass was previously starved (during 24 to 96h), both cultures showed a reduction in the azide inhibition effect. However, in the absence of glucose this alleviation of azide inhibition was not observed.

These results point to the existence of an alternative, dye bioconversion mechanism triggered in the starved biomass, in which the involved pathways are not inhibited by azide.

Acknowledgment: Financial support from FCT (Portugal), contract no. PDCT/AMB/59388/2004 is acknowledged.

Keywords: bioreduction; xenobiotic; azide; inhibition; activated sludge

Effect of Carbon and Nitrogen on the Predatory Behavior of Bacillus subtilis

Subir Kumar Nandy and K. V. Venkatesh

Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai - 400 076, INDIA

*BCorresponding Author: Prof. K.V. Venkatesh

Bacillus subtilis demonstrates predatory behavior before cannibalism on other microorganisms that is not commonly observed in microorganisms under nutrient limitation to delay sporulation. However, cells of B. subtilis in Phosphate buffer solution (PBS) exhibits cannibalistic tendencies that is observed in microorganisms under stress. Under stress condition in PBS, B. subtilis behaves as a predator on other microorganisms. Since PBS includes no nutrients, the effect of carbon and nitrogen sources on the predatory behavior is obscured. A recent study by our group has suggested that B. subtilis utilizes one or more killing factor that lyse other microorganisms in predation and their sister cells in cannibalism when faced with nutrient limitation. In this paper, the effect of external carbon and nitrogen on the predatory and followed by cannibalistic behavior of B. subtilis is presented. This study described that when glucose as a carbon source was introduced into PBS in the absence of any other nutrients, the predatory behavior was delayed. This delay extended with the increase in the amount of glucose present in PBS. In addition the cannibalistic behavior after predation was also more delayed and extended in the presence of increasing glucose concentration. But in the presence of only ammonium sulfate in PBS as nitrogen source and was devoid of any carbon source, the effect of Predation was minimal. This work, thus, confirmed that Predation was more sensitive to carbon than nitrogen demonstrating that the predatory behavior may be more dependent on the energy sources in the medium than on nitrogen assimilation.

Keywords: Bacillus subtilis, predation, cannibalism, glucose, ammonium sulfate, MBRT.
Effect of spoil heap waters on Anabaena sp. – possible inhibition of cyanobacteria inoculum in new water body in the brown coal mining basin

Hana Medová1,2, Ivo Přikryl3, and Libor Pechář1

1Faculty of Agriculture, South Bohemia University, Studentská 13, Ceske Budejovice, Czech Republic
2Mycological Institute, Academy of Science CZ, Novohradská 258/II, Trebon, Czech Republic
3Institute of Soil Sciences and Plant Cultivation, Borkovická 105, Brno, Czech Republic

New water habitats were established in the post-mining area in the Sokolov brown coal basin, Czech Republic. The environment of new ponds and wetlands on spoil heaps and in former quarries is generally considered as potentially toxic for algae and cyanobacteria. Large range of pH (from 2.5 – 10), and high concentration of manganese up to 16.0 mg/L, iron up to 150 mg/L, and aluminium up to 60 mg/L are typical for these types of water.

In the former largest quarry Medard, there have been established a new water body with planned depth of 51 m, area of 501 ha. It has been filled with water from the river Ohře since 17th July 2008. Water chemistry of the new water body might be influenced by discharged water from the surrounding heaps. Possible inhibition of cyanobacterial inoculum by heaps waters is the main task of this paper.

We studied the possible toxicity effect on PSII of Cyanobacteria Anabaena sp. of waters from seven small localities with the pH range 2.6 – 8.4, conductivity 2 900 – 10 800 μS/cm. We analyzed the water samples from the 0, 5, 10, 15 m depth of Medard water body as well. After one hour of illumination of 300 μm, we used the fluorescence light curve, electron transport rate and efficiency of photochemistry (Fv/Fm) measurement to examine the toxicity effect on photosystem II (PSII) of culture of Anabaena sp.

When the cyanobacterial culture was mixed in ratio 1:9 (dilution to 5%) with water from four most acidic localities (pH 2.6 – 3.0), Anabaena sp. showed no photosynthetic activity. After one hour of illumination, the Fv/Fm value fell to 0% (60%) of the control Fv/Fm value in the 2.5% (1%) dilution. The efficiency of photochemistry was higher in the medium of the pH 4.40 (20%) and in the 75% dilution of the surface water of Medard water body (88%). The water from localities with pH 7.1 and 8.4, and conductivity 4 700 (9 800) μS/cm seemed to have no change on fluorescence of PSII.

The water from Medard with the pH between 5.92 – 6.93 and conductivity 264 – 546 μS/cm was far less toxic effect than from acidic spoil heap waters – not until 75% dilution showed any effect on its photosynthesis. The highest sink of Fv/Fm value was observed in the depth of 10 m (25% compared to control), in contrast to the samples from 15 m (96%), 0 m (88%) and 5 m (100%).

The most negative effect on the PSII is the environment with both low pH and high amount of dissolved ions. The dissolved ions themselves seem to have less effect on PSII. The diminution of 300μL multiplied the decrease of the photosynthetic ability.

Keywords: acidic waters, post-mining area., Anabaena sp., Medard water body

Effect of the ammonium chloride concentration on the mineral medium composition – Biodegradation of phenol by mixed culture

A. Hamitouche1, Z. Bendjama1, A. Amrane4, F. Kaouah1

1Laboratoire des Sciences de Génie des Procédés Industriels, Faculté de Génie Mécanique et de Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111, Bab ezzour, Alger (Algérie)
2Centre de Recherche scientifique et technique en Analyse Physico-Chimiques, BP 245, CRAPC, Alger.
3École Nationale Supérieure de Chimie de Rennes, Université Rennes 1, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50377, 35708 Rennes Cedex 7, France.
4Université européenne de Bretagne

Phenol and its homologues are aromatics containing hydroxyl, methyl, amide and sulphonic groups attached to the benzene ring. These molecules are both anthropogenic and xenobiotics [1]. Phenols are environmental pollutants discharged through wastewaters from fossil fuel refining processes, phenol manufacturing plants, pharmaceutical and a variety of other industries [2]. Phenols are toxic to several biochemical reactions. However biological transformation of phenols to non-toxic entities exists in specialized microbes, owing to enzymatic potential involving enzymes of aromatic catabolic pathways.

A series of experiments were performed to examine the effects of the mineral medium composition and the pH on phenol removal. In this purpose, phenol biodegradation was carried out in a batch reactor containing mixed bacteria; the temperature (30°C), the stirring velocity (200 r/min) and the phenol concentration (100 mg/L) were kept constants. The initial pH was varied in the range 5 – 8 and the mineral components were tested in the following concentration ranges: 0.25 – 2 g/L for NH₄Cl, 1 – 4 g/L for KH₂PO₄, 1 – 4 g/L for NaH₂PO₄ and 0.05 – 0.2 g/L for MgSO₄. Their effects on phenol biodegradation and specific growth rate were examined. All experiments were carried out at a given initial bacterial concentration of 0.08 g/L (based on optical density determination, 0.079).

Maximum specific growth rate (0.65 h⁻¹) and total phenol removal (99.99 %) were recorded for an optimal pH value of 8 and the following mineral medium concentrations (g/L): 1, 3, and 0.1 for NH₄Cl, KH₂PO₄, NaH₂PO₄ and MgSO₄ respectively.

Bacterial growth kinetics were described according to the Riccati model, the correlation coefficients were in the range 0.89 to 0.97. The constant rate k and the constant related to the percentage of inhibition ½ were determined according to the initial pH of the solution and the mineral medium concentrations.

Keywords: Biodegradation; Phenol; Mixed bacteria; Kinetics; Riccati model.

References
Effect of Toluene-containing Synthetic Wastewater on Archaeal Population Dynamics in Anaerobic Sequencing Batch Reactors

N.A. Oz1,*, O. Ince1, E. Guzder Filer1, B.K. Ince1
1Bogazici University, Institute of Environmental Sciences, Bebek, 34342, Istanbul, Turkey
2Istanbul Technical University, Department of Environmental Engineering, Maslak, 34469, Istanbul, Turkey

Toluene, which is an aromatic hydrocarbon is widely used as a solvent in several industries. Solvent-containing wastewaters are generally treated using anaerobic bioreactors due to high organic content. However, there are still some concerns in the application of anaerobic treatment processes for this kind of wastewaters due to possible detrimental effects of the compounds on microbial community playing crucial role in anaerobic digestion. Improvement of anaerobic systems for treatment of the wastewaters needs determination of inhibitory effects of the compounds on microorganisms' vitality and activity. Therefore, in this study, a lab scale anaerobic sequencing batch reactor (ASBR) fed with toluene-containing synthetic wastewater has been monitored in terms of changes in methanogenic Archaea. In addition, a control reactor was operated with synthetic wastewater without toluene. The reactors were inoculated with a sludge having high methanogenic activity of 453 mlCH4/gVSS/day. The ASBR was operated with one cycle/day including the following four discrete steps: a feed step (0.5 h), a react step (22 h), a settling step (1 h), and a decant step (0.5 h). Under these operating conditions, the S/N ratio was 0.59 gCOD/gVSS. VSS concentration in the reactor ranged between 6000-6530 mg/L during the operation period. The microbial community structure was characterized using Fluorescent in situ Hybridization (FISH) with ribosomal RNA targeted oligonucleotide probes specific for Bacteria, Archaea and phylogenetically defined groups of methanogens and quantified using SPOT RT software. The reactors were fed with glucose based synthetic wastewater and then toluene was added to the synthetic wastewater. At the beginning of the operation period with toluene, COD removal efficiency of the reactor was not affected by toluene addition. However, after repeated introduction of toluene at a concentration of 0.3 mM to the synthetic wastewater resulted in a decrease in reactor performance in terms of COD removal efficiency and the size of archaeal community. After day 34, a gradual deterioration in the reactor performance was observed with a COD removal efficiency falling to 70%. A sudden decline in the performance of the reactor was observed after day 52 with a COD removal efficiency of 40%. At the same period, methane yield was approximately 0.17 mCH4/kgCODremoved. The most pronounced effect among methanogenic Archaea has been observed in Methanomicrobiales species. Although this group was approximately 7% in total active population in the seed sludge, after feeding the ASBR with toluene-containing synthetic wastewater, this group has not been observed in the sludge samples taken from the reactor. At the end of the operation period of the reactor, dominant species in total active population were Methanoseta (12.3%), Methanobacteriales (5.6%), Methanosaeta (3.6%) and Methanococcales (1.4%) respectively. Numerical dominance of the genus Methanoseta compared to other methanogens in anaerobic reactor exposed to toluene has been observed. In the control reactor, dominant species (in total active population) were Methanoseta (15.5%), Methanomicrobiales (10.0%), Methanobacteriales (9.6%), Methanosaeta (7.8%) and Methanococcales (5.5%), respectively.

Keywords: Anaerobic; ASBR; bioreactor; FISH; toluene, methanogenic Archaea

Effect of wastewater treatment plant effluent on the coastal waters of Peniche – A preliminary microbiological study

A. R. Martins Marinho1, A. S. Padrão Mota1, A. Cruz2, C. Neves-Afonso2, C. Teixeira1, C. M. Fernandes1, M. J. Rodrigues2
1 Leiria Polytechnic Institute, Campus 4 (Institute of Tourism and Sea Technology), Santarém Nossa Senhora dos Remédios, Apartado 126, 2524-909 Peniche, Portugal. Tel: +351 262 783 607; Fax +351 262 783 088
2 GIRM – Research Group in Marine Resources, Leiria Polytechnic Institute, Campus 4, Santarém Nossa Senhora dos Remédios, Apartado 126, 2524-909 Peniche, Portugal. Tel: +351 262 783 607; Fax +351 262 783 088; mjrodriogues@estm.ipleiria.pt.

Peniche is an important tourist destination from the western region of Portugal and was not found information on the wastewater plant effluent impact on the sea water. Marine pollution levels were analyzed in three sample locations: (i) at the exit of the wastewater treatment plant (WWTP), (ii) at the closest beach north of the WWTP (Papoa), and (iii) at the closest beach south of the WWTP (Carreiro de Joanes). Sampling occurred during April and May 2009. The marine pollution levels were achieved by the enumeration of total heterotrophic aerobes (THA), through incubation at 30ºC, and E. coli and Enterococcus through the most probable number (MPN) method. Additionally, the presence of coagulase positive Staphylococcus was determined by a conventional plating method recommended by Biocod for environmental samples analysis and the occurrence of Salmonella was analyzed through a comparison between a conventional plating method and the Enzyme Linked Fluorescent Assay (ELFA) performed in Mini-Vidas. The maximum values for THA were obtained on the effluent exiting WWTP (> 5.5 x 10^8 ufc/mL). However, the other areas under study (Papoa and Carreiro de Joanes) presented lower values. As for the E. coli site, presented higher levels which exceeded the maximum recommended by the Directive 2006/7/CE and by the Portuguese Legislative Act nº236/98 (500 /100mL). However, the other areas under study (Papoa and Carreiro de Joanes) presented lower values. Enterococcus was only detected in the WWTP site, where it presented values (> 1100/mL) above the recommended ones (185ufc/100mL) according to the Directive 2006/7/CE. The presence of Staphylococcus was observed in all the tests carried out at WWTP. In the remaining studied areas, it was only detected in the Carreiro de Joanes. As for the Salmonella analysis, the detection was only confirmed outside WWTP. Clearly, the effluent exiting the WWTP of Peniche presents unsatisfactory microbiological values for water quality. Nevertheless, these pollution levels not seem to affect the closest beaches to the WWTP. The comparison between the ELFA and conventional methodologies was inconclusive, more analyses are necessary in order to confirm the ELFA method suitability for testing complex environmental liquid samples as the coastal waters.

Keywords: Coastal water quality; Waste Water Treatment Plant; Salmonella
Electrochemical process coupled with biological treatment for the removal of a pesticide, phosmet.

Nara Alonso Salles1,2, Florence Fournec3, Florence Geneste1,2, Didier Flower1,3, Abdellatif Amran4,5

(1) Université Rennes 1, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France.
(2) Université européenne de Bretagne
(3) Université Rennes 1, UMR 6226, Equipe Catylase et Organométalliques, Campus de Beaulieu, 35042 Rennes Cedex, France

In intensive agricultural practice, repeated use of pesticides may result in more frequent occurrence of agrochemicals in raw water resources. Some effluents of agricultural activities (unused treatment solutions, spray, machine and pesticide container washing) contribute to water resource pollution. Pollutant of water with biorecalcitrant organic compounds is becoming increasingly worrying and pesticides removal from environment is now a great challenge for the scientific community.

The aim of this study is to assess and develop an integrated process in order to degrade phosmet, an organophosphorus pesticide widely used in insect pest management for crop production. A study was carried out on the biodegradability of phosmet with activated sludge from a local municipal wastewater treatment plant and by means of BOD5 measure. The results showed that this organic compound was not biodegradable in our operational conditions. Moreover, Microtox test showed that the target compound presented a high toxicity for vibrio fisheri bacteria. So, a conventional biological treatment is not appropriate for phosmet polluted effluents.

One way to remove phosmet and in the same time minimize the operational cost is to develop an efficient pre-treatment process that reduces the toxicity and/or increases the biodegradability of the effluent containing the target compound before a low cost biological treatment. Electrochemical behavior of phosmet was studied by cyclic voltammetry with a vitreous carbon electrode. Phosmet was reduced in neutral medium; the feasibility of an electrochemical pre-treatment was thus demonstrated. The setup used to perform electrolyses includes graphite felt with a high specific area as working electrode in a flow cell. After potentiostatic electrolysis (-1.3V/ECS), phosmet was not detected by cyclic voltammetry. H-NMR spectra and thin layer chromatography pointed out many by-products. H-NMR spectra of the main by-product showed the absence of the aromatic ring: only the phosphorus part of phosmet has been identified. Furthermore, phosmet-o xo, a very toxic derivative, was not observed. The electrolyzed solution was characterized by a lower toxicity and a higher biodegradability compared to the target molecule. Indeed, the EC50 value increased from 7 % initially to 58 % after electrolysis and the BOD5 value increased from 4 mg L-1 initially to 9 mg L-1 after electrolysis, leading to an increase in the aerobic period from 4 to 1h, as well as an increase of the nitrate concentration given in one pulse at the beginning of the anoxic phase from 0 to 50 mg N/L. This acclimatization was monitored not only through chemical analyses (PO43-, NO2-, NO3-, glycogen, propionate and polyhydroxyalkanoates (PHA)) but also through microbial characterization using the Fluorescence in situ Hybridization (FISH) technique.

Throughout the 2 years of operation the capacity of the population to use nitrate or nitrite (50 ppm-N) and oxygen as electron acceptors was tested in batch experiments. At the highest enrichment state (>95%, Accumulibacter clade I) this population was able to use nitrate, nitrite and oxygen as electron acceptor. The hypothesis of this Accumulibacter clade is a nitrate-DPAO. Although nitrate and nitrite are both used, oxygen leads not only to faster phosphorus uptake (4-5 times higher) but also to higher PHA degradation and higher glycogen storage. In tests using nitrate, nitrite accumulation was never observed suggesting that nitrate conversion to nitrite is slower than from nitrite to nitrogen gas. Though nitrite led to a higher phosphorus uptake rate than nitrate the P/N ratio for nitrite was 2 times higher than the one with nitrate suggesting that nitrate is better electron acceptor than nitrite.

These results confirm that a population enriched in Accumulibacter clade I presents a versatility towards different electron acceptors, being able to take up phosphorus using oxygen, nitrate and nitrite.

Key-words: Integrated process, electrochemical pre-treatment, biological treatment, pesticide degradation, phosmet.

Enrichment of Polyphosphate Accumulating Organisms in Accumulibacter Clade I: affinity for nitrate, nitrite and oxygen

A.B. Lanham, R. Moita, M.A.M. Reis, P.C. Lemos
RIQUI/TM/CQFB, Chemistry Department, FCT/Universidade Nova de Lisboa,2829-516 Caparica, Portugal.

Enhanced Biological Phosphorus Removal (EBPR) has been suggested as an effective alternative to chemical precipitation methods for phosphorus removal. The coupling of this process with denitrification, by using a population capable of removing phosphorus using nitrate/nitrite as electron acceptor, reduces the amount of carbon needed and also the sludge produced as compared with two distinct processes.

This coupling has been suggested since Candidatus Accumulibacter phosphatis, one of the main Polyphosphate Accumulating Organisms (PAO) was shown to be able to denitrify. However, it remained unclear whether all PAOs could denitrify or if there were Denitrifying PAOs (DPAOs) and non-DPAOs. Furthermore, metagenomic studies performed on Accumulibacter-PAO enriched cultures revealed that their genome did not encode for the nitrate reductase, suggesting the incapacity to convert nitrate to nitrite and only being able to use from nitrite onward (Martin et al, 2006). However, Carvalho et al. (2007), suggested that there was a greater diversity of metabolic capacities within Accumulibacter than expected initially by obtaining two different Accumulibacter morphologies with different affinities for nitrate. Flowers and He et al. (2008) then designed two Fluorescence in situ Hybridization (FISH) probes that were able to distinguish between clade IA (Acc-I-444) and clade IIA, IIC and IID (Acc-II-444) within Accumulibacter.

A reactor was set up using inoculum sludge from a parent EBPR lab-scale reactor working in anaerobic/aerobic conditions with propionate as the carbon source. The reactor was progressively adapted to anaerobic-anoxic-aerobic conditions during 150 days. This acclimatization process consisted in a gradual increase of the anoxic period from 0 to 4 h and a decrease in the aerobic period from 4 to 1h, as well as an increase of the nitrate concentration given in one pulse at the beginning of the anoxic phase from 0 to 50 mg N/L. This acclimatization was monitored not only through chemical analyses (PO43-, NO2-, NO3-, glycogen, propionate and polyhydroxyalkanoates (PHA)) but also through microbial characterization using the Fluorescence in situ Hybridization (FISH) technique.

This enrichment process was performed on Accumulibacter-PAO enriched cultures revealed that their genome did not encode for the nitrate reductase, suggesting the incapacity to convert nitrate to nitrite and only being able to use from nitrite onward (Martin et al, 2006). However, Carvalho et al. (2007), suggested that there was a greater diversity of metabolic capacities within Accumulibacter than expected initially by obtaining two different Accumulibacter morphologies with different affinities for nitrate. Flowe...
Environmental impact on *Rhizobium* sp. cells

Radha Bhattacharya
Department of Biophysics,Saha Institute of Nuclear Physics,1/AF Bidhannagar,Kolkata 700064, India

The soil bacteria Rhizobia are the most promising and agriculturally important group for accomplishing biological nitrogen fixation leading to the formation of symbiotic nitrogen fixing nodules.[1] They can convert atmospheric nitrogen into ammonium compounds which can be readily absorbed by the plants system. Rhizobia provides the major biologic source of fixed nitrogen in agricultural soils.
Crop producers often add chemical fertilizers in the soil to enhance growth and vigour of crop of choice. Indiscriminate use of fertilizers and non point source run off lead to accumulation of nitrate, phosphates and potassium in the soil which may be harmful to the soil inhabitants. Pesticides are predominantly used in agriculture for control of insects, weeds and other pests. As pesticides are not species specific their biological activity gets extended to wide variety of non target organisms including man itself. Endosulfan, an organo-chlorine class of pesticides, is used widely in the Indian sub continent which is acutely toxic to the various organisms.[2] Dithane M-45 a fungicide is used to control pests in mung bean plants. Since *Rhizobium* sp. has immense importance in agriculture, any adverse effects induced by environmental factors seem to be a matter of interest.

Microbiological studies revealed that various nitrogenous and phosphate based fertilizers and commonly used pesticides have detrimental effects on the growth and culture of *Rhizobium* sp. cells. Electron microscopic studies depicted significant structural alteration at cellular level. [Fig a,b]

Our investigations clearly indicate that both fertilizers and pesticides at the doses used in agricultural practices have considerable adverse effects on *Rhizobium* sp. cells. Endosulfan is reported to induce different cellular toxicity to different organisms including man. For the first time we have reported that in bacteria also, endosulfan has predominant effect.

Fig. a: Control, b: Endosulfan treated.

References

Environmental Significance of Microbial Fuel Cells in the Sediments of the Persian Gulf

Ranginkaman1, P. Eghtesadi-Araghi1, A. Mehdinia1, and S. Farzadnia1
1 Marine Living Sciences Department, Iranian National Center for Oceanography, Fatemi Ave, Elemaxzadeh St., Tehran, Iran

Benthic Microbial fuel cells (BMFCs) could provide means for the bioremediation of organic-rich sediment via anaerobic oxidation in conjunction with current production as a power source. Certain microorganisms known as Geobacters can transform organic matters commonly found at the bottom of the ocean into electrical energy. In fact, thin microbial film of particular bacteria in the vicinity of the anode – embedded in sediment as electron acceptor- is able to oxidize organic matters under anaerobic conditions and release electron.

The Persian Gulf has suffered from several environmental dilemmas in recent years including the largest oil spill ever recorded that have contributed to the pollution burdens in the region. As a result of the 1991 Iraq war, the marine environment in the Persian Gulf was subjected to an estimated six to ten million barrels of crude oil making it the largest oil spill ever recorded. Additionally over half of the world oil supply is transported from this region and offshore oil exploitation in the Persian Gulf is considered the most extensive in the world; therefore it is evident that the hydrocarbon-degrading microbial fauna in this region possess noticable diversity which makes a suitable environment for the MFCs to operate in organic-rich sediment and a diverse microbial community.

In this research we harvested electrical energy of organic-rich sediment degradation in the Persian Gulf (Kish Island & Bandar-Abbas). Sediment total organic carbon (TOC) and total organic matter (TOM) as well as current (I) and voltage (V) of the cells were monitored for sixteen months on Graphite electrodes.

The results show that the obtained voltage is within 0.115-0.713 V and the sediment TOC and TOM decrease by 46 percent after the first year.

Keywords: Persian Gulf, Total organic carbon, Total organic matter, Bioremediation, Hydrocarbon degrading microbes
Estimation of freshwater cyanobacteria primary production with DCMU-fluorescence method

V. I. Kolmakov1, Gaevsky N.A.1, O. V. Anishchenko2, and E. A. Ivanova1
1 Siberian Federal University, Svobodny av.79, Krasnoyarsk 660041, Russia
2 Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russia

Estimation of cyanobacterial primary production (PP) is important for studying energy flow in aquatic ecosystems. Moreover, planktonic cyanobacteria can cause toxic blooms harmful for human and animal health. There have been relatively few studies of cyanobacterial PP. We suggested to use an original DCMU (3,3,4-dichlorophenyl)-1,1-dimethyliurea) fluorescence method for estimation of planktonic cyanobacteria primary production. A special fluorometer equipped with a system of replaceable filters is used to differentiate three regions of the spectrum (410±20, 510±20 and 540±10 nm) that can excite the basic light-harvesting pigments. For the estimation of PP (gO2/(m3·h)) a formula was proposed: PP=0.006·(∆F/Fm) ·Chl a ·√I, where ∆F/Fm – potential photosynthetic activity, Chl a – concentration of chlorophyll a (mg/m3), I – average intensity of photosynthetically active radiation (W/m²).

During the experiment in Siberian reservoirs the dominant species were *Microcystis sp.*, *Anabaena flos-aquae* (Lyng.) Breb., *Aphanizomenon flos-aquae* (L.) Ralfs. Positive significant correlation between the results of DCMU-fluorescence method and in situ bottle experiment was found. The obtained PP values for had a high significant correlation with values predicted by a conventional empirical model for planktonic cyanobacteria. We concluded that the DCMU-fluorescence method can be successfully used for measuring primary production of freshwater cyanobacteria at least as another useful tool for such studies.

Keywords Periphytic cyanobacteria, chlorophyll fluorescence, primary production

Extraction of nucleic acids from trichloroethylene (TCE) degrading bacteria in extremely clayey groundwater sediments

J. Bælum1, C. Schuetz2, M. Broholm2 and C. S. Jacobsen1,3
1The Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1359 Copenhagen, Denmark.
2The Technical University of Denmark, Anker Engelunds Vej 1, 2800 Lyngby, Denmark
3University of Copenhagen – LIFE Sciences, Bulowsvej 17, 1870 Frederiksberg, Denmark

Extraction of nucleic acids from clayey environmental samples has proven to be extremely problematic. Phosphor bindings between the nucleic acid and clay minerals such as kaolinite cause the nucleic acid to be bound tight to the sediment particles and thereby prevent extraction. For the present project our aim was to extract DNA and mRNA from a microbial community that is degrading TCE in clay rich groundwater sediment. Especially we were interested in extraction of mRNA of the functional gene *vcrA*. The *vcrA* gene encodes a vinylchloride reductase that performs the final step in the degradation pathway of TCE. Therefore, the presence of *vcrA* mRNA can be used as an ideal biomarker for ongoing complete dechlorination processes being carried out.

In order to investigate the specific sorption effects between nucleic acids and our sediment, we performed a standard sorption experiment with 3H-labelled DNA. Compared to other sediments with less clay and more organic matter, we observed a very pronounced sorption in our clayey sediment. Therefore we tested numerous reagents in order to reduce the effects of sorption, and found the G1 reagent to reduce sorption most.

To test the G1 reagents influence on DNA and mRNA extraction we set up a microcosm experiment with 100 g sediment, 200 ml water and 107 cells of the commercial dechlorinating culture KB-1 ml-1. The addition of vinylchloride ensured a proper expression of the *vcrA* gene and samples were taken from the microcosms at appropriate timepoints. The addition of G1 reagent to the sediment prior to DNA and mRNA extraction gave significantly larger yields. The Mobio UltraClean soil kit was used for DNA and a modified protocol of the mRNA extraction method described by Nicolaisen et al., (2008) was used for mRNA extraction.

Keywords DNA/mRNA extraction, DNA/mRNA sorption to clay, TCE dechlorination, KB-1 culture, *vcrA* genes

References
Factors affecting the Internal Gelation System as immobilization method for the isolation and cultivation of anaerobic microorganisms

R. Aragão1,2; M.T. Alvarez1 and B. Mattiasson1
1Department of Biotechnology, Lund University, Sweden
2Centro de Biotecnologia, Universidad Mayor de San Simón, Bolivia

It has been estimated that 99.9% of all microorganisms are still unculturable. Therefore, the development of new tools for addressing this drawback is necessary. Anaerobic microorganisms show high potential for biotechnological applications, however, they constitute one of the most uncultured groups among the microbial diversity.

The aim of the present work was to determine the most significant factors that can influence the Internal Gelation System (IGS) as immobilization method for anaerobic microorganisms isolation and cultivation.

Microbial consortia able to degrade cellulose material were cultured according to Hungate anaerobic method. Well-grown microorganisms were encapsulated under anaerobic conditions in alginate beads in accordance with the IGS using two different oils, beakers with and without baffles and rotation impeller speed at 100 and 1000 r.p.m for beads formation. The formed alginate beads were measured as well as determined the shape (regular or irregular) and analysing the results by means of ANOVA.

ANOVA analysis showed that oil types used combined with the rotation impeller speed are the most significant factors for formation of regular shape beads. The presence of baffles do not affect on the shape. To obtain beads in a range between 20-80 µm, the conditions for immobilization also depend on the oil type in combination with the rotation impeller speed. The presence of baffles showed significance on the size of beads when analysed alone.

The best conditions for immobilization of anaerobic microorganisms depend on the oil type used and the rotation impeller. The presence of baffles can favour the formation of smaller beads, when it is required. One to three bacterial cells was microscopically determined inside the beads. These beads might be grown in specific media to increase biomass. Using this IGS, it would be possible to isolate new organisms, earlier not possible to cultivate in the lab with traditional techniques.

Keywords immobilization, alginate beads, Internal Gelation System, anaerobic culture

First data on the growth of marine biofilms dominated by Ostreopsis spp. (Dinophyceae) in microcosm experiments

R. Congesti1, M. Contini1, F. Di Pippo1, N.T.W. Ellwood2 and P. Albertano1
1IHA-Laboratory for Biology of Algae, Department of Biology, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy;
2Department of Geological Sciences, University of Rome “Roma Tre”, Largo San Leonardo Murialdo 1, 00146 Rome, Italy

The requirement of intervention for Harmful Benthic Algal Blooms (HBABs, Congesti et al. 2006) by public officers and scientists has increased alarmingly in Italian coastal areas since 1998 when blooms of the toxic dinoflagellate Ostreopsis spp. were first recorded in Tuscany (Middle Tyrrhenian Sea). More recently HBAB impacts on the marine ecosystem such as hypoxia, anoxia and invertebrate mortalities and human health with hundreds of hospitalisations from skin irritations, fever, respiratory affections and conjunctivitis have been serious in Italy. These incidents have been explained by the presence of a palytoxin analog, ovtotoxin, produced by O. ovata in both water and aerosols. After Italian reports of Ostreopsis blooms there was increased interest in the whole Mediterranean basin and some reports exist from Brazil and New Zealand this year. Blooms of Ostreopsis spp. do not seem to follow known trends of other planktonic blooms, and thus leave many open questions as to their outbreaks, and their dynamics, and complicate management strategies in the short- and long-term.

In the framework of a national research program (Ostreopsis ovata and Ostreopsis spp.; new risks of microalgal toxicity along the Italian coastline – Italian Ministry of Environment) to improve the knowledge of Ostreopsis HBABs, a laboratory microcosm approach was used to grow microphytobenthic communities, sampled during bloom incidents, under controlled conditions. HBABs occur in nature as thick mucilaginous biofilms covering both biotic and abiotic substrates during the summer months along the middle Tyrrhenian Sea coast. Within the biofilm, Ostreopsis spp. are associated with other toxic dinoflagellates Amphidinium carterae, Coolia monotis and Procentrum lima, along with a variety of benthic diatoms, mostly pennates, and filamentous cyanobacteria. All the cells of the biofilm are embedded in a common mucilage matrix (EPS, exopolymERIC substances). Dispersal of cells occurs during blooms when mucilage floes and cells can detach from substrates and are carried with currents.

The inocula for the incubator experiments were taken from two sites in the Lazio region in July and August 2009 (Porto Romano, Formia and Sperlonga, Latina). At these sites the biofilms started to form on bryozoans and macroalgae, attached to hard substrata, at around 20-30 cm depth. Bryozoans and macroalgae were collected, and the cells were washed off and collected, this was then filtered in order to prepare cell suspensions to inoculate the flow incubator. Cell aggregations on the polycarbonate slides formed within 10 days under the culture conditions tested (25°C, 110 µmol photons m⁻² s⁻¹ and 50 L h⁻¹ flow velocity of K/2 medium). The distribution of cells was patchy with filamentous forms of cyanobacteria and colonial diatoms in mucilaginous tubes visibly streaming in the flow direction. Growth curves indicated that biofilms reached a mature stage in 40 to 60 days. Qualitative and quantitative analyses were performed on biofilm samples collected at three stages of development (these stages were defined by percent light absorption by the biofilm: initial, 10%; active, 50%; mature, 90%). In one experiment detachment of biofilm from slides was observed around day 37 of the incubation period EPS analyses may enable the interpretation of this event as a function mucilage composition change. Confocal microscopy of biofilm integrity is used to identify the initial processes of cell adhesion to substrata. Preliminary light and epifluorescence microscopy showed shifts in biofilm composition and prevalence of cyanobacteria in the late growth stages, although concentrations of chlorophyll a, b and c indicated a stable contribution of diatoms to the phototrophic biomass over the experiments. Cell countings will further contribute to understand biofilm development and species succession under simplified, stable environmental conditions.

Keywords Ostreopsis spp., biofilms, microcosm

Formation of macro- and micro-sized copper sulfide particles by pure cultures of metal-resistant sulfate-reducing bacteria

O. P. Butorová1, A. L. Gerasimchuk1, L. N. Erenko1, A. V. Koalova2, O. V. Zahudchenko2, I. P. Mishin1, A. A. Miller2, O. V. Karnachuk1

1Department of Plant Physiology and Biotechnology, Tomsk State University, Lenina Av. 36, 634050, Tomsk, Russia
2Center of Material Science, Tomsk State University, Lenina Av. 36, 634050, Tomsk, Russia

Freeze-thaw pre-lysis may not improve microbial DNA extraction from sponges

Ana C. C. Pires1, Ana L. Santos1, Leontine E. Becking2, Nicole J. Vogel2, Adelaide Almeida1, Ângela Cunha1, Ricardo Calado3, Daniel F. R. Cleary1*, Newton C. M. Gomes1

1CESAM and Department of Biology, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
2National Museum of Natural History, 'Naturalis', P.O. Box 9517, 2300 RA Leiden, the Netherlands.
3FGUP NPO "Virion", Ivanovskogo St., 8, Tomsk, Russia

Sponges (Porifera) are of the oldest metazoans. Virtually all sponges are sessile filter feeders. Many sponge species have developed complex defence mechanisms to protect them from predators and to compete with other species for bottom substrate. Many of the substances employed by sponges for defence or competition are produced by microbial endosymbionts. For example, several sponge microbial symbionts are able to produce efficient antiviral, antimicrobial and cytotoxic compounds of fundamental importance for the maintenance of sponge health. Microbial symbionts are also involved in crucial physiological processes such as metabolic waste processing. Recently several studies have applied molecular tools (culture-independent techniques) for a more in depth characterization of sponge microbial diversity. However, these techniques are highly dependent on the efficiency of the microbial DNA extraction method. Total microbial community DNA associated with sponges has been traditionally extracted using liquid nitrogen in order to pulverize the strong calcareous/siliceous sponge skeletal structure. However, whether or not the liquid nitrogen treatment affects the sponge associated microbes has not yet been addressed.

The aim of this study was to compare the microbial community diversity associated with the sponge species Cinachyrella sp. and Placospongia sp. after genomic DNA extraction with and without liquid nitrogen. The liquid nitrogen pulverization step was followed by microbial DNA extraction with the UltraClean Soil DNA Isolation Kit (MO BIO Laboratories, Inc), using a protocol modified to include a physical disruption step with the FastPrep bead beating system. After PCR amplification of the V6-V8 region of the 16S rRNA gene, bacterial structural diversity was assessed by Denaturing Gradient Gel Electrophoresis (DGGE).

Analysis of DGGE band profiles revealed differences in the bacterial community structure detected with and without liquid nitrogen. The liquid nitrogen pulverization step was followed by microbial DNA extraction with the UltraClean Soil DNA Isolation Kit (MO BIO Laboratories, Inc), using a protocol modified to include a physical disruption step with the FastPrep bead beating system. After PCR amplification of the V6-V8 region of the 16S rRNA gene, bacterial structural diversity was assessed by Denaturing Gradient Gel Electrophoresis (DGGE).
From pure cultures to bacterial communities: Interaction of Microarrays and Next Generation Sequencing (NGS)

Christine Klockow1,2, Anna Kindlworth1,2, Basak Öztürk1,2, Patricia Wecker1,2, Andreas Elliott1, Frank Oliver Glückner1,2 & MIMAS consortium

1 Max Planck Institute for Marine Microbiology, Microbial Genomics Group, Celsiusstr. 1, 28359 Bremen, Germany
2 Jacobs University Bremen, School of Engineering and Sciences, Campusring 1, 28759 Bremen, Germany

Metatranscriptomics offer the opportunity to explore the gene expression of bacterial communities in their natural environment. So far the majority of marine microorganisms are only poorly understood, although they represent more than 90% of the world’s prokaryotes. They play a vital role in the global carbon and nitrogen cycles and are expected to be a treasure trove for new genes interesting for biotechnology and medical applications. For Metatranscriptomics Next Generation Sequencing (NGS) techniques are the tool of choice. Especially long read machines like the Roche 454 Titanium pyrosequencer allow digging into the expressed genetic repertoire of a so far unknown sequence space. This is a clear advantage over classical microarrays approaches.

But the information gained will only be informative if the function of a sufficient number of the detected genes is known. In order to enrich this knowledge, gene expression profiling of pure cultures growing under defined conditions are essential.

In this contribution, the results of two approaches, both parts of the Microbial Interactions in Marine Systems (MIMAS) project, will be presented:

1. gene expression profiling of the marine planctomycete Rhodopirellula hutchinsoni SH1 with a whole genome microarray. Already in 2003 the complete genome sequencing of R. hutchinsoni SH1 revealed many fascinating and rare features like a high number of sulphatases, genes for a C1 metabolism and a global mechanism of gene regulation.

2. the analysis of the Metatranscriptome of marine prokaryotic communities in the North Sea using long read Next Generation Sequencing approaches.

The overall aim of the MIMAS project is to explore the seasonal changes of the microbial communities at long term ecological research sites in the North Sea (Helgoland Roads) and the Baltic Sea (Gotland Deep). An integrated, state of the art, approach will be applied using the full spectrum of currently available molecular tools: rRNA sequencing and single cell in situ hybridization to unravel the diversity and abundance of organisms, Metagenomics to address the genetic potential, as well as Metatranscriptomics and Metaproteomics to explore the active set of genes with respect to seasonal changes.

References

Functional profile of fungi affecting cultural heritage in archives and libraries

V. Cialei1, M.C. Selocchi1, and F. Pintar2

1 ICRPAL Istituto Centrale per il Restauro e la Conservazione del Patrimonio Archivistico e Librario, Laboratorio di Biologia, Ministero per i Beni e le Attività Culturali, Via Milano, 76, 00184 Rome, Italy;
2 PhD School in Ecological Sciences, Univ. of Rome “La Sapienza”, Dept. of Plant Biology

Filamentous fungi colonize different organic and inorganic materials and play an important role in biodeterioration processes. They can tolerate desiccation, high salt concentrations and heavy metal compounds that are present in inks and pigments and are thus frequent inhabitants on paper supported objects. The fungal and bacterial communities that can develop on a book are similar to the communities of decomposers that, in natural environments, transform nutrients bound in dead organic matter into low molecular or inorganic forms, making them available to plants. The development and maintenance of a fungal community on a shelf of a library or in a single book depends on the spores that reaches the material’s surface, on the microenvironment (temperature, relative humidity, light), on the water activity of the substrate, on the casual events that helps colonization of materials (insect dispersion, human contamination, external sources of fungal diversity). A library or a single book can be compared to a virgin land that can be reached by some colonizing organisms that behave like pioneer species on a nude soil. For Wardle (2002) and Mikola et al. (2002) species identity and composition of decomposers have far larger impact on ecosystem processes than species richness per se. When considering paper stored in a closed environment, its colonization and biodegradation depends from species identity and composition since only cellulolytic organisms can exploit the bulk of the substrate.

Like in natural environments the diversity-functioning relationship is driven by the presence or absence of key species, niche differentiation and species interaction. Resource partitioning or facilitative (or negative) interactions between species affect the substrate exploitation process in natural environments as well as in artificial ones. The study of the mechanisms underlying the microbiological attack of historical materials has been widely practiced and still represents one of the main focuses of those institutions and laboratories that are involved in cultural heritage conservation. Many studies on the role of micro-organisms in the defacement of cultural heritage utilise standardised laboratory models to establish, under controlled conditions, which species of fungi or bacteria colonise a given substrate, and therefore do not raise the problem of working with objects of art that cannot be cut, sampled, or subjected to invasive analysis.

Although knowledge of the functional diversity and the metabolic characteristics of moulds is important in both the prevention and treatment of biodeterioration of cultural heritage, very few in-depth studies have been carried out on the subject until now.

In this study Biolog FF microplates were used to obtain the metabolic fingerprint of filamentous fungi responsible for biodegradation in library materials. As part of a survey made in an historical library in Rome, several samples of moulds were collected from volumes showing evidence of attack by fungi. Fungal strains were also isolated from the air using an impactor sampler (SAS), and from the walls, where colonies were clearly visible.

The fungal strains were purified of bacterial contaminants, separated and identified. Biolog FF microplates were then inoculated with each strain according to Biolog’s Manual protocol. The plates were read using a Biolog Microplate spectrophotometer at 490 and 750 nm. Raw data (optical densities) were transferred to an Excel (Microsoft®) sheet according to sample (fungal strain), replicate (3 replicates each), and reading time (10 reading points, one every 24 hours), although for each strain only the values at the relevant plateau of the colour development curve were chosen for statistical analysis. Following a background correction, average values for six categories of substrates were calculated (polymers, carbohydrates, carboxylic acids, amines and amides, amino acids, miscellaneous). Discriminant Analysis was employed to investigate the differences in the metabolic fingerprint among fungi according to two classifying categories: the sampled material (leather, fabric, air, plastic), and the sampled area of the library (upstairs, first floor, ancient books section). When using polymers, carbohydrates, and carboxylic acids as variables in the analysis the fungal strains, a significant classification clustering was obtained. A statistically significant separation of fungal strains was also obtained for the sampled areas, indicating that different zones of the conservation environment under examination were colonised by fungal communities with a different functional profile. Further studies are being focused on the analysis of fungal metabolic characteristics which directly relate to important processes that take place in cultural heritage biodeterioration, and to the identification of a set of substrates that can better indicate the potential of fungal strains to decompose specific materials.

Keywords fungal communities, metabolic profiling, cultural heritage, indoor environment
Fungi – bacteria interactions in the oxalate carbonate pathway: an approach using microcosms

G. Martin1,2, M. Guggiari1,2, N. Khammass3, M. Aragno1, D. Job1, G. Calleau2, E.P. Verrecchia2

1LABORATORY OF MICROBIOLOGY, Institute of Biology, University of Neuchâtel, 2009 Neuchâtel, Switzerland
2BIOGEOSCIENCES LABORATORY, Institute of Geology and Paleontology, University of Lausanne, Anthropole, 1015 Lausanne, Switzerland
3LABORATORY OF MICROBIAL ECOLOGY, UMR 5557, University Claude Bernard Lyon I, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex

Calcium salt of oxalic acid is an important metabolic product of plant and fungi in natural environments. Its decay allows calcium carbonate to precipitate in normally carbonate-free tropical acidic soils. This results from calcium oxalate oxidation by oxalotrophic bacteria, which increases pH while releasing HCO3− and Ca2+. This phenomenon could have a global importance for the transfer of atmospheric carbon dioxide to calcium carbonate, acting as a stable carbon sink.

Previous studies have clearly demonstrated the importance of bacteria in this pathway and it is also well known that fungi play a role as producers of oxalate. More recently it has been revealed that fungi are also able to decay calcium oxalate, but almost nothing is known about their importance in oxalate turnover. Therefore, the aim of this study provides insight into bacteria – fungi interaction in the oxalate-carbonate pathway.

To study the impact of this interaction on calcium oxalate transformation to calcium carbonate, a microcosm experiment was set up. Sterilized, acidic, carbonate-free and straw amended soil with or without addition of calcium oxalate was inoculated. Using microcosms, the degradation of calcium oxalate and the bacterial and fungal diversity and activity were monitored for three months, destroying one microcosm at each sampling time.

Key-words: bacteria; fungi; interactions; microcosms; oxalate; carbonate; carbon cycle; q-PCR; soil ecology

Although a part of the bacterial strains chosen for the inoculums are able to consume calcium oxalate both on solid or liquid media, it appears that in the microcosms the presence of fungi is essential to allow bacteria to degrade calcium oxalate and shift the pH (Fig. 1).

Besides, the role of bacteria was confirmed by a strong correlation between pH shift and oxalate degradation. Furthermore the evolution of the frc gene abundance also highlights the importance of bacterial metabolism in the oxalate degradation. This metabolism seems to be unable to take place in a sterile oxalate amended soil without the presence of fungi. This point drives many questions about the mechanism that make this interaction so important. Further study is necessary to verify if these types of interactions can be observed in a natural soil in order to discover the kinds of interactions taking place in our system.

Key words: bacteria; fungi; interactions; microcosms; oxalate; carbonate; carbon cycle; q-PCR; soil ecology
Gene expression during long term survival of *Escherichia coli* O157:H7 in soil and water

A.D. Duff1,2, and C.P. Chaure2
1 EARTH AND ENVIRONMENTAL SCIENCES, Taylor University, Upland, Indiana 46999 USA
2 DEPARTMENT OF NATURAL, INFORMATION, AND MATHEMATICAL SCIENCES, Indiana University Kokomo, Kokomo, Indiana 46904-9003 USA

The in vitro survival and growth of *Escherichia coli* O157:H7 under two experimental conditions (sterile soil and sterile natural water at 15°C) were examined over a period of several months. DNA microarrays of the entire set of *E. coli* O157:H7 genes were used to measure the genomic expression patterns of cells incubated under these conditions for 14 days. Although the population decreased by approximately 3.57 log, some *E. coli* O157:H7 cells survived in sterile stream water up to 234 days. Cells also survived in sterile soil for at least up to 179 days. Furthermore, it was found that 26 genes were more significantly expressed in cells grown in Luria broth at 15°C for 48 hours, whereas 12 genes were more significantly expressed in cells incubated in sterile stream water for 14 days at 15°C. The comparison of cells incubated in soil versus cells grown in Luria broth yielded more differences: 89 genes were expressed at significantly higher levels in Luria broth while 308 genes were expressed at significantly higher levels in cells incubated in sterile soil for 14 days at 15°C. An analysis of functional groups revealed that cells incubated in soil microcosms expressed genes for antibiotic resistance, biosynthesis, DNA replication and modification, metabolism, phages, transposons, plasmids, pathogenesis and virulence, ribosomal proteins, the stress response, transcription, translation, and transport and binding proteins at significantly higher levels than cells grown in Luria broth. These soil-incubated cells had a high level of expression for 18 genes that confer protection from environmental stresses as compared to cells grown in Luria broth. In addition, the soil-incubated cells had a high level of expression for three genes for antibiotic resistance and seven genes for pathogenesis and virulence. These results suggest that *E. coli* O157:H7 may develop a different phenotype during transport through the environment. Furthermore, this pathogen may become more resistant to antibiotics making subsequent infection with *E. coli* O157:H7 more difficult to treat.

Keywords microarrays; survival; *Escherichia coli* O157:H7

Haloalkaliphiles bacteria isolated from a saline soda environment from central Mexico.

N. Ramírez Durán1, A. Salgado Parra1, H. V. Silva Rojas1, H. Sandoval Trujillo1
1 Facultad de Medicina Universidad Autónoma del Estado de México. Paseo Tlalixtac y Jesús Carranza s/n Colonia Moderna de la Cruz, Toluca, México. C. P. 50180
2 Departamento de Genética, Colegio de Posgraduados. Km 33.5 Carretera México-Texcoco, Montecillo México C.P. 56230.
3 Departamento de Sistemas Biológicos Universidad Autónoma Metropolitana-Xochimilco. Calzada del Hueco 1100, Colonia Villa Quemada, Coyoacán México D.F. C. P. 04960

Soda lakes and soda deserts are the most stable naturally occurring alkaline environments on Earth, where pH values of 10 and above are common. These environments are characterized by large amounts of sodium carbonate, or complexes of this salt, formed by evaporative concentration. Other salts, especially sodium chloride, lead to the formation of alkaline saline lakes which range from 5% w/v to 35% w/v (saturation) salts and have pH values from 8.5 to 11.5. The soda lake microbial community contains alkaliphilic and halophilic which are bacteria representatives of all the major trophic groups of extremophiles bacteria. Alkaliphiles consist of two main physiological groups of microorganisms; alkaliphiles and haloalkaliphiles. Alkaliphiles require a pH of 9 or more for their growth and have an optimal growth pH around 10; whereas haloalkaliphiles require both an alkaline pH (pH 9) and high salinity (up to 33% [wt/vol] NaCl). Haloalkaliphiles have been mainly found in extremely alkaline saline environments, such as the Rift Valley lakes of East Africa and the western soda lakes of the United States. Mexico is very rich in these types of extreme environments, and besides some reports on the haloalkaliphile Tecco Lake, little is known about the bacterial diversity found in the rest of the country. Currently a project is being carry out to found in Mexico environments where these bacteria grow. Specifically this work is focus in the studies carried out in San Luis Potosi.

The objective of this work was to assess the diversity of cultivable haloalkaliphile bacteria present in the saline soda environments of San Luis Potosi, Mexico. A polyphasic approach was chosen to characterize the isolates; morphological, physiological (salinity and pH tolerance), and nutritional (use of 40 C sources) features were used, in combination with 16S rRNA sequence analysis.

Samples were collected from a saturated hypersaline alkaline soil in San Luis Potosi México, located at 22°37′39″N 101°42′52″O; this environment has high salt concentration (23% NaCl) and pH 10.

Seventeen strains were isolated in a modified HM medium. To identify the isolated strains, sequence of 16S rRNA genes was determined and compared with sequences in the Gen Bank database using the Blast and EzTaxon programs.

Phylogenetic trees were built using sequences of 1500 base pairs including representative bacteria of halophilic species. The stability of each cluster was determined by bootstrap analysis of 1000 replicates.

We report the presence of the genera: *Gracillibacillus*, *Bacillus* and *Halomonas*. From the 17 isolates, seven strains were identified as *Gracillibacillus saliphilus* and tree as *Gracillibacillus orientalis*. Two strains were identified as *Bacillus mannanilyticus*, and four strains were identified as *Halomonas magadiensis*. They are able to grow from 5 to 15% NaCl, with an optimum at 10% NaCl. The range of pH for their growth is from 8-10, with the optimum at pH 9. The genera found in alkaline soil of San Luis Potosi, Mexico include halophilic and alkaliphilic species that have been found in different geographical locations in the Earth, however this is the first report regarding the presence of these genera in Mexico.

Keywords alkaliphiles; haloalkaliphiles; halophilic.
Hydrolytic biocatalysts isolated from intestinal microbiome in black soldier fly larvae, *Hermetia illucens*

Chang-Muk Lee1, Bit Narae Yoon1, Soo-Jin Kim1, Ji-Young Choi1, Dong Gwan Kim1,5, Yun-Soo Yeo1, Bon-Sung Koo1, Sang-Hong Yoon1
1Department of Agricultural Bio-resources, National Agrobiodiversity Center, 2National Agro-Science Research Institute of Rural Development Administration, 3ITB-CNR, Institute of Biomedical Technologies - National Research Council, 4Institute of Food Science and Technology, 5Research Center for Drugs, Konkuk University, Seoul 143-701, Korea

Black soldier fly, *Hermetia illucens* L., is a common colonizer of animal wastes. In its life cycle, larvae are voracious feeders of organic material, and may thus be used in simple engineering systems to convert large amounts of organic waste into protein-rich biomass. In an effort to identify contributing biocatalysts at the prepupal stage, we have constructed a metagenomic fosmid library of an average insert size of ~30kb using the larval intestinal microbiome. To detect hydrolytic enzymes encoded by uncultured intestinal microorganisms that help *H. illucens* for processing daily food wastes, individual 92,544 metagenomic clones were subjected to substrate hydrolysis analysis. Initial screening of the libraries revealed 18 clones that use carboxymethyl cellulose as a sole carbon source. Additional screenings characterized four clones capable of starch degradation. Short-gun sequencing of the fosmid clones demonstrated putative cellulase and hydroxylase acting on cellulose or starch substrate. These results indicate that *H. illucens* hydrolyse manure nutrients in association with uncultured intestinal bacteria, enabling the fly to colonize successfully on a variety of animal wastes.

Keywords Hermetia illucens; Metagenome; Hydrolysis; Biocatalyst

Identification of hepatotoxic cyanobacteria in the environment

A. Rantala-Ylen1, H. Sipari1, D. P. Fewer1, E. Rizzi, and K. Sivonen1
1Department of Applied Chemistry and Microbiology, Vilikki Biocenter 1, P.O. Box 56, 00014 Helsinki University, Finland
2ITB-CNR, Institute of Biomedical Technologies - National Research Council, Via Fratelli Cervi 93, 20090 Segrate (Milan), Italy

Cyanobacterial mass occurrences (blooms) occur frequently worldwide and contain often hepatotoxic species, posing a risk for water users. The most common cyanobacterial hepatotoxins are microcystins and nodularins. They are cyclic peptides with seven and five amino acids, respectively, constructed by large peptide synthetase polyketide synthase enzyme complexes. Microcystins are produced mainly by strains of the genera *Anabaena*, *Microcystis*, and *Planktothrix* in fresh waters, while nodularins are solely produced by strains of *Nodularia* in brackish waters. Blooms can be comprised of several species, which may include potential hepatotoxin producers. However, toxic strains look alike non-toxic strains, and cannot be recognized by conventional microscopy. This makes it difficult to assess the risk for the water users. The presence of microcystin (mcy) or nodularin synthetase (nda) gene clusters encoding the biosynthetic enzymes is a prerequisite for toxin production and offers a practical way for differentiation and identification of hepatotoxin producers. Our aim was to develop methods based on the mcyE/ndaF genes to detect and identify hepatotoxin-producing cyanobacteria in environmental samples. The mcyE/ndaF genes encode enzymes involved in the synthesis of Adda and D-Glu, the constituent amino acids crucial for the toxicity of microcystin and nodularin molecules. In addition, the mcyE/ndaF genes are present in the biosynthetic gene clusters of different producer genera and thus allow detection of both microcystin and nodularin producers. Using conventional PCR and genus-specific primers we discovered that the majority of 70 Finnish lakes studied contained potentially microcystin-producing cyanobacteria, *Microcystis* being the most prevalent. In addition, the co-occurrence of potentially microcystin-producing *Anabaena*, *Microcystis*, and *Planktothrix* was common, especially in the more eutrophicated lakes. In a two-year survey of Lake Tuusulanjärvi, quantitative changes in the population of microcystin producers were followed by quantitative real-time PCR (qPCR) assays, detecting the mcyE genes of *Microcystis* and *Anabaena*. In both years, *Microcystis* was detected almost through-out the year, while *Anabaena* became more common in late summer and fall. A DGGE analysis of a general mcyE/ndaF-PCR product revealed for the first time the widespread occurrence of microcystin-producing *Anabaena* in the Baltic Sea, where nodularin-producing *Nodularia* had previously been regarded as the sole hepatotoxin producer. As opposed to PCR methods, a DNA-chip using genus-specific probes for the mcyE/ndaF genes of *Anabaena*, *Microcystis*, *Planktothrix*, *Nostoc*, and *Nodularia* was designed to reveal all potential microcystin/nodularin producers simultaneously in a single analysis. In addition to specific and sensitive detection obtained with axenic cyanobacterial strains, the mcyE/ndaF genes were reliably identified in both lake and Baltic Sea samples. This makes the chip-assay suitable for high-throughput analysis and monitoring of environmental samples. The chip assay and qPCR methods were further optimized to be used with environmental RNA as target. Detection of mcyE-mRNA implies active transcription of the biosynthetic gene and thus serves as a more reliable indication of actual microcystin production in the lake water samples.

Keywords cyanobacteria; hepatotoxin; microcystin/nodularin synthetase genes; molecular detection methods
Identification of morphological, biochemical and molecular markers for discriminating among Botryococcus braunii strains belonging to A and B chemical races

A. Bica1, A. Mocan2, L. Barbuc-Tudoran3, E. Muntean4, B. Druga1, C. Coman1,3, V. Bercea1, M. Salagean2, A. Nicoara1 and N. Dragos1,3

1 Institute of Biological Research, Cluj-Napoca, Romania
2 Institute of Public Health “Prof. dr. Iuliu Moldovan”, Cluj-Napoca, Romania
3 Babes-Bolyai University, Cluj-Napoca, Romania
4 University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania

Botryococcus braunii Kützing is a colonial green microalga, ubiquitous in fresh and salt waters from temperate and tropical regions. B. braunii is unique among the algae due to its ability to synthesize large quantities of hydrocarbons (up to 75% from dry biomass) very similar to the fossil oil. Chemical derivatives of hydrocarbon (botryococcenes) from fossil records of the B. braunii is unique among the algae due to its ability to synthesize large quantities of hydrocarbons. Chemical derivatives of hydrocarbon (botryococcenes) and fossil records of the B. braunii are producers of triterpenoids called botryococcenes and squalene (C30-C37) of general formula CnH2n-10; and the L race which synthesis a tetraterpenoid called lycopadiene. Among the three, the B race seems to be the most promising as a source of liquid fuel because the content of hydrocarbons is generally higher than in other races, but the slow rate of growth (doubling time of 7 days) is the major inconvenience in this matter. Various attempts have been made to improve the growth process and to correlate it with hydrocarbon synthesis using different combinations of growth parameters. A successful time of approximately 3 days was the best obtainable in air-lift (1% CO2) and permanent stirring conditions, a much lower value with respect to other green algae (Chlorella spp., Scenedesmus spp.). Morphological, biochemical and physiological characterization of a higher number of strains, collected from all over the world could be a possible answer in this matter. Subsequently, this paper focused on: a) culturing of approximately 30 strains from A and B race collected from different areas of Transilvania region (Romania); these strains were included in the Algal and Cyanobacterial Culture Collection of the Institute of Biological Research (AICB), Cluj-Napoca, Romania; b) morphological characterization of both A and B races emphasizing their specific features; c) characterization of growth process of certain strains cultivated in a bioreactor with or without CO2 supplementation; d) biochemical description of strains, based on produced hydrocarbons and fatty acids; e) phylogenetic analysis based on RNA sequences; f) establishing a possible relationship between morphological, biochemical and molecular features in order to discriminate between the two races. Different methods and techniques were used: the isolation by micromanipulation of different strains and their cultivation in BG 11 medium; light and electron microscopy; (SEM) analysis; gas chromatography-mass spectrometry coupling (GC-MS) protocols for quantitative and qualitative characterization of hydrocarbons and fatty acids; isolation and amplification of rDNA fragments by PCR, using 5 specific primers; sequencing and phylogenetic analysis using various computational programs (seqmatch, blastn-NCBI, assembling (Vector NTI), alignment and phylogenetic trees construction (Mega 4.1). The specific morphological features and hydrocarbon pattern identified in this study sustain the B. braunii strains classification in the A and B races. Thus, morphologically, the strains belonging to the A race possess green colonies with a smaller number of cells, with only the basal part embedded in the colonial matrix. The cell apex is always exposed and in some cases (AICB 851 strain) a transparent “cap” could be observed. Numerous singular cells or small clusters of 2-6 cells have been observed in suspension. The hydrocarbons were present mostly as lipid bodies inside the cells. Compact colonies were observed in the strains belonging to the B race, with a greater number of cells (20-40). The green colour of the cells is masked by the presence of carotenoids and hydrocarbons in the colonial matrix. The cells were almost entirely embedded in the matrix, the cell apex being rarely exposed. Biochemical analyses have demonstrated the presence of C29 alkadiene in all 30 strains, whereas just half of them contained C31 alkadiene. Only 4 strains belonging to A race contained C27 alkadiene. Almost all investigated strains contained C29-alkatriene. The C29: C31 botryococcenes represented the bulk fraction of total hydrocarbons in the strains belonging to the B race, but traces of these were identified in some strains from A race, also. The total hydrocarbon content (% from dry biomass) ranges between 0.031 and 16.45%, for the A race and 8.5-36.45% for the B race, respectively. Differences in hydrocarbon content correlated with growth conditions have been noticed. The unsaturated fatty acids prevailed in acetone extracts derived from all strains, whereas linolenic, palmitic and oleic fatty acids were dominant. Based on partial rDNA sequences, all the strains investigated belonging to the AICB collection form a tight monophyletic cluster with other B. braunii strains derived from public sequence databases.

Keywords: Botryococcus braunii, morphology, hydrocarbons, phylogeny.

Identification of toxic cyanobacteria from environmental samples based on PCR amplification of a mcyD gene fragment

Bogdan Drugu1,2, Martin Velker1, Bogdan Frentiu1, Adriana Bica1,2, Cristian Coman1, Ana Nicoara1, Nicolae Dragne1,2

1 Babes-Bolyai University, Cluj-Napoca, Romania
2 Institute of Biological Research, Cluj-Napoca, Romania
3 Technische Universität, Berlin, Germany

Introduction Cyanobacteria are prokaryotic organisms well-known for their capacity to produce cyanotoxins, some of them known as microcystins. These are various secondary metabolites of peptide nature, nonribosomally synthesized by a multienzyme complex consisting in peptide synthetases and polypeptide synthases. As heat-stable, microcystins are very small molecules, and their identification or characterization is very difficult to achieve, and this is the reason why the cyanobacterial blooms may be extremely dangerous. The chemical cell lysis is not a proper key in reducing the intoxication risk, because in this way the toxins are released in the environment. The most suitable solution to this problem is to find a way to identify the toxic cyanobacterial blooms during their initial development phases, in order to prevent the risk of intoxication. The purpose of this study was to find proper oligonucleotide primers able to provide a reliable and quick detection of the toxic cyanobacteria from environmental samples.

Methods The 24 cyanobacterial strains used in this work belong to genus Microcystis, and they are all isolates from Romanian waters, provided by The Cyanobacteria and Algae Culture Collection (AICB) of the Institute of Biological Research, Cluj-Napoca, Romania. The hepatotoxic potential of the strains was analyzed by PCR amplification of certain genomic regions responsible for the synthesis of the enzymes involved in toxin production. An additional experimental assay was represented by MALDI-TOF MS (Matrix Assisted Laser Desorption /Ionization- Time Of Flight Mass Spectrometry) technique. In order to achieve a correlation between PCR and MALDI-TOF test we tried to discriminate the amplicons by DGGE (Denaturing Gradient Gel Electrophoresis). Eventually, we have sequenced the PCR amplicons (BigDye terminator method) and we have designed new primer pairs able to discriminate between toxic / non-toxic cyanobacterial strains. We have also verified the quality of the primers on 4 environmental samples, the results being also certified by additional MALDI-TOF analyses.

Results The MALDI-TOF MS spectra have displayed the presence of microcystins in 5 of the 24 cyanobacterial strains, monopeptin, microcystin and other related secondary metabolites being also detected. The PCR amplification with primers known from literature did not allow the detection of microcystins entirely correlated with the toxicity tests. The DGGE profiles could not discriminate between the generated amplicons according to the strains toxicity. Multiple alignments of the obtained sequences allowed us to design an improved primer pair, which was specific for the 5 toxic strains. The primers also allowed us to identify toxic cyanobacteria from the 4 environmental samples, the MALDI-TOF spectra confirming the presence of toxins.

Conclusions We have observed that the oligonucleotide primers found in literature did not generate PCR amplicons in our toxic strains only, as expected, but also in other two non-toxic strains. The DGGE technique was not able to distinguish the amplicons according to strains toxicity. Based on the sequenced amplicons and their multiple alignments, we have obtained a new primer pair which is able to amplify a certain region of the gene cluster responsible for toxicity, this being highly specific for our toxic strains. The most important result is that the new PCR primers are able to identify microcystins from environmental samples, which is a very important part for an early detection of a putative toxic cyanobacterial bloom.

Keywords: Cyanobacteria, blooms, microcystins, MALDI-TOF MS, PCR
Impact of copper on denitrification process and on the microbial communities involved.

Magalhães C.a, Matos P.b, Machado A.a,b, and Bordalo A.a,b

a) CIMAR/CIIMAR – Centre of Marine and Environmental Research, University of Porto; Rua dos Bragas, nº 289, 4050-123 Porto, Portugal.

b) Laboratory of Hydrobiology, Institute of Biomedical Sciences; University of Porto, Largo Prof. Abel Salazar nº 2, 4099-003 Porto, Portugal.

Denitrification influences the nitrogen budget in estuaries by removing fixed nitrogen from the inorganic pool; rates are dependent on both geological and geographic conditions as well as increasingly anthropogenic impacts. In this study, the effects of copper (Cu), on the denitrification pathway was evaluated in intertidal sandy sediments of the Douro River estuary. Dinitrogen (N2), nitrous oxide (N2O), nitrite (NO2−) and nitrate (NO3−) production rates were measured in triplicate slurries of field samples under different treatments of Cu concentrations. In addition to activity measurements, the diversity of genotypes and transcripts of nitrite reductase genes (nirS and nirK) was evaluated by DGGE (denaturing gradient gel electrophoresis) and the respective semi-quantitative and quantitative analysis performed by real time PCR. Results demonstrated that denitrification rates in intertidal sediments of the Douro River were highly affected by Cu. An almost complete inhibition of denitrification by Cu (85%) was observed in sediments amended with 79 μg per gram of wet sediment. Moreover, the addition of Cu stimulated N2O (a powerful greenhouse gas) and NO2− (a potential toxic compound) accumulation in intertidal sandy sediments, demonstrating a pronounced inhibitory effect on specific steps within the denitrification enzymatic system. In agreement, semi-quantitative and quantitative PCR of denitrification genes and transcripts revealed lower nirS and nirK transcription within the treatments with higher concentration of Cu, while DGGE analyses showed no clear changes in the denitrifier community structure within the different treatments performed.

Impacts of Metal Nanoparticles on Leaf Litter Decomposition by Aquatic Fungi

A. Pradhan, S. Seena, C. Pascoal, and F. Cássio
Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Guimarães, 4710-057 Braga, Portugal

Worldwide industrial scale production and commercialization of engineered nanoparticle (NP) based products increases the probability of their release into freshwater environments raising the question of whether NPs pose a risk to aquatic biota and the associated ecological processes. In streams, aquatic hyphomycetes are a group of fungi that play a key role in organic matter turnover serving as intermediaries between plant litter and higher trophic levels.

In this study, the effects of copper and silver NPs on leaf litter decomposition by aquatic fungi were examined and results were compared with those of their metal sonic forms. Leaves of Alnus glutinosa were immersed for 7 days in the Maceira stream (Peneda-Gerês National Park, Northwest Portugal) to allow microbial colonization, before exposure in microcosms to different nominal concentrations of the two metal NPs (CuO, 100, 200 and 500 ppm; Ag, 100 and 300 ppm) and metal ions (CuCl\textsubscript{2}, 10, 20 and 30 ppm; AgNO\textsubscript{3}, 5 and 20 ppm) for 21 days at 13 °C. In non-exposed microcosms, a total of 11 aquatic hyphomycete species were identified based on spore morphology, among which Articulospora tetracladia (51.2%) and Flagellospora sp. (32.8%) were dominant on decomposing leaves. The exposure to metal NPs or metal ions decreased the number of sporulating fungal species (4 – 10 species in the treatments with 30 ppm CuCl\textsubscript{2} and 100 ppm Ag NPs, respectively). At the highest stress levels, the contribution of A. tetracladia (55.5 – 76.1%) and Heliscus lugdunensis (8.1 – 22.6%) to the total spore production increased, while that of Flagellospora sp. (6.5 – 15.9%) decreased. At the end of experiment, metal NPs significantly reduced fungal biomass (28.5 – 82.9% inhibition in treatments with 100 ppm Ag NPs and 20 ppm AgNO\textsubscript{3}, respectively) and reproduction (90.9 – 99.4% inhibition in treatments with 100 ppm Ag NPs and 30 ppm CuCl\textsubscript{2}, respectively), probably explaining the reduction in leaf mass loss. Moreover, the negative effects of metal ions on leaf decomposition by aquatic fungi were more pronounced compared to their nanoparticle forms, despite metal ions were applied at one order of magnitude lower concentrations. Results indicate that high concentrations of metal NPs may affect aquatic fungal communities with impacts on leaf litter decomposition in streams.

Keywords: metal nanoparticles; metal ions; copper; silver; streams; microcosms; leaf decomposition; aquatic hyphomycetes
In vitro methane reduction through bacteriocins of rumen isolates

Sanjay Kumar, Sumit Singh Dagar and Anil Kumar Puniya

Dairy Microbiology Division, National Dairy Research Institute, Karnal - 132001, India

Methane emission in environment poses a challenge to the agricultural scientists, as ruminants immensely contribute to it, while resulting in 6-15% of energy loss to the animal, thereby affecting productivity. The present study deals with the screening of bacteriocin producing potential of rumen bacteria isolates and effect of their bacteriocin on rumen methanogenesis. For this, a total of 10 rumen samples were taken form fistulated buffaloes and screened for their bacteriocin producing ability by deferred antagonistic assay. Out of the 28 isolates tested, only two isolates i.e. BR8 and BR15 were found to be bacteriocin producers. The crude extracts of bacteriocins from both the cultures were used along with diet containing high roughage ratio (80%) to assess their effect on methanogenesis. Methane was analyzed through gas chromatography and no effect of BR15 extract in methane reduction (5% methane in ml) was found, whereas 10 times diluted extract of BR8 showed a reduction in methane from 4.5 to 2.8%, indicating a positive effect of bacteriocin in methane reduction. The isolate BR8 was subjected to identification through physiological and biochemical tests, followed by 16S rDNA based PCR identification and identified as *Streptococcus bovis*.

Key Words: Rumen; Methane; Bacteriocin

INDISIM-SOM: an individual-based simulator on a website for experimenting and investigating diverse dynamics of Carbon and Nitrogen in mineral soils

A. Gras1, J.C. Cañadas2, and M. Ginovart3

1 Department of Agri-Food Engineering and Biotechnology, Technical University of Catalonia, Edifici D4, 08860 Castelldefels (Barcelona), Spain
2 Department of Physics and Nuclear Engineering, Technical University of Catalonia, Edifici TR5, 08222 Terrassa (Barcelona), Spain
3 Department of Applied Mathematics III, Technical University of Catalonia, Edifici D4, 08860 Castelldefels (Barcelona), Spain

A very interesting review of soil biogeochemical models, with an extensive comparison of mathematical approaches to soil C and N cycling, has been provided by Manzoni and Porporato [2]. Some key processes in C and N cycling in soils are the decomposition and mineralization of organic matter (OM), N immobilization and nitrification. These processes, in the majority of models developed during the last decades, are analyzed under the common framework of substrate-decomposer stoichiometry, thus stressing the role of the microbial biomass as a Soil OM (SOM) degrading agent and as a controlling factor of N cycling. Most new models are improvements over earlier ones, leading to many similar model structures and formulations. While this has generally produced more robust and effective models, on the other hand, it may have delayed significant theoretical advances and shifted attention from some important questions that have therefore remained unexplored. There are fewer models explicitly describing the spatial dynamics of water, OM or nutrients at specific microscopic scales [2]. Some researchers are realizing that simulation models are a new kind of experimental system. Individual-based models (IBMs), in which individuals dynamically interact with each other as structural elements in the model world, exemplify this view of simulation modelling. In this context, the present study is based on the perspective that a mechanistic and scale-dependent description of microbial activity, with detailed formulations of decomposer biomass structures and their relationships with organic and mineral substrates, is essential when dealing with the dynamics of C and N in SOM. Nevertheless, the level of microbial activity, and not only the amount of microbial biomass, is fundamental to describe transient fluxes in response to environmental fluctuations. To provide the generality needed for diverse scenarios, under different conditions, one way to proceed is by using IBMs, from which macroscopic patterns may be inferred. INDISIM-SOM models the dynamics and evolution of C and N related to SOM by using individual-based simulations [1]. It is an IBM that controls a group of microbial cells at each time step, using a set of time-dependent variables for each microorganism. The space is divided into square cells. In each spatial cell, the amounts of different types of organic compounds are controlled. These are identified as polymerized organic C and N, labile organic C and N, and mineral compounds like N\(_{\text{NH}_4}\), N\(_{\text{NO}_3}\), CO\(_2\), and O\(_2\). The model takes into account the activity of two types of microorganisms: decomposers (heterotrophs) and nitrifiers. Metabolic pathways and sources of C and N that they can use are identified. Some state variables and parameters related to SOM and microbial activity are studied [1]. The purpose of this work is to develop and present a website from which the simulator INDISIM-SOM is accessible, and to explain how to carry out some virtual experiments, in order to further advance the skills associated with this simulation model. The website is composed of the following: i) a brief theoretical introduction of the general model, ii) a demonstration of the simulator with graphical outputs for some variables (Demo option) and iii) access to an executable version of the simulator allowing changes in the values of some parameters (Log in option). The input data offered for modification, jointly with graphical outputs, make it possible to configure virtual experiments and observe their behaviour through the simulator. The parameters which can be changed before starting the simulation are related to i) soil properties, ii) fractionation constants, and iii) microbial characteristics. The first one is related to soil determinations of C and N, and the second one is made up of the constants that relate the soil properties to discrete soil compartments. The last consists of data related to soil microorganisms, and related output variables: number of heterotrophic individuals, number of nitrifier bacteria, ratio of microbial C to organic C, C to N microbial ratio and oxygen in soil atmosphere. The other set of output graphics is: net production of CO\(_2\), easily hydrolysable N, net N mineralization, total ammonium in the medium, and nitrate in the soil solution. The graphical output shown allows the user to visualize how system variables emerge from different scenarios. This web application results in a very versatile program that could be used in controlled simulation experiments via Internet, and it is a useful way to analyze the INDISIM-SOM simulator in order to achieve further understanding of soil system modelling.

Keywords Soil Organic Matter, dynamics of Carbon and Nitrogen, Individual-based Modelling

Influence of Lead Contamination on Bacterial Community in Pine Forest Soil

N. Hui and M. Romantschuk
Department of Ecological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti Finland

Hälvälä, a shooting range in pine forest located in southern Finland, is heavily contaminated by Pb. To study the effect of Pb contamination on bacterial community, the range was divided into clean area (C) and Pb contaminated area (P) according to the Pb concentration. Bacterial diversity maps were generated by means of DNA based molecular biotechnologies in both clean and Pb contaminated pine forest soil. 918 sequences of the beginning part of 16S rRNA genes (about 400 bps) were achieved from the two study areas (C: 430, P: 488). 399 OTUs were found by grouping similar sequences at the similarity rate of ≥97%. There were 213 and 253 OTUs in clean and Pb contaminated areas, respectively. In each area, Proteobacteria that takes about 40% sequence frequency is the biggest group, the second largest group is Acidobacteria that occupies approximately 35% and 10% of Actinobacteria is found. Other bacterial phyla such as Verrucomicrobia, Bacteroidetes, Planctomycetes and Firmicutes are spotted but considered as minor groups, since total frequency of them in each area is less than 5%. In general, no clear difference of bacterial diversity is found between clean and Pb contaminated areas at phylum level.

Keywords: heavy metal, bacterial diversity

Influence of the fungicide Benomyl and ecophysiological factors on growth rate of the fumonisins-producing Fusarium verticillioides and Fusarium proliferatum from Spanish maize

P. Marín1, N. Magan2, and M. T. González-Jaén1

1 Department of Genetics, University Complutense Madrid, Jose Antonio Novais 2, 28040 Madrid, Spain
2 Applied Mycology Group, Cranfield Health, Cranfield University, Cranfield, Bedford MK43 OAL, United Kingdom

Fusarium verticillioides and Fusarium proliferatum are considered the most important maize fungal pathogens causing Maize Pink-Ear Rot or Maize Satlk Rot and both also have the ability to produce fumonisins. Fumonisins are one of the most important mycotoxicogenic compounds responsible of both human and animal toxicoses caused by consumption of contaminated food and feeds, especially corn-based commodities. The occurrence of fungal species and their toxin production is influenced by ecophysiological factors such as solute stress or temperature, and also depends on interactions with other species. Currently, control of fungal disease relies almost exclusively on the application of antifungal agents, particularly when weather conditions are conducive to infection (from anthesis to harvest). Although there are a number of compounds with in vitro activity against fumonisins-producing Fusarium pathogens, little information is published on the interaction of these compounds with the ecophysiological factors, which might influence the efficiency of these compounds to control fungal growth. The objective of this work was to study the impact of the commonly used fungicide benomyl (LD50 and LD90) on growth rate of F. verticillioides and F. proliferatum isolated from maize in Spain and the interaction with the main ecophysiological factors influencing fungal growth (water activity and temperature). The growth rate of the two isolates was evaluated in relation to water activity (aw: 0.995, 0.98 and 0.95) and temperature (20, 25, 30 and 35°C) on a solid fumonisin-producing medium (in vitro). In general, the fungicide Benomyl reduced growth rate when compared to the control (LD0) in all aw values considered, and this reduction increased with increasing fungicide concentration, except at 0.95 aw, in both species. At 0.95 aw, growth rate of LD0 and LD50 had similar profile in both species and only at LD90 a slight reduction of growth could be observed, indicating that the antifungal activity is not efficient at higher water stress values. Both species also showed similar pattern in relation with temperature, although F. proliferatum showed a more retarded pattern of growth rate. The similar behaviour of these species against the benomyl might represent an advantage when a treatment with this fungicide must be applied since both are often present in maize. These data are important to enable more efficient control strategies during the life cycle of these important maize mycotoxicogenic fungal pathogens.

Keywords: Fungicide; growth rate; F. verticillioides; F. proliferatum.
Influence of the heavy metals on chitosan production by *Absidia corymbifera* UCP 0134

A. Cardoso¹, A. Marques², P. Homero Campos Marinho³, R. Kenji Shiosaki¹ and G. Maria Campos Takaki⁴

1Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia, Universidade Católica de Pernambuco, Rua do Príncipe, 526, Boa Vista, Recife, Pernambuco, Brasil.
2Mestrado em Desenvolvimento de Processos Ambientais, Universidade Católica de Pernambuco, Rua do Príncipe, 526, Boa Vista, Recife, Pernambuco, Brasil.
3Faculdades Integradas de Patos, Patos, Paraíba, Brasil.
4Faculdade de Integração do Sertão, R. Comandante Superior Manoel Pereira da Silva, 56903-490, Serra Talhada, Pernambuco, Brasil.
5Nucleo de Pesquisas em Ciências Ambientais, NPCIAMB, Universidade Católica de Pernambuco, Rua Nunes Machado, Boa Vista, Recife, Pernambuco, Brasil.

This work describes the experimental studies on the influence of the addition of the heavy metals copper (Cu) and zinc (Zn) in different conditions, on the fermentation of *Absidia corymbifera* on cultivation containing corn steep liquor 6% (residue of the corn industry), and the heavy metals were added in the concentrations of 2 and 4 mM. The experiments were incubated in orbital shaker at 150 rpm, temperature of 28°C for 96 hours. The biomass was removed by vacuum filtration, lyophilized and maintained in dissecitor until constant weight, evaluated by gravimetry. The polysaccharides chitin and chitosan were extracted by alkalai, acid treatment. The polysaccharides were characterized by Transformed of Fourier- Infrared Spectroscopy (FTIR). The higher yield of the biomass was obtained in the condition copper 4mM (6.97g/L). The highest chitosan production was obtained in the conditions zinc 4mM (44.5mg/g of biomass), and copper 2mM (67.29mg/g of biomass). The acetylation degrees was 81 to 88%. These results suggest that the addition of heavy metals copper and zinc to the culture medium promoted an increase in the yield of chitosan, indicating that these metals influence the production and enzymatic action of chitin synthetase and chitin deacetylase, involved in production processes chitosan by *Absidia corymbifera*. The low cost medium used in this experiment to make large production viable for future laboratorial and industrial assays.

Keywords: Chitosan, Heavy metals, *A. corymbifera*.

Inhibition Effect of Isopropanol on Expression Level of Acetyl-CoA Synthase Gene in Anaerobic Processes

O. Ince¹, G. Kokak², N.A. Oz³*, Z. Cetecioglu¹, S. Celikkol², B.K. Ince³

¹Istanbul Technical University, Department of Environmental Engineering, Maslak, 34469, Istanbul, Turkey
²Bogazici University, Institute of Environmental Sciences, Bebek, 34342, Istanbul, Turkey

Organic solvents which are found in several industrial waste streams may cause inhibitory effects on microbial community playing role in anaerobic processes. Effects of the compounds on different metabolic steps are largely unknown. Since acetoclastic methanogens participating in the terminal methanogenesis step play an important role in stabilizing the pollution load of wastewater and susceptible to inhibitory compounds, understanding the specific inhibition effects of the pollutants on acetoclastic pathway in anaerobic reactors is important. Although there are some studies in the literature on treatability of the solvents under anaerobic conditions in which different electron acceptors are present, specific studies that reveal the effects of the compounds at different conditions on key metabolic steps are limited. Therefore, in this study, inhibition effect of isopropanol on both biogas production and expression level of acetyl-coA synthase of *Methanosaeta*, which is a key enzyme of methane production from acetate in the anaerobic treatment processes, were monitored. For this purpose, an anaerobic sludge with concentration of 2000 mg/L was added to the 100 ml serum bottles with a dilution solution. Anaerobic conditions were provided by flushing the bottles with nitrogen gas. Sludge was incubated at 37°C for 24 hours and then was fed with acetate with a concentration 2000 mg/L. After the incubation period, the anaerobic sludge was fed with acetate and isopropanol at different concentrations in between 0.1 M-1.0 M and the bottles were kept in a stirred water bath at 37°C for 7-10 days. Batch serum tests were exposed to isopropanol at different concentrations for three times. Methane composition was monitored regularly and next exposure was performed when the gas composition was stabilized in serum bottles. Before each exposure, samples were taken from the reactors and, then, the effects of the solvents on the expression level of acetyl-coA synthase was measured by quantification of mRNAs using Q-PCR. A new designed primer pair which is specific for acetyl-coA synthase gene was used for the purpose. After second exposure, numbers of the gene copies per ml were found to be 1.55E+06, 0.56E+06, 0.41E+06, for 0.1M, 0.5 M and 1.0 M isopropanol concentrations respectively whereas that of was 1.66E+06 for control reactor fed by only acetate. No genes can be quantified after third exposure due to severe inhibition effect of the solvent. Methane composition and gas pressure also decreased with increasing isopropanol concentrations and repeated exposures (Table 1). The decrease was dramatic especially for third exposure indicating that repeated exposure of isopropanol to acetoclastic methanogens can cause severe inhibition even for low concentrations of the solvent.

Table 1. Methane composition in the serum reactors after exposures

<table>
<thead>
<tr>
<th>Isopropanol (M)</th>
<th>1st Exposure</th>
<th>2nd Exposure</th>
<th>3rd Exposure</th>
<th>2nd Exposure</th>
<th>3rd Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 M</td>
<td>94</td>
<td>84</td>
<td>24</td>
<td>1905</td>
<td>595</td>
</tr>
<tr>
<td>0.5 M</td>
<td>84</td>
<td>65</td>
<td>12</td>
<td>1460</td>
<td>235</td>
</tr>
<tr>
<td>1.0 M</td>
<td>75</td>
<td>36</td>
<td>3</td>
<td>435</td>
<td>240</td>
</tr>
</tbody>
</table>

Keywords: contamination, gum production, penicillin, xanthan, Xanthomonas campestris.
Isolation and Characterization of Atrazine and Terbutryn Degrading Microbes from Surface and Subsurface Soil in Finland

X. Liu, M. Kontro
Department of Ecological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti Finland

The extensive use of triazines atrazine and terbutryn has resulted in groundwater contamination in many areas, including some groundwater sources in Finland. In soil surface, atrazine and terbutryn are degraded in a few months by microorganisms. However, the degradation rate of microbes often decreases with increasing the depth in soil, and some of pesticides are stored at deep sediments for years. We isolated atrazine or terbutryn degrading microbes from enrichment cultures using selective medium, which have atrazine or terbutryn as a sole nitrogen source. Enrichment cultures originated from surface soil and groundwater sampling pipe deposits. In addition, some indoor isolates were obtained. The strains were characterized using ribosomal DNA sequencing and fatty acid analyses. Altogether 110 microbial strains degrading atrazine or terbutryn were isolated. They belonged to 19 different genera, including Acinetobacter, Acremonium, Afipia, Arthrospira, Bacillus, Bradyrhizobium, Burkholderia, Janthinobacterium, Methylobacterium, Microbacterium, Penicillium, Rhodococcus, Sphingomonas, Streptomyces, Variovorax, and Williamsi. The results on the phylogenetic diversity of atrazine or terbutryn degraders in these different environments were elucidated. The differences in microbial profiles may be of importance in use of strains in remediation of contaminated soils and groundwater environment.

Keywords: atrazine, microbial degradation

Isolation of an antibiotic producing bacterium from the Persian Gulf

E. Darabpour1, M. Roayaie Ardakani1, H. Motamedi1, G. Ghezelbash1, M. T. Ronagh2, and S. Majidi1
1 Department of Biology, Shahid Chamran University, Ahvaz, Iran
2 Department of Marine Ecology, Marine Science & Technology University, Khoramshahr, Iran

During two previous decades, studying about marine microorganisms has been raised significantly due to their very high capability of producing secondary metabolites. In fact, the strong selective pressure result from competition between bacteria in the marine environment for space and nutrition and also metabolic and physiological differences between marine and terrestrial microorganisms arising from different conditions in marine would result in these microorganisms produce a great amount of natural products for use in medical and industrial applications. Emerging pathogenic bacteria resistant to current antibiotics particularly MRSA (Methicillin Resistant Staphylococcus Aureus) strain has become a great global concern in 21st century. The aim of this study was to evaluate marine bacteria of different origins (water and sediment) from Persian Gulf in order to produce antibiotic compounds against some human pathogenic bacteria.

Initially we collected samples from surface seawater, deep seawater, coastal seawater, marine bed sediment and mangrove forest sediment at 18 study sites in the some northern areas of Persian Gulf including Mahshahr port, Baharakan port and Qeshm Island. Marine Agar 2216 and Cellulolytic Agar with Sea Salt were used as primary isolation media. Pure colonies of isolated bacterial colonies were transferred to Erlenmeyer flasks containing Marine Broth medium and were incubated at 28º C on a rotatory shaker (150 rpm) to produce secondary metabolites. After 2 to 9 days, culture medium within Erlenmeyer was centrifuged at 10000 rpm for 20 minutes, and then supernatant was extracted by ethyl acetate. The antibacterial activity of the obtained raw extract was assessed at 100 mg/mL concentration by using disc diffusion method against pathogenic bacteria including MRSA, Staphylococcus epidermidis, Bacillus anthracis, Bacillus cereus, Bacillus pumilus, Listeria monocytogenes, Streptococcus pyogenes, Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Salmonella Typhi and Klebsiella pneumoniae. Five different antibiotics including Nafcillin, Vancomycin, Colistin, Methicillin, Oxacillin were used as control. Altogether, 42 bacterial isolates were obtained and only one brown-pigmented bacterium isolated from a marine sediment sample collected at a depth of 10 m was exhibited the capability of producing antibiotic compounds. On the basis of biochemical diagnostic tests, this bacterium was found to belong to the genus Pseudomonas and named Pseudomonas sp. PG-01. The obtained raw extract from intended bacterium was effective against all tested gram positive bacteria while gram negative bacteria showed resistance to it. MRSA, S. pyogenes, S. epidermidis and B. cereus exhibited the most sensitivity to Pseudomonas sp. PG-01. All tested bacteria were resistant to Oxacillin and most of strains presented resistance to Colistin, Nafcillin and Methicillin. The diameter of the inhibition zones for Vancomycin and Pseudomonas sp. PG-01 against MRSA were 22 and 30 mm, respectively. Also, the best antibacterial activity of Pseudomonas sp. PG-01 against MRSA (36 mm) was observed at 48 hour-old-liquid culture.

Comparing the antibacterial effect of the obtained extract from Pseudomonas sp. PG-01 especially against MRSA, it can regard the intended bacterium as a valuable strain and further studies should be performed in order to purify and identify the chemical structure of its antimicrobial compound.

Keywords: antibiotic, Pseudomonas, resistance, MRSA, Persian Gulf,
Isolation of bacteriophage-host pairs from marine sediments

Magdalena Jakubowska 1, Ewa Kotlarska1, Agata Jurczak-Kurek2, Marcin Łoś2, Borys Wróbel1

1Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
2Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland

Bacterial viruses (bacteriophages) are the most abundant and genetically diverse biological objects in the marine environment. It is estimated that there are about 1010 viral particles per liter of sea water and 109-1013 particles per kg of marine sediment (10-25 more than bacterial cells).

We have developed a high-throughput method of isolation of phage-host pairs from the sea-bottom sediment. First, we have isolated several hundred bacterial strains by plating on standard media used in marine microbiology (Zobell, Marine Broth, BOSS) at different temperatures (4°C, 22°C, 30°C). These strains were then used in phage isolation experiments, resulting in a collection of about 50 viral strains infecting bacteria found to belong mostly to *Pseudomonas* and *Shewanella* using 16S rRNA sequencing. Some of the isolated phages were found to have a wide host range and to tolerate a wide spectrum of temperatures (0°C – 37°C) and salinity (0%-5%). Virion morphology was analysed using electron microscopy; most isolated viruses had icosahedral heads and could be classified as *Myoviridae*. Complete sequencing of the bacteriophage genomes is now underway. Although the isolation method restricts the spectrum of investigated phages to the cultivable subpopulation, it has the advantage of allowing for the investigation of possible antibacterial (e.g. holins, lysozymes) and antibiofilm (e.g. enzymes attached to the viral capsids) activities.

Keywords: marine bacteriology, marine virology, bacteriophages, phage morphology, phage physiology, phage genomics.

Isolation of *Dunaliella salina* (Volvocales, Chlorophyta) and its growth characteristics

Rathinam Raja1, R. Rengasamy3 and G.K.Suraishkumar1,4

1Department of Biotechnology, Indian Institute of Technology-M, Chennai 600036, India
2Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India
4Corresponding author

The microalga, *Dunaliella salina* (Dunal) Teod. maintained in De Walne’s medium was confirmed by amplifying the chromosomal DNA by PCR with specific primers MA1 and MA2. Seaweed extracts *Sargassum wightii* and *Ulva lactuca* were amended separately at 1.0%, 1.5%, 2.0% and 2.5% levels to the basal medium in order to assess their potential on the growth and concentration of pigments, viz. Chl a, Chl b and β-carotene isomers. Maximum yield, highest division rate (m) and highest pigment concentrations were observed in the cells grown in 1.5% *S. wightii* and 2.0% *U. lactuca* amended medium and these cells were subjected to DAPI staining. The results of epifluorescence microscopy and image analysis revealed a significant enhancement of the cell and nuclear area of the microalgae.
Isolation of high performance indigenous microbial consortia from highly acidic acid mine drainages contaminated soils

Maria Alexandrine Fernandes, Adelino Canário, Maria Clara Costa

Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro.

Acid mine drainages (AMD) are contaminated water bodies characterized by high concentrations of metals and sulphates and by very low pH (1.5 to 3.5). In Portugal several abandoned mines produce AMD in amounts susceptible of creating ecological problems (contamination of aquatic fauna and the surrounding soils. Although bioremediation has been considered a promising technology for AMD decontamination sulphate reduction rates measured in waters subjected to bioremediation are usually low. One of the main inhibitory factors is the toxicity of the heavy metals present in AMD. Therefore several attempts have been made to isolate indigenous microbial sulphate-reducing consortia from S. Domingos mines, one of the most contaminated sites in Portugal. The rationale for this study has been that sulphate-reducing bacteria isolated from AMD contaminated sites might be naturally tolerant to the AMD extreme conditions. Now, for the first time, we have isolated two sulphate reducing microbial consortia from the highly acidic rock of the S. Domingos mine AMD waters. These natural consortia displayed very high rates of both sulphate and metal removal. After an adaptation period of 14 days, the consortium reduced sulphates at high rates (over 90%, from 3500 mg/L to 300 mg/L in 14 days) and displayed multiple tolerance to iron, copper and zinc, in concentrations equivalent to those present in the acid mine drainage. Moreover, the consortium removed iron by 99% (from 367 mg/L to 2 mg/L), copper by 80% (from 70 mg/L to 14 mg/L) and zinc by 96% (from 126 mg/L to 5 mg/L) within two weeks. The remarkable feature of these sulphate-reducing consortia is that their very acidic natural habitat and their high sulphate and metals removal rates. In the following experiments, the bioremediation potential of the isolated consortia will be tested in artificial and natural AMD. Finally, the populations directly involved in the bioremediation process will be identified by molecular biology methods.

Isolation of the extreme halophiles from rock salt

Department of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, 1-236, Tangi-cho, Hachioji, Tokyo, 192-8577, Japan.

Extreme halophiles are organisms that require 1.5 M-5.5 M NaCl concentrations (5.5 M is the saturation limit of NaCl) for their optimum growth. Over 100 species have been described as extreme halophiles, and were isolated from solar salterns, salt deposit, rock salt, and sometimes from non salty environment such as forest soil. During our recent attempt to isolate extreme halophiles, 14 strains including candidate novel species have been isolated from rock salt of various localities.

Rock salt samples derived from Italy, Mongolia, Himaraya (Nepal) and Bolivia were suspended in water, and inoculated onto plate media including each rock salt (concentration of 3 M or 5 M) and yeast extract (non or 0.5%), pH (3, 5-6, or 9). Those were incubated at 4°C, 25°C, 37°C, 60°C and 65°C for 2 weeks to about 2 months. We have also tried enrichment cultivation by using liquid media at 37°C for one week prior to the plating. Colonies appeared on the plates were purified and their genomic DNAs were extracted for PCR amplification of 16S rRNA genes (16S rDNA) using bacterial or archaeal universal primers. The following thermal cycle was used for 25 cycles: 95°C for 30 s, 60°C for 30 s, and 72°C for 1.5 min. DNA sequencing was carried out by using automated DNA sequencer. The obtained 16S rDNA sequences were compared with the available sequences in the NCBI nucleotide sequence database using BLAST. The 16S rDNA sequences of the isolates and relative species were aligned using Clustal W program. Phylogenetic trees were constructed using the neighbor-joining method.

Total 14 strains were successfully purified and taxonomically classified into four groups in species level. They showed 16S rDNA similarities with Tuberibacillus calidus (similarity value of 90-91%, 9 strains, Himaraya and Bolivia), Halobacterium salinarum (95%, 2 strains, Mongolia and Bolivia), Virgibacillus marismortui (96%, 2 strains, Himaraya) and Haloarcula japonica (99%, 1 strain, Himaraya). Based on this phylogenetic status, 13 strains (other than the strain which was identified as H. japonica) were strongly suggested to be 3 kinds of novel species (one of Archaea and two of Bacteria). Interestingly, Himarayan rock salt gave three different species including two novel species. Physiological, biochemical, and chemotaxonomic analysis will be needed to describe these isolates.

Figure: Phylogenetic trees based on 16S rDNA sequences of the isolates (14 strains) and related species, constructed by neighbor-joining method. Bacillus subtilis (for Bacteria) or Haloarcula gomorrense (for Archaea) were used as the outgroup species. Left: Bacterial phylogenetic tree, Right: Archaeal phylogenetic tree.

(Acknowledgement)

This work was conducted in “case study” which is an undergraduate program of Department of Environmental Engineering for Symbiosis, Soka University. We would like to thank to all those who have supported us in this study.

Keywords: extreme halophiles; rock salt; novel species
Isolation, Identification and Comparison of Cyanobacteria from Two Rivers Polluted with Different Chemicals

Meral YILMAZ1, Merih KIVANC1

1 Anadolu University, Faculty of Sciences, Department of Biology, Eskisehir-TURKEY

In our study, water samples obtained from Porsuk and Seydisuyu Rivers located in Eskisehir-Kütahya Provinces of Turkey were used for cyanobacteria isolation. The compositions of pollutions in both rivers are quite different. Microscopic examination of water samples were made by using Olympus microscope. Cultivation of water samples were carried out with BG-11 and BG-11a liquid media at 28°C under the continuous light. Chemical properties of water samples were determined as spectrophotometrically using Merck test kits. After the visible growth in liquid BG-11a media, purification steps were performed with repeated plating techniques. At the end of this purification steps totally 127 pure cyanobacterial isolates were obtained from both rivers. For the identification of the isolates molecular analysis based on 16S rRNA gene sequences were performed. First step was genomic DNA isolation and then they were grouped according to their restriction enzyme profiles (Amplified Ribosomal DNA Restriction Analysis ARDRA). With the ARDRA analysis, one or two representative isolates were chosen and 16S rRNA gene was partially sequenced.

Based on the BLAST database, the sequences obtained from Porsuk River were Synechococcus, Cyanobium, Anabaenopsis, Leptolyngbya, Microcoleus, Pseudanabaena, Synechocystis, Oscillatoria, Snowella, Nostoc, Phormidium, and Limnothrix and Pseudoanabaena genera and the sequences from Seydisuyu River were Leptolyngbya, Synechocystis, Phormidium, Anabaenopsis, Nostoc.

Joint culture of two defined methylotrophic strains for denitrification of ground water with natural gas as carbon source

N. Nazemi, M. Nourati1, and S.A. Shojaosadati

Biotechnology Group, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran

Ground water continues to be a major source of water in many cities. Water supply in most of these cities is highly contaminated with nitrate ion. Tehran and Mashhad water supply, two most populated cities of Iran, have highest level of nitrate in country, which has exceeded the drinking water quality standards. Since high nitrate levels in drinking water can cause serious human health effect then the United States Environmental Protection Agency (EPA) sets the maximum allowable level of nitrate-nitrogen in public drinking water at 10 milligrams per liter (10 parts per million).

When faced with the possibility of higher nitrate levels than allowed, water suppliers take some action like dilution of contaminated source with another source with lower amounts of nitrate or some treatments like reverse osmosis, ion exchange and biological treatment. Among these methods biological treatment has some advantages over others such as, 1) being relatively inexpensive and 2) having the ability to completely destroy the contaminants rather than producing a waste stream, which physical or chemical treatment methods tend to do. However, biological treatment of drinking water is challenging because the raw water generally does not contain enough organics to support a microbial population, which means a substrate must be added.

A variety of carbon sources, such as methanol, ethanol, acetate and sugars has been used as exogenous carbon sources. The possibility to use methane as a substrate in the form of natural gas has some advantages over other carbon sources, such as, 1) natural gas is available at low cost and high amounts especially in Iran because of its broad gas reserves, 2) it spreads very fast in aquifer, 3) it is metabolized slowly, and at last 4) it can easily exit water phase. Then, the use of methane minimizes increasing in TDS of water. Since none of the known methanotrophs is able of denitrification, due to aerobic nature of methane oxidizers, then a bacterial consortium is necessary to use methane as the sole carbon source, in which the methanotroph may consume methane and release soluble organics that can be used by denitrifiers as electron donors in denitrification.

In this study, *Methylobacterium extorquens* DSMZ 1340 was used as the methanotrophic strain and *Hyphomicrobium denitrificans* DSMZ 1869 as the methylotrophic denitrifier because of their complementary properties, in other words, when *H. denitrificans* faces oxygen-starving conditions does not compete with *M. extorquens* in oxygen consumption and its nitrate respiration cycle will be activated. On the other hand, both of these strains were selected from risk group one and with some simple downstream treatments quality of water can be satisfied. The bioreactor setup was consisted of a bubble columns that have two separate methane and air inlet for prevention of probable explosion and a jacket to keep growth media in constant temperature of 30 °C with a water bath. Gas flow rates were controled with flow meters, inoculum was prepared for the two bacteria separately with methanol as the sole carbon source. Methane and airflow rates were constant during the process. Variations in nitrate concentration, optical density, dissolved oxygen, and oxidation-reduction potential (ORP) were analyzed and recorded. Inoculation volume was about 10 % (5 % from each) of bioreactor working volume (250 mL). Nitrate concentration at the beginning of the experiment was set to 100 ppm in the growth media.

Results presented good compatibility between these two bacterial strains for denitrification. In spite of the fact that this denitrification process was conducted by haphazardly selected variables, like air or methane flow rates, 54 % reduction for nitrate was achieved after 3 days. Higher amounts of nitrate reduction may be attained after the optimization of process variables involved in denitrification. ORP at the end of the process was about +90 mV, which is in the anoxic range. OD of 600 nm reached the maximum of 0.74 from 0.17 at the beginning. Selected flow rates for air and methane resulted in a DO of about 80 % of saturation.

keywords: Nitrate Removal; Natural Gas; Methanotrophic Bacteria; Methanotrophic Bacteria; Bubble Column
Methane production and oxidation in immobilized activated sludge from aerobic wastewater treatment plant

A. Nozhevnikova1, Yu. Litty1, V. Nekrasova1, V. Simankova1 and N. Kulikov1
1 Winogradsky Institute of Microbiology of Russian academy of Sciences, Prospekt 60-letiya Oktjabrya 7, k.2, 117312 Moscow, Russia.
2 Managed ecotechnology LTD, Severnaya str., 10, 354000 Sochi, Russia

The object of this study was the investigation of microbial community of immobilized activated sludge from the experimental aerobic wastewater treatment plant. The plant is situated in the settlement Krasnaya polyana (Sochi region), where the 2014 Winter Olympics is located. The main technique used is an original support material. It is similar to cleaning brush in shape and made of flexible polymeric fibers of varying thickness. The fiber is used for immobilization of microorganisms by means of which biological wastewater treatment takes place. The activity of microbial community being immobilized to brush-like flexible polymer support material was high. The activated sludge was demonstrated to contain aerobic and anaerobic microorganisms, inclusive of methanogenic archaea. The functioning of methanogenic microbial community, responsible for complete degradation of organic matter under anaerobic condition was shown. Generated methane was shown to be oxidized by methanotrophic bacteria, thereby methane cycle was realized. Meanwhile, methane generation occurs chiefly in immobilized form of active sludge and methane oxidation is typical for free-floating form. Volatile fatty acids, being generated as mediate products, were shown to be decomposed by aerobic and anaerobic microorganisms according to oxygen accessibility. Simultaneous aerobic and anaerobic degradation of organic wastes in immobilized activated sludge makes it possible to achieve high rates in sewage treatment, stability and adaptability to varying environmental conditions and reduction of excess sludge production as well.

Keywords: immobilized active sludge, methane production and oxidation, wastewater treatment

Methanothiol accumulation exacerbates N2O emissions in estuarine sediments and bacterial cultures.

Magalhães C.a, Kiene R. P.b, Machado A.c, Wiebe W. J.d and Bordalo A. A. a,*
a) CIMAR/CIIMAR - Centre of Marine and Environmental Research, University of Porto; Rua dos Bragas, nº 289, 4050-123 Porto, Portugal.
b) Department of Marine Sciences, University of Alabama; Life Sciences Bldg, LSCB 25 36688 Mobile, Alabama, USA.
c) Laboratory of Hydrobiology, Institute of Biomedical Sciences; University of Porto, Largo Prof. Abel Salazar nº 2, 4099-003 Porto, Portugal.
d) Department of Marine Sciences; University of Georgia, Athens, GA 30602, USA.

Multiple environmental biogeochemical transformations, primarily catalyzed by microbes, play critical roles in aquatic nitrogen and sulfur cycles. In this study we investigated a newly specific inhibitory interaction between the organic sulfur compound methanethiol (MeSH) and the denitrification pathway. The effect of MeSH, a degradation product of dimethylsulfoniopropionate (DMSP) and methionine, on denitrification was evaluated in sediment slurries from Douro and Ave estuaries (NW Portugal) and in a pure culture of Silicibacter pomeroyi. Slurries of sediment samples and cell suspensions were amended with a gradient of methionine and MeSH concentrations and nitrous oxide (N2O), MeSH, dimethyl sulfide (DMS) and hydrogen sulfide (H2S) accumulation was monitored. Evidences from these experiments showed that MeSH inhibits the nitrous oxide reductase enzyme that catalyzes the last step of denitrification. The accumulation of N2O, a powerful greenhouse gas, was linearly related to MeSH concentrations, either MeSH resulting from direct additions or produced from methionine, in both coastal sediments (R2 = 0.7 to 0.9, p < 0.05) and S. pomeroyi cell suspension (R2 = 0.9, p < 0.01) experiments. In some sediments no inhibition of nitrous oxide reductase activity was observed after methionine additions, and this was related to the lack of MeSH accumulation in those sediments. Results also suggested that salinity was an important factor controlling this inhibitory interaction in estuarine sediments since it was found to be linear and positively related with the percentage of inhibition of the nitrous oxide reductase enzyme in the methionine gradient experiments (R2 = 0.98). Finally, our results demonstrated that MeSH derived from methionine degradation or by direct addition inhibits the final step of denitrification. These findings represent a valuable contribution for the understanding of a completely new aspect of the complex interactions between marine nitrogen and sulfur cycles. Because the inhibition of the last step of denitrification reduces nitrogen loss through nitrogen gas (N2, an inoffensive gas) and enhances nitrogen loss via N2O, this interaction may consequently exacerbate N2O production rates in aquatic systems.
Microbial diversity in a uranium contaminated environment: the Urgeiriça mine (Central Portugal) as a case study

Ana Paula Chung1, Alcides Pereira2, Luis Neves2 and Paula V. Morais1,3
1IMAR, Laboratory of Microbiology, 3004-517 Coimbra, Portugal.
2 IMAR, Department of Earth Sciences, University of Coimbra, 3000-272 Coimbra, Portugal.
3IMAR, Department of Biochemistry, University of Coimbra, 3001-401 Coimbra, Portugal.

An evaluation of the impact of mining activities in the microbial community structure of a former uranium mine was carried out in Urgeiriça (Central Portugal). Samples from the natural environments underground mine and from several stages of the existing water treatment system were studied. The bacterial community structure was based upon the sequencing of the 16s rRNA gene of the isolates. All samples independently of the content in uranium and other metals showed a high number of cultivable bacteria and the isolated population was highly diverse at species level.

Uranium resistant populations were isolated in some of the sampling sites, including the water from the flooded mine and in the lagoon for sludge deposition of this particular contaminated environment, demonstrating a stable uranium resistant population adapted to the mine environment, and the majority of these isolates were affiliated to the Firmicutes phylum. However, in Poço da Cobras where the highest concentration of uranium (8.2 μM) was measured, the vast majority of the isolates belong to the phylum Actinobacteria. When the isolation of strains was performed in R2A medium, without the presence of uranium the majority of the recovered population belonged to the β-Proteobacteria group.

We were not able to isolate strains resistant to chromium (VI), but very different groups of arsenite (III) resistant isolates were recovered.

Microbial populations and CTX-M1 resistance in Escherichia coli isolated from wastewater treatment bioaerosol

J. Venglovsky 1, V. Kmet 1* and G. Gregova 2
1 University of Veterinary Medicine in Kosice, 040 01 Kosice, Komenskeho 73, Slovakia
2 Institute of Animal Physiology, Slovak Academy of Sciences, Soltessovej 4, 040 01 Kosice, Slovakia

The composition, size, and concentration of the microbial populations comprising the bioaerosol vary with the source, dispersal mechanism in the air, and, most importantly the environmental conditions prevailing at a particular site. In the experiment, samples were collected by means of a sampler MAS-100 Eco. The MAS- 100 Eco air monitoring system is a compact sampler intended for use with standard Petri dishes. Petri dishes with respective nutrient media (meat-pepton agar, Endo agar, MacConkey agar with ampicillin and Sabouraud agar) are placed on top of the dish support of the sampler and after aspiration of a preset volume of air, they are incubated at appropriate temperatures. ESBLs were detected by interpretative reading of antibiotic minimal inhibitory concentrations and by PCR. We detected seasonal variations in the concentrations of bacteria. In spring the total count of microorganisms, total coliform and moulds were higher. In workplaces with the highest concentration of microorganisms (coarse treatment, fine mechanical treatment) we detected also antibiotic resistant E.coli with CTX-M1 betalactamase. Resistant microorganisms that exist in bioaerosols in different environments pose hazard to animals and people particularly through exposure to infection antibiotic resistant pathogens or commensals and related potential mortality and failure of therapy.

This study was supported by slovak grant APVV-0028-07.

Keywords CTX-M1, Escherichia coli, bioaerosol
Microbial Screening from Activated Sludge in Degradation of Dimethyl Sulfoxide in Airlift Bioreactor

S. Y. He, K. Y. Hou, and S. C. John Hwang
Department of Civil Engineering and Engineering Informatics, Chung Hua University, Hsinchu, Taiwan

DMSO (dimethyl sulfoxide) is a useful and inexpensive environment benign solvent easy to recycle. Its industry-wide adoption has revealed an odorous problem to the industrial parks and their adjacent residential areas due to its decomposition product, DMS (dimethyl sulfide). Our previous research goal is to develop a feasible biological treatment technology to effectively treat the DMSO into oxidative pathway instead of going to the DMS pathway. We have adopted the specific activated sludge as bacterial inoculums to decompose the DMSO into DMSO2 pathway from the wastewater treatment plant of a DMSO-producing chemical plant. In the performance of airlift bioreactor, the free cell system can degrade the 850-mg L-1 DMSO within 10 hr and has high stability of repeated batch. In this study, we focus on the microbial screening of biological sludge capable of degrading dimethyl sulfoxide (DMSO) in airlift bioreactor were analyzed by using a polymerase chain reaction (PCR-cloning) method. Three different suspension conditions from static and dynamic for biological sludge were examined. The bacteria of the different sludge type were found to be Serratia liquefaciens, Brevibacillus brevis, Ochrobactrum sp., Bacillus subtilis, Pseudomonas sp. and Pseudomonas fluorescens which were previously found as denitrifying bacteria, polyphosphate-accumulating bacteria and phenol-utilizing bacteria. From the supernatant of the static sludge or the dynamic sludge, nine strains which could utilize 0.05% (w/w) DMSO with 0.05% (w/w) methanol were isolated and identified. In addition, the newly isolated Pseudomonas sp. might be the most predominant DMSO-degrading microorganism existing in our airlift bioreactor.

Keywords DMSO (dimethyl sulfoxide); airlift bioreactor; identification; DMSO-utilizing bacteria; PCR-Cloning

Microbiological Indicators of Organic Pollution of Nworie River, in Imo State Nigeria

Agbakwuru, C.W.; Anyanwu J.O.; Onwosi C.O.; and Anoka, R.O.
Faculty of Sciences, School of Postgraduate Studies, Imo State University Owerri, Imo State Nigeria.

Water samples from Nworie River in Imo State were assessed for bacteriological and physiochemical qualities using standard laid down procedure. Some of the results obtained indicated that upstream samples had higher microbial loads than the other sample which were 3.5X105 cfu/ml, 6.2X107 cfu/ml, and 3.0X103 cfu/ml respectively on MacConkay agar, nutrient agar and Sabauraud Dextrose Agar. Micro-organisms identified included Escherichia coli, Staphylococcus aureus, Streptococcus faecalis, Aspergillus species, Mucor sp., and Talaromyces sp. The physiochemical properties of the river gave the value of 5.6, 17.3ms/cm and 4.5mg/l for pH, conductivity and salinity respectively. These qualities could justify the level of human activity on the river and the same time shows that the river has a large contamination index which is unsuitable for portable uses. The aim of this research is to identify and isolate micro-organisms associated with Nworie Rivers as to assess its level of contamination.

Keywords Bacteriological, Physiochemical, Conductivity, Salinity, Contamination.
Molecular assessment of microbial community structure and dynamics along mixed olive oil and winery wastewaters biotreatment

A. Enébio1, M. Tácao2, S. Chaves2, R. Tenereira3, and E. Almeida-Vara1,3

1INEG, Unidade de Bioenergia, Estrada do Paço do Lumin, 22, 1649-038 Lisboa, Portugal
2Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFR), Edificio ICAT, Campus da FCTUL, Campo Grande, 1749-016 Lisboa, Portugal
3BioFR (Centro de Biodiversidade, Genómica Integrativa e Funcional), FCL, C2, Campo Grande, 1749-016 Lisbon, Portugal

The major parcel of biodegradation that occurs during all kind of wastewater biotreatments is performed by microorganisms either from the native microbiota or due to added microbial inocula. Although biotreatments are carefully monitoring along time in order to assure their efficiency, little attention was paid during decades to the microbial community communities and their biomonitoring. Nowadays, a large range of molecular microbiology methods are commonly applied to analyse and compare environmental samples, providing fast and reliable solutions to overcome the bias of culture-dependent methods and allowing a more comprehensive assessment of the microbial community composition and dynamics.

The present work can be considered as a case-study, reporting the biotreatment of mixed olive oil and winery wastewaters. These effluents were chosen, due to their importance in the Portuguese agro-industrial sector, and also to their strong negative impact in the environment.

The experiment was performed in a jet-loop reactor, under aerobic conditions and at room temperature, using native microflora from the crude waste waters as inoculum. Biotreatment was monitored along time, covering the initial start-up phase and the continuous regime, testing two hydraulic retention times (HRT) of 6.0 and 4.5 d. Microbial communities were characterized in samples routinely collected during the biotreatment.

The bacterial community structure was compared using two fingerprinting methods: Temperature Gradient Gel Electrophoresis (TGGE) and Length Heterogeneity-PCR (LH-PCR) analysis of 16S rDNA gene fragments. For TGGE analysis the variable domain V3 of bacterial 16S DNA was amplified using primers 341F-GC and 532R. For LH-PCR analysis, genomic DNA was amplified with a PCR using a fluorescently labeled forward primer 27F (5’-6FAM) and unlabeled reverse primer 532R. TGGE bands were rafamplified and sequenced to identify the community members. Phylogenetic analysis showed the presence of bacteria affiliated with main five phylogenetic groups: alpha-Proteobacteria (40%), beta-Proteobacteria (5%), gamma-Proteobacteria (15%), Firmicutes (20%) and Bacteroidetes (20%). Within these groups, eight genera were identified: Gluconacetobacter, Novosphingobium, Sphingobium, Sphingomonas, Ralstonia, Pelomonas, Lactobacillus, and Prevotella. Bacterial populations have shown strong dominance of Gram- groups among all the biotreatments. LH-PCR analysis distinguished nine predominant fragments (468, 471, 474, 496, 499, 521, 524, 555 and 559 bp) in the sample that presented the highest performance (COD removal rates of 67 to 75%), probably representing the members of the corresponding microbial consortia. Numerical analysis of both TGGE and LH-PCR fingerprinting profiles established five main clusters with similarity coefficients higher than 79% (TGGE) or 62% (LH-PCR), showing that the main shifts observed in the microbial community structure were related with changes in tested HRT conditions.

A bioreactor operation depends upon the microbial consortia ability to grow in this man-modified environment whose physical and chemical conditions are subject to numerous and unpredictable fluctuations, that influences the microflora metabolic functions. In this context, TGGE bands corresponding to the samples collected along biotreatments were correlated with all the environmental data available (TRH, temperature, pH, COD, pO2, Ni and NO3, using canonical correspondence analysis (CCA). Obtained data shows that changes observed on temperature and O2 level were the main responsible for the shifts in microbial consortia composition, during the biotreatment.

Furthermore, several raw effluent samples were tested for their metabolic activities using the “Ecoplate” system (Biologic, Inc). Results revealed the presence of microbial communities with marked degradation of phenolic compounds that can be of potential interest for industries applications.

Acknowledgments This work was supported by the FCT Project MOTIVE (IP/CDT/AMB/56616/2004), FCT post-doc grant for S. Chaves (BPD/20819/2004).

Keywords olive oil wastewater; winery effluent; microbial consortia; TGGE; LH-PCR; Biolog

Morphological and ultrastructural peculiarities of ‘Euhalothece natronophila’ cells under different C, concentrations

O.S. Samylina1, A.G. Markelova2, M.P. Sinetova2 and L.M. Gerasimenko1

1Wigandinsky Institute of Microbiology RAS, Plev-leolety Oktyabr 7/2, 127132, Moscow, Russia
2Timiryazev Institute of Plant Physiology RAS, Botanicheksya str. 35, 122726, Moscow, Russia

‘Euhalothece natronophila’ is extremely halotolerant unicellular cyanobacteria, isolated from soda lake Magadi (Samylina a. Ivanovky, this volume). It obligatorily requires high concentrations of carbonate salts. Cells of ‘E. natronophila’, incubated in high carbonated medium (high-Ci) containing 10 M Na2CO3+NaHCO3, are spherical 2.7-4 μm in diameter. Under conditions of decreased Ci concentration cells transform into so-called imuvl cells which have aberrant morphology: thickened irregular long cylindrical forms up to10-17 (23) × 3.5-4 μm. These cells are pallid and less viable which is indicated also by increase of carotinoids content and decrease of chlorophyll a content in these conditions. According to our data such changes in cell morphology begin under Ci concentration less than 0.8 μM (pH 10) even if there is no osmotic pressure changes and total salinity (S) of medium remains high (because of NaCl adding).

We also found that ‘E. natronophila’ morphology depends on pH of medium. Long cylindrical cells occur if increase to pH 11 in high-Ci conditions. As pH change in carbonate solution influences on CO3-2 and HCO3- correlation, the increase of pH in medium causes decrease of HCO3- according to relation of Henderson-Hasselbalch.

The major parcel of biodegradation that occurs during all kind of wastewater biotreatments is performed by ‘E. natronophila’, which differ in their kinetic properties (Samylina a. Ivanovky, this volume). So it seems to be a good correlation between the formation of imuvl cells and the ability of TS in total to provide a cell with necessary amount of Ci under certain conditions.

E. natronophila is a very serious stress factor for extremely haloalkaliphilic and natronophilic cyanobacterium. So its influence on ultrastructure of ‘E. natronophila’ cells has also to be considerable. To investigate it we used cells incubated in low carbonated (low-Ci) medium (0.5 M CO3-2+HCO3-) with S1 1.8 M, pH 10-10.5 in comparison with control high-Ci-cells (1 M CO3-2+HCO3-) S 1.8 M, pH 10-10.5.

Control cells used as inoculum to both Ci-concentrations are oval. Cell wall layers are clear and there is mucilage perpendicularly to cell surface. Thylakoids are arranged peripherally with a few thylakoids crossing the central part of cell. Inclusions are presented by cyanophycin granules, rare carboxysomes (not over 1-2 per thin section), carbohydrates and other inclusions of different electron density. The interesting peculiarity of ‘E. natronophila’ cells is lamellasomes – polimembrane labyrinth-like structures usually arranged between thylakoids.

Abnormalities in ultrastructure appear already on the 1st day of cultivation under low-Ci conditions. These changes progress later and this enables to mark out several types of cells according to their ultrastructure. Type 1 cells are transparent with fradible thylakoids and big quantity of carboxysomes (till 12 thin section). Cells become larger than control ones and usually have cylindrical morphology with no mucilage around them. Type 2 cells have swollen thylakoids and a lot of lamellasomes. They also have no visible mucilage around cells. Gradually they degrade to the stage where most of the cell contents turn into clots situated near remained thylakoids which surround conglomerates of carboxysomes. Type 3 cells are the most viable as they maintain mostly intact structure. An important peculiarity of low-Ci cells is appearance of additional layer in cell wall. It looks spiral on thin sections and can be solid or in the form of separate scales. All viable (according to ultrastructure) cells in experimental conditions have this additional layer, but if the layer is absent cells degrade.

Morphology of control cells doesn’t change during experiment but their ultrastructural changes in similar way as low-Ci cells. Also 3 types of cells can be distinguished, but type 3 cells prevail over others.

So we see that low-Ci cells and high-Ci cells may be similar destiny during growth, but abnormalities in low-Ci cells are more cruel and need special adaptations such as additional cell wall layer. Also low-Ci cells change their morphology which is answer to stress conditions and may be related to Ci transport into the cell.

This work is financially supported by RFBR №86-04-00804-a, Presidium of RAS Program (“Biosphere origin and evolution”) and Contract with Rosnauka № 02.512.12.0027.

Keywords: ‘Euhalothece natronophila’, morphology, ultrastructure, C, cell wall, thylakoids, carboxysomes.
Morphological changes induced by iron in Chlamydomonas acidophila.
I. Garbayo 1, R. Torronteras 2, E. Forján 1 and C. Vílchez 1

1 Biotechnology of Algae Group (BITAL), Department of Chemistry and Material Sciences, Faculty of Experimental Sciences, University of Huelva, Spain
2 Department of Environmental Biology and Public Health, Faculty of Experimental Sciences, University of Huelva, Spain

Iron is one of the most abundant elements on earth and in the Rio Tinto river, an extreme biotope situated in the southwest region of Spain with a constant very low pH (between 2 and 3), high irradiances, heavy metals and an unexpectedly eukaryotic diversity. Photosynthetic microalgae Chlamydomonas acidophila, natural inhabitant of this environment, has adapted to acidic stress by expressing metal tolerance mechanisms. However, little is known about morphological changes induced in C. acidophila by exposure to sublethal heavy metal concentrations.

In this work we present an ultrastructural study by electronic microscopy of C. acidophila cells to evaluate the effect of iron on cell ultrastructure.

When cells were exposed to Fe$^{3+}$ 0.25, 0.5, 2, 10 and 20 mM, deflagellation was observed and the periplasmalemmal space increased greatly, and also production of mucilage was observed. The most striking modifications of the ultrastructure were seen in the chloroplast and vacuole compartment. C. acidophila showed an increased number of small starch grains taking up almost the whole chloroplast; moreover, lipid droplets were also accumulated inside the cells. Thylakoids resulted apparently unaffected by cell incubation in Fe$^{3+}$ added culture medium. The presence of two pyrenoids reduced in size was observed in those cultures treated with Fe$^{3+}$ 0.5 and 2 mM. In those cell cultures incubated with 10 and 20 mM Fe$^{3+}$ iron, the appearance of a new structure consisted of a non-membranous, spherical electron-dense inclusion was observed in vacuoles. Analysis of chloroplast ultrastructure by electron microscopy in cultures incubated with 2 mM Fe$^{3+}$, revealed the presence of lipoprotein particles called "plastoglobules" in the stroma of chloroplasts that appeared as small black globules in close proximity to thylacoids. At the highest Fe$^{3+}$ concentration added to the culture medium (30mM), structures got severely disrupted and normal cell organelles were often hardly distinguishable. All those ultrastructural changes observed in iron exposed cells could be the result of a bioaccumulation process.

Acknowledgements: This work has been supported by the Ministerio de Educación y Cultura (Proyecto AGL2006-12741) and Junta de Andalucía (Proyectos de Excelencia, AGR-4337).

Keywords: extremophiles, Chlamydomonas acidophila, ultrastructure, iron

Natural populations of dominant species and laboratory cultures of cyanobacteria: comparative analysis of amino acid composition and putative significance for primary consumers in aquatic environments
A.A. Kolmakova, M.I. Gladyshev, N.N. Sushchik and G.S. Kalachova
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russia

Cyanobacteria are a very important trophic link in aquatic environments. During the period of mass cyanobacterial bloom they become the major producers in water ecosystems. Amino acids (AA) are an important component in trophic transfer of matter and energy. However, data on amino acid composition (AAC) of dominant species of natural populations of cyanobacteria is very scarce. Researches address to AAC of phytoplankton much less than to that of polyunsaturated fatty acids because the former is commonly considered to be almost constant in contrast to the latter, as shown for the laboratory cultures. In the present study AAC of dominant species of cyanobacteria in a small Siberian reservoir has been investigated and compared with literature data on laboratory cultures.

We found that the dominant species in seston (> 50% of total biomass) were cyanobacteria Planktothrix agarbii (Gom.) Anagn., Gomphosphaeria lacustris Chod. and Anabaena flos-aquae (Lyngh.) Breb. Our study revealed that cyanobacteria are not biochemically homogeneous according to AAC. Total per cent level of essential AA varied from 46.0 ± 1.3% for Anabaena to 48.4 ± 0.4% for Gomphosphaeria. Gomphosphaeria had the highest level of Ala. Planktothrix had comparatively low level of Phe, but the highest level of Met. Anabaena had no species-specific level of any AA.

Comparing our data with those of laboratory cultures of Anabaena (Ahlgren et al., 1992), we found many similarities. Levels of Leu, Val, His, Ala, Gly, Pro, Ile and Thr of the laboratory cultures and the field populations were practically the same. These similarities seemed to support our approach when attributing the biochemical composition of seston samples to dominated cyanobacterial species of the high biomass. Nevertheless, there were some differences in the AAC of the laboratory culture and the field population. Level of Asp in the field population was slightly lower, than those in the laboratory culture. The natural population had significantly higher levels of Lys and Arg, and lower level of Phe, and especially Met and Tyr, than the laboratory culture.

The revealed species specific peculiarities of amino acid composition of the dominant freshwater cyanobacterial taxa may be conditionally limiting factors for the primary consumers.

Keywords: Cyanobacteria, amino acid composition, aquatic ecosystems
Neutonomous versus epiphytic bacteria of eutrophic lake and their ability to biodegradation of insecticide deltamethrin

A. Kalwasińska¹, J. Keyš², W. Donderski³

¹ NICOLAU COPERNICUS UNIVERSITY, Institute of Ecology and Environmental Protection, Department of Water Microbiology and Biotechnology, Gagarina 9, 87-100 Toruń, Poland
² NICOLAU COPERNICUS UNIVERSITY, Institute of General and Molecular Biology, Department of Plant Physiology and Molecular Biology, Gagarina 9, 87-100 Toruń, Poland

A layer separating the atmosphere from the water, called the surface microlayer is a specific type of environment, differing clearly from subsurface water both in physical properties and in the chemical and biological composition. Organisms like bacteria, algae and small animals living there are called neuston. The forces of adhesion occurring at the border of the two environments – water and air – contribute to existence of this microlayer. Because of the high concentration of organic substances occurring in the microlayer, both autotrophic and heterotrophic bacteria find optimal conditions for growth. Persistent organic pollutants (POPs) of anthropogenic origin, such as: pesticides, polynuclear aromatic hydrocarbons (PAHs), or polychloro biphenyls (PCBs) tend to hyperaccumulate in that zone.

Epiphytic bacteria grow on aquatic macrophytes with their greatest numbers occurring in littoral zones of water bodies; this zone is particularly affected by pesticides due to the proximity of farmland. It was demonstrated that only 1-3% of the applied dose of pesticide reaches its target. The majority of the applied compound is wasted and reaches surface waters through runoff, gets dispersed by wind over vast surfaces, or evaporates.

Deltamethrin is a pyrethroid insecticide used widely in agriculture, including vegetable, fruit, and ornamental plant farming, and in forestry to control gnawing and sucking pest. It is a contact and systemic neurotoxin that strongly affects neurotransmitters in the central and peripheral nervous system.

Decomposition of pesticides by microorganisms is an essential process in affecting the fate of pesticides in the environment, finding applications in bioremediation. Microorganisms are highly effective in transforming organic pollutants and modifying their structure and toxic properties; furthermore, they can completely mineralize organic compounds to non-organic products.

This study evaluated biodegradation of the insecticide deltamethrin (1 µg²) by homogeneous cultures of neutonomous (n=25) and epiphytic (n=25) bacteria and by heterogeneous cultures (n=1), which consisted of a mixture of 25 bacterial strains isolated from the surface microlayer (SM=250µm) and epidermis of the Common Reed (Phragmites australis, (Cav.) Trin. ex Steud.) growing in the littoral zone of eutrophic lake Chełmżyńskie (central Poland).

Results indicate that neutonomous and epiphytic bacteria are characterized by a similar average capacity to decompose deltamethrin. After a 15-day incubation, bacteria isolated from the surface microlayer reduced the initial concentration of deltamethrin by 60%, while the average effectiveness of the bacteria found on the Common Reed equaled 47%. It was demonstrated that Burkholderia cepacia sp. among neutonomous bacteria and Pseudomonas luteola as well as Aeromonas hydrophila among epiphytic bacteria were the most efficient in reducing the concentration of deltamethrin.

Nitrification potential in three different kinds of the Ariake sea sediment and water

Alim Isnansetyo¹,², Masahiro Seguchi¹,³, Masumi Koriyama¹

¹Ariake Sea Research Project, Saga University, Honjo 1, Saga 840-8502, Japan.
²Department of Fisheries, Faculty of Agriculture, Gadjah Mada University, Jl. Flora, Bulaksumur, Yogyakarta 55182, Indonesia.
³Laboratory of Environment of Shallow Sea and Tidal Flat, Department of Agricultural Sciences, Faculty of Agriculture, Saga University, Honjo 1, Saga 840-8502, Japan.

The Ariake Sea located in the west part of Kyushu Island, is a semi-closed shallow sea with macro-tidal and the largest tidal flat in Japan. The sand, silt and mud sediments develop in the different parts of this tidal flat. In this study, we determined nitrification potential rate (NPR) of the sediments and water above the sediments by determining the accumulation of NO₂⁻ to NO₃⁻. Pore water and water geochemistry were analyzed. Results indicated that in the range of 0-9 cm sediment depth, the NPRs did not correlate to the depth of the sediment sample. NPRs of silty sediment were comparable to that of sandy sediment, but sandy sediment showed much lower NPRs than two other sediments. NPRs of silty, muddy and sandy ranged 7.3-21.1, 12.1-31.7, 0.24-2.9 mmol N/g dry weight sediment (DWS)/h, respectively. NPRs of water also showed the similar pattern to those of sediments. NPR of water above muddy sediment was comparable to that of silty sediment. However, much lower NPR was found in the water above sandy sediment. The densities of ammonium-oxidizing bacteria in sandy sediment and ammonium concentration in its pore water were lower than those of two other sediments. These results suggested that NPRs in the Ariake sea have correlation to the density of ammonium-oxidizing bacteria and the geochemistry of sediments and water, especially NH₄⁻N concentration. It is the first report providing the nitrification potential of water and different kinds of sediment from the Ariake sea mud sediment.

Keywords: Nitrification, the Ariake sea, tidal flat, water, sediment, geochemistry.
Nitrogen isotope composition of particulate organic matter (POM) in Lake Kinneret, Israel

O. Hadas1, and M. A. Altabet2
1Israel Oceanographic & Limnological Research, Yigal Allon Kinneret Limnological Laboratory, Migdal P. O. Box 447, 14950, Israel
2School for Marine Science and Technology, University of Massachusetts, New Bedford, MA, 02744

Particulate organic matter collected seasonally throughout the water column of Lake Kinneret exhibited large excursions in POM delta15N in response to the seasonal sequence of dominant N cycle processes in the lake. The nitrification period, during Dec-Jan water column destratification, was characterized by low POM delta15N (as low as -2‰) due to the preference for 14N-NH4 by ammonia oxidizing bacteria leaving water column NH4+ enriched in 15N. Low delta15N POM (and DON) was detected during summer - fall nitrogen fixation period with strong thermal stratification and undetectable DIN in the euphotic zone. The highest delta15N POM values (25‰) were measured during the spring algal bloom and subsequent denitrification period due in part to degradation and mineralization of organic matter but also algal uptake of DIN high in delta15N. delta15N analysis provides a clear 'tag' for the seasonally changing importance of these different N cycle processes. At chemoclines (interfaces), chemoautotrophic processes dominate and low POM delta15N as well as delta13C is localized to this stratum due to strong isotopic discrimination in the uptake of DIC and DIN by chemosynthetic bacteria. delta15N and delta13C measurement provides and ideal tool for locating of the chemocline and identifying the dominant biogeochemical processes associated with it.

Keywords Nitrogen isotopes; Lake Kinneret; POM

Optimization of reaction conditions in binding of magnetic nanoparticles over Flavobacterium ATCC27551

Robatjazi Seyed Mortaza, Shojaosadati Seyed Abbas, Khalilzadeh Nassir, Vasheghani Farahani Ebrahim
Biotechnology Group, Chemical Engineering Department, Faculty of Engineering, Tarbiat Modares University, P.O Box 14115-143, Tehran, Iran.

The unique properties of nanoparticles are allowing their application in modification of microbial cells. Superparamagnetism of magnetic nanoparticles (MNP) is useful for applications requiring manipulation of MNP by a magnetic filed. Microbial cells can be magnetically modified by the non-specific attachment of MNP. Alternatively, the modification of cells can be performed by binding paramagnetic cations on acid groups on the cell surface. In many cases the attached magnetic particles or ions do not have a negative effect on viability and phenotype alternation of modified cells. Magnetically modified cells can be immobilized by internal or external magnetic field. Moreover, cells bound on magnetic particles can be stably stored for a long period of time without loss of magnetically propery and repeatedly used in process. The microbial degradation of hazardous waste offers a promising strategy by which some wastes may be economically and safely detoxified. Microbial processes can yield precise products, function at low concentrations of substrate, and require relatively low levels of technology for construction and maintenance. Organophosphate compounds such as the insecticide parathion (O, O-diethyl-O-4-nitrophenyl phosphorothioate) are degraded by some of bacteria and microbial enzymes. Pseudomonas diminuta MG and Flavobacterium sp. (ATCC 27531) have the ability to degrade a broad spectrum of organophosphorous triesters by virtue of a constitutively expressed organophosphorous hydrolase.

In this study, Flavobacterium ATCC 27551 was used as a model for preparing of magnetic biocatalysts. The magnetic modification of cells was carried out with carboxylate and amino-modified magnetic nanoparticles for covalent linkage to the cell surface. Also, ferromagnetic nanoparticles were used for ionic adsorption on the cell surface. Magnetic modified cells were concentrated by a magnet and exhibited an organophosphates hydrolyzing activity. Binding of magnetic nanoparticles over Flavobacterium ATCC27551 were optimized by Taguchi method. SEM analyses demonstrated the linking of magnetic nanoparticles on Flavobacterium ATCC 27551 cell surface. The results showed that in optimum condition it is possible to make a magnetic cell with 93, 89 and 95% conservation of specific activity compared to native cells in covalent coupling by carboxylate and amino-modified magnetic nanoparticles and ionic adsorption by ferrofluids, respectively.

Keywords: Flavobacterium ATCC27551 -magnetic nanoparticles- magnetic cell - organophosphates
Pepton hydrolysates of silver carp (*Hypophthalmichthys molitrix*) head as a nitrogen source for *Aeromonas salmonicida* and optimization using Central Composite Design (CCD) and Response Surface Method (RSM)

Reza Safari1, Mohammad Reza Saeidi Asl2, Hasan Nasrollazadeh1

1Iranian Fisheries Research Organization, Caspian Sea Ecology Research Center, Sari, Mazandaran, Iran, PO Box 961
2Islamic Azad University of Sabzevar, Sabzevar, Iran, PO Box 9618814-711

Peptone obtained by enzymatic hydrolysis with Protamex of silver carp (*Hypophthalmichthys molitrix*) head waste were used instead of the standard peptones used in commercial Tryptic Soya broth (TSB) media for *Aeromonas salmonicida*. Peptones produced Protamex had a 75% degree of hydrolysis. Optimization of the used peptone as culture media was also done using Central Composite Design (CCD) and Response Surface Method (RSM). Batch experiments were conducted to monitor *Aeromonas salmonicida* growth for duration of 24 hours. A full factorial Central Composite Design of experiments was used to construct second-order response surfaces with the bacterium growth as dependence parameter. The head peptone concentration and the retention time were used as design factors. Adjustment of the quadratic model with the experimental data was satisfactory. Analysis of variance showed a high coefficient of determination value (0.950). It was possible therefore, to develop the empirical equations describing and predicting the optimize value. Results also were shown that enzymatic-modified fish by-products can be used as low cast nitrogen source for bacterial growth.

Keywords: silver carp; peptone; protamex; Response surface method; central composite design

Photocatalysis / biotreatment coupling for the removal of biorecalcitrant compounds

S. Yahiat1,2, F. Fourcade1,2, S. Brosillon3, A. Amrane1,2

1Université Rennes 1, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France
2Université Européenne de Bretagne
3Université de Montpellier 2, LGPB UMR Cirad 16, 2 place Eugène Bataillon, 34095 Montpellier Cedex 5, France

With the development of intensive agriculture and industrial activities, an increasing amount of chemical compounds including pesticides (insecticides, fungicides, weed killers), antibiotics...is employed. As a consequence, more and more toxic and non biodegradable compounds accumulate in natural waters and their concentrations levels could reach beyond the standards fixed by the European authorities. Hence, it became a necessity today to treat these polluted waters. For this purpose, many techniques exist, including physical treatments (such as adsorption on activated carbon) or chemical ones (oxidation processes). Such processes just transfer the pollution or are relatively expensive.

More efficient and cost-effective processes have been considered, such as the coupling of Advanced Oxidation Process (AOP) and biological treatment (Scott and Ollis, 1995), which is justified by the need to reach a total mineralization of pollutants at lower costs with short processing times. For concentrated effluents (unused treatment solutions, spray, machine and pesticide container washing, industrial wastewater), integrated process involving photocatalysis and biological treatment was considered in this study. It was applied to the elimination of antibiotics (Tetracycline and Tylosine), pesticides (Cyproconazole, Isoproturon, Dimethoate), synthetic hormones (Ethynylestradiol) and even plasticizers (Bisphenol-A). The effluent containing the target organic compound is firstly pretreated by photocatalysis in order to decrease its toxicity and increase its biodegradability. The irradiated effluent is then treated by biological way in order to ensure the mineralization of the remaining products after the photocatalysis step. One of the key parameters that should be optimized is the irradiation time during the photocatalysis step. Indeed, the objective is to reduce the concentration of the target molecule until reaching negligible toxicity towards bacteria, while increasing as high as possible the biodegradability of the irradiated solution, which can be monitored through the measurement of the BOD. To ensure sufficient organic material for the subsequent biological treatment, a low mineralization rate should be achieved, which can be monitored through the measurement of the total organic carbon (TOC). The Chemical Oxygen Demand (COD) on TOC ratio (COD/TOC) evolution allowed following the oxidation state of the considered molecules. The irradiated effluent obtained is subsequently biologically treated.

Keywords: Biorecalcitrant pollutants; integrated process; Photocatalysis; Biodegradability; Toxicity.

References

Procaryotic biodiversity in anaerobic digester treating municipal solid waste

J. Cardinali-Rezende1,2, J. L. Sanz3, E. Chartone-Souza1 and A.M.A. Nascimento2

1 Departamento de Biología Molecular, Universidad Autónoma de Madrid, c/ Darwin 2, 28049, Spain
2 Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31.270-901, Brazil

Millions of tons of municipal solid waste (MSW) are daily produced worldwide. Two of the greatest challenges of our society are to reduce the organic pollutants released and to increase the energy production from renewable sources. Biomethanization (anaerobic digestion) of the organic fraction (OF) of the MSW becomes a good solution to resolve both problems. Anaerobic digestion comprising various stages: hydrolysis, fermentation, acetogenesis and methanogenesis, and it is the consequence of the combined and coordinated metabolic activity of bacteria and archaea. The use of molecular tools to biomonitoring digesters is an excellent approach to know the microorganisms present during the process which later can be useful improving the efficiency of organic matter degradation, methane production and stability of the process. To extending our understanding on the biomethanization process, the bacterial and archaean biodiversity of an anaerobic digester treating OF-MSW was identified and quantified by rRNA-based complementary methods: Fluorescence in situ hybridization (FISH), cloning, amplified ribosomal DNA restriction analysis (ARDRA) and sequencing of 16S rDNA. The sample was collected from a Continuously Stirring Tank Reactor (CSTR) treating the OF-MSW operating for one year at 35°C (mesophiles), and pH around 6.5 to 7.5 at Madrid (Spain). For FISH, hybridization was performed using the universal probes EUB338 and ARC915 for bacteria and archaea respectively, and NON138 as negative control. The total cells present in the samples were determined by direct counting DAPI stained cells. For clone libraries construction, total DNA was extracted from approximately 1g of digested OF-MSW and used to bacterial and archaean 16S rDNA amplification by PCR. Amplicons were purified and cloned into the PGEM-T vector. Plasmids containing 16S rDNA were extracted and screened by ARDRA using the endonuclease BstClI. Clones with the same restriction pattern were grouping together and one representative was sequenced and analyzed. The number of microorganisms reached 4,3x10⁹ cells (total DAPI stained cells/g OF-MSW digested). Of those, 80-85% corresponded to the domain Bacteria and 15-20% to Archaea. Several morphologies: rods, long bowed rods and cocci were visualized. The bacterial and archaean libraries were obtained with successful. ARDRA screening showed 19 and 20 different bacterial and archaean patterns, respectively. Although the ARDRA analysis shows an apparent high biodiversity, this can be only accurately confirmed by phylogenetic analyses of the 16S rDNA sequences. The amplicons are being presently sequenced and the results will be presented in the Congress.

Keywords Anaerobic digester . Municipal solid waste . 16S rDNA . Clone library . ARDRA . FISH.

Support by FAPEMIG and FINEP

Production of Prodigiosin for Serratia marcescens in Residues Agro industrials

Helvia W. C. Araújo1,2,3, Adriana A. Antunes3,4, Alicia M.A.T. Jara1,3, K. Fukushima1, and Galba M. Campos-Takaki2

1Doutoranda RENORBIO, Rede Nordeste de Biotecnologia, Recife, PE, Brasil;
2Departamento de Química, Universidade Estadual da Paraíba (UEPB), Campina Grande, Paraíba, PB, Brasil;
3Universidade Católica de Pernambuco (UNICAP), Núcleo de pesquisa em Ciências Ambientais (NPCIAMB), Recife, PE, Brasil;
4Doutoranda em Ciências Biológicas, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brasil
e-mail- takaki@unicap.com.br

Prodigiosin is an antibiotic, characterized by the biosynthesis of the red pigment known by tripyrrole, produced by several bacteria’s mainly Serratia marcescens. This pigment is a due promising drugs your characteristics antifungal, antimicrobial, antitumor and immunosuppressive. The present work had as objective the production and identification of the prodigiosin for S. marcescens in medium agro industrials. The sample was isolated of the soil of plantation of banana trees in the state of Pernambuco and deposited in the NPCIAMB/UNICAP-PE. The bacterium was sowed in Petri plates in medium of residues agro industrials: cassava flower (6%) and corn step (6%) added of 2% of mannitol, at 24-48 hours to 28°C. The pigment was isolated and purified by thin-layer chromatography (TLC), with plates of silica gel, and soon after for a column chromatography of (50.0 x 1.0 cm). The production of the pigment was of 357mg/l and 495mg/l using cassava flower and corn step respectively and using broth medium the production in Erlemeyer flasks of 250ml with 100ml of variables 23 - 27 µg/ml in the static for cassava flower and corn step. For the confirmation of the pigment prodigiosin the following analyses were used: spectrophotometer UV and antimicrobial for biological chromatography using plates inoculated with Bacillus subtilis. In the present study, the production of the prodigiosin were satisfactory, when was submitted to the medium with agro industrials residues economically viable in terms of the yield prodigiosin, the extracted pigment presented activity antimicrobial.

Keywords: prodigiosin, Serratia marcescens, cassava flower, corn step

Supported by CNPq, CAPES and FACEPE.
Prokaryote-Virus Coexistence Model in the Deep Ocean

Katsuyuki Inoue1, Chiura X. Hiroshi1, Seiko Hara2, Susumu Yoshizawa1, Hideaki Nomura3, Masahiko Nishimura1, and Kazuhiro Kogure1

1Ocean Research Institute, the University of Tokyo, Tokyo, Japan.
2Department of Comparative Culture, Miyazaki International College, Miyazaki, Japan.
3Vas. Sofias 12, 67100 Xanthi, Greece.

In the deep (≥3000 m depth) ocean, there are approximately 105–106 cells of prokaryotes and 105–106 particles of viruses per mL, and almost all biomass consists of heterotrophic prokaryotes. More than 95% of the organic matter are smaller than 700 nm in diameter, and comprise various non-living particles, prokaryotes and viruses. These organic matter, prokaryotes and viruses can be treated as particles. The carbon concentration of the organic matter in the deep ocean is about 40 μM [1], which is extremely low to sustain active growth of prokaryotes, and the estimated age of the organic matter based on 14C is 4000–6000 y [1]. More than 80% of the decay of prokaryotes in the deep ocean are caused by the viral lysis [2]. How quickly do prokaryotes grow, and how quickly are prokaryotes lysed by viruses in the deep ocean? How can prokaryotes and viruses coexist in the deep ocean? As indispensable factors for the propagation of prokaryotes and viruses, the interaction between prokaryotic and organic matter and/or viral particles are important. The interactions would mainly be collisions between each particle. We hypothesised that these interactions depend on the collision frequency between prokaryotes and organic matter and/or viruses. At a simple calculation based on solely Brownian motion, the vertical movement of prokaryotic cells might be negligible.

The purpose of this work was to answer these questions by constructing a model.

To estimate the sedimentation velocity of prokaryotic cells, we measured the buoyant density of the cell instead of measuring the mass, since the mass of one cell is too small to measure directly. The buoyant density of the prokaryotic cell was 1.047–1.087 g cm−3. From this value, we estimated that the cell sinks at a rate of 0.10–100 μm h−1 in the seawater (1.027 g cm−3) [3]. This sedimentation movement increased the collision frequency between prokaryotes and organic matter (500 μm) to 1.4-folds, however, it did not affect the frequency between prokaryotes and viruses [3]. In the deep ocean, the doubling time of prokaryotes was estimated as 6.0–10 y under the assumptions of the sedimentation (100–10 μm h−1), carbon mass of the cell (10 fg) [4], and the cell number (105 cells mL−1). This value is comparable to the estimation of the number of prokaryotes (4800 y) [1].

Then, we constructed a model with various growth rates of prokaryotes. In the model, three types of prokaryotes (A, B, and C) and three types of virus (X, Y, and Z), whose host is A, B, and C, respectively, are considered. Prokaryote A and B are heterothallic and C is autothallic. The doubling time of A, B, and C are assumed to be 1.0 y, 1.5 y, and 120 d, respectively. Prokaryote A assimilates Y and Z, and B assimilates X and Z, when heterotrophic prokaryotes collide with viruses. A, B, and C are spontaneously infected by X, Y, and Z, respectively when viruses collide with their host prokaryotes. All the prokaryotes are supposed to burst at 1.5 doubling time of the recipient cell after infection. The number of prokaryotes and viruses, and the Shannon’s diversity index of 300 years were examined in this model. As a result, all prokaryotes are able to coexist with viruses throughout the examined period (prokaryotes: 0.3–1.5×105 cells mL−2; viruses: 0.1–6.0×106 particles mL−3), and at the same time, the Shannon’s diversity index of both prokaryotes and viruses were also maintained (prokaryotes: 1.0–1.6, viruses: 0.5–1.6).

In conclusion, this is the first report of the prokaryote-virus coexistence model in the deep ocean by treating prokaryotes, viruses, and organic matter as particles and by taking into consideration the sedimentation velocity of prokaryotes.

References

Keywords: prokaryotes; viruses; increase and decrease; diversity; deep ocean.
Pseudomonas arsenicoxidans sp nov., arsenite-oxidizing strain, isolated Atacama desert

VL. Campos1,2, C. Valenzuela1, P. Yarza1, P. Rossello-Mora1, P. Kämpfer4, C. Zaror, MA. Mondaca1

1Microbiology Department, Biological Science Faculty, Concepcion University. Chile.
2EULA-Chile Center, Concepcion University. Chile.
3Marine Microbiology Group, Institut Mediterrani d’Estudis Avançats (CSIC-UIB), Esplugues, Spain.
4Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany.

A Gram-negative, aerobic bacterial strain, designated VC-1, was isolated from sediments samples from Camarones valley, Atacama Desert. This sector presents high arsenic concentration, both water (10000 µg/L) and sediments (550 µg/L). This strain was able to tolerate 5 mM As(III) and was able to oxidize the 100% of arsenite present in the medium, 1.77 µg/ml1 h-1 after 48 hours of incubation, using lactate as carbon source (Figure 1). Oxidation assays, were evaluated by HPLC/HG/QAAS. In addition aos genes, gen essential for arsenite oxidation, were detected by PCR. In order to check first for the identity of the new isolate, we studied the phylogenetic affiliation based on 16S rRNA gene sequence comparisons. For this, bacterial DNA isolation, PCR amplification using the pair of primers GM3 and GM4 and sequencing of the 16S rRNA gene were carried out as previously described. For further taxonomic studies we used the reference strains obtained from the Swedish collection of microorganisms CCUG. In order to clarify the genealogy of the new isolate, we performed a MLSA by using four additional housekeeping gene sequences (ITS, gyrB, rpoD, fusA, recA) were obtained for all the studied strains. Tree topologies were computed and validated by the use of the different algorithms. Bootstrap values were performed by using the program PHYML with a total of 100 replicates. The resulting tree shown in figure 2, indicates that the strain VC-1 forms an isolated branch within the set of strains studied, and results in accordance with the previous 16S rRNA gene sequence tree reconstructions. In order to prove that the strain VC-1 was representing a new species of *Pseudomonas*, we performed DNA-DNA hybridization experiments (DDH) as previously described. The levels of DDH similarity between the new isolate and the type strains selected were shown in table 1. In all cases, the results were below 63.5%, as an indication that the strain could be classified as a new taxon. In addition, we studied the fatty acid profiles of VC-1. All strains were simultaneously grown at 28°C for 2 days on Trypticase Soy agar (TSA) prior to analysis. The different patterns observed did not differ very much among each other. The most remarkable features in the profiles were the common high abundances of the fatty acid C16:0, and that the new isolate VC-1 showed a differentially high presence of C17:0 cyclo. The complete set of taxonomic determinations indicated that VC-1 formed an independent line within the *Pseudomonas senso stricto*, and was different enough from its closest relatives by means of both genetic and phenotypic characters to be classified as a new species of the genus. We therefore propose the strain VC-1 to be the type strain of the new species *Pseudomonas arsenicoxidans* sp. nov. Finally, the significative oxidation capacity shown by VC-1 strain opens the way to further studies aimed at implementing biological systems to treat arsenic rich wastewater.

Keywords: arsenite-oxidizing, *Pseudomonas arsenicoxidans*

Quantification and microbial toxicity testing of pharmaceuticals in tropical marine sediments, All Saints Bay, Bahia, Brazil

M. Beretta, L. Wessels Perelo, and L. B. Oliveira

UFBA - DEA, Department of Environmental Engineering, Federal University of Bahia, Rua Prof. Aristides Novis 02, 40210-910 Salvador, Brazil

Pharmaceuticals in the environment have gained increased attention during the last decade. The main routes by which these compounds enter aquatic ecosystems are municipal wastewaters, but they are also introduced to the environment by disposal of unused or expired medicines, wastewater from manufacturers and landfill leachates. As pharmaceuticals are developed to have some kind of biological function and persistence in the organisms applied to them, they also have a potential to bioaccumulate and induce effects in aquatic and terrestrial ecosystems. Monitoring studies have shown that pharmaceuticals and their metabolites are very resistant to most water treatment techniques and are present in all kinds of aquatic systems. Biodegradation by microorganisms is the main mechanism to eliminate organic compounds from the environment. The main groups involved in degradation processes are bacteria and fungi, the latter being predominant in soils, while bacteria are of major importance in the aquatic environment, including wastewater treatment. Bioactive compounds as pharmaceuticals may have toxic effects on bacteria, especially the antibiotics that are designed to combat bacterial diseases and therefore may interfere with the degradation processes of these substances in the environment. Data on toxic effects of pharmaceuticals on sediment bacteria are necessary to evaluate the fate, persistence and thereby the risk inherent to these compounds in the environment.

In Brazil, data on the presence of pharmaceuticals in the aquatic environment are still scarce, while the consumption of these compounds suffers little control and disposal of expired drugs is indiscriminate. The Brazilian government does not make demands on security or quantity limits regarding the discharge of pharmaceuticals to water bodies. Most of the data available refer to the subtropical South of Brazil. Pharmaceuticals present in tropical marine sediments were quantified in the All Saints Bay (BTS), Salvador, state of Bahia, for the first time during this year. Seventeen sampling points were chosen and the following compounds were detected (in order of frequency of appearance): Atenolol (100%), Ibuprofen (100%), Diclofenac (94%), Diazepam (64.7%), Carbamazepine (41%), Erythromycin (29.4%). The concentrations ranged from less than 0.10 to 18.84 ngg-1 dry weight).

Parallel to the quantification of pharmaceuticals in the sediments, we have started to screen the toxic effects of the identified compounds to sediment bacteria, using plate count techniques, and the data on microbial toxicity testing will be presented at the International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009).

Keywords: pharmaceuticals; tropical marine sediment; microbial toxicity

Figure 1 Growth in a chemically defined medium containing arsenite (500 µg/ml) of VC-1 strain. Arithmetic concentration: arsenite concentration.

Figure 2 Tree reconstruction based on the concatenated alignment of all six genes included in the MLSA approach and listed in table X. The alignment of 4843 homologous positions was used to calculate the tree by using the maximum likelihood algorithm as implemented in the ARB program package. The tree topology was identical to that reconstructed with PHYML and RAXML. Bootstrap values were calculated after 100 tree recomstructions.
Red pigments producing novel marine bacterial species *Zooshikella rubidus* S1-1

Jong Suk Lee1,2, Yong-Sook Kim1, Sooyeon Park1, Jihoon Kim1,4, So-Jung Kang1, Mi-Hwa Lee1,4, Sangryol Ryu1, Jong Myoung Choi1, and Jung-Hoon Yoon1,4

1Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-333, Korea
2College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea
3Department of Fashion Design Information, Chungbuk National University, Chungbuk 361-763, Korea
4University of Science and Technology, Daejeon 305-333, Republic of Korea

A marine Gram-negative, red-pigment producing bacterial strain, designated S1-1T, was isolated from tidal flat sediment of the Yellow Sea, Korea. On the basis of phenotypic properties, phylogenetic distinctiveness and genetic data, strain S1-1T was classified as a novel *Zooshikella* species, for which the name *Zooshikella rubidus* sp. nov. was proposed.

The red pigments of the strain S1-1T were identified as prodigiosin, cycloprodigiosin, and two novel compounds containing seven prodigiosin analogues by LC-MS/MS analysis. The strain S1-1T was produced both prodigiosin and cycloprodigiosin as a major metabolite. These compounds have broad spectrum antimicrobial activity and anticancer activity against human melanoma cell. Especially, cycloprodigiosin show about two times higher antimicrobial activity against *E. coli* and *S. aureus*. The red pigments treated fabrics showed more than 91% growth reduction activity against *E. coli* and *S. aureus*.

Keywords: marine bacteria; *Zooshikella rubidus*; prodigiosin; cycloprodigiosin; LC-MS/MS; antimicrobial; anticancer

Relationships between hydrophobicity and biofilm formation in *Streptococcus agalactiae* strains

V. Giunmarru, M. C. Scuderi, G. Tempera, L. S. Roccsalva, and P. M. Furneri

Department of Microbiological and Gynaecological Sciences, University of Catania, Italy

Background: *Streptococcus agalactiae* GBS, is a human pathogen, that as recently demonstrated from us forms biofilms in vitro with variable efficiency [Roccsalva L.S., et Al. Giorn. It. Ost. Gin. 30: 301-306, 2008]. Aim of this study was to investigate the relationships between hydrophobicity and the ability of GBS to form biofilm.

Methods: 20 strains of GBS were investigated for the purpose. All the strains were identified by means of biochemical and molecular tests. Biofilm experiments were performed in 96-well polystyrene microtiter containing broth medium. Experiments were performed in unmodified atmosphere and Todd-Hewitt Broth (THB). Increasing concentrations of glucose (1 g/L, 25g/l, 50g/l, and 75 g/l) were also investigated for their influence on both hydrophobicity and biofilm production. The quantitative measurements was achieved by means of colorimetric methods using crystal violet. The optical density of the biofilm was measured at 570 nm (OD570) by the calculation of biofilm index (BI), the cut-off was established at OD 0.061. The strains were then divided by means of BI into four categories: no producers (BI < 0.061), low producers (BI > 0.061 and < 0.120), moderate producers (BI >0.121 and < 0.300, and heavy producers (BI > 0.300). The hydrophobicity was investigated by using the hexadecane test, and expressed as percent of hydrophobicity

Results: By varying the concentration of glucose in the culture medium, the hydrophobicity varied little in most cases, nevertheless the BI increased with increasing concentration of glucose. Most of the strains had a hydrophobicity index of > 80%. We have not found any correlation between hydrophobicity and biofilm formation (for the same hydrophobicity, there are strains with very different BI), in our experimental conditions

Conclusions: We can conclude that biofilm formation in GBS is not correlated with hidrophobicity.

Keywords: *Streptococcus agalactiae*, hydrophobicity, biofilm
Response of Pseudomonas to low iron concentrations in presence of sodium benzoate

Teja Gaonkar and Saroj Bhosle
Department of Microbiology, Goa University, Taleigao Plateau, Goa – India, 403 206

Iron is an essential element for most microorganisms, owing to its importance in a variety of biochemical reactions, including respiration, photosynthetic transport, nitrate reduction, chlorophyll synthesis, nitrogen fixation and detoxification of oxygen radicals. Despite being the fourth most abundant element in the earth’s crust, iron is frequently a growth limiting nutrient. In aerobic environment and at physiological pH, iron is present in the ferric state and forms insoluble hydroxide and oxyhydroxide precipitates. Bacteria have evolved several different mechanisms to acquire this essential nutrient. The most common acquisition mechanism is the use of low molecular weight, high affinity chelators termed siderophores.

Coastal sand dunes are stressed and extreme environments in terms of nutrient availability. Siderophore producing isolate TMR2.13 identified as Pseudomonas was isolated from the rhizosphere zone of Ipomea pes-caprae found along the coastal areas of Goa - India. The isolate was found to be a strong siderophore producer as revealed by the Chrome azurol sulphonate (CAS) plate assay. Furthermore, its pigment production was studied in a nutrient rich and a defined Mineral salts medium (MSM) supplemented with glucose or benzoate as the sole carbon source and in presence and absence of iron. The isolate was found to produce varied pigment patterns when grown in above mentioned media. The pigment production was studied by UV-Visible spectrophotometry of the culture supernatants. Effect of various iron concentrations on pigment production revealed that the isolate did not produce pigment when FeSO4 was supplemented at a concentration above 15mg/L. Interestingly, the pigment produced in MSM in absence of added iron showed absorption maxima at 400nm. The effect of media and carbon sources on the production of pigment, on probable siderophore and the effect of iron on growth and pigment production in presence of benzoate will be presented.

Keywords siderophore; sodium benzoate; Pseudomonas; chrome azurol sulphonate

Responses of aquatic microbial decomposers to inorganic nutrients in a warming scenario

I. Fernandes, S. Seena, C. Pascoal, F. Cássio
Molecular and Environmental Biology Centre (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal

The Intergovernmental Panel on Climate Change (IPCC, 2007) projected that the global temperature is expected to rise between 1.1 °C and 6.4 °C till the end of this century. The climate models indicate that the temperature changes in Northwest Europe will entail increased drought periods followed by intense rainfalls. Therefore, nutrient inputs to freshwater ecosystems from the surrounding terrestrial soils are expected to increase, enhancing eutrophication. The aim of this study was to examine the interactive effects of temperature and inorganic nutrients on organic matter turnover and activity of the associated microbial decomposers in streams. Freshly fallen leaves were immersed in a reference stream in the Northwest Portugal, during 10 days, to allow microbial colonization and then were exposed in microcosms to 6 levels of nitrate (0.09-5 N-NO₃ mg L⁻¹) and 3 levels of phosphate (0.003-0.3 P-PO₄ mg L⁻¹), alone or in all possible combinations. One set of microcosms was kept for 19 days at a temperature typically found in the stream during autumn (12 ºC) and the other at 18 ºC to simulate a warming scenario. The increase in temperature stimulated microbial activity on decomposing leaves, assessed as fungal biomass and sporulation, and enhanced leaf mass loss. At both temperatures, microbial decomposition of leaf litter was augmented by increased nitrate concentrations, but not by phosphate. Increased nutrient concentrations stimulated fungal biomass and sporulation and a hump-shaped relationship between nitrate concentration and fungal biomass or sporulation was found at the highest temperature. This suggests that high nutrient concentrations may limit fungal growth and reproduction under the predicted warming scenario. However, moderate nutrient inputs in streams might enhance microbial activity leading to faster leaf decomposition and nutrient turnover.

Keywords leaf decomposition, microbial decomposers, inorganic nutrients, warming, streams

Acknowledgements The Portuguese Foundation for Science and Technology supported this work (PTDC/ CLI/67180/2006) and I. Fernandes (SFRH/BD/42215/2007).
Robust microbial community for treatment of ammonium-rich wastewater

T. A. Vishnivetskaya and T. J. Phelps
OAK RIDGE NATIONAL LABORATORY, 1 Bethel Valley Rd., Oak Ridge, Tennessee 37831, USA

Water and sediment samples were collected along the flow path of a pilot-scale ammonia purification system (Fig. 1), which was designed for biological removal of 5 mg per liter ammonium from wastewater. Samples, including background samples, were collected 3 times: during equilibration of the system or 2 months before the operation started (March 2007); 3 and 16 months after the operation started (August 2007 and September 2008, respectively). Samples were collected into pre-sterilized 2 L Pyrex bottles and transferred to the Oak Ridge National Laboratory, Oak Ridge, TN on ice and were processed immediately. The total community genomic DNA was extracted from water samples using the PowerSoil™ DNA Isolation Kit (Mo Bio Laboratories, Inc., Carlsbad, CA). The microbial communities from 2 time points (March and August, 2007) were analyzed using cloning and Sanger sequencing. However the 454 FLX pyrosequencing method was used to study the microbial communities from September 2008 samples. A total of 36 samples were studied using either Bacteria or Archaea primers. All collected samples were also analyzed for the presence of ammonium using Low Range Ammonia test tubes (HACH Company, Loveland, CO). The results of this study showed that after sixteen months up to 25% of the 5 mg per liter ammonium was oxidized in the trickling filters (TF), 60% in splitter box (SB) and extraction trenches (ET) that contained zero-valent iron with the remaining 15% of the ammonium oxidized in settling pond and wet lands (Fig. 1). The removal of ammonium in the system was efficient and essentially complete. Ammonia at the exit gate was 0.27 mg per liter after three months (August 2007) and below detection limits after equilibration (September 2008). The microbial community analysis revealed the significantly elevated amount of ammonia-oxidizing bacteria and archaea as well as nitrite-oxidizing and denitrifying bacteria in the TF, SB, and ET samples. Among bacteria Nitrosomonas, Nitrosooccuscius (NH₃ => NO₂⁻), Nitrospira (NO₂⁻ => NO₃⁻), and Thiobacillus (NO₃⁻ => NO₂⁻) were identified. Ammonia-oxidizing archaea were from the phylum Crenarchaeota. In the wetlands, which represent compost ponds, the Planctomycetes (anaerobic NH₃ oxidation) and Helicobacteaceae (use NH₃ and NO₂⁻ as the nitrogen source) were identified. These bacteria and archaea were not detected in background samples and their populations decreased to detection limits in the gate samples. Tracking the process, showed that changes in microbial communities were initiated by ammonium injection and directed to the development of a microbial nitrification / denitrification cycle.

Keywords: Wastewater, Ammonium, Ammonia-oxidizing Bacteria and Archaea
Role of Photochemically-Induced Oxidative Stress in Determining the Biological Effects of UV Radiation in Bacteria

Ana L. Santos, Inês Baptista, Vanessa Oliveira, Silvia Lopes, Isabel Henriques, Newton C. M. Gomes, Adelaide Almeida, António Correia, Angela Cunha

Continuing decreases in stratospheric ozone concentrations have led to extensive concern about its ecological consequences, mostly related to the concomitant increase in UV radiation reaching the Earth’s surface. Due to their small size, the fact that their genome comprehends a large portion of their cellular volume and that they have short generation times, bacteria are particularly susceptible to UV-induced damage. Since they play a crucial role in the cycling of organic matter and energy in aquatic ecosystems, depicted in the concept of the microbial loop, the study of the effects of UV radiation on bacteria and its consequences to the aquatic trophic webs becomes of major importance.

The effects of UVB on bacteria can be direct, as a consequence of UV-direct damage to biomolecules, or indirect as a result of the cellular oxidative damage exerted by free radicals generated from UV-induced photochemical transformation of organic matter. However, the information on the contribution of the indirect pathway to UV-induced bacterial inactivation is virtually unknown.

At the surface microlayer (SML), i.e., the top millimeter of the water column thrives a bacterial community, generically termed bacterioneuston, exposed to high intensities of solar UV radiation. Furthermore, accumulation of pollutants and dissolved organic matter (DOM) exposed to high solar UV radiation results in the production of photo-oxidants that might impair bacterial metabolism. Nevertheless, enhanced bacterial abundance and activities in surface waters suggest that bacterioneuston might have adapted to both UV-induced direct damage and oxidative stress, making the SML an interesting environment for the assessment of UV effects on prokaryotes.

The objective of this work was the evaluation of the role of UV-induced oxidative stress resulting from the photochemical transformation of organic matter, in determining the effects of UV radiation on bacterial abundance and activity. For that, bacteria-free organic matter suspensions (0.02μm filtered water) from the SML and underlying water (UW) of the estuarine system Ria de Aveiro (Portugal) were exposed to natural solar radiation (cumulative exposure during the experiment of 9.2 KJ m⁻³) with 9 different bacterial isolates isolated from the same ecosystem. Cell suspensions were incubated in the dark and culturable bacteria, bacterial heterotrophic activity (determined by the 3H-Leucine incorporation method) and oxidative stress indicators lipid peroxidation (determined by the TBARS method) and intracellular ROS generation (detected using the probe DCFH-DA) were monitored after incubation and compared to the values obtained before incubation and in non-irradiated (dark) controls.

Incubation of bacterial isolates in irradiated organic matter suspensions resulted in increased colony forming units (CFUs) and heterotrophic activity probably as a result of enhanced bioavailability of low molecular weight compounds (LMWC) in irradiated samples. In general, the increase in colony counts and the stimulation of heterotrophic activity was higher in isolates inoculated in irradiated SML water suggesting a nutrient environment distinct from subsurface waters. Oxidative stress indicators revealed an increase in intracellular ROS generation (up to 30%) and lipid peroxidation (as high as 60%) during the time course of the dark incubation demonstrating that irradiation of DOM also results in the formation of photoproducts that negatively impact bacterial biochemistry, and ultimately could make bacteria more susceptible to other types of environmental stress. Furthermore, detection of higher levels of oxidative stress indicators in all the isolates inoculated in irradiated UW (comparatively to SML) suggests that irradiation generates a “favorable” LMWC-rich environment in irradiated SML water and a more “stressful” free radical-rich environment in irradiated underlying waters.

Contrarily to current knowledge, these results might indicate that underlying waters are more likely to induce photo-oxidative stress on bacteria than surface waters, where intense levels of naturally occurring UVR could lead to the decomposition of organic matter and pollutants into simpler forms, less toxic to bacterial cells that might actually promote bacterial growth.

Sacharomyces cerevisiae UE-ME3 is a good strain for isoproturon bioremediation?

Marta Candeias1, Isabel Alves-Pereira1,2, and Rui Ferreira1,2

1Depo de Química, Escola de Ciências e Tecnologia, Universidade de Évora, R. Romão Ralhalho 59, 7002-554 Évora, Portugal
2Instituto de Ciências Agrárias e Ambientais, Centro de Tecnologia Animal (ICAAM-CTA), Universidade de Évora, Núcleo do Mira, Apartado 94, 7002-774 Évora, Portugal

Isoproturon is an active component of several pesticides applied in Autumn-Winter crops which persist occasionally in the soil, aquifers and biological systems, at levels higher than established by directives of European Community. Biotransformation of several organic compounds like this toxic phenylurea greatly contributes to the ROS formation and resulting cell death in aerobic organisms. The cell enters into chronic oxidative stress when the ROS production exceeds the endogenous antioxidative defences involving tripeptide glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PD) activities. In general, changes in the value of the GSH/GSSG ratio, GR, GPx and G6PD activities are early indicator of sensitivity to oxidative stress. In other hand MDA level is also used as marker of lipid peroxidation in different biological systems. Consequently, the work here described aimed to evaluate the physiological and antioxidative response of wild-type Saccharomyces cerevisiae UE-ME3.

Yeasts growing to mid-exponential phase at 28 °C in YEPD medium with 2 % (w/v) yeast extract were inoculated in the same conditions and allowed to grow in the absence or presence of 5, 25, 50 and 100 μM isoproturon, during 72 h. The cultures were used to obtain the post-12000 g supernatant, which was used for determination of GSH, GSSG and MDA contents by fluorometric methods according to Hissin (1976), Durstonova (2007), respectively, and GR, GPx and G6PD enzymatic activities according to Goldberg e Spooner (1987), Focide (1984), Postma (1989), respectively. The GSH, GSSG and MDA contents as well as enzymatic activities were compared by ANOVA one-way, followed by Duncan test to identify significant differences (p<0.01).

The experimental results shows a biphasic adaptive response of S. cerevisiae UE-ME3 to isoproturon, given that yeast growth in the presence of 50 and 100 μM of phenyleura displayed stationary-phase growth rates greater than yeast control or exposed to 5 and 25 μM isoproturon. Furthermore S. cerevisiae UE-ME3, grown in the presence of isoproturon 5 μM, show a decrease of cytoplasmic GSH/GSSG ratio, an increase of cytoplasmic MDA level as well as an increase of GR and GPx activities. These facts point us that yeast cells exposed to 5 μM isoproturon are coming into oxidative stress occurring increased of cell damages and cell death, possibly by an active process.

S. cerevisiae UE-ME3, grown in the presence of 25, 50 and 100 μM isoproturon, shows an adaptive response to stress, stabilizing the reducing cytoplasmic environment and a decrease of MDA cytoplasmic content. In addition it was observed an adaptively attenuated activation of GR and GPx activities for 25, 50 and 100 μM isoproturon, in the culture medium. Although there will be a decrease of intracellular NADPH/NADP⁺ ratio, due a decrease of G6PD enzyme activity, this effect seems not sufficient to block responses mediated by antioxidative cycle of glutathione, which has been above discussed, probably due to a decrease of the proportion of apoptotic dying S. cerevisiae UE-ME3. Having regard to the mentioned above, we can presume that S. cerevisiae UE-ME3 reveal high resistance to isoproturon. If further studies confirm the ability of this strain to use isoproturon as carbon or nitrogen source is possible to use this strain in bioremediation processes.

Keywords: Sacharomyces cerevisiae, isoproturon, lipid peroxidation

References:
Seasional Monitoring of the Microbial and Physico-Chemical Quality of Two Rivers in Durban, South Africa

Naicker, K., A. O. Olaniran, and B. Pillay
Discipline of Microbiology, School of Biochemistry, Genetics and Microbiology (Westville), University of KwaZulu-Natal, Durban, South Africa

Recently, concerns over water quality have increased globally due to frequent contamination of coastal and inland water resources by water-borne microbial pathogens and chemical pollutants. Many inhabitants of informal settlements in South Africa rely on surface water sources for their daily water needs due to lack of access to potable water. In this study, the effects of seasonal changes on the microbial and physico-chemical quality of the Umgeni and Umdloti rivers in Durban, South Africa were evaluated. Microbial analysis was conducted using membrane filtration techniques and subsequent plating on selective media. Heavy metals were analyzed using ICP-OES, and other physico-chemical parameters determined using standard methods for the examination of water and wastewater. Both river water samples analyzed in this study were of poor microbiological quality throughout the seasons, with highest microbial counts observed during summer and the lowest during winter. Total coliform and faecal coliform populations ranged between 1.468 – 86 x 10^2 and 7.4 – 37 x 10^2 cfu/100ml, respectively in both river samples. Similarly, faecal Streptococci populations ranged between 0.5 – 17.55 x 10^2 cfu/100ml across the various sampling points, with high Enterococci populations also detected at some points. Of the physico-chemical parameters analyzed, only pH, temperature and aluminium fell within the acceptable limits while the levels of turbidity, BOD, COD, lead, mercury, cadmium and copper all exceeded their limits on all occasions throughout the seasons. Heavy metal concentrations in the river water samples (in mg/L) ranged between 0.023 – 0.135 for lead; 0.0122 – 0.123 for mercury; and 0.068 – 0.416 for cadmium. Generally, Umgeni river was more contaminated than Umdloti river possibly because it flows through the more urbanized areas of Durban and therefore subjected to higher surface runoff than Umdloti river. Overall, results obtained in this study revealed the general poor quality of the surface water resources in Durban. This could pose health risks to the users of these waters and emphasizes the need for implementation of improved management strategies of these river catchments for continued environmental sustainability.

Keywords: Coliforms; E. coli; River water; Seasonal variation; Heavy metals

Simultaneous degradation of atrazine and simazine by Arthrobacter sp and Stenothrophomonas sp., in a packed bed reactor.

Triazinic compounds are a group of widely used herbicides. From these, at least atrazine, simazine and cyanazine have been reported as ecotoxic for aquatic systems. Frequently, water bodies such as ponds and creeks receiving pluvial drainage from agricultural soils are contaminated by toxic compounds. The use of biological barriers containing microorganisms able to degrade these pesticides could reduce their harmful effects to the susceptible aquatic biota.

In this work, the simultaneous biodegradation of a mixture of atrazine and simazine by a binary community constituted by Arthrobacter sp. and Stenothrophomonas sp., immobilized in a porous support is reported. Both strains are able to use atrazine as the sole carbon and nitrogen source (Macías-Flores et al. 2009). However, when Arthrobacter sp. was cultivated alone in the herbicides mixture, cyanuric acid (1,3,5-triazine-2,4,6-triol [OOOT]) accumulates; meaning that this strain is unable to break the OOOT ring. The genetic analysis of Arthrobacter sp revealed the presence of att A, B and C genes, but not of att D, which code for the enzyme responsible of the OOOT cleavage. By this reason, Stenotrophomonas sp., which is able to degrade cyanuric acid, was used to compose the binary community.

To degrade the herbicides mixture (80% atrazine and 20% simazine, in mineral salts [MS-AS] medium), a 2.86 L two-staged column packed with fragments of porous volcanic rock (tezontle) was used. Both reactor stages have a porous glass plate for air distribution. Air and MS-AS medium were concurrently fed to the biofilm reactor. The system was continuously operated varying the triazinic loading rates (R_{V,AS}) from 0.127 to 0.53 mg L\(^{-1}\) d\(^{-1}\), obtaining removal efficiencies (\(\eta_{AS}\)) from 92 to 100%, measured as Chemical Oxygen Demand ([COD]; Method 8000, Hach, 2002), and 91 to 97 %, quantified as Total Organic Carbon ([TOC]; Method 10129, Hach, 2002). These last values were similar to those obtained by liquid chromatography (HPLC).

Keywords: biodegradation; herbicide, biofilm, packed bed reactor, atrazine, simazine
Simultaneous biological removal of ammonia nitrogen, phenol and formaldehyde from high-concentration wastewaters using an MSCR system

Gholamreza Moussavi* and Mahdi Heidarizad
Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

A novel moving-bed sequential continuous-inflow reactor (MSCR) was developed and investigated for the degradation of high concentrations of ammonia nitrogen, phenol and formaldehyde. An aerobic process of simultaneous heterotrophic organic and direct autotrophic nitrogen-removal (SHODAN) was observed in the MSCR. Results indicated the bioprocess could simultaneously remove greater than 99% of the target compounds for concentrations up to 1300 mg/L each and around 96% of the corresponding chemical oxygen demand (COD) of ~4800 mg/L with a 6-h cycle time. An increase of the inlet concentrations to 1500 mg/L, however, caused a slight reduction in the removal efficiency. The MSCR handled hydraulic shock loads of up to four times the normal flow rate without adversely affecting the elimination performance of the contaminants. These unique features, combined with the efficient and compact nature of the process, thus recommend MSCR as a very promising technique for the simultaneous removal of nitrogen and organic compounds in a single-basin bioreactor.

Keyword: bioreactor, moving bed, activated sludge, ammonia nitrogen, organic compounds.

Soil Microbes and their Beneficial Roles to Improve the Environmental Quality

Hadi Ghorbani
Assistant Professor in Soil and Environmental Pollution, Shahrood University of Technology, Shahrood, Iran

Microbes are everywhere in the biosphere, and their presence invariably affects the environment that they are growing in. The effects of microorganisms on their environment can be beneficial or harmful or invisible with regard to human measure or observation. The beneficial effects of microbes derive from their metabolic activities in the environment, their associations with soil, plants and animals, and from their use in food production and biotechnological processes. Decomposition or biodegradation results in the breakdown of complex organic materials to forms of carbon that can be used by other organisms. There is no natural organic compound that can not be degraded by some microbes, although some synthetic compounds are broken down slowly or not at all. Since microbes have been present on the environment longer than other organisms, they have evolved the ability to thrive in almost any environment that meets these minimal criteria. In one handful of healthy soil there are literally hundreds of species of soil bacteria, soil fungi and many other microscopic soil microorganisms. The major role of soil microbes is to decompose organic materials around the root zone or soil body and releases some organically bound nutrients into inorganic forms. Nowadays, there is an increasing awareness of the importance of soil microbes amongst growers. Producing available nutrients to plants and acting as a biofertilizer are just some of the tens of their beneficial roles in the soil media. Soil bacteria will actually reduce soil compaction by improving soil structure creating microscopic spaces or pores in the soil to hold air or water. Some other soil bacteria act as a hunter and will suppress soil pathogens that could cause disease in some plants, reducing the need to use pesticides. The use of beneficial natural microbes to treat different environmental pollution and sickness and stimulate the environment is an ancient and proven technology dating back thousands of years. Natural soil microbes have been added to water, soil, sewage and oil spills and other such media to improve their quality and cleanup them through bioremediation processes and have many other uses. Microbial products effectively reduce odors and nutrients in water and are proven to improve plant and soil health in agriculture as well as in the environment. This paper is trying to explain the environmentally beneficial role of soil microbes acting as useful organisms to significantly improve the soil and environmental quality.

Keywords: soil microbes, environment, biofertilizer, bioremediation.
Structure of bacterial consortia in glacier lagoons (King George Island, Antarctica)

A. Świątecki1, D. Górniak1, K. Jankowska2, M. Zdanowski2, P. Borsuk3, M. Żmuda-Baranowska3 J. Grzesiak3

1Department of Microbiology, University of Warmia and Mazury, Oczapowskiego 1A, 10-719 Olsztyn, Poland
2Department of Water and Wastewater Technology, Technical University of Gdańsk, Poland, 3Department of Antarctic Biology, Polish Academy of Sciences, Warsaw, Poland,
4Institute of Genetics and Biotechnology, Warsaw University and Institute of Biochemistry and Biophysics Polish Academy of Sciences

Microbial communities were investigated in the areas abandoned by retreating glaciers at the western shore of Admirality Bay (King George Island, Antarctica). Process of deglaciation open a new areas for colonization by both autotrophic and heterotrophic microorganisms. Decreasing of salinity of the water in glacial lagoons is a main factor of the halophilic organisms mortality. The meltwater runoff from the glacier and the streams from lateral moraines as well as seaweeds – deposited on shore and then transported by wind to new ice-free areas are considered as a potential source of microorganisms at the deglaciated areas. Microbiological process of decomposition and mineralization of organic matter play key role in nutrients enrichment of these areas. In the study, variation in the bacterial community structure of three glacial lagoons was determined. Samples were collected from water, bottom sediments, algal periphyton and the surface of stones (shore zone of lagoons) at the front of glaciers: Ecology, Baranowski and Windy. Bacterial community structure was determined using a combination of PCR amplification of 16S rRNA gene fragments and denaturing gradient gel electrophoresis (DGGE). The CTC and Live/Dead staining methods were used to detect metabolic active bacteria. Results indicated marked changes in the bacterial community structure. Comparison of the results suggest that increased levels of nutrient input in shore zone of lagoons and bottom sediments will lead to marked changes in the structure and physiological activity of the bacterial consortia.

Keywords: Antarctica, bacterial community structure, deglaciation, DGGE,

Structures, activities and biosynthesis of cyanobacterial peptides

K. Sivonen, J. Jokela, D. Fewer, N. Leikoski, H. Wang, and L. Rouhianen

Department of Applied Chemistry and Microbiology, Viikki Biocenter, P.O. Box 56, 00014 University of Helsinki, Finland

Cyanobacteria produce a wide variety of small linear and cyclic peptides. One group of the best known peptides are the cyanobacterial hepatotoxins, microcystins and nodularins. Mass occurrences of toxic cyanobacteria have caused a number of animal poisonings and pose a risk for human health. Cyanobacterial hepatotoxins are produced nonribosomally by large multi-enzyme complexes which contain both nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) as well as tailoring enzymes. We showed that the hepatoprotein nostocyclin which bears structurally similarities to microcystins is encoded in a 45-kb NRPS gene cluster. Cyclic anaabonopeptolides (cyanopeptolins) and anaabonopeptins as well as the linear peptides spumigins were found to be products of NRPS. These compounds are protease inhibitors. In anaabonopeptin biosynthesis a new way to create non-ribosomal peptide structural diversity was detected. Newly discovered cyanobacterial bioactive compounds in our laboratory include peptides which act as antidotes for microcystins and lipopeptides destroying the eukaryotic cell membrane. The genome project of Anabaena strain 90 led us to discover ribosomal pathway to produce cyclic peptides, cyanobactins. We demonstrated the widespread (48 out of 132 strains) but sporadic occurrence of the cyanobactin biosynthetic pathway among planktonic cyanobacteria by PCR. Cyanobactins termed as anacyclamides characterized by LC-MS from 29 Anabaena strains showed great length (7-20 amino acids) and sequence variation (only proline was common in all anacyclamides). The identified anacyclamides comprised of unmodified proteinogenic (not previously detected in cyanobacteria) or prenylated amino acids. Cyanobacteria produce peptides by ribosomal and nonribosomal pathways. Many of these cyanobacterial compounds may be of interest for pharmaceutical industry or find their way as cell reagents. In addition, their biosynthetic machineries (ribosomal and nonribosomal) provide enzymes to be used in combinatorial biosynthesis or chemoenzymatic synthesis to produce novel compounds in the future.

Keywords cyanobacteria; bioactive compounds; peptide; ribosomal and nonribosomal biosynthesis; cyanobactins

References

Studies on extremophilic Bacillus SB1 isolated from n-butanol enriched mangrove sediment

Y.N. Sardessai and S. Bhosle

1 Goa College of Pharmacy, Panaji, Goa, India
2 Department of Microbiology, Goa University, Taleigao Plateau, Goa, India

Studies were carried out on Bacillus SB1, a unique extremophilic bacterial strain, earlier isolated from mangrove sediment of Goa, India, by a stepwise n-butanol enrichment process. SB1 exhibits high level of tolerance to various organic solvents such as decane, hexane, cyclohexane, toluene, benzene, xylene, chloroform and also to n-butanol which is considered extremely toxic. Solvent tolerance is a stable phenotypic property of SB1 hence the culture withstands solvent shock and live cells are isolated from solvent saturated media after prolonged exposure.

SB1 degrades aliphatic and aromatic hydrocarbons. It exhibits excellent growth at high temperature, high pH and high salt concentrations and hence appears to be a promising candidate for bioremediation studies.

SB1 utilises cholesterol as the sole source of carbon and hence can be used in development of biphasic organic-aqueous steroid transformation systems.

Since n-butanol tolerance is a rare trait, effect of n-butanol on the cells was studied. The culture grows in up to 2% v/v n-butanol but growth is severely retarded at 3%. Presence of butanol does not stimulate sporulation, however spores germinate in concentrations allowing growth. Adherence assays reveal that the culture does not adhere to solvent but emulsifies it. Electron micrographs reveal that cells grown on butanol saturated plates are shorter in length as compared to cells grown without butanol exposure.

Keywords: organic solvent tolerance, n-butanol, cholesterol

Study of photocatalysis as a pre-treatment for azo dyes removal

D. Chebli1, F. Fourcade1,2, S. Brosillon3, S. Nacef4, A. Amrane1,2

1 Université Rennes 1, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France
2 Université européenne de Bretagne
3 Université de Montpellier 2, LGIP EB UMR Cirad 16, 2 place Eugène Bataillon, 34095 Montpellier Cedex 5, France
4 Département de Génie des Procédés, Faculté des Sciences de l’Ingénieur, Université Ferhat Abbas, 19000 Sétif, Algeria

The widespread use of dyes in the world leads to large amounts of coloured wastewater. Owing to their coloration, the dyes cause floral pollution and aesthetic pollution. Some dyes especially azo dyes are also potentially toxic and their removal is a great challenge for the scientific community.

Azo-dyes are few or not biodegradable and a sole biological treatment, the lowest cost process, cannot be considered for a purification of textile effluents. To remove recalcitrant, inhibitory or toxic compounds for microorganisms, integrated processes could be an effective solution, more especially the coupling of advanced oxidative processes and a biological treatment. An advanced oxidative process can be implemented as a pre-treatment in order to increase the biodegradability of the polluted effluent, more readily assimilable by microorganisms.

The aim of this study dealt with the feasibility of coupling photocatalysis and a biological treatment for the removal of azo dyes from aqueous effluents. During photocatalysis pre-treatment, a decrease of the Chemical Oxygen Demand showed an oxidation of the target compound and by products i.e. a global change in the chemical structure of the complex mixture. A higher biodegradability is expected for high level of compounds oxidation However, the concomitant decrease of the Dissolved Organic Carbon, characteristic of a high mineralization yield, led to nearly constant COD / DOC ratios, which was confirmed by the low values found for the ratios Biological Oxygen Demand (BOD5) on COD, which remained in the range 0.99 – 0.19, namely below 0.4 after photocatalytic reaction. Moreover, toxicity increased or remained at a high level after irradiation for 3 h of the considered azo dyes, and decreased only for Orange II from toxic (EC50 = 53 %) to moderately toxic (EC50 = 76 %). An integrated process involving photocatalysis and biological treatment to treat azo dyes appeared therefore, and the tested conditions, not really relevant, except for Orange II. More specific pre-treatment, namely involving less reactive species than hydroxyl radicals, should be promoted to yield a more favorable COD / DOC ratio.

Keywords: Photocatalysis; Azo dyes; Kinetics; Biodegradability; Toxicity.
Study on efficiency of activated sludge system by using fireclay as sorbent

Ramazan Ali Dianati Tilaki and Akram Golbini
Department of environmental health, faculty of health, Mazandaran University of Medical Sciences, Sari-Iran

Abstract
Background and aims: Addition of mineral particulates into the aeration tank in the activated sludge system will lead to increase in bacterial population and subsequent increase in organic removal efficiency because of attachment and growth of bacteria on to particulates surfaces. Also attached bacteria have more tolerance potential to toxic shocks entering the system. If the added material in the aeration tank has sorption capacity, the toxic compounds harmful to microbial community can be removed and the system efficiency will be enhanced. The aim of this study was determination the efficiency of activated sludge system by using the fireclay as additive material.

Methods: Experiments were conducted by using an activated sludge system in bench scale operating in batch and continuous modes. Artificial wastewater was used as model domestic wastewater. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22h. In the batch mode, aeration time was 8, 16 and 24h. Fire clay doses were 500, 1400 and 2250 mgL\(^{-1}\) and was added into the reactor in each experiment separately. Efficiency parameters such as BOD, COD, MLVSS and Nitrate were measured according to standard methods before and after of addition of fireclay in the system separately.

Results: The average efficiency for COD removal before and after addition of fireclay was 55% and 95% respectively. The average concentration of volatile suspended solids (bacterial biomass) before and after addition of fireclay was 2210 and 4000 mgL\(^{-1}\) respectively. By using fireclay as additive to activated sludge system, nitrification was enhanced and concentration of nitrate was increased by 80%. Increasing the fireclay dose, will cause increase in system efficiency.

Conclusion: Addition of fireclay in the activated sludge will enhance the efficiency of system.

Keywords: fireclay, activated sludge, efficiency

The Bacterial Consortium Alleviated a Low-dose Gamma-Irradiation in Kalanchoe Plantlets

O.P. Boorlak\(^1\), O.V. Lar\(^1\), I.S. Rogatsky\(^2\), A.M. Mikhnev\(^3\), I.E. Zaets\(^3\), L.P. Ovcharenko\(^3\), J.-P. de Vera\(^4\), B. O. Danilchenko\(^2\), B.H. Foing\(^5\), O.O. Kozyrovska\(^1\)

\(^1\)Institute of Molecular Biology&Genetics of NASU, Kyiv, 03680, Ukraine
\(^2\)Institute of Physics of NASU, Kyiv, Ukraine
\(^3\)Institute of Cell Biology&Genetic Engineering of NASU, Kyiv, Ukraine
\(^4\)Institute of Planetary Science, DLR, Berlin, Germany
\(^5\)ESA/ESTRACK/SCI-SR, Noordwijk, The Netherlands

Ionizing radiation has been used to study role of bacterial association in protection of Kalanchoe daigremontiana plantlets from its hazardous effect. Two defined plant growth promoting bacterial strains were used for inoculation of plantlets before acute irradiation with \(\gamma\)-quanta (\(^{60}\)Co). Lethal dose of the \(\gamma\)-rays for \textit{Klebsiella oxytoca} IMBG26 was 3.0 kGy, and for \textit{Paenibacillus} sp. IMBG156 it was 500 Gy. \textit{K. oxytoca} IMBG26 expressed enhanced activity of the \textit{pelX} promoter after a sublethal dose of irradiation. The \textit{pelX} promoter activity measured as activity of \(\beta\)-galactosidase of the \textit{pelX}::\textit{lacZ} fusion in \textit{K. oxytoca} (\(pGalP\)) and was 0.88 mKm/ml·min after exposure to 2.0 kGy, e.a. 80% of control (untreated) bacterial activity, although the irradiated bacterial population comprised 1.25% from control one. Integrated index (II) of plantlet development which relied on both root number and root length reflected fluctuations in metabolic processes in irradiated plantlets without treatment with bacteria. Stabilizing stress-reactions occurred on 30 days post irradiation at different doses (30, 50, 70 Gy), however, II remained at the level of 30-60% to control plantlets. Effect of irradiation on kalanchoe plantlets relieved by bacteria at 30 and 50 Gy, moreover, II was observed at levels of 500 and 200%, respectively. The adaptive response was evident after both doses given for \textit{K. daigremontiana} plantlets. Intense root elongation, instead of development of new coronal roots, led to fast adaptation to stressful conditions and normalization of metabolic processes in kalanchoe plantlets. We consider ionizing-radiation-resistant bacteria may be used as a protection against ionizing radiation damage in sensitive plants.
The diversity and distribution of sulfate reducing microorganisms in a high-temperature oil reservoir

Ketil Bernt Sørensen and Aaron Marc Saunders
Danish Technological Institute. Center for Chemistry and Water Technology

Injection of seawater to subsurface oil reservoirs is routinely performed in the oil production in order to maintain reservoir pressure and increase oil yield. The introduction of surface water dramatically stimulates the growth and activity of microorganisms in the reservoir, creating a large-scale enrichment culture of subsurface anaerobic microorganisms. Due to the extreme conditions in the reservoirs (high temperature, salinity, and pressure), these oil reservoirs constitute highly interesting systems for studies of subsurface extremophilic microorganisms. To the industry, the sulfate-reducing microorganisms - both Bacteria (SRB) and Archaea (SRA) - are particularly interesting because they contribute to reservoir souring (sulfide production) and increased rates of corrosion on steel surfaces in the production system. To minimize the detrimental effects of sulfate reduction, the industry expends considerable resources on mitigation measures, such as addition of nitrate to injection water, biocide treatment, mechanical cleaning of metal surfaces, etc.

In this study, the diversity of sulfate-reducing microorganisms in high temperature (about 80ºC) oil reservoirs from the North Sea and the associated oil production system was determined by gene cloning and sequencing. Several groups of SRB affiliated with Deltaproteobacteria, Firmicutes and other, deeply rooted and less well-described groups were found. SRA affiliated with the genus *Archaeoglobus* were also widespread in the system. Customized primer sets for qPCR-based enumeration of the dsr genes of the detected sulphate reducers were developed and used to survey their distribution in the reservoir and production system in relation to environmental parameters such as in situ temperature and injection water characteristics. The results indicated that the high-temperature parts of the system were dominated by SRA whereas the abundance and diversity of SRB increased dramatically with decreasing temperature. The effect of nitrate addition to injection water will be discussed in relation to the observed dominance of *Archaeoglobus* in the reservoir and its possible reduction of nitrate. Furthermore, the perspectives of using commercially available molecular microbiology tools in future surveillance of oil production systems will be evaluated.

The Diversity of Bacteria Associated with Sponges *Clathria rugosa* and *Clathria vulpina*

Yogiara, Dennise Pradipta, Meliawati Winardi, Rory Anthony Hutagalung
SCHOOL OF BIOTECHNOLOGY, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta 12930, Indonesia

Sponges (phylum Porifera) are known to be inhabited by unique and diverse bacterial population. Some of bacteria associated with sponges have been proved as a producer of several bioactive compound as well as antifungi, and antibacteria. According to those findings, study on bacterial diversity in sponge become very important. Culture independent technique based on 16S rRNA gene was used to assess bacterial community diversity two sponges, *Clathria rugosa* and *C. vulpina*. DNA was extracted from sponge using direct extraction method and used to amplify its 16S rRNA gene. Those amplified gene were cloned and further characterized using Amplified Ribosomal DNA Restriction Analysis with three different restriction endonuclease restriction enzymes, *MspI*, *RsaI*, and *Bsh1236I*. The bacterial diversity and evenness of the samples were calculated using Shannon-Weiner diversity indices. All clones were sequenced and aligned to genbank database. Phylogenetic tree was constructed by using Mega4 software. The tree was made by Neighbour Joining method and bootstrap analysis with 100 replications. Sponge specimens were collected from Kapuran-Banyuwangi, East Java, Indonesia. A total of 88 clones were obtained and generated 41 different phylotypes. The highest bacterial diversity index (2.8) and evenness (0.9) were found in sponge *C. vulpina* with 24 phyotypes from 46 clones. Based on BLASTN analysis, we found that *C. rugosa* was inhabited by diverse bacteria similar to several uncultured gamma proteobacterium, uncultured bacterium, uncultured microorganism isolate SeaGull68, uncultured *Acinetobacter* sp., *Shewanella oneidensis*, *Spongiobacter nickelotolerans*, *Shewanella* sp., uncultured *Desulfomicrobium* sp., *Bacteriell* sp. AVG 2115, and uncultured alpha proteobacterium. Meanwhile, *C. vulpina* was inhabited by bacteria similar to uncultured gamma proteobacterium, uncultured Chromatiales bacterium, *Pseudomonas stutzeri*, uncultured bacterium, *Acinetobacter septicus* strain AK001, uncultured alpha proteobacterium, Nitrogen-fixing bacterium PB3, uncultured *Acinetobacter* sp., *Pseudomonas* sp. TIS1-127, *Enterobacter* sp. CSB08, and *Shewanella* sp.,

Keywords: Sponge, bacterial diversity, ARDRA
The effect of sodium selenite and selenate on the quality of lettuce and soil microbiological activity

M. Dūma, I. Alsina, and L. Dubova
Latvia University of Agriculture, Liela iela 2, Jelgava LV 3001, Latvia

Selenium is considered to be an essential element for humans, animals, and some species of microorganisms. In human and animal cells, Se plays an essential role in antioxidative defense systems, but it is toxic at high dietary intake. In many countries, soils are low in bioavailable Se. Selenium enters the food chain through the plants which take it up from soil. Se concentration in plants depends on the chemical form of Se, its concentration and bioavailability in soil and soil microbiological activity. The aim of the study was to detect the effect of sodium selenite and selenate on the soil microbial activity and physiological properties of lettuce.

Two varieties of lettuce plants (Lactuca sativa): iceberg lettuce ‘Tarzan’ and lettuce ‘Rīga’ were grown in 1L pots and during the growth season were once treated with 50 mg m\(^{-2}\), 100 mg m\(^{-2}\) or 200 mg m\(^{-2}\) of sodium selenite or selenate. Control - without treatment. Fresh and dry weight of lettuce leaves, pigment content, and antiradical activity were tested three times during the vegetation period. Soil respiration was measured using the ADC 2250 Gas analyzer.

The higher soil respiration was observed in the soils treated with selenium. Soil microbial activity depends on the used lettuce variety, soil where iceberg lettuce ‘Tarzan’ was grown has less activity in comparison with ‘Rīga’ one.

Key words: lettuce, soil respiration, selenite, selenate

The role of fungi in the oxalate-carbonate pathway

M. Guggiari\(^1,2\), G. Martin\(^1,2\), R. Bloque\(^2\), M. Aragno\(^2\), E.P. Verrecchia\(^1\) and D. Job\(^2\)
\(^1\)BIOGEOSCIENCES LABORATORY, Institute of Geosciences and Paleontology, University of Lausanne, 1015 Lausanne, Switzerland
\(^2\)LABORATORY OF MICROBIOLOGY, Institute of Biology, University of Neuchâtel, 2009 Neuchâtel, Switzerland

The oxalate-carbonate pathway has been studied in acidic tropical soils and involves plants, fungi, and bacteria. It consists of a biomineralization process followed by accumulation of calcium carbonate (CaCO\(_3\)). The atmospheric carbon (CO\(_2\)) is sequestered in the plant biomass through photosynthesis and is partly accumulated as calcium oxalate (CaOx). Fungi are also CaOx producers. Saprophytic fungi assimilate the carbon of plant litter and use part of it to synthesize oxalic acid, which spontaneously forms highly stable CaOx. Furthermore, fungi decay CaOx-containing plant debris, releasing this salt to microbial decay. Although highly oxidized, CaOx is an energy substitute used by oxalotrophic bacteria as an energy and carbon source, and consequently does not accumulate in the geological record. Half of the carbon contained in CaOx is transferred to the soil in the form of calcium carbonate during bacterial oxalate catalolysis. Finally, CaCO\(_3\) accumulates in the soil.

Understanding the role of fungi in the oxalate-carbonate pathway necessitates in-depth study of fungal interaction with minerals, bacteria, and plants.

Fungal CaOx crystals are constituted by oxalic acid, which is produced by the fungus, and calcium, which is either present in the environment solution, or secreted by the fungus itself. CaOx formation may simply be due to the presence of calcium in the environment. However, a calcium efflux exists at the hyphal tips, but it is not known if fungi control the concomitant efflux of calcium and oxalic acid to form CaOx. Oxalic acid is released by a large number of metabolically active fungi. In our study, 21 out of 25 decay Basidiomycetes were CaOx producers. In vitro experiments have been conducted to trace the calcium source contributing to CaOx crystal precipitation: calcium is transferred along the mycelial network, transported, and liberated from distant regions during cell lysis or due to active mechanisms that still must be elucidated. Our study provides insight into the ability of fungi to consume CaOx: the abundance of the crystals in the medium decreased within a few days (Fig. 1), bringing into question the assimilation of CaOx by fungi.

These studies have been conducted first with axenic cultures and the next step will be to get closer to field conditions. The evolutionary path followed by fungi cannot be dissociated from the bacteria that share their habitat. CaOx is a very common and widespread compound and it is likely to be competed for by bacteria and fungi. It is crucial to consider both types of organisms acting together to elucidate their respective roles.

In vitro experiments with microcosms have been performed to bridge the gap between field observations of the oxalate-carbonate pathway and its in vitro occurrence. We reconstituted the oxalate-carbonate pathway in controlled laboratory conditions by combining selected bacterial and fungal strains. Microcosms, containing sterile acidic soil with the addition of straw, have been injected with bacteria only, fungi only, and a combination of both, and their evolution has been recorded over 3 months. Oxalate, the key initial substrate of this pathway, was added or absent (Fig. 2). pH and oxalate concentration have been monitored to understand the role of bacteria and fungi in the evolution and soil colonization. The relative importance of organisms in the variation of parameters was assessed by measuring both the fungal biomass (ergosterol) and the bacterial abundance (Q-PCR).

Fungal and bacterial participation in the oxalate-carbonate pathway is not yet fully understood but new insights are expected from microcosm analysis and electron microscopy observation in the distribution of bacteria, fungi, and calcium oxalate crystals.

Keywords: oxalate-carbonate pathway; fungal calcium translocation; fungal-bacterial interaction; Australian soil
The role of salinity in shaping inorganic nitrogen and N\textsubscript{2}O dynamics in estuarine sediments.

Catarina Teixeira1,2, Catarina Magalhães3, Samantha Joye1 & Adriano A. Bordalo1,2

1Laboratory of Hydrobiology, Institute of Biomedical Sciences (ICBAS-UP), University of Porto, Portugal
2Centre of Marine and Environmental Research (CIMAR), Porto, Portugal
3Marine Sciences, University of Georgia, USA

Nitrogen (N) is a key determinant of the functionality of estuarine ecosystems since it can limit biological growth and consequently be implicated in eutrophication processes. On the other hand, estuaries by nature are dynamic systems exhibiting a high degree of temporal and spatial salinity variability. In this study, the role of salinity estuarine gradients on sediment inorganic nitrogen fluxes was investigated in three NW Portuguese estuaries (Douro, Ave and Câvado). Sediment was sampled at the lower and upper sections of each estuary. Shelly experiments were run anaerobically at salinities 0, 10 and 25 and the fluxes of nitrate, nitrite, ammonium and nitrous oxide were monitored. The salinity-induced NH\textsubscript{4}+ sediment desorption was observed for all sites. While in Douro and Câvado estuaries, no significant changes were detected on NO\textsubscript{3}- consumption, in the industrial polluted Ave estuary samples NO\textsubscript{3}- consumption increased 10 times when the salinity rose from 0 to 10. However, salinity appeared to have little effect on nitrite fluxes. N\textsubscript{2}O production increased sharply with increasing salinity in the upper sites. Although similar stimulation of N\textsubscript{2}O emissions was not observed in the lower sites, the overall production emerges as a major concern since N\textsubscript{2}O is a powerful greenhouse gas. We conclude that changes in salinity have a significant effect on nitrogen dynamics in estuarine sediments. Furthermore, the trend for freshwater discharge reduction, due to water diversion for agriculture within the watersheds and climate change in these estuaries could exacerbate N\textsubscript{2}O production (global warming) and NH\textsubscript{4}+ availability to primary production (eutrophication).

This work was funded by this work was supported by the Portuguese Foundation for Science and Technology (FCT), through a scholarship (POCTI/CTA/39034/2001) and a research project (PTDC/AMB/64441/2006).

Keywords: estuaries; salinity; nitrogen; nitrous oxide

Thermophilic bacteria isolated from a personal-use composting reactor

K. Watanabe1,2, Y. Nakane1, K. Nakagawa1, T. Sakaguchi1 and N. Kurosawa1

1Department of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, 1-236, Tangi-cho, Hachioji, Tokyo, 192-8577, Japan
2Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236, Tangi-cho, Hachioji, Tokyo, 192-8577, Japan
3Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562, Nanatsuka-cho, Shobaru, Hiroshima, 727-0023, Japan

Composting is an efficient way to treat organic waste without generating harmful compounds such as dioxins produced by incineration. In this processes, thermophilic and mesophilic microorganisms contribute for decomposition of complex organic substrates. To reveal their physiological properties and functions in the composting process, we tried to isolate thermophilic microorganisms from a personal-use composting reactor.

Composting reactor for household use, “Namagomi-eater” (TK401-T, Matsushita Electric Works), was applied for composting reaction. The working volume of the reactor was 15 L, and the temperature was usually maintained above 40°C. The artificial organic waste of 500 g of dog food containing 80 % (w/w) water was loaded daily into the reactor. The contents were gently mixed twice per minute by automated paddles. The sample for the isolation of microorganism was taken from the optimal conditioned reactor in which the rate of decomposing organic matter was about 17 g L-1 day-1. The temperature and pH of the sample were 47°C and 8.6, respectively. The diluted-sample was plated onto the modified Brock’s basal salts (Kurosawa et al., 1998) supplemented with 0.2 % (w/v) yeast extract, pH 7.5, solidified by 0.7 % (w/v) Gelrite, and incubated at 60°C for 24 h. We have also tried enrichment cultivation by using liquid media at 60°C and 70°C for 24 h prior to the plating. Colonies appeared on the plates were purified and their genomic DNAs were extracted for DNA sequencing. The obtained 16S rDNA sequences were compared with the available sequences in the NCBI database using Blast tool. The isolates and relative species were aligned using Clustal W program. Phylogenetic trees were constructed using the neighbor-joining method.

Total 11 strains were successfully purified and taxonomically classified into four species. They showed 16S rDNA similarities with \textit{Ureibacillus thermosphaericus} (similarity value of 98%, 1 strain), \textit{Geobacillus thermoglucosidasius} (97-99%, 6 strains), \textit{G. toebii} (99%, 3 strains) and \textit{Thermobacillus sp.} (96%, 1 strain). Among these isolate, strain KCW4, showed a 96 % of 16S rDNA sequence similarity with \textit{T. xylanilyticus}. DNA reassociation value between them was 66 %. The major isoprenoid quinone of strain KCW4 was MK-6, in contrast with that of \textit{T. xylanilyticus}, which had MK-7 as the major. The fatty acid composition of these strains were also different each other. On the basis of phenotypic and genotypic evidences, the strain KCW4 represents a new species, for which the name \textit{T. composti} was proposed (Watanabe et al., 2007). \textit{T. composti} showed xylanase activity. Analysis of its enzymatic properties and cloning of the xylanase gene are now in progress.

Acknowledgement

This work was supported by “The Next-generation Joint Research” Project for fostering of young researchers: matching fund subsidy from Soka University, Japan, 2009-2010.

References

Keywords: thermophilic bacteria; compost; novel species; xylanase
Thermophilic Co-Digestion of Cellulose and Microalgal Biomass for Hydrogen Production

Sarah M. Carvera,b, Chris Hulattc, David N. Thomasc, and Olli H. Tuovinena,b

aDepartment of Chemistry and Bioengineering, Tampere University of Technology, FI-33101 Tampere, Finland
bDepartment of Microbiology, Ohio State University, Columbus, OH 43210, USA
cSchool of Ocean Sciences, University of Wales-Bangor, Menai Bridge, Anglesey LL59 5AB, U.K.

Potential commercial-scale production of biodiesel from microalgal biomass has generated a great deal of research and development due to climate change and renewable energy resource policies. Anaerobic digestion of mass microalgal harvest or spent biomass following lipid extraction has prospects for other forms of energy generation, but research in these areas has been limited to date. In this study, untreated biomass of two microalgal species, \textit{Chlorella vulgaris} and \textit{Dunaliella tertiolecta}, were used as co-substrates with cellulose and the mixtures were incubated at 60°C anaerobically with a cellulolytic consortium. After several enrichments, the cultures were monitored for head space gas composition, short chain fatty acids, and C:N ratios. The results of gas analysis showed that maximum H\textsubscript{2} yields, 9 mmol g-1VS, were obtained with a 1:2 wt/wt ratio of \textit{D. tertiolecta} biomass to cellulose. The reference cultures containing only cellulose yielded 6 mmol H\textsubscript{2} g-1VS. \textit{C. vulgaris} showed relatively little H\textsubscript{2} or CO\textsubscript{2} production with yields less than 5 mmol g-1VS and 3 mmol g-1VS, respectively. Methane production was not detected in these experiments. Short chain fatty acid analysis revealed the cellulolytic culture to produce mainly lactic acid, 20 mM, when fed only cellulose. In the presence of \textit{D. tertiolecta} biomass, lactic acid production decreased at least eight fold. With the presence of \textit{C. vulgaris}, up to 40 mM butyric acid was produced, indicating a change in the consortium’s metabolic activity. Cultures grown with \textit{D. tertiolecta} and cellulose showed a drastic decrease in the C:N ratio, suggesting that the algal biomass promoted better growth of the consortium as compared to cellulose as the sole substrate. This was also evidence that algal biomass was digested by the anaerobic consortium. Cultures containing \textit{C. vulgaris} showed no significant change in the C:N ratio after ten days of incubation. The results indicated that \textit{D. tertiolecta} provided a better co-substrate than \textit{C. vulgaris} for hydrogen production. This difference may be related to the lack of a distinct cell wall in \textit{D. tertiolecta}, which would otherwise serve to provide structural integrity and mechanical strength to the cell.

Ultrastuctural Behavior of \textit{Rhodotorula mucilaginosa} Induced by the Growth in Presence of Pyrene

P. Homero Marinho1,3, P. Mendes Souza3, M. Antônio Barbosa de Lima2, R. Burgos3, A. Cardoso3, A. Elešhão do Nascimento3, G. Maria de Campos Takaki1,3

1Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brasil
2Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
3Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia, Universidade Católica de Pernambuco, Recife, PE, Brasil

The present study was carried out in order to evaluate the resistance / tolerance of an isolate of \textit{Rhodotorula mucilaginosa}, a single-celled fungal, related to the ultrastructural behavior by the growth in pyrene, a polycyclic aromatic hydrocarbon (PAH). The organism was grown in Yeast Mold Broth (YMB) in the absence and presence of pyrene at concentrations of 0.25 mg/mL, 0.5 mg/mL and 1 mg/mL, under orbital agitation of 150 rpm and 28 °C. Samples were collected at intervals of 8, 12, 16, 20, 24, 48 and 72 hours of culture. The detection of the ultrastructural alterations was performed by the use of routine and cytochemical techniques for transmission electron microscopy. The ultrastructural analysis of \textit{Rhodotorula mucilaginosa} using the routine technique revealed alterations in the fine structure of cells, related to the presence of vacuoles, cell wall electrondensity, number of eukaryotic organelles. The cytochrome oxidase and catalase cytochemistry showed variations in the intensity and distribution of reaction products in the cell wall, cytoplasmic membrane, mitochondria related to the pyrene concentration used during cellular growth. In the experimental conditions used in this work the presence of pyrene induced different effects on \textit{Rhodotorula mucilaginosa} ultrastructure, which are presented for the first time in the literature.

Keywords: \textit{Rhodotorula mucilaginosa}; Pyrene; Ultrastructure.
Use of hydrolysates from silver carp (*Hypophthalmichthys molitrix*) head as a peptone for *Vibrio anguillarum* and optimization using Central Composite Design (CCD) and Response Surface Method (RSM)

Mohammad Reza Saeidi Ati1, Reza Safari2, Hasan Nasrollazadeh2, Zahra Yaghobzadeh3

1Islamic Azad University of Sabzevar, Sabzevar, Iran, PO Box 9618814-711
2Iranian Fisheries Research Organization, Caspian Sea Ecology Research Center, Sari, Mazandaran, Iran, PO Box 961

The objective of present study was to peptone production, by enzymatic hydrolysis, with Alcalase of silver carp (*Hypophthalmichthys molitrix*) head waste. The fish peptone produced was used instead of the standard peptones which applied in commercial Tryptic Soya broth (TSB) media for *Vibrio anguillarum*. Peptones produced Alcalase had a 63.42% degree of hydrolysis. Optimization of the used peptone as culture media was also done using Central Composite Design (CCD) and Response Surface Method (RSM). Batch experiments were conducted to monitor *Vibrio anguillarum* growth for duration of 24 hours. A full factorial Central Composite Design of experiments was used to construct second-order response surfaces with the bacterium growth as dependence parameter. The head peptone concentration and the retention time were used as design factors. Adjustment of the quadratic model with the experimental data was satisfactory. Analysis of variance showed a high coefficient of determination value (0.930). It was possible therefore; to develop the empirical equations describing and predicting the optimize value. Results also were shown that enzymatic-modified fish by-products can be used as low cost nitrogen sources for bacterial growth.

Keywords: silver carp; peptone; Alcalase; Response surface method; central composite design

Utilization and pretreatment of dairy industry wastewater by *Candida bombicola* for the production of sophorolipids

A. Daverey1, K. Pakshirajan1 and S. Sumanlatha2

1Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
2Department of Biotechnology, Hindu College P.G Courses, Acharya Nagarjuna University, Guntur, 522002, India

Dairy industry is one of the major food industries in many countries including India. In dairy industries, water is a key processing medium that is used throughout the industry for several operations including cleaning, sanitization, heating, cooling, floor washing, which generates large amount of wastewater. These wastewaters contain high levels of dissolved or suspended solids including fats, oils and grease, nutrients such as ammonia or minerals and phosphates that makes them not easily biodegradable, and therefore cause gross pollution of land and water due to their high biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Also, the high content of fats and oils often interfere with normal wastewater treatment procedure resulting in significant increase in the process cost and time and therefore require pretreatment before subjecting to biological treatment. Utilization of dairy wastewater for simultaneous production of bio-products is one possible way of treating this type of wastewater. Therefore, the objective of the present study was to test the feasibility of pretreating dairy wastewater by in situ production of sophorolipids (SLs) using *C. bombicola* to reduce its biological load and to reduce SLs production cost. SLs are glycolipids type of biosurfactant and produced by the yeast *Candida bombicola*. SLs have found several pharmaceutical, medical and environmental applications, besides being useful in the formulation of detergents and cosmetics.

Dairy industry wastewater, obtained from a local dairy in Guwahati, India, was initially characterized and used as a medium, with or without external carbon and nitrogen sources, for production of SLs by the yeast *C. bombicola* (Starmerella bombicola). Different media compositions used in the study along with the results obtained was presented in Table 1.

Table 1: SLs production and COD removal efficiency by *C. bombicola* using different media compositions based on dairy wastewater.

<table>
<thead>
<tr>
<th>Medium type</th>
<th>Compositions</th>
<th>SLs yield (g/l)</th>
<th>COD removal efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>DWW</td>
<td>2.3 ± 0.39</td>
<td>92.1</td>
</tr>
<tr>
<td>Type 2</td>
<td>DWW + glucose (10%) + yeast extract (1%) + urea (0.1%)</td>
<td>13.5 ± 0.57</td>
<td>99.5</td>
</tr>
<tr>
<td>Type 3</td>
<td>DWW + glucose (10%) + yeast extract (1%) + urea (0.1%) + soybean oil (10%)</td>
<td>17.5 ± 1.4</td>
<td>99.5</td>
</tr>
<tr>
<td>Type 4</td>
<td>DWW + lactose (10%) + yeast extract (1%) + urea (0.1%) + soybean oil (10%)</td>
<td>7.5 ± 1.38</td>
<td>63.4</td>
</tr>
<tr>
<td>Type 5</td>
<td>DWW + lactose (10%) + yeast extract (1%) + soybean oil (10%)</td>
<td>9.4 ± 0.55</td>
<td>50.0</td>
</tr>
<tr>
<td>Type 6</td>
<td>DWW + glucose (10%) + yeast extract (0.2%) + soybean oil (10%)</td>
<td>62 ± 0.65</td>
<td>85.7</td>
</tr>
<tr>
<td>Type 7</td>
<td>DWW + sucrose (10%) + yeast extract (0.2%) + soybean oil (10%)</td>
<td>27.4 ± 1.6</td>
<td>84.0</td>
</tr>
</tbody>
</table>

DWW = dairy wastewater added to make up the required volume.

The results of this study, conducted in batch shake flasks showed that using the wastewater supplemented with extra carbon and nitrogen source, the yeast can better produce SLs and also reduce COD of the wastewater. And a maximum SLs yield of 62 g/l was obtained when the dairy wastewater was supplemented with glucose, yeast extract and soybean oil at 100 g/l, 2 g/l and 100 g/l, respectively. On the other hand, a maximum SLs yield of only 2.8 g/l was obtained with the dairy wastewater without adding extra carbon and nitrogen source. These results clearly reveal that dairy wastewater can be used in SLs production, and the amount of the biosurfactant can be satisfactorily increased by supplying extra carbon and nitrogen sources. Similarly, high COD removal efficiency was obtained when extra carbon and nitrogen source was added in the wastewater, except medium type 4 and 5, where lactose was used a hydrophilic carbon source.

High yield of SLs together with high COD removal efficiency of the yeast in the present study revealed good potential of the system in pretreating such wastewater and for production of valuable bioproducts.

Keywords: Dairy industry wastewater; sophorolipids; fat and oil; *C. bombicola*.
Vanadium pentoxide: an oxidative stress agent which disturbs glutathione conjugates metabolism in Saccharomyces cerevisiae UE-ME3

Sara Gonçalves1, Rui Ferreira1,2 and Isabel Alves-Pereira1,2

1Dep of Química, Escola de Ciências e Tecnologia, Universidade de Évora, Romão Ramalho 59, 7002-554 Évora, Portugal
2Instituto de Ciências Agrárias e Ambientais, Centro de Tecnologia Animal (ICAAM-CTA), Universidade de Évora, Núcleo da Mina, Apartado 94, 7002-774 Évora, Portugal

Vanadium, atomic number 23, can be found in the nature in different oxidation status, which can range from -1 to +5. In physiological conditions V(+)4 and V(+)5 species are dominant. Though V is an oligoelement indispensable to the growth of many organisms, but it is toxic when present in compounds where show oxidation status +5. Consequently, the main purpose of this study was to use the Alentejo wine yeast Saccharomyces cerevisiae UE-ME3 as eukaryotic model to evaluate the response to the V2O5.

Yeast cells at exponential phase were harvest and inoculated in YEPD medium with 2% (w/v) of glucose and allowed to grow in the absence or presence of V2O5 ranging from 0.5 to 2.0 mM, during 72 h. The cultures were used to obtain the post-12000 g supernatant, which was used for GSH, GSSG and MDA contents determination by fluorimetric methods according to Hissin (1976) and Durfinova (2007), respectively, and GR, GPx, G6PD and γ-GT enzymatic activities determination according to Goldberg e Sponer (1987), Flohè (1984), Postma (1989), Szasz (1976), respectively. GSH, GSSG and MDA contents as well as enzymatic activities were compared by ANOVA one-way, followed by Duncan test to identify significant differences (p<0.01).

The obtained results show a decrease of GSH/GSSG ratio, as well as, an increase of cytoplasmatic MDA level in S. cerevisiae UE-ME3 cells exposed to V2O5, response which point us that cell environment became more oxidant and cell damages occur when yeast growing in presence of vanadium (+5). In other hand, it was observed an increase of GR activity, in all V2O5 concentration tested in this study, and an increase of GPx activity in yeast cells exposed to 1.5 and 2.0 mM V2O5. However this apparent anti-stress response mechanism to the V2O5, via glutathione redox cycle, should be addressed to S. H. Lee (sangheelee@mju.ac.kr) and J.-H. Lee (jlee@kordi.re.kr).

Keywords: Saccharomyces cerevisiae, vanadium pentoxide; oxidative stress

References

Vertical profile of bacterial community in the sediment of Ulleung Basin: Implication of the presence of methane-driven community

In Soon Jeong1,2, Jung Hun Lee1,2,3, Jung-Cheon Cho1, Jung-Jun Bahk4, Sang Min Hyun1, Kae Kyoung Kwon1, Sung Gyun Kang1, Sung Hee Lee2 and Jung-Hyun Lee3

1 Marine Biotechnology Research Centre, Korea Ocean Research & Development Institute, Ansan, 425-600, Republic of Korea
2 Drug Resistance Proteomics Laboratory, Department of Biological Sciences, Myongji University, San 38-2 Nâmdong, Yongin, Gyeonggido, 449-728, Republic of Korea
3 Division of Biology and Ocean Sciences, Inha University, Incheon, 402-751, Republic of Korea
4 Petroleum & Marine Resources Research Division, Korea Institute of Geoscience & Mineral Resources, Daejeon, 305-350, Republic of Korea

Herein, we describe phylogenetic analysis of the bacterial community in the deep marine sediment collected at the south-western archiental zone of Ulleung Basin, East Sea of Korea (35.77°N, 130.03°E). The 780 cm deep sediment sample (GH core) was collected by piston-coring. The core was divided into three portions; top, middle, and bottom by depth (GHT: 4-20 cmbsf-cm below of Seafloor; GHM: 380-400 cmbsf; and GHB: 660-680 cmbsf), and subjected to molecular diversity analysis based on SSU rDNA. Phylogenetic analyses revealed that over 99% of sediment clones from a total 177 clones were similar to uncultured environmental clones. The most abundant phylogenetic group in sediment core was candidate division JS1 whose proportion profoundly increased with depth and that seemed to participate the methane oxidation process. The members of the Deltaproteobacteria containing sulfate-reduction bacteria were abundant in the middle layer of the core. A few clones were affiliated into the Fimbicutes, Fusobacteria, Acidobacteria, and candidate divisions GN, OD1, TM6 and WS, reflecting rich bacterial diversity in the Southern marginal region of Ulleung Basin. Conclusively, deep sediments of the Ulleung Basin retained a vast amount of uncultured bacterial diversity, which was similar to those of anaerobic sediment, soil in the methane hydrate, or sulfate related sites. The depth profile of microbial diversity suggested that microbial populations in the study seemed to be affected by the presence of methane gas in the deep layer of sediments. Correspondence should be addressed to S. H. Lee (sangheelee@inja.ac.kr) and J.-H. Lee (jlee@kordi.re.kr).

Keywords: deep marine sediment; molecular diversity; methane-driven community
Volatile Fatty Acids Separation by ion exchange chromatography in fixed bed column

G. Russo1, D. Libkind1, S. Chaves2, M. Gadanho2, E. Bastos2, R. Tenreiro2 and M. R. van Broock1
1Applied Microbiology and Biotechnology Laboratory, INIBIOMA-UNC-CONICET. Quintral 1250 (8400), Rio Negro, Argentina
2Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Edificio ICAT, Campus da FCUL, Campo Grande, 1749-016 Lisboa, Portugal.

This paper studies the separation of volatile fatty acids (VFA), produced in anaerobic reactor, through ion exchange chromatography. These acids are recurrently produced and accumulated in anaerobic reactors and their recovery for later use become increasingly important whereas not only the treatment of wastewater is required, but the utilization of by-products is encouraged, to cause economic and environmental benefits. Thus, studies on techniques of separation of acids, as well as the kinetics of the process are necessary for the viability of the recovery procedure. The separation technique discussed in this work is the ion exchange and aims to promote the separation of the mixture of volatile fatty acids (VFA) from the anaerobic reactor, in fractions of acetic, propionic, butyric, isobutyric and isovaleric acids, using ion exchange in a fixed bed column. To achieve this, the work includes the study of equilibrium isotherms and kinetics of adsorption and desorption for each pure acid, individually, for the mixture of pure acid and for the mixture of VFA from an anaerobic wastewater treatment.

The exchange resin used in the experiments was Amberlite IRA-410 Cl, Rohm & Haas Company, which is a resin with a strong base, the reactive group is a quaternary amine and the matrix is a styrene-divinyl benzene gel. The lifting of the equilibrium isotherms was done by batch tests in shake flasks and testing nine initial concentrations ranging from 30 g L−1 to 0.1 g L−1. The survey of kinetics of adsorption and desorption was done through batch tests with magnetic stirring, in which samples were collected from time to time. Analysis of VFA was performed by gas chromatography. The temperature for all experiments was maintained at 25 °C.

The equilibrium isotherms obtained for each acid studied are shown in Figure 1, where is possible to see that each acid have different affinities for the used resin. The parameters of Langmuir isotherm were obtained by linearization of the isotherms, and showed that the acid that has a higher affinity for the resin is butyric acid and the one which has the largest adsorption capacity of the resin is the isobutyric acid.

The kinetic tests done for each acid studied show that ion exchange occurs rapidly, indicating that the prevalence of the process should be related only to the kinetics and less limited by diffusion in the pores of the resin.

From the results obtained we can concluded that it is possible to remove the VFA present in solution, and also owing to the differences of interaction, particularly between the acetic acid and propionic and butyric acids, is possible to separate them in a fixed bed process, which will be studied further in this work.

Keywords: volatile fatty acids; ion exchange column

Figure 1 – Equilibriums isotherms

The study of microbial diversity in extreme environments, such as acid and/or heavy metal polluted water, is important from both scientific and biotechnological points of view. The comparison of microbial communities of such environments from different geographic areas is of interest for the detection of highly adapted species, and also important for physiological and genetic studies aiming the elucidation of mechanisms that allow the colonization of such habitats. These studies may also reveal new biocatalysts, such as extremozymes, or inspire novel bioremediation strategies. We compared novel yeasts of the genus Cryptococcus inhabiting acidic aquatic environments of anthropogenic (São Domingos Mines, Portugal - MSD) and volcanic origin (Rio Agrio-Caviahue lake, Argentina - RAC). Strains were studied by conventional and molecular techniques (PCR fingerprinting, AFLP, rRNA gene sequencing), and their tolerance to heavy metals was assessed (Cd2+, Co2+, Cu2+, Li +, Ni 2+ and Zn2+). On the one hand, strains of an undescribed Cryptococcus species common of both acidic environments, isolated from the most extreme conditions, were found to be phenotypically similar and with identical D1/D2 and ITS sequences. The species showed unique acidophilic characteristics and was considered the most adapted species inhabitant in both studied sites. However, when strains of MSD where exposed to RAC water, the viability of the formers was considerably lower, revealing different survival capabilities and hence physicochemical adaptations. In addition, tolerance to heavy metals was not identical between MSD and RAC strains. However, genetic differentiation of the Argentinean and Portuguese populations was only achieved when studying highly differentiating genomic fingerprinting methods as PCR-fingerprinting and Amplified Fragment Length Polymorphisms (AFLP). Considering the large geographic distances and the different histories of both acidic environments, the genetic differences between the two Cryptococcus spp. populations were low. Differences were found only after applying MSP-PCR, RAPD and AFLP techniques, known to be good genomic tools for intraspecific differentiation. The peculiar acidophilic characteristics suggest a high dependence for acidic environments and probably lead to a yet unknown specific ecological role of this species. Due to the high selection pressure imposed by the physicochemical conditions of the acidic environments studied, it is possible that this yeast species presents a much conserved genome, but further studies should be carried out to confirm this hypothesis. On the other hand, four related Cryptococcus species were compared phylogenetically because they showed interesting physiological characteristics suggesting that they were also adapted to acidic habitats. Three of them were isolated from Portugal, described as C. aciditolerans, C. ibericus and C. metalitolerans, and one from Argentina, named C. agriottenis. The latter species was the most divergent one. These species formed a well-separated phylogenetic cluster within the Filobasidiales of the Agaricomycotina (Basidiomycota). Considering that these new species also shared a peculiar ecology, being able to thrive in extreme environmental conditions characterized by very low pH and high concentrations of heavy metals, this combination of phylogenetic and ecological characteristics was designated as an ecoclade. The members of the ecoclade probably share a common ancestor that bored less extreme conditions than the acidophilic species, but was also autochthonous of acidic environments.

Keywords: Cryptococcus, Ecoclade, Heavy metals, Microbial ecology.
16S Ribosomal Ribonucleic Acid Analysis of Pathogenicity in Autothermal Thermophilic Aerobic Digestion Treated Swine Manure

I. Han, D.W. Ki, S. Congevaram, J. Park

School of Civil and Environmental Engineering, Yonsei University, Shinchondong 134, Seodaemungu, Seoul, South Korea

Antibiotics are used excessively in livestock farms for infection treatment, prophylaxis, and nutrient. Such excess prescription could leads to emergence antibiotic resistance in bacteria. The emerged resistance mechanism can be transferred to pathogens giving them antibiotic resistance. Therefore swine manure could be a reservoir for antibiotic resistant pathogens. In previous study, antibiotic resistance and pathogenicity of swine manure (LM), lagoon fermented swine manure (LF) and Autothermial Thermophilic Aerobic Digestion (ATAD) treated swine manure (LA) were assessed using culture dependent method. The result have revealed large quantities of Staphylococcus sp.-like and Salmonella sp.-like bacteria in LM and LF, but no such bacteria was detected in LA. Therefore it concluded that aerobic digestion method could be an effective method in reducing pathogen related hazards in swine manure. But qualitative analysis is required to further assess this conclusion because only limited microorganisms could be isolated under laboratory conditions.

This study was conducted to qualitatively evaluate the effect of ATAD on pathogenicity through culture independent method. The 16s rRNA phylogenetic analysis of the LM, LF, LA were performed using reference pathogenic strains (human and animal) for animal manure and antibiotic resistant strains. The richness (Chao), complexity (H′) and community structure were also calculated and drawn for the analysis.

The result for Chao and H′ have shown decreasing trend. The Chao have dropped over 45% from 140 in LM to 58.15 and 45.67 in LF and LA respectively. The H′ value dropped from 3.58 in LM to 3.42 and 3.28 in LF and LA respectively. The phylogenetic evaluation have shown 36% of LM, 57% of LF and 18% of LA sequences being relatives to reference pathogens.

The decrease in Chao and H′ combined with increase in pathogen relatives in LF, with respect to LM, could be a indication that condition in Lagoon fermentator is favouring selection of pathogens, especially for the one belonging to classes that have shown increase its sized in its community structure (eg. γ - proteobacteria). In LA Chao, H′, and pathogens relatives have decreased with respect to LM. This could be an indication that ATAD is favouring growth of non-pathogenic bacteria, especially for the ones belonging to classes that have shown increase its sized in community structure (eg. Cusotridia). Therefore stabilizing swine manure through ATAD could drastically reduce pathogenicity compared to the conventional Lagoon fermentation.

Keywords ATAD; Pathogenic microorganisms; Livestock waste stabilization

Ability of Ralstonia solanacearum phytype II to adapt to simultaneous stresses of oligotrophy and temperature in water

B. Álvarez1, M. M. López2, and E. G. Biocca3

1INSTITUTO VALENCIANO DE INVESTIGACIONES AGRARIAS (IVIA), Centro de Protección Vegetal y Biotecnología, Carrera de Moncada – Náquera, km 4.5, 46113, Moncada, Valencia, Spain.
2UNIVERSIDAD DE VALENCIA, Departamento de Microbiología y Ecología, Avenida Dr. Moliner 50, 46100, Burjasot, Valencia, Spain.

The Ralstonia solanacearum species complex causes the bacterial wilt disease, which affects economically important crops and ornamentals worldwide. The bacterium is considered a quarantine organism in the European Union, the USA, and Canada. The complex is classified into four phyotypes according to molecular characteristics. Among them, the phyotope (ph) II seems to survive in watercourses as a planktonic form until contact with the next host; retaining pathogenicity. However, there is currently scarce information on the effect that prevailing environmental stresses such as temperature and oligotrophy may have when acting simultaneously on the pathogen populations in aquatic habitats. In this work, population dynamics and adaptations by distinct R. solanacearum ph II from cold or warm zones have been monitored during exposure at various environmental temperatures and different oligotrophic conditions in water.

Survival experiments were conducted with a number of microcosms prepared from samples of sterile natural river water and sterile distilled water. These microcosms were separately inoculated at 106 c.f.u. ml-1 with either of two R. solanacearum ph II strains isolated from cold or warm habitats, and incubated at low (4ºC), temperate (14ºC) and warm (24ºC) temperatures under two different levels of oligotrophy, nutrient limitation (river water) and nutrient deprivation (distilled water). Sampling from each microcosm was periodically done to perform viability tests based on metabolic activity of the stressed cells and dying to microscopically determine the number of total and viable R. solanacearum cells; plate counts for culturability; direct staining for R. solanacearum cell shape observations, and pathogenicity assays by stem inoculation of the stressed cells in susceptible host plants in a greenhouse under quarantine conditions.

Population dynamics at 4ºC revealed that R. solanacearum viable populations of the strains isolated from either cold or warm areas responded to coldness by entering a viable-but-non-culturable (VBNC) state, a mechanism evolved by non-sporulating bacteria in adverse environmental conditions. The cold-induced VBNC state for both ph II strains of the pathogen suggested that these strains were not naturally cold-adapted, even if isolated from cold habitats. In the water microcosms, the VBNC state was dependent on water nutrient contents, since the loss of culturability of the populations was significantly more rapid in conditions of nutrient deprivation than of nutrient limitation, that is, in the natural river water samples. With respect to morphology, R. solanacearum VBNC cells kept typical bacillar shape, unlike VBNC cells from many other bacterial models. Population dynamics at 14ºC and 24ºC revealed adaptations to oligotrophy for both R. solanacearum ph II strains consisting of starvation-survival responses, with cells readily culturable in their initial numbers throughout the experimental period, and transitions of starved bacillar cells to coccioids at both temperatures with significantly higher proportions of cocoid forms at 24ºC, and then pointing out to an influence of temperature on adaptations to oligotrophy. Total and viable populations had similar levels at 4ºC, 14ºC and 24ºC. Interestingly, starved cells retained pathogenicity and were highly virulent at 4ºC, 14ºC and 24ºC on susceptible host plants.

Overall, R. solanacearum ph II proved to be able to adapt itself to various unfavourable conditions of temperature and nutrient scarcity in water, including conditions more resembling to those of natural aquatic habitats, without compromising its disease-inducing capacity. Understanding R. solanacearum ph II adaptations to environmental stresses can help to design strategies to manage the dissemination of this devastating pathogen in natural settings.

Keywords phytopathogenic bacteria; oligotrophic water; nutrient deprivation; temperature; survival responses; VBNC induction
Agrobacterium-mediated transformation of the endophytic fungus *Penicillium pinophilum* associated with sugarcane

A. Paula Souza Pallu1, L. Cecilia Lima Fávaro Fávaro1, M. Beatriz Calderan Rodrigues1, A. Ferreira1, W. Luiz Araújo2, A. Aparecida Pizzirani-Kleiner2

1 University of São Paulo, “Escola Superior de Agricultura “Luiz de Queiroz”- Departament of Genetics. Avenida Pádua Dias 11, 13418-900 - Piracicaba - SP, Brazil
2 University of Mogi das Cruzes, Núcleo Integrado de Biotecnologia. Av. Dr. Cândido Xavier de Almeida Souza, 200, Laboratório de Genética de Microorganismos. 08780-911 - Mogi das Cruzes, SP, Brazil

The term endophyte was coined some years ago to refer to interior colonization of plants by microorganisms that usually do not cause damage to the hosts and live most of their life inside of the plant tissues without eliciting any pathogenic symptoms. Some endophytes establish active relationship with their host plants and promote benefits to the plant. The potential for practical applications of endophytes has led to studies addressing the fungi’s ability to control both disease and insect infestations, as well as promoting plant growth. *Penicillium pinophilum* is a well known endophytic fungus that forms symbiotic sugar cane association. Sugar cane is one of the most important cultivated crops in Brazil. Currently, sugar cane importance is increasing considerably around the world due to searching for renewable energy sources, highflying the ethanol used as biofuel. Considering its economical and environmental relevance and the microbial benefits we aimed to evaluate the almost non-known interaction fungi-sugar cane. We developed an efficient Agrobacterium-mediated transformation system for *P. pinophilum*, using as a model the green fluorescent protein (GFP) expression. *P. pinophilum* was transformed by Agrobacterium tumefaciens following a modified methodology previously described by de Groot et al. (1998). Cultures of *A. tumefaciens* harboring the binary vectors pFAT2 and pFAT-gfp were grown with shaking in YM liquid medium (25mL) containing the appropriate antibiotics at 28°C for 24 hours. The *A. tumefaciens* cells were then diluted to an OD660nm of 0.15 in liquid induction medium (IM) supplemented with acetosyringone (200 mM) and the bacterial culture was subsequently grown at 28°C for 8 hours. The mixture fungus-bacterium was placed (200 ml) on a nitrocellulose membrane with a 0.45 mm pore size and 45mm diameter. The membranes were subsequently transferred to Petri plates, carrying potato agar medium that contained hygromycin B (100 μL mL-1) and cefotaxime (200 mM), and incubated at 28oC. We found the best transformation efficiency for conidial transformation was using the co-cultivation period of 48 hours. Putative transformant *P. pinophilum* cells became apparent on the selective media after 5 days of incubation. The mitotic stability of the transferred DNA was confirmed by growing ten transformants for six generations in agar media without selective antibiotics. Resistance to hygromycin B was maintained for all mutants. Fluorescence emission was retained by the transformants and also expressed in sugar-cane tissues from inoculated plants with GFP-transformed *P. pinophilum*. Epi-fluorescence light microscopy of two *P. pinophilum* transformants that expressed the green fluorescent protein (GFP) revealed intercellular hyphal growth. We have exploited the qualities of GFP as a reporter to study the interactions between *P. pinophilum* and its sugar cane hosts. The stable integration and expression of the introduced gene into the genome of the recipient fungus indicate that the endophytic fungi may become an excellent tool for delivering and expression of agronomical important genes (e.g. disease, insect resistance and promoting growth) to host plants.

Keywords Endophytes; Green fluorescent protein (GFP)

Antibiogram profile of *Escherichia Coli* isolated from the migratory whistling swans in Hakaluki haor of Moulavibazar district, Bangladesh

Ferdous Mohd. Altaf Hossain; MT Hossai; MM Rahman

Eon Animal Health Products Ltd., 53, Mohakhali, Dhaka 1212, Bangladesh

A total of 100 *E. coli* isolates were isolated from the migratory birds of Hakaluki haor of Moulavibazar district and were subjected for in-vitro drug sensitivity test. Ten different drugs like Colistin Sulphate (CS), Gentamicin (GNT), Azithromycin (AZM), Levofloxacin (LVX), Ciprofloxacin (CIP), Tetracycline (TC), Amoxicillin (AMX), Metronidazole (MT) were used in this study to detect the drug sensitivity pattern of those isolates. The antibiogram status of each drug was determined by measuring the diameter of the zone of inhibition due to the diffusion of the agent into the medium surrounding the disc. A high of 96%, 89% and 88% *E. coli* isolates showed the sensitivity to CS, LVF and CIP respectively, followed by AZM (79%), GNT (77%), AMX (63%), TC (46%). No isolate was sensitive to MT (0%).
Antimicrobial activity of chitosan against *Fusarium oxysporum* f. sp. *tracheiphilum*

T.C.M. Stamford1,2; L.R. R. Berger3; N.P. Stamford4; M.C.F. Silva4,5; T.K.S. Borges3; D. Laranjeiras4; G.M. Campos-Takaki6

1 UFPB Dept Fisiology and Pathology, Cidade Universitaria s/n, CEP 58059-900, João Pessoa- PB, Brazil.
2 IPCTAMB, Nucleus of Research in Environmental Science, Rua Nunes Machado n°42, CEP- 50050-590, Recife, PE, Brazil.
3 UFPE, Pos-graduation in Science Soil, Rua Dom Manuel Medeiros, s/n Dois Irmãos, CEP 52171-900, Recife, PE, Brazil.
4 UFPE, Dept of Agronomy Rua Dom Manuel Medeiros, s/n Dois Irmãos, CEP 52171-900, Recife, PE, Brazil.
5 UFPE, Pos-Graduation of Fungi Biology Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP- 50678-901, Recife - PE Brazil.
6 UNICAP, Dept of Science and Technology Rua Nunes Machado n°42, CEP: 50050-590, Recife, PE, Brazil.

Fusarium wilt, caused by *Fusarium oxysporum* f. sp. *tracheiphilum*, is an important covepa disease in the Brazilian Northeast. Control of this disease is difficult, since the use of chemical methods causes environmental damage and induction of resistance in pathogens. An alternative for the treatment of Fusarium wilt is the biological control, which may occur by the induction of resistance in the plant through the application of chitosan in soil. Chitosan, a cationic amino polysaccharide, essentially composed of β-1,4-D-glucosamine (GlcNAc) linked to N-acetyl-D-glucosamine residues, is naturally present in the cell wall of certain fungi, and can also be obtained by chitin deacetylation from the exoskeleton of crustaceans, insects and arthropods. In food technology chitosan is readily seen due to its several functional properties and can be used as an antimicrobial agent. The aim of this study was to investigate the antifungal activity, in vitro, of chitosan, from *Cunninghamella elegans* UCP 542, among three pathogens *Fusarium oxysporum* f. sp. *tracheiphilum*. Chitosan was extracted from *C. elegans* biomass by alkali-acid treatment. Chemical characterization were effected by infrared spectroscopy (Deacetilation degree) and viscosity (Molecular weight). The effectiveness of chitosan isolated from *C. elegans* in inhibiting the growth of *Fusarium oxysporum* f. sp. *tracheiphilum* was evaluated. Chitosan solutions at concentrations ranging from 10.0 to 0.025 mg/mL was prepared in acetic acid 0.5% (v/v), pH adjusted by 5.5. The antifungal activity was assayed by determining the minimum inhibitory and fungicidal concentration using broth dilution method in Sabouraud medium. Chitosan was replaced with sterile distilled water and 0.5% acetic acid in the positive control. Microbial growth was observed in all positive control. Also, the viability of the *F. oxysporum* was confirmed by verifying their growth in Sabouraud agar without adding chitosan. The chitosan showed the degree of deacetylation and the viscosimetric molecular weight respectively of 85% and 2.72 x 10^4 g/mol. Chitosan showed minimum inhibitory concentration and minimum fungicide concentration for *F. oxysporum* assayed in 0.5 mg/mL and 4.0 mg/mL, respectively. The exact mechanism of the antifungal action of chitosan is still unknown, but different mechanisms have been proposed, which consider its chemical and structural properties. The results obtained in this study demonstrate the antifungal potential of chitosan against phytopathogenic fungi.

Keywords Polymer; phytopathogenic fungi; antifungal property

Application of *Bdellovibrio*-and-like organisms (BALOs) in integrated pest management

L. Hvatni, V. S. Fenyesi, D. Czifra, C. Vágvölgyi, and L. Mancezinger

PESTBUSTERS, Department of Microbiology, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary

Numerous bacteria, such as the plant pathogenic species of the genera *Pseudomonas* and *Xanthomonas* are known to cause severe crop losses in agriculture. Several chemical pesticides are used against them successfully but by the use of these compounds the environment is substantially polluted, furthermore, many of them can be harmful for humans as well. A safer solution would be the application of *Bdellovibrio*-and-like organisms (BALOs), which can consume a range of Gram negative bacteria, within the frames of integrated pest management. We have isolated four putative (BALOs) from the rhizosphere of tomato plants and a strain was purchased from the *Bdellovibrio bacteriovorus* culture collection DSMZ. The isolates were found to belong to the *Bdellovibrio* related species *Peredibacter starrii*. *B. bacteriovorus* strain was shown to be efficient against all strains of the plant pathogenic *Pseudomonas* tested, while the isolates could consume all the available *Xanthomonas campestris* strains. For agricultural applications the *B. bacteriovorus* and the *P. starrii* isolates can be cultivated on *P. putida* and an apathogenic strain of *X. campestris*, respectively. All the strains were shown to keep their predatory activity in the presence of moderate amounts of copper sulfate, therefore they are potential candidates for being used in integrated pest management strategies in combination with a reduced amount of copper-containing pesticides. For the sake of a less complicated maintenance attempts are being made for the isolation of host independent strains from the parental isolates.

The work was supported by the project ‘Jedlik Ányos’ (OM-00136/2007).

Keywords *Bdellovibrio*-and-like organisms; integrated pest management
Associated microbiota in soil of organic coffee cultivate

Sára Maria Chalfoun (1), Carlos José Pimenta (2), Caroline Lima Angélico (2), Yasmin Chalfoun (3), Marcelo Cláudio Pereira (3), Sabrina Carvalho Bastos (6), Lucas Silveira Tavares (7)

1Agriculture and Livestock Research Institution of Minas Gerais State/CRSM, P.O. Box 176, Federal University of Lavras, Minas Gerais State, Zip Code: 37200-000, Lavras – MG, Brazil.
2Teacher of Department of Food Science, Federal University of Lavras, Minas Gerais State, P. O. Box 3037, Zip Code: 37200-000, Lavras – MG, Brazil.
3Department of Food Science, Federal University of Lavras, Minas Gerais State, P.O. Box 3037, Zip Code: 37200-000, Lavras – MG, Brazil.
4Federal University of Lavras, Minas Gerais State, P. O. Box 3037, Zip Code: 37200-000, Lavras – MG, Brazil.
5Agriculture and Livestock Research Institution of Minas Gerais State /CRSM, P.O. Box 176, Federal University of Lavras, Minas Gerais State, Zip Code: 37200-000, Lavras – MG, Brazil.
6Nutritionist – DSc on DCA/ UFLA, Assistente professor da UFLA - Department of Food Science (DCA), Mailbox 3037, CEP 37200000, Lavras MG.
7Food Engineer – MSc on DCA/ UFLA.

The fungi microbiota was studied in two coffee organic harvesting in organic system, located at South of Minas Gerais State Region (Três Pontas) and Alto Paranaíba Region (Patrocínio). Soil samples were collected in two different regions (1) 10 cm far away of the trunk, (2) canopy projection, (3) between the planting lines of coffee and (4) out the coffee plantation area, but into the farm limits. After sampling, the samples were aconditioned in boxes and conducted to the EPAMIG-CRSM/EcoCentro Phytopathology Laboratory to realize the microbiological analysis. In both regions there was a predominance the fungi genus Penicillium potential phosphate solubilizer in relation to the others genera. In the Alto Paraíba there was a higher number of Forming Colony Units (UFC) of this genus in the dry period, probably due to the weather conditions been favorable to xerophilic fungi. In the same region was detected higher level of P in soil. This fact can be due to higher presence of phosphoform solubilizer fungi how the Penicillium genus. The South of Minas Gerais Region favoured higher diversity of fungi genera, with more occurrence of the fungi of the genera Aspergillus and Fusarium potential mycotoxins producers.

Key words: organic cultivate, fungi microbiota, Coffea arabica L.

Associations between rumen microbes and cattle feed efficiency

Leluo Guan*, Meiju Li, Emma Hernandez-Sanabria, Mi Zhou
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada, T6G2P5

*Corresponding author.

The rumen and its complex microflora play a major role in supplementing energy for the metabolic functions of cattle. It is therefore an active "bio-reactor" producing many unique bio-products, some of which remain uncharacterized, which are fundamental components for a cow’s daily nutrition, production, and maintenance of health. In addition, the ruminal methanogens, a group of microbes, are known to play a significant part in the production of methane gas which contributes about 15% of total atmospheric emissions from farmed ruminants. Although it is recognized that the rumen is a very complex mixture of different microorganisms, it has been a very challenging area of research, as it is estimated that less than 15% of them can be isolated and grown in the laboratory. The understanding of the biological processes of the microbes in the rumen has therefore remained poor and hence the subsequent linkage between the microbial functions with host performance is not well understood. We will report our recent results of understanding of the associations among rumen microbes including bacteria, methanogen, and fermentation metabolites and host feed efficiency traits. For Bacteria, our results showed that particular bacteria and their metabolism in the rumen may contribute to differences in host feed efficiency under low and high energy diet. For methanogens, the methanogenic community in inefficient animals was more diverse than that in efficient ones and the feed efficient associated as well as diet associated methanogens were identified. For both microorganisms, the copy numbers of 16S rRNA genes were not associated with either metabolites or feed efficiency traits, suggesting the structure/diversity of the community is associated to the host functions. Our attempts to link the ruminal microbial ecology and its functions to cattle’s feed efficiency will supply fundamental understanding of the contribution of rumen microbial community to host biology.
Auto-inducing peptides, comC, D, and E, in a ruminal bacterium, Streptococcus bovis

Department of Life Science, College of Agriculture, Meiji University, Higashimita, Tama-ku, Kawasaki, 214-8571 Japan

Background

Streptococcus bovis often predominates in the rumen when ruminants are fed a diet containing a large amount of readily fermentable carbohydrate, such as starch. Feeding high-carbohydrate diets generally leads to an increase in lactate production in the rumen, which causes a drop in ruminal pH. Since S. bovis is relatively acid-tolerant among ruminal bacteria, the proportion of S. bovis in ruminal microbiota often increases when ruminal pH is low. In addition, S. bovis produces higher percentages of lactate when culture pH is low, thus suggesting that S. bovis contributes to the progress of rumen acidosis. Therefore, it is desirable to suppress the overgrowth of S. bovis, or the overproduction of lactate by S. bovis. It has been proposed that quorum sensing is a bacterial intercellular communication mechanism for controlling gene expression in response to environmental stress or population density. Some acylated homoserine lactones and AI-2 like substances have been demonstrated in some rumen bacteria, but no peptide pheromone has been detected yet. To elucidate the regulatory mechanisms of S. bovis growth, we investigated the molecular properties and gene expression of the peptide pheromone-signaling system, consisting of a two-component regulatory system (ComDE).

Results

In S. bovis, this signaling system is encoded by three genes, comC, comD, and comE, which encode the precursor of a peptide competence factor, histidine kinase, and a response regulator, respectively. These genes were found to be clustered, but comC was present on the DNA strand opposite to the strand harboring comD and comE. Two homologous genes of comD and a homologous gene of comE were also present in the neighborhood of the comCDE cluster. It was demonstrated by RT-PCR and real-time RT-PCR that comD and comE are cotranscribed and comC is transcribed in a monocistronic fashion. Intracellular comC-mRNA level increased sharply during the initial exponential growth, and decreased abruptly after the middle exponential phase. Therefore, comC transcription appears to change with the growth stage.

The growth rate on glucose was decreased by disrupting comCD, indicating that the peptide pheromone-signaling system is involved in the growth of S. bovis. The ratio of formate to lactate produced in 1 h during the late log phase was not different significantly between the comCD-disrupted strain and the parent strain, JB1. These results suggest that ComC affects growth without affecting fermentation pattern. In a comD-disrupted mutant, the transcript level of comC was decreased, and the expression of several functional proteins was changed. However, addition of ComC peptide to the cultures of JB1 increased growth rate and transformation efficiency. These results suggest that S. bovis ComC stimulates growth and enhances competence.

Conclusions

Deletion of comC and comD decreased growth rate, which may be related to the change in the expression of several functional proteins. The growth rate and transformation efficiency were increased by adding mature ComC peptide. Thus, the peptide pheromone-signaling system might be involved in the regulation of growth and the enhancement of competence in S. bovis. These results may contribute to the future development in the control of S. bovis overgrowth and the prevention of ruminal acidosis.

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research (No. 20780196) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT).

Keywords: peptide pheromone; rumen bacteria; ruminal acidosis; Streptococcus bovis; two-component signal transduction system

Auxin-induced recovery of phytoplasma-infected periwinkle

M. Cukrovic-Perica1, M. Jezic1, V Cesar2, J. Ludwig-Müller3, H Lepedus4, M. Mladinic5, M. Katic1, and D. Leljak-Levanic5

1University of Zagreb, Faculty of Science, Division of Biology, Department of Botany, Marulicev trg 9a, 10000 Zagreb, Croatia
2University of Josip Juraj Strossmayer, Department of Biology, Trg Ljudevita Gaja 6, 31000 Osijek, Croatia
3Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
4Agricultural Institute Osijek, Júno Plevgradje 17, 31000 Osijek, Croatia
5University of Zagreb, Faculty of Science, Division of Biology, Department of Molecular Biology, Horvatovac 102a, 10000 Zagreb, Croatia

Phytoplasmas (genus ‘Candidatus Phytoplasma’) are endacellular plant pathogenic bacteria that cause numerous economically important diseases. Symptoms like leaf yellowing, shortening of internodes and stunting, extreme proliferation of the shoots and formation of witches’ brooms, phyloidy and virulence are often associated with the infections. In many cases phytoplasmas cause death of their plant hosts. Many research attempts were made in order to find a suitable method to fight against phytoplasma diseases. Phytoplasmas have reduced genomes of 530 – 1130 kb and are highly dependent on the intake of the nutrients from their hosts. Infections caused by phytoplasmas lead to developmental disorders in infected hosts via deregulation of developmentally important genes while the presence of these pathogens disturb the normal transport through the phloem causing numerous physiological and biochemical changes in infected hosts including the changes in plant growth regulators balance. This was the basis for the idea to try to eliminate phytoplasmas by treating infected plants with auxins.

In vitro grown Catharanthus roseus shoots infected with 3 different ‘Candidatus Phytoplasma’ species were treated with two auxins. Tested plant growth regulators, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), induced remission of symptoms (recovery) in all phytoplasma-infected plants. The time period and concentration of the auxin needed to induce recovery was dependent on the ‘Candidatus Phytoplasma’ species and the type of auxin. IBA-treatment eliminated ‘Ca. P. asteris’ (strain HYDB) from the host tissue despite the obvious recovery of infected plant. To elucidate the possible mechanisms of host recovery and ‘Ca. P. asteris’ elimination from C. roseus shoots caused by indole-3-butyric acid (IBA)-treatment, H2O2 and related enzymes, stem anatomy and callose deposition in phloem tissue, endogenous auxin levels and general methylation levels were measured and compared for non-infected periwinkles, periwinkles infected with different ‘Candidatus Phytoplasma’ species and phytoplasma-recovered periwinkles. Differences in methylation of the host plant genome after the treatment with auxin revealed that epigenetic changes induced in periwinkle by IBA treatment might be responsible for the elimination of ‘Ca. P. asteris’ from the infected plant. In nature, rare cases of spontaneously recovered plant species are known. However, the molecular mechanism of phytoplasma recovered periwinkles upon the treatment with IBA is different than the proposed recovery mechanism in spontaneously recovered plants where peroxide and related enzymes are the proposed cause of the recovery. Our results show that in the case of some ‘Candidatus Phytoplasma’ species, auxin-treatment could be used to eliminate phytoplasmas from plants.

Keywords: bacteria, elimination
Bacteria in salt-marsh sediments: Influence of plant colonization on abundance, physiological diversity and heterotrophic activity (Ria de Aveiro, Portugal)

V. Oliveira¹, A. L. Santos¹, F. Coelho¹, C. Aguiar¹, S. Sousa², S. Lopes³, N. C. M. Gomes⁴, A. Almeida¹ and Â. Cunha¹

¹Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
²Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan.

The diversity and activity of microorganisms are strongly influenced by plant colonization. Microbial communities associated with plant rhizospheres are highly diverse and often more active than the microflora of bulk sediments. The aim of this study was to characterize and compare the microbial communities associated with salt marsh sediments colonized either by Spartina maritima or by Halimione portulacoides, two seagrass plants often proposed for phytoremediation approaches in impacted estuaries. Sediment cores of 16 cm length were collected from a non-vegetated area (control) and from each of monospecific vegetation banks. Porosity, sediment grain-size and nutrient concentration were measured along vertical profiles with a 2 cm pace. Microbiological descriptors were assessed at the same sediment horizon. Potential rates of ecotrophic activity (β-glucosidase, aminopeptidase, α-glucosidase, arylsulfatase and phosphatase) assessed by the hydrolysis of fluorogenic model substrates, showed generally higher activity in the vegetation banks in relation to control sediments that were also vertically more homogeneous. Aminopeptidase showed the highest activity rates (0.1992.7 nmol g dw⁻¹ h⁻¹), and α-glucosidase presented the lowest (0.0-43.2 nmol g dw⁻¹ h⁻¹). The physiological diversity of bacteriobenthos assemblages, characterized by the profiles of utilization of sole-carbon-source (Biolog Ecoplates) showed that only the communities from the upper sediment layer of the S. maritima and the H. portulacoides banks exhibit consistent differences in terms of physiological profiles. Total prokaryote abundance (5.90x10²⁶-2.71x10²⁷ cells g dw⁻¹) was higher in surface sediments. The relative abundance of the domain Bacteria was approximately 40% of total cell counts with the highest proportion occurring in the surface layer. The Archaea domain comprised approximately 25% of total prokaryote cells with a homogeneous vertical distribution. The relative abundance of sulfate-reducing bacteria (SRB) was approximately 3% of total cells counts in control sediments and at the H. portulacoides bank and 7% at S. maritima. The analysis of 16s rDNA PCR-DGGE profiles suggest a high diversity of the bacterial communities in the rhizosphere of the two salt marsh plants. The different patterns obtained, indicate that the communities are structurally distinct at the two vegetation banks. However, at the S. maritima bank there is also considerable spatial variability in the structural diversity of the sediment bacterial communities.

The analysis of the abundance, diversity and structure of microbial communities of salt marsh plant rhizospheres suggest the existence of specific interactions between roots of estuarine plants and sediment microbial communities. Archaea represent an important fraction of the prokaryote assemblages regardless of the chemical environment of each sediment depth layer. Changes in plant colonization of intertidal sediment banks affect the metabolic processes of organic matter recycling in estuarine systems and the structure and physiological profile of the bacterial communities involved.

Keywords: Rhizosphere; Salt marsh; Extracellular enzymatic activity; Sole-cabon source utilization profiles; Bacterial and Archaea distribution; SRB; DGGE profiles

Bacterial ACC-deaminase induced changes in root architecture and their influence on nodulation, growth and yield of Cicer arietinum L.

Azeem Khalid¹, S. Muhammad Shehzad², Muhammad Arshad², and Tariq Mahmood¹

¹Department of Environmental Sciences, PMAS Arid Agriculture University Rawalpindi 46100, Pakistan.
²Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan.

Bacteria containing 1-aminocyclopropane-1-carboxylate (ACC)-deaminase in the vicinity of roots may influence plant growth by modifying root architecture through their potential to regulate ethylene (C₂H₄) synthesis in plant roots. The present study illustrates changes in root growth and development in response to inoculation with rhizobacteria containing ACC-deaminase and their resultant effects on nodulation, growth and yield of chickpea (Cicer arietinum L.) under controlled (axenic) and natural conditions. Approximately 138 isolates capable of utilizing ACC as the sole source of N were isolated from rhizosphere of chickpea plants and evaluated for their growth promoting effects on chickpea seedlings under controlled conditions. Four strains were the most efficient in improving root growth of chickpea seedlings as compared to uninoculated control under axenic conditions (jar trial). Among these strains, Serratia proteamaculans (J119) was the most effective plant growth promoting rhizobacterium associated with plant rhizospheres are highly diverse and often more active than the microflora of bulk sediments. The diversity and activity of microorganisms are strongly influenced by plant colonization. Microbial communities associated with plant rhizospheres are highly diverse and often more active than the microflora of bulk sediments. The aim of this study was to characterize and compare the microbial communities associated with two types of salt marsh sediments colonized either by Spartina maritima or by Halimione portulacoides, two seagrass plants often proposed for phytoremediation approaches in impacted estuaries. Sediment cores of 16 cm length were collected from a non-vegetated area (control) and from each of monospecific vegetation banks. Porosity, sediment grain-size and nutrient concentration were measured along vertical profiles with a 2 cm pace. Microbiological descriptors were assessed at the same sediment horizon. Potential rates of ecotrophic activity (β-glucosidase, aminopeptidase, α-glucosidase, arylsulfatase and phosphatase) assessed by the hydrolysis of fluorogenic model substrates, showed generally higher activity in the vegetation banks in relation to control sediments that were also vertically more homogeneous. Aminopeptidase showed the highest activity rates (0.1992.7 nmol g dw⁻¹ h⁻¹), and α-glucosidase presented the lowest (0.0-43.2 nmol g dw⁻¹ h⁻¹). The physiological diversity of bacteriobenthos assemblages, characterized by the profiles of utilization of sole-carbon-source (Biolog Ecoplates) showed that only the communities from the upper sediment layer of the S. maritima and the H. portulacoides banks exhibit consistent differences in terms of physiological profiles. Total prokaryote abundance (5.90x10²⁶-2.71x10²⁷ cells g dw⁻¹) was higher in surface sediments. The relative abundance of the domain Bacteria was approximately 40% of total cell counts with the highest proportion occurring in the surface layer. The Archaea domain comprised approximately 25% of total prokaryote cells with a homogeneous vertical distribution. The relative abundance of sulfate-reducing bacteria (SRB) was approximately 3% of total cells counts in control sediments and at the H. portulacoides bank and 7% at S. maritima. The analysis of 16s rDNA PCR-DGGE profiles suggest a high diversity of the bacterial communities in the rhizosphere of the two salt marsh plants. The different patterns obtained, indicate that the communities are structurally distinct at the two vegetation banks. However, at the S. maritima bank there is also considerable spatial variability in the structural diversity of the sediment bacterial communities.

The analysis of the abundance, diversity and structure of microbial communities of salt marsh plant rhizospheres suggest the existence of specific interactions between roots of estuarine plants and sediment microbial communities. Archaea represent an important fraction of the prokaryote assemblages regardless of the chemical environment of each sediment depth layer. Changes in plant colonization of intertidal sediment banks affect the metabolic processes of organic matter recycling in estuarine systems and the structure and physiological profile of the bacterial communities involved.

Keywords: Rhizosphere; Salt marsh; Extracellular enzymatic activity; Sole-cabon source utilization profiles; Bacterial and Archaea distribution; SRB; DGGE profiles
Bacterial community structure in the rhizosphere of three cactus species growing in xerophytic highlands in central Mexico

J. Félix Aguíre Garrido1, Daniel Montiel Lugo1, César H. Hernández Rodríguez2, Francisco Martínez-Abarca3, Hugo C. Ramírez Saad4

1 DOCTORADO EN CIENCIAS BÍOLOGICAS, UAM-X, 04960 Mexico city, Mexico
2 ENCB – IPN, Carpio esq Plan de Ayala, 11340 Mexico city, Mexico
3 EEZ – CSIC, Prof Albareda 1, 18008 Granada, Spain
4 Department of Biology Systems, UAM-X, 04960 Mexico city, Mexico

INTRODUCTION. The Tehuacan-Cuicatlán reserve, in the central highlands of Mexico, is an arid area of unique plant biodiversity constituted mainly by xerophytes, with exceptional concentrations of rare and endemic species. From the 75 registered species of Cactaceae in this area, 21 are endemic. This natural diversity is being threatened by several human activities; however, the uncontrolled recollector of plants is probably the main threat to cactus species. Management and propagation of cactus plants normally do not take into account the microbial community associated to their roots, which probably are related to plant important processes (i.e. nutrient solubilisation, N₂ fixation). Based on their growth type 3 cactus species were chosen: an herbaceous *Mammillaria carnea* (Mc), a shrub *Opuntia pilifera* (Op) and a species with tree-like growth, *Stenocereus stellatus* (Ss).

The objective of this work was to assess by culture- and non culture-based methods, the diversity and structure of the bacterial communities present in the rhizosphere of the 3 cactus species; and non-rhizospheric soil, focusing on changes related to season (rain - dry) and plant species.

METHODS. Rhizosphere samples of the 3 cactus species (Mc, Ss, Op) and non-rhizosphere soil (nr) were taken during dry and rainy season. Samples were used for viable counting and to isolate bacteria in; complex medium (TY) and Nitrogen-free medium (Nf). Isolates were first selected by colony morphology and further characterized with a polyphasic approach. Samples were also analyzed by molecular methods based on DNA extraction, PCR amplification, DGGE and SARST profiling, and 16S rDNA sequence analysis.

RESULTS. Viable counts were performed on both media and during dry and rainy season. ANOVA demonstrated that: a) main differences in abundance of cultivable bacteria were related to season, being the CFU values higher during the rainy period. b) No CFU differences were found among the 3 rhizospheric samples, in both; media and season. c) The nr samples reported lower CFU values than the rhizospheric samples in both media, but only for rainy season. A total of 40 isolates were obtained in TY medium, and 39 in Nf medium, selection was based on colony morphology. These morphotypes were grouped by means of V6-V8 16S rDNA, PCR followed by DGGE, allowing reduction to 21 ribotypes for TY, and 19 for Nf. All the isolates were placed in 5 taxonomic groups: α-, β-, γ-Proteobacteria, Actinobacteria and Firmicutes, the majority of the isolates belonged to the α- (41%), γ- (19%) Proteobacteria and Actinobacteria (20%). *Ochrobactrum* was the most represented genus with 33% of the isolates, found in rhizospheric as well as in nr soil. Distribution of the genera also showed seasonal differences.

DGGE bacterial community profiling was followed by a computer-aided banding-pattern analysis. Under this approach, rhizospheric and nr profiles of the dry season clustered together, while rhizospheric profiles of the rainy season formed a distinct group. SARST profiling was applied only to 2 samples from rainy season; nr and Mc. The later sample proved to be more diverse as representatives of 11 bacterial were found. Interestingly, with this technique the most represented taxa was *Actinobacteria* with 44% of the retrieved sequences, while the Proteobacteria that was the most abundant taxa for cultivables, was the third represented group with 16% of the sequences.

Keywords cactus rhizosphere, DGGE, SARST, Mammillaria, Stenocereus, Opuntia

Bacterial community structure of no phosphate input management agroecosystems.

S. Chhabra1, D. Braziel2 and D.N. Dowling3

1 Department of Science and Health, Institute of Technology Carlow, Carlow, Ireland.

Soil erosion and eutrophication of water courses are caused by accumulation and runoff of highly supplemented mineral macronutrients (fertilisers), like nitrogen (N) and phosphorous (P) in agricultural soils which are used to increase crop yield. Sustainable mineral management is necessary for non-renewable fertilisation sources like P, to meet future demands and to overcome the negative impacts on the environment. Phosphate solubilising microorganisms are an important factor promoting P availability for plant growth with the potential to solubilise the adsorbed mineral nutrients and make this available to the plant in soil. The affect of management practices on the structure of these microbial communities is still in its infancy also not much is known regarding the affect of no P inputs on overall community structure in soil. In this study we set out to analyse the affect of management practices on microbial community structure by sampling and analysis of experimental plot’s which are managed with conventional and no input P source for last 13 years. The Knockbeg field plots are located in Carlow, Ireland managed by Teagasc. These plots are grown with continuous monocultures of wheat and barley crops. The overall structure of bacterial community was analysed from these plots by using molecular tool like PCR-DGGE and 16S rRNA gene library analysis.

The results based on PCR-DGGE and 16S rRNA gene library analysis from different field sites receiving conventional and no P inputs suggest a variable microbial community structure within no P inputs compared with the conventional input regimes. The structural profile generated for different sampling periods and input regime using PCR-DGGE shows a greater seasonal affect compared to no P input regimes. However, the exact functional diversity of the microorganisms present in soil will require further analysis, for example analysing functional genes for phosphate solubilisation in soil and by soil metagenomic library analysis.

Keywords: Runoff, Eutrophication, 16S rRNA, PCR-DGGE.

Acknowledgement

This work is funded by the Department of Agriculture and Food stimulus 2 programmes, Ireland.

References:

Bacterial diversity in the nodules of soybean.

Yoshinari Ohwaki1, Junko Tazawa1, Tadashi Yokoyama1, Seiji Matsumoto1, Yoshiaki Shirakawa1, and Masami Yoshikawa1

1National Agricultural Research Center, Tsukuba, Ibaraki 305-8666, Japan
2Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
3Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center, Seika, Kyoto 619-0244, Japan

Soybean (Glycine max L. Merr.) can form root nodules and establish symbiosis with Bradyrhizobium. The nitrogen fixing association between nodule-forming bacteria and host legume plants has been well characterized. On the other hand, occurrence of non-symbiotic bacteria inside the root nodules and its interaction with host plants has been poorly documented. To analyze the diversity of non-symbiotic endophytic bacteria in root nodules, we isolated and characterized several bacterial strains from nodules of soybean. Root nodules were collected from soybean plants (cv. Entrei) grown in the field during three growth phases: flowering, pod development and seed development. A fast-growing bacterium on the YMA medium from surface-sterilized nodules was isolated as a non-symbiotic endophytic bacterium. The percentage of nodules coexisted symbiotic Bradyrhizobium strains and non-symbiotic bacteria was 9 and 2% in the flowering and pod development phases, respectively. The frequency of the isolation of non-symbiotic endophytes from nodules increased to 55% in the seed development phase. We sequenced a fragment of 16S rDNA gene of several non-symbiotic isolates from nodules and found that the isolates were close to the genera Agrobacterium, Rhizobium and Enterobacter.

Keywords: diversity; nodule; non-symbiotic bacteria; soybean

Acknowledgements: This work was supported by the Research and development projects for application in promoting new policy of Agriculture Forestry and Fisheries; the Ministry of Agriculture, Forestry and Fisheries, Japan.

Bio-Organic Fertilizers an Essential Alternative to Harmful Chemical Sources

H. Ghorbani1 and H. Karachi2

1Assistant Professor in Soil and Environmental Pollution, Shahrood University of Technology, Shahrood, Iran
2Academic Member, Department of Environment, Sabzevar Tarbat Moallem University, Sabzevar, Iran

The use of chemical fertilizers is already documented as having a harmful affect on the environment. Almost all planters and growers know that using chemical fertilizers for the long term will damage the soil and turn the lands into unproductive plots. The health affects of using chemical fertilizers on the surrounding flora and fauna has already been established to be very negative, yet we still see farms continuing to use chemical fertilizers. Application of the large amounts of chemical fertilizers will lead to decrease the water quality around the farms substantially and drop the agricultural products every year. In this situation, the farmers have to use increasing amounts of fertilizers just to keep their lands productive. Organic fertilizers are more cost effective when used over the medium to long-run compared to chemical fertilizers. Organic fertilizers have no such negative affect on the environment. They promote healthy bacteria and enzymes growth in the soil which nourishes the soil and thus any plant that uses the soil. Organic fertilizers pose no threat to the local water system as very little if any leaches away to the surrounding water. The soil and its microbes will consume the majority of the organic fertilizer when it is applied. Organic fertilizers are not poisonous and thus have no affect on the balance of local flora and fauna. There are no poisons in organic fertilizers thus there do not need any handling precautions to be used safely. Biofertilizers will provide any farmer with significant benefits to the plant harvest quality and also quantity without any worry about health or environmental impact or complications. Long term use of Biofertilizer will bring balance back to soils that have already been spoiled by access use of chemical fertilizers. By using Bio-Organic Fertilizers it does not need to be worry about many soil and health disorders as well as environmental complications or any other adverse reactions from the use of harmful chemical fertilizers. This paper is going to review the benefits of using bio-organic fertilizers for agricultural food production, in terms of soil, water as well as environmental sources compared to increasingly use of chemical fertilizers in many parts of the world.

Keywords: organic fertilizer, biofertilizer, chemifertilizer, benefits, environment.
Biocntrol of root wilt of chickpea by *Rhizobium* and *Azotobacter in Fusarium* infested soil

N. Akhtar, K.H. Niazi, A. Iqbal, M.A. Shakir.

Soil Bacteriology Section Ayub Agricultural Research Institute, Faisalabad Pakistan.

A pot experiment was designed to study the effect of *Rhizobium* and *Azotobacter*, in alone and in combination, as biocontrol agent against *Fusarium oxysporum* which cause root wilt in chickpea. A recommended dose of fertilizer (30-60 kg NP ha⁻¹) was applied to all the treatments. Chickpea (var. AUG 242) was seed coated by inoculums and fungicide. Ten seeds were sown in each pot containing soil, infested by *Fusarium oxysporum*. Germination percentage was recorded one week after sowing. *Fusarium oxysporum* delayed as well as suppressed the germination in control. Co-inoculation of *Rhizobium* and *Azotobacter* showed highest germination (97.5%) Germination was 80% and 65% in *Rhizobium* and *Azotobacter* inoculated seeds respectively, compare to control (17.5%). Fungicide treated seeds show 75% germination. Two week after the sowing germination became >90% in all the inoculated treatments but it remain 85% in control. Disease was initiated forty days after the germination in all the treatments. Mortality percentage was recorded at three stages i.e. germination, flowering and pod formation. At germination maximum mortality was in control (16.6%) while it was 3.35% in both co-inoculated and fungicide treated plants followed by 6.65 and 7.5% in plants inoculated by *Rhizobium* and *Azotobacter* respectively. At flowering co-inoculation and *Rhizobium* alone showed 8.35% compared with control (25%). Mortality was 10% in *Azotobacter* inoculated plants. At pod formation control was fully wilt while other treatments showed no more wilting. Root parameters were recorded at flowering. Results showed that co-inoculation of *Rhizobium* and *Azotobacter* produced more no. of nodules (48 pl⁻¹), higher nodular mass (0.41g pl⁻¹), more root length (35.75cm),shoot length (35.62cm) root weight(19.25g pot⁻¹) and shoot weight (29.25g pot⁻¹) shoot weight was significantly higher (33.67 g) compared with control (17.37g). *Rhizobium* alone produced biomass 30.60g which is statistically at par with fungicide treatment. *Azotobacter* produced significantly higher biomass 28.83g pot⁻¹. It is concluded that co-inoculation of *Rhizobium* and *Azotobacter* give better control against the soil borne pathogen to a significant extent.

Key words: *Fusarium oxysporum*, *Rhizobium*, *Azotobacter*, chickpea

Biological activity in a soil amended with pulp mill sludge: A field study

F. Gallardo¹, G. Briceno³, C. Saravia¹, M.J. Flores¹, S. Sanhueza¹, M.C. Diez²,³

¹Chemical Science Department, ²Chemical Engineering Department, Universidad de La Frontera
³Scientific and Technological Bioresource Nucleus, Universidad de La Frontera PO Box 54-D Temuco, Chile.

The biological wastewater treatment plants produce large quantities of sludge which require disposal. The controlled disposal of sludge in soils is an alternative that requires its characterization and pre-treatment for use in a continuous and environmentally safe way. The utilization of sludge in agricultural field or degraded soil is gaining popularity as a means of waste disposal and as alternative to soil mineral fertilizer. The sludge generally contains high organic matter content, microorganisms, macronutrients (P, N, and K), microelements (Zn, Cu and Fe) and inorganic substances (silt, clay and calcium carbonate). The sludge application to the soil can promote the improvement of soil structure, the adjustment of pH, and the addition of plant nutrient and therefore increase productivity. In Chile great amounts of sludge from pulp and paper mill wastewater treatment plants are generated annually, and most of them are placed in landfill. This sludge generally contains organic substances such as cellulose, lignin and microorganisms; as well as, inorganic substances and low content of heavy metals. Today the sludge application in acidic soils is an attractive alternative as improved of degraded soils.

The objective of this study was to evaluate the long-term effect of different levels of pulp mill sludge on biological parameters of an Andisool. The soil used in this study was an Andisool belonging to Freire serie (pH, 5.4; OM, 10%; P, 17.5 mg kg⁻¹; N, 19.2 mg kg⁻¹). The sludge used was a secondary sludge obtained from the bleached kraft mill wastewater treatment plant (aerated pond), and was collected from a landfill after one year disposal (pH, 7.0; OM, 75%; N, 566 mg kg⁻¹; P, 313 mg kg⁻¹). The experiment was conducted at the Maquehue experimental station located in Freire, Chile. The experimental design was set up as randomized blocks with three replicates. Each plot measured 6 m x 2 m. The sludge application in the soils was 0, 10, 20 and 30 t ha⁻¹, divided in four applications during one year. Periodically, the biological characteristics such as CO₂ evolution, fluorescein diacetate hydrolysis (FDA) and acid phosphatase activity, at 20, 40 and 60 cm of soil depth, were evaluated. After 30 days of the first sludge application, an increment of soil respiration at 20 cm depth with the sludge addition was observed, due to the activity of soil microorganisms was stimulated by the presence of fresh organic matter from the sludge. The soil respiration was lower at 40 and 60 cm depth, but no influence of sludge application was observed. Different situation was observed for FDA and acid phosphatase activity. A decrease in activity with the sludge application at rates of 10 and 20 t ha⁻¹ was observed at the first 20 cm depth of soil, while recovery tendency was observed with the rate of 30 t ha⁻¹. The increase of phosphatase activity in sludge amended soil at rate of 30 t ha⁻¹ could be due to the high phosphorus level delivered from the sludge. The enzymatic activities diminished with the increase of soil depth. However, this tendency was notary in un-amended soil.

This work shows preliminary results obtained recently as parts of a long study in field condition. We can conclude that microbial activity of soil is modified with the sludge application, increasing respiration and phosphatase activity, mainly with the high level of the sludge application. Leachates studies of macro and micro elements through the soil depth and the repeated sludge application could help to explain the real effect of sludge application on the soil microorganisms.

Keywords: acidic soil, pulp mill sludge, soil respiration, phosphatase, FDA

Acknowledgements: This study was financed by the project FONDECYT 1080427.
Caracterization of soil fungal communities in healthy forest stands and in infected with Heterobasidion parviporum and Armillaria spp.

Lele Grantina¹, Ulldis Malinovskis¹, Guntis Tābors¹, Raināms Kasparinskis², Vizma Nikolajeva¹, Indriķis Muiznieks¹

¹Faculty of Biology, University of Latvia, Kronvalda Boulev. 4, Riga, LV-1586, Latvia
²Faculty of Geography and Earth Sciences, University of Latvia, Alberta Str. 10, Riga, LV-1010, Latvia

Factors by which soils can be suppressive to different pathogens can involve biotic (soil microflora) and/or abiotic elements (soil physicochemical properties), and they may be different with various pathogens. There are suggestions that the main agents in soil suppressiveness are microbial.

The study was undertaken to characterize soil fungal communities of forest stands infected with root rot fungus Heterobasidion parviporum and honey fungus Armillaria spp. The objectives of the study were to characterize and compare soil fungal communities using following methods: estimation of the amount of cultivable microorganisms colony forming units (CFU) using plate count method; determination of total fungal genera followed by calculations of Shannon – Weaver diversity index; extraction of total soil DNA; PCR amplification of the fungal nuclear ribosomal fragments of the obtained DNA followed by ARDRA and calculations of Shannon – Weaver diversity index; and quantitative PCR with universal fungal primers and Trichoderma spp. specific primers.

Two 40 years old spruce (Picea abies (L.) Karst) stands in Otsalīksos and Myrtillus-poltrichosa forests, infected with H. parviporum were analyzed on Sod-podzolic soils (Cutanic, Stagnic Albeluvisols) and Illuvial humus podzol (Placic, Rustic, Albic, Follic, Stagnic Podzols) according to Latvian soil classification and FAO WRB soil classification. In each stand one sampling plot was established.

The forest infected with Armillaria spp. was 80 years old mixed forest stand in Myrtillus-turf mel. forest on drained fen peat soil (Histosols). Dominant tree species was pine Pinus sylvestris (47 % from the area). Other tree species were birch (Betula pendula Roth), aspen (Populus tremula L.) and gray alder (Alnus glutinosa Gärtn.). In this stand three sampling plots were established.

Obtained data were compared with soils of healthy forest stands - pine stand in mixture with spruce, birch and gray alder in Myrtillosa forest type (soil type - Typical podzol (Haplic Cambisols)); pine stand in mixture with spruce and birch in Vaccinio-Pinetum forest type (soil type - Typical podzol (Coluvic Cambisols)); pine stand in Molinio-Arrhenatheretum forest (soil type - Typical podzol (Haplic Cambisols)). In this stand three sampling plots were established.

Infection of the analyzed forest stands by parasitic fungi is reflected by significant decrease of the number of CFU of filamentous fungi and by slight decrease of cultivable microorganisms CFU and fungal diversity (with exception of Shannon – Weaver diversity index of cultivable filamentous fungi of sampling plots infected with Armillaria spp.). In contrast infected stands with H. parviporum have relatively high proportions of fungal DNA from the total soil DNA and Trichoderma spp. DNA from fungal DNA, and also higher relative abundance of cultivable Trichoderma spp. in comparison with data about healthy forest stands from our previous publication. Soils in sampling plots infected with Armillaria spp. have decreased proportion of fungal DNA from the total soil DNA but increased proportion of Trichoderma spp. DNA from fungal DNA.

Keywords: Fungal diversity, Shannon – Weaver diversity index, ARDRA, real time PCR, Heterobasidion annosum, Armillaria, Trichoderma.
Characterization of plant growth promoting traits of Methylobacterium oryzae CBMB20 isolated from rice and its effect in efficient use of organic manure for higher yield and growth promotion of red pepper

Minkyong Lee, Wojong Yun, Insoo Hong, P.S.Chauhan, H.P. Deka Boruah and Tongmin Sa
Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Chungbuk, 361-763, Korea

A pink-pigmented, facultative methylophoric bacterial strain Methylobacterium oryzae CBMB20 was isolated from stem tissues of rice. CBMB20 was able to utilize 1-aminoacyclopropane 1-carboxylate (ACC) as a nitrogen source and produced ACC deaminase. Strain CBMB20 is also able to produce indole acetic acid and showing acetylene reduction activity. For this study we examined the plant growth promoting potential of CBMB20 under growth conditions using pouch assay. Inoculation of CBMB20 was able to enhance total dry weight by 12.7%. For further detailed study a greenhouse experiment was conducted to examine the effects of inoculation of alone CBMB20 and coinoculation with arbuscular mycorrhizal (AM) fungi on the growth of red pepper (Capsicum annuum L.). Inoculation of red pepper plants with the CBMB20 resulted in a significant increase in root length and root fresh weight compared to untreated control plants. The combination inoculation of CBMB20 and AM fungi significantly increased various plant growth parameters and chlorophyll content compared to uninoculated controls. In addition, the combined inoculation of CBMB20 strain and AM fungi resulted in significantly higher nutrient accumulation in the roots and shoots of red pepper plants compared to uninoculated controls. The micronutrient content of the red pepper plants also increased in most of the inoculation treatments. In the present study we are trying to understand the relationship between PGPR belonging to the genus Methylobacterium and in consortium with AM fungi. The effects of either single or combined inoculation with Methylobacterium strains and AM fungi on growth and macro- and micronutrient uptake were evaluated in Capsicum annuum L. plants in greenhouse experiments. The establishment of the microorganisms and their effect on the population of other bacteria was also investigated. Since red peppers require a greater amount of important but scarce nutrients, inoculation with favourably interacting microbes can provide an alternative to chemical fertilizers. Further research on in-depth understanding of the co-operative microbial interactions will facilitate the successful application of microbe-based products in biotechnology. For studying the colonization of CBMB20 in the rhizosphere and phylosphere of red pepper plants, CBMB20 was tagged with green fluorescent protein (gfp) through bacterial mating method. The plasmid pFAJ1823/Escherichia coli S17-1 was used for gfp tagging. The presence of gfp in the purified transformants was confirmed by PCR amplification using the specific primers YL065 (F) 5″-GCGATGTTAATGGGCAAAAA-3″ and YL066 (R) 5″-TCCATGCCATGTGTAATCCT-3″. The transformant stability was determined by restreaking a single colony from selective medium onto tryptic soy agar without any selection pressure. After completing 12 rounds of restreaking at 5- day intervals, the colonies were scored for kanamycin resistance and presence of gfp through PCR analysis. Furthermore, fresh colonies scraped off from agar plates after washing in sterile distilled water were starved at 4°C for 3 weeks, and the cell suspensions were then plated onto AMS succinate media with and without kanamycin. The colony, cell morphologies, and growth of the gfp derivative in TSA, AMS succinate, and AMS with 0.5% (v/v) methanol were compared with that of wild type. In the present study we are providing the effect of organic fertilizer on the plant growth of red pepper in presence and absence of gfp tagged Methylobacterium oryzae CBMB20 as soil or foliar application greenhouse condition.

Keywords: methylobacteria, AM fungi, co-inoculation, soil application, foliar application, greenhouse, gnotobiotic

Characterization of rhizospheric bacteria isolated from maca (Lepidium meyenii W.) in the highlands of Junin-Peru

D. Zúñiga Dávila1, J. Tolentino Macalupú1, M. García Wong1, W. Pérez Porras1, M. Matsubara Bautista1, L. Ramos Pajuelo1 & K. Ogata Gutiérrez1.
1 LEMYT Marino Tabusso, Biology Department, Faculty of Sciences, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima, Perú

Lepidium meyenii Walpers, also known as maca, is the only member of the Brassicaceae family cultivated in the Central Andes of Peru, in the “Bomboos” highlands between the departments of Paucar and Junin at 3800 and 4500 m.a.s.l., where it has been found the most genetic variability. This crop develops in very cold ecosystems with temperatures between 3 and 7°C during day and until 10°C at night. There is high sun light, frequently freezing conditions, strong winds, and acid soils (pH ~ 5) [1]. On the other hand, there is a number of rhizospheric microorganisms with many beneficial capabilities on the roots and foliage that can be in a direct (nitrogen fixing, phytohormones production, siderophores and phosphate solubilization) or indirect (fungi inhibition, systemic acquired resistance and other) way.

The aim of this study was to characterize the bacteria diversity from maca for their future application as inoculants in the stressing conditions of maca breeding. Roots in different phenology stages were collected. Pseudomonas, free-life diazotrophs bacteria (FLD), actinomycetes and Bacillus sp were isolated in selective mediums under mesophilic conditions (28°C). For characterization of PGPR capability of the isolates, there was evaluated IAA (Indole-3-acetic acid) production and phosphate solubilization at 5, 14 and 28°C. Furthermore, the effect of the strains in the promotion of maca seeds germination was made under dark conditions and temperatures between 15 and 18°C during 3 days. Finally, the strains were also fingerprinted using BOX-PCR and sequenced with rDNA and rDNA primers.

355 bacteria were obtained, 108 FLD, 29 actinomycetes, 109 Pseudomonas sp. and 109 Bacillus sp. At 28°C, high levels of IAA production and phosphate solubilization were obtained in 50% of FLD and Pseudomonas sp. such 40A, 42A, 17A, 56A, 109A strains. The group of FLD bacteria had a better solubilization of the Bicalcic phosphate whereas the group of Pseudomonas sp did better in tricalcic phosphate. In contrast, Bacillus sp. and actinomycetes showed lower levels in these two phosphate sources. About the tests realized at low temperatures, the 56% of the strains showed a high level of IAA production and a good phosphate solubilization at 15°C and 17A, B404 and B2. The 5A strain showed the same solubilization at 5°C and 14°C. Also an improvement in IAA production was found at 14°C in Pseudomonas sp. strains (Table 1).

Table 1. IAA production and Phosphate solubilization at 5°C, 14°C and 28°C

<table>
<thead>
<tr>
<th>Strain</th>
<th>5°C IAA (μg/ml)</th>
<th>14°C IAA (μg/ml)</th>
<th>28°C IAA (μg/ml)</th>
<th>5°C Tri-Ca* (cm)</th>
<th>14°C Tri-Ca* (cm)</th>
<th>28°C Tri-Ca* (cm)</th>
<th>5°C Bi-Ca* (cm)</th>
<th>14°C Bi-Ca* (cm)</th>
<th>28°C Bi-Ca* (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free-life diazotrophs (FLD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14A</td>
<td>11.91</td>
<td>1.5</td>
<td>1.15</td>
<td>24.15</td>
<td>2.6</td>
<td>1.3</td>
<td>14.91</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>5A</td>
<td>2.6</td>
<td>0.6</td>
<td>0.45</td>
<td>19.34</td>
<td>0.6</td>
<td>0.4</td>
<td>19.57</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Pseudomonas sp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ps1</td>
<td>5A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.13</td>
<td>0</td>
<td>0</td>
<td>4.59</td>
<td>0</td>
</tr>
<tr>
<td>Ps2</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>17.6</td>
<td>0.7</td>
<td>0.2</td>
<td>2.54</td>
<td>0.1</td>
<td>0.15</td>
</tr>
<tr>
<td>Ps42</td>
<td>0</td>
<td>0.32</td>
<td>0.32</td>
<td>24.12</td>
<td>1</td>
<td>0.8</td>
<td>16.44</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ps46</td>
<td>0.32</td>
<td>0.43</td>
<td>0.43</td>
<td>24.12</td>
<td>1</td>
<td>0.8</td>
<td>16.44</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bacillus sp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B13</td>
<td>0.9</td>
<td>0.8</td>
<td>0.45</td>
<td>17.44</td>
<td>1.6</td>
<td>0.6</td>
<td>11.53</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>2.2</td>
<td>0</td>
<td>0.25</td>
<td>15.04</td>
<td>0.9</td>
<td>0.9</td>
<td>29.97</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>1.87</td>
<td>0.7</td>
<td>0</td>
<td>19.82</td>
<td>1.7</td>
<td>0.6</td>
<td>5.97</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

10 of the strains (3 FLD, 2 Pseudomonas sp, 3 Bacillus sp and 1 actinomyce) were selected in order to investigate the effect on maca seeds germination. B2, Ps13, 12act, 5A and Ps42 strains improved the germination percentage in contrast to the non-inoculated control. With the BOX-PCR analysis, a great genetic variability was found in each studied bacterial group. The PGPR potential showed in the isolated strains turns to be a promising in the agriculture in order to raise the yield and nutrients content in the maca roots. Acknowledgements: Grant Perú-Biodiverso GTZ – CONCYTEC, FIA 111-biol-UNALM, Ecosinida SAC.

Keywords: PGPR bacteria, IAA, phosphate solubilization, germination, picrosporic bacteria.
Cicer arietinum growth promotion by Ochrobactrum intermedium and Bacillus cereus

Muhammad Faisal* and Shahida Hasnain
Department of Microbiology & Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.

*Auteur for correspondence

Aims: This study assessed the plant growth-promoting ability of the bacterial strains Ochrobactrum intermedium CrT-1 and Bacillus cereus S-6.

Methods and Results: Two chromium resistant bacterial strains isolated from chromium-contaminated wastewater and soils were identified as Ochrobactrum intermedium CrT-1 and Bacillus cereus S-6. These strains were inoculated on seeds of chickpea (Cicer arietinum var NM-88), which were germinated and grown under chromate salts (300 μg ml\(^{-1}\) of CrCl\(_3\) or K\(_2\)CrO\(_4\)). The data show that Cr(VI) was more toxic due to its better availability to plant roots as compared to Cr(III). The major part of Cr(VI) supplied to the seedlings was reduced to Cr(III) in the rhizosphere by the bacterial strains thus lowering the toxicity of chromium to seedlings.

Conclusions: Strains have significant Cr(VI) resistance and reduction potential and have ability to enhance chickpea plant growth under chromium stress.

Significance and impact of the study: These strains could be utilized for the growth of economically important cash crops as well as for the bioremediation of chromium polluted soils.

Keywords: Bacillus cereus, Chromium, Ochrobactrum intermedium, Cicer arietinum, Cr(VI) reduction, Heavy metals

References:
Colonization and migration abilities of Erwinia amylovora in host plants inoculated by irrigation

R. D. Santander1, E. Marco-Noales2, M. Ordax2, and E. G. Biosca1

1UNIVERSIDAD DE VALENCIA, Departamento de Microbiología y Ecología, Avenida Dr. Moliner 50, 46100, Burjasot, Valencia, Spain.
2INSTITUTO VALENCIANO DE INVESTIGACIONES AGRARIAS (IVIA), Centro de Protección Vegetal y Biotecnología, Carretera Moncada – Náquera, km 4,5, 46113, Moncada, Valencia, Spain.

Erwinia amylovora, causal agent of fire blight, is a quarantine bacterium in Europe affecting several economically important rosaceous plants worldwide. It was present in Northern and Central Europe, and in the last 20 years it has spread to Mediterranean countries. Fire blight is one of the most difficult-to-control diseases of pome trees due to the ability of this pathogen to persist in host and non-host reservoirs and spread by different means. Nevertheless, the information about the inoculum sources and dissemination ways of E. amylovora outside host plants such as water is still very scarce.

Recent studies have shown that the fire blight bacterium survives and maintains its pathogenic potential in different types of environmental waters at low and warm temperatures. Then, water could act as a dissemination way of this pathogen. It has been reported that E. amylovora may be disseminated by rain, and irrigation water has been related with fire blight spread in a nursery. However, the transmission of this pathogen by irrigation water has not been determined yet, neither its possible migration from roots to stem and leaves in plants irrigated at soil level. Then, we have studied the ability of E. amylovora to colonize and to migrate in host plants inoculated by soil irrigation with a green fluorescent protein (GFP)-marked strain, using its wild type strain as control. Bacterial inocula at 10^7 cfu/ml were used to water one-month pear plants (Pyrus communis cv. Passia Crassata) without wounds or after wounding either the crown or the roots with a needle, using sterile water as negative control. Plants were inoculated either once or every two days up to one week, and incubated at 26°C under quarantine conditions. Plant organs showing fire blight symptoms were sampled at root, stem and leaf level and periodically analyzed for the presence of inoculated strain on nonselective King’s B (plus tetracline for the GFP-labeled strain) and semi-selective CCT media. E. amylovora-like colonies recovered were identified by a chromosomal PCR. Tissue sections from roots, stems and leaves were further examined by fluorescence microscopy (FM).

Colonization of roots and migration of E. amylovora within the plant did occur after soil irrigation in both wounded and not wounded pear plants, regardless the assayed strain. Further, the pathogen was able to colonize pear roots and to cause blight symptoms in the inoculated plants, even after only one watering. Once inside the host, the pathogen was able to migrate from the roots to the leaves within 2–4 days post-inoculation, with symptom development being initiated mainly in leaves. Most disease symptoms consisted on necrosis in the leaf margins progressing to the whole leaf surface, with exudates in some cases, and lastly necrosis in the stem, but no blight was observed in the roots. Nevertheless, E. amylovora was recovered from roots, stems and leaves of challenged plants. FM examination of different tissues sections revealed interesting data about the influence of inoculum concentration and environmental conditions on GFP-marked strain. Besides colonization and migration abilities of E. amylovora, water dissemination of the fire blight pathogen by soil irrigation is demonstrated for the first time.

In summary, this work raises new concerns on the potential dissemination of E. amylovora by water that should be necessarily taken into consideration to improve preventive and control measures against fire blight.

Keywords: plant pathogenic bacterium; fire blight; water dissemination; pathogenicity; CCT; PCR; fluorescence microscopy; green fluorescent protein.

Colonization pattern of Methylobacterium suomiense CBMB120 isolated from rhizosphere of and its effect on red pepper growth under greenhouse condition to optimize efficiency of organic manure and lime management

Woojung Yim, M. Madhiaiy, S. Ponguzhali, Minkyoung Lee, H.P. Deka Boruah and Tongmin Sa

Dep. of Agricultural Chemistry, Chungbuk National University, Cheongju, Chungbuk, 361-763, Korea

Pink pigmented facultative methylotrophic bacteria of the genus Methylobacterium possess one or more characteristics of plant-growth promoting traits. On the other the Methylobacterium has been identified as ubiquitous in nature and able associate with of plants by colonizing rhizosphere, phyllosphere and also, as endophytes in root, stem and leaves. Therefore, the beneficial effect rendered by methylotrophic bacteria has been proven meaningful to plants in recent years. In this study, M. suomiense CBMB120 isolated from the rhizosphere of rice, characterize them for nitrogen fixation and production of plant growth hormone, stress was given on the colonization pattern of the strain plant root and leaf surfaces visualized by use of green fluorescent marker. Strain M. suomiense CBMB120, a rhizosphere isolate from rice (Oryza sativa cv. Dong-jin) were obtained by plating the aliquots onto ammonium mineral salts (AMS) medium, with 0.5% methanol as the sole carbon source. The strain was further checked for other plant growth promoting characteristics like nitrogen fixation, production of indole-3-acetic acid (IAA) and cytokinins.

To facilitate easy monitoring under plant inoculated conditions. M. suomiense CBMB120 was tagged with green fluorescent protein (gfp) by introducing the plasmid pFAJ1820 by triparental mating. The donor strain E. coli S17-1 (pFAJ1820) and helper strain E. coli HB101 (pRK2013) were grown on LB broth with kanamycin (50 μg ml^-1). M. suomiense CBMB120 the transconjugants were selected on AMS containing 0.5% succinate supplemented with kanamycin 20 μg ml^-1 and nalidixic acid 10 μg ml^-1. Colonies that showed fluorescence under UV were selected and the presence of gfp gene was confirmed by PCR using YL065 (F) 5’-GCGATGTTAATGGGCAAAAA-3’ and YL066 (R) 5’-TCCATGCACTGTGAAATCCT-3’ primers. Effect of M. suomiense CBMB120 gfp-29 root elongation was perform in rice and canola plants. Surface-sterilized seeds were kept immersed in the bacterial suspension for 4 h under shaking and then transferred to sterile growth pouches (CYGM™ seed germination pouch, Mega International Manufacturer, USA) containing 20 ml sterile distilled water. Seeds treated with sterile water alone was consider as control. The root length of the seedlings from control and M. suomiense CBMB120 gfp-29 treatments was measured on 7 and 15 days for rice and tomato, respectively. M. suomiense CBMB120 was strictly aerobic, Gram-negative rods of α-Proteobacteria. The nitrogenase activities of M. suomiense CBMB120 was 33.2 μmol nitrogen fixed per mg protein per hour. The strain accumulated the IAA amount 7.04 μg ml^-1 in the presence of L-tryptophan while was not produced in the absence of L-tryptophan while was 54.78 ng ml^-1. Inoculation of M. suomiense CBMB120 strain increased the root length and dry weight of the seedlings compared to uninoculated control in rice and tomato. M. suomiense CBMB120 gfp-29, effectively colonized the roots and leaves of rice and tomato when inoculated in the rhizosphere as observed through confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM). The strain initially colonizing the rhizoplane was able to enter the roots of tomato inter-cellularly. Although, such inter-cellular colonization was not detected in rice, the bacterial cells were present in the leaves and stoma packed with bacteria can be visualized both in rice and tomato. This study put forth conclusively that the rhizosphere soil isolate M. suomiense CBMB120 has plant growth promotion ability and colonize the roots of plants and leaf surfaces of plants without host speciation and is transmitted to the aerial plant parts from the seed source. Additional green house and field experiments along with optimization of fertilizer management, is in progress to exploit M. suomiense CBMB120 as biofertilizer. We are looking ahead with M. suomiense CBMB120 in organic fertilizer and lime use efficiency in red pepper cultivation.

Keywords: Methylobacterium, plant growth, colonization, gfp, rhizosphere, rhizoplane, phylloplane
Comparison of conventional and molecular methods for analyzing soil fungal diversity to determine the impact of soil use purpose

Lelde Grantina, Kristine Kenigsvalde, Elina Seile, Vizma Nikolajeva, Indrikis Muiznieks
Faculty of Biology, University of Latvia, Kronvalda boulv. 4, Riga, LV-1586, Latvia

Soil is very heterogeneous environment and different components of the solid fractions in soil (sand, silt, clay, and organic matter) provide variable microhabitats. Three major factors affecting microbial diversity in the soil are plant type, soil type, and soil management. In some situations the soil and in others plant type is the determining factor affecting the soil microbial community.

Nowadays two approaches are used to analyze soil microbial communities – conventional plating of cultivable microorganisms and molecular methods that are independent of cultivation. Both groups of methods have their own advantages and disadvantages.

The study was undertaken to characterize fungal communities at 12 soil profiles with objective to determine the impact of soil use purpose (forests, abandoned agricultural lands, meadows and arable lands) using conventional plating methods and molecular biology methods. Such conventional methods were used as estimation of the number of filamentous fungi CFU and the total amount of cultivable microorganisms has the tendency that with increasing depth the amount of microorganisms decreases. The results of the diversity calculations of cultivable microorganisms (CFU) using plate count method and determination of predominant fungal genera and their relative abundance. A robust culture-independent ARDRA and calculations of Shannon-Weaver diversity index, and quantitative PCR with universal fungal primers and Trichoderma spp. specific primers represented molecular methods.

The number of filamentous fungi CFU and the total amount of cultivable microorganisms has the tendency that with increasing depth the amount of microorganisms decreases. The results of the diversity calculations of cultivable filamentous fungi and fungal diversity from ARDRA results have weak correlation (0.41) due to different biases of both methods. The highest Shannon-Weaver diversity index values mostly were in the upper and medium soil layers and the fingerprints of fungal communities changed in different depths of the soil. Forest soils and former agricultural soils generally showed slightly higher diversity of fungi, and the proportion of fungal DNA within total soil DNA was significantly higher than in agricultural soil types. There is no clear difference between fungal communities in meadows and arable lands. However a tendency can be observed that in arable lands the fungal diversity and proportion of Trichoderma spp. DNA is higher than in meadows.

Keywords: Soil, fungal diversity, Shannon-Weaver diversity index, ARDRA, quantitative PCR, Trichoderma.
Corn (Zea mays L.) growth as affected by soil compaction and arbuscular mycorrhiza

M. Miransari*

*Professor of Soil Science, Department of Soil Science, College of Agricultural Sciences, Shahed University, Tehran, 18151/159, Iran, Tel: (98)2151212469

Using agricultural machinery in the field, especially at a high soil moisture, results in soil compaction and hence alteration of soil properties. Evaluating appropriate methods of alleviating the stress of soil compaction on plant growth is of great economical and environmental significance. Data regarding the effects of biological methods such as using arbuscular mycorrhiza (AM) on corn (Zea mays L.) growth under compaction is rare; hence this research work was performed under greenhouse conditions. The objectives were to evaluate: 1) the effects of soil compaction on corn growth, 2) if using different species of AM under non-sterilized and sterilized conditions can alleviate the stress of soil compaction on corn growth. The collected field top soil was sieved and half of it was sterilized using autoclave. The soil was then compacted in 20x20 cm pots using 2-kg weights, planted with corn seeds and inoculated with different species of AM species including *Glomus etunicatum*, *G. mosseae*, and *G. intraradices*. Soil and plant parameters including soil resistance to penetrometer and soil bulk density as well as corn root and leaf growth were determined. While high levels of soil compaction decreased corn growth, AM inoculation significantly enhanced root growth and hence plant growth under compaction. These results are very important complementary to the previously rare documented results regarding the effects of AM on corn growth under compaction stress and are of great agricultural and ecological significance.

Keywords: corn (Zea mays L.) root and leaf growth; soil compaction; arbuscular mycorrhizal fungi

Database construction of Basidiomycetes Genetic Resource using ITS region

Sakae Horisawa1, Yoichi Honda1, Shuji Itakura3, and Shuichi Doi4

1Department of Environmental Systems Engineering, Faculty of Engineering, Kochi University of Technology, Kami city, 782-8502 Kochi, Japan
2Research Institute for Sustainable Humanosphere, Kyoto University, Uji city, 611-0011 Kyoto, Japan
3Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 631-8505 Nara, Japan
4Graduate School of Life & Env. Sciences, University of Tsukuba, Tsukuba city, 305-8571 Ibaraki, Japan

Introduction. Wood is attractive renewable material not only as alternative to fossil resource but also as a CO2 absorber. CO2 is absorbed in the cell wall of the wood in the forest and is packed in an urban area for a long term as a wooden material. The expansion of wood demand is effective for the CO2 reduction but is obstructed by biodegradability of wood. Therefore, the pest control for wood conservation is important in wood industry. The research about wood-rot fungi will start from identifying the species of causing fungi. However, the identification of wood-rot fungi is not easy because they lives in the hidden place such as in wood, their mycelia lack recognizable distinction, and morphologic character of their fruit body has a wide variation. The present study therefore aims to construct a database of wood-rot fungi including information about fruit body, colony morphology, collection place, host plant, and short DNA sequence for identification of species. The nuclear internal transcribed spacer (ITS) region was employed as the DNA sequence to identify species. Confirmation of the strain species is essential for reliable database. In the present study, the ITS sequences of the contents strains in this database were determined and then were compared with information in GenBank/EMBL/DDBJ database. The sequences of the strains stocked in other institution were compared with information in GenBank/EMBL/DDBJ database by BLAST search and was checked strain species. More information about species was obtained from cluster analysis.

Materials and methods. The strains of wood-rot fungi were selected from the fungal collection of Deterioration Organisms Laboratory (DOL), Kyoto University. Genomic DNA extracted from fungal colony on potato dextrose agar (PDA) plate. The full-length ITS region was amplified by PCR using primer ITS-1 and ITS-4 and subcloned into the plasmid vector for sequencing. The sequence of each strain was compared with information in GenBank/EMBL/DDBJ database by BLAST search and was checked strain species. More information about species was obtained from cluster analysis.

Results and discussion. The ITS region fragments were amplified from the template genomic DNA extracted from all 114 strains. Biological information, such as nucleotide sequence, is being accumulated rapidly but that about wood-rot fungi is not so sufficient. The enough information to identify species was often not found even if ITS sequence determined newly was searched in the database. In this case, the cluster analysis using the information of related species provided diagnostic information. Additional strains about appropriate species obtained from other institute presented contributed to confirm the species. However, the information on the general database involves the risk that submitted information is incorrect and the strain name maintained in institute could have been replaced involuntarily. Both of living strains and sequence information are essential to confirm species.

Keywords: keyword; wood-rot fungi, identification, ITS region
Design of xanthomonads-specific molecular markers using CUPID and Insignia

P. Albuquerque1,2, A.S. Rodrigues3, A.R.S. Marçal2, P. Moradas-Ferreira1, M.V. Mendes1, F. Tavares1,2
1IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal.
2FCUP – Faculdade de Ciências, Universidade do Porto, Portugal.
3ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal.

The genus Xanthomonas comprises many phytopathogenic species of economic relevance. Xanthomonas campestris pv. vesicatoria (Xcv), the causal agent of bacterial spot disease in tomato and pepper, is already disseminated throughout the EPPO (European and Mediterranean Plant Protection Organization) region and strict phytosanitary regulations must be enforced to prevent pathogen spreading and manage infected areas. Molecular-based methods, which are being progressively incorporated into bacteria detection workflows, offer the potential of highly accurate detection and are considered less time-consuming and costly than the established culture-based methods. Currently, with more than five-hundred completely sequenced bacterial genomes and access to bioinformatics tools for comparative genomics, discovering suitable DNA signatures is becoming easily accessible for diagnostic microbiologists. In this work, two recent bioinformatics applications, CUPID [2] and Insignia [3], were used for DNA-signature prediction with the aim of designing molecular markers for Xcv. These web-based applications allow retrieving either taxa-specific ORF’s (CUPID) or DNA signatures (Insignia) in a simple and rapid manner. However, in silico specificity tests, using the BLAST tool, showed that some of the calculated regions were not strain-specific. Furthermore, the number of outputted primers regions is very high, ranging from about 200 ORF’s in CUPID, to more than 200000 signatures in Insignia. This exceedingly high number of outputted signatures required a thorough data filtering, particularly considering that molecular markers were designed for low throughput detection assays, namely PCR. To achieve a more reliable and convenient signature prediction an algorithm was developed to combine the outputs of these two bioinformatics tools. Therefore, the results from CUPID and Insignia were overlapped and the number of DNA loci obtained varied according to the defined minimum sequence length, ranging from 36 to 44 loci, for design of small markers (150bp), to 16 loci for design of larger markers (700bp).

Primer-pairs were designed for the selected in silico specific regions and their effectiveness was confirmed by PCR using seven different Xcv strains. Uniform PCR conditions were used in all assays and obtained amplicons were cloned and sequenced to confirm their identity. Results showed that six primer-pairs provided consistent amplification with all the target strains. Additionally, the sequence variation of the selected regions in different strains suggested that the six loci are located within conserved and stable genomic regions. Dot blot hybridization assays were used to extensively confirm the specificity of the markers against 16 other Xanthomonas and 24 non-Xanthomonas strains. Positive hybridization signals were observed only for target strain. The most promising markers were applied in PCR or hybridization-based detection trials using infected plant material. A simple and inexpensive sample preparation method, based on crude extract filtration, centrifugation and boiling, was optimized with the intent of developing cost-effective procedures for Xcv detection.

In conclusion, the proposed marker design pipeline allows the output of several DNA-signatures in a simple and rapid manner and can easily be extended to other target species. This work shows the potential of the combined use of CUPID and Insignia to reliably calculate DNA-signatures for any bacterial target of interest.

Keywords: Bioinformatics, CUPID, Detection, Identification, Insignia, Molecular markers, Xanthomonas.

Denitrification rate and relative production of denitrification products N2O and N2 are driven differently by proximal and distal control of soil pH

J. Čuhel and M. Šimek

Soil pH is one of crucial abiotic factors influencing not only denitrification rate but, even more importantly, also the proportion of the two denitrification end products N2O and N2. This pH effect can be defined as “proximal control”, because it affects instantaneous activity of denitrification enzymes. However, soil pH could also act through community of denitrifying microorganisms, which can be an important driver of denitrification activity and N2O emissions. This pH effect could be called “distal control”, as it influences the composition and diversity of denitrifying communities over the long term. The denitrifying community, in turn, acts as a transducer through which proximal controls of denitrification are realized. The objective of the present study was to explore how soil pH influences denitrification rate and N2O/(N2O+N2) molar ratio, both as proximal and distal controls, and to separate proximal and distal modes of control of pH from each other.

Soils were sampled in the experimental field in a grassland area in South Bohemia, Czech Republic. The experimental field included 12 plots (each 3×3 m) with three different pH treatments lasting over 24 months: (a) 4 plots amended with KOH solution, (b) 4 plots amended with H2SO4 solution and (c) 4 plots amended with the same amount of water. Three independent soil samples were taken from each plot (12 samples for each pH treatment) and combined to produce one composite sample for each pH treatment, resulting in three soil samples: acidic (pH 5.00), pH-natural (pH 6.03) and alkaline (pH 7.07). Denitrifying enzyme activity (DEA) was measured in the soil samples (without N2O and N2 production). At first we determined DEA in the above three soils (acidic, pH-natural and alkaline) without any additional pH manipulation. Secondly, we used other portions of the pH-natural soil and added H2SO4 and/or KOH solutions to the soil slurries just prior to DEA measurements to shift their original pHs to those of the acidic or alkaline soils, respectively. Finally, we used the acidic and alkaline soils and shifted their pHs to the pH value of the pH-natural soil just prior to DEA measurement.

Analysis of DEA in the soils with different pH management resulted in the previously described pattern: DEA was the highest and the lowest in the alkaline and acidic soils, respectively, and on the contrary, the N2O/(N2O+N2) ratio was the lowest in the acidic and alkaline soils, respectively. Surprisingly, DEA of the pH-natural soil with pH adjustment prior to DEA determination (to pH values close to those of acidic and alkaline soils) were not so different from DEA of the pH-natural soil without any pH adjustment as in the case of acidic and natural soils. On the contrary, the N2O/(N2O+N2) ratio of pH-natural soil with pH adjustment just prior DEA determination (H2SO4 or KOH adjustment) was the same as in the case of acidic and alkaline soils. Thus, it is evident, that the pH effect as “proximal control” is primarily inherent in influencing the proportion of denitrification end products N2O and N2 through the kinetics of N2O production and reduction, because DEA was not primarily driven by the actual pH values, but by the long-term pH management in the field, which probably led to changes of the size and/or composition of the denitrifier community. The above findings were also verified by measuring DEA of acidic and alkaline soils, whose pHs were adjusted just prior to DEA determination to that of pH-natural soil. DEA of acidic and alkaline soils with pH adjustment to pH value of pH-natural soil was the same as DEA of acidic and alkaline soils without any pH adjustment. The N2O/(N2O+N2) ratio of acidic and alkaline soils with pH adjustment to the pH value of pH-natural soil were the same as the N2O/(N2O+N2) ratio of pH-natural soil.

To conclude, our results clearly indicate that it is possible to separate proximal and distal modes of control of pH of denitrification rate on the one hand, and the effect of pH on relative N2O production and reduction, however, not by distal pH control (pH-induced change of the size or composition of denitrifying community). However, the distal pH control caused by long-term pH management in the field had greater effect on absolute denitrification rate than the effect of actual soil pH value. This work was supported by the research grants AV0Z60660521, MSM 0021665801, LC 06066 and IAA608606005.

Keywords: denitrification; pH; soil; N2O; N2O/(N2O+N2); denitrifying enzyme activity; soil reaction
Detection of group I and group II introns in a Mexican Bacillus thuringiensis collection

A. Espino-Vázquez¹, A. Solís-Soto¹, Hugo A. Luna-Olvera² and B. Pereyra-Alférez²

Group I and group II introns are self-splicing RNA sequences which are found in bacteria, archaea, mitochondrial and chloroplast genomes. Group I introns work as a ribozyme over another RNA’s while group II introns are ribozymes that are able to excise themselves from precursor mRNA transcripts. They also have ORF for reverse transcriptase enzyme. In this study there analyze a Mexican Bacillus thuringiensis collection obtained by the Instituto de Biotecnología of Universidad Autónoma de Nuevo León. In order to amplify both intron groups, specific primers were designed and we expected PCR products of 600 bp and 1965 bp for group I and group II, respectively. All strains, twenty six, were positive for the intron group I. However, four of them gave additional band of 200 bp. Nucleotide sequence of main DNA band revealed higher nucleotide homology with reported sequences. Concern with the group II, thirteen strains amplified a single DNA band of 700 pb, instead 1965 bp. Among these ones, we can find to GM-18 and GM-33 recognized as holotype for the serovar. neoleonensis and monterrey, respectively, who were positive for both kind of introns. Nucleotide sequence of PCR products from group II and the additional 200 bp, will be discussed.

Key words: intron, bacteria, ribozymes.

Determination of soil microbial community fluctuations by different techniques in a maize field

A. Muñoz¹, A. López-Pileiro², J. Regodón³, and M. Ramírez³

¹Department of Ciencias Biomédicas (Área de Microbiología)
²Department of Biología Vegetal, Ecología y Ciencias de la Tierra (Área de Edafología y Química Agrícola),
³Department of Química Analítica, University of Extremadura, Avda. Elvas s/n, 06071 Badajoz, Spain.

The soil microbial community in a maize field under conservation agriculture management was analyzed by culture-dependent and culture-independent methods. Of these methods, morphological-type differentiation of cultured microorganisms gave the most detailed and reliable results. Soil PCR-agarose electrophoresis also gave reliable results, but the fluctuations of the different species populations were not detected. Soil PCR-DGGE gave unconvincing results, probably because it has a bias that depends on each particular soil sample and experiment.

Keywords: Soil microorganisms, DGGE, direct count.
Differences Between Microbial Communities in Worm Guts and the Soils They Inhabit

R. M. Simpson¹, M. Picquet², M. Deurer³

¹PLANT AND FOOD RESEARCH, Food Industry Science Centre, Fitzherbert Science Centre, Batchelor Road, Palmerston North 4474, New Zealand
²ENSAMA, 2 Avenue de la Fort de Haye, 54000 Vandoeuvre les Nancy, France.

The soil environment harbours an overwhelming diversity of micro-organisms. Soil microbial communities vary widely in space and, despite considerable interest, there is relatively little understanding of the factors which drive this observed spatial diversity or the variation in soil processes as a result of the differing communities. In addition to these complexities, studies have been hampered by the inability to culture the majority of soil microbial species. However, genome-based molecular techniques, such as pyrosequencing and quantitative PCR, are providing tools to begin to further explore soil biodiversity. Spatial diversity not only varies at a macro level, between differing locations, but also at a micro level, with differences in adjacent location in the same soil: at the surface, in water saturated pockets, at the surface or centre of soil aggregates. Studies of such microvariation will give greater understanding of the correlation between soil taxa and processes.

In this study we investigated differences in microbial fauna in soil from apple orchards under two different production regimes, integrated fruit production (IFP) and organic, in both the bulk soil and within worm midguts. Soil from adjacent orchards in the Hawkes Bay region of New Zealand was placed into twenty litre containers, with a two centimetre thick layer of leaf litter added; twelve earthworms (Lumbricus terrestris) were added to each container. The containers were covered with damp cloth, and kept at a constant 20°C in the dark for three weeks. Soil samples were taken at the beginning and end of the experimental period. Midgut soil and soil from identifiable worm casts were taken at the end of the period. Nucleic acids were extracted from all the soil samples and used to quantify levels of various 16S RNA groups and functional genes. Functional genes selected concentrated on genes within nitrogen metabolism and some facets of carbon metabolism.

Variations between the organic and IFP soils were few and subtle, but between bulk soil and midgut samples had greater differences. Further the variation between the organic soil midgut and bulk soil was greater than that in the IFP samples. The most significant of these were a large decrease in nosZ and smaller increase in nifA in the gut of worms in organic soils as compared to IFP soils. nosZ is part of the enzyme which catalyses the conversion of the potent greenhouse gas N2O to gaseous nitrogen in the final step of denitrification, and the decrease of this enzyme means that earthworms may be causing N2O emission in organic soil. nifA forms part of the enzyme converting nitrite to ammonia, thus removing the first chemical involved in denitrification, converting it into a nitrogen form which is available for plant nutrition. The result of the interaction between these competing processes is unknown.

Keywords: soil microbial biodiversity; earthworm, qPCR, nitrogen metabolism, organic.

Diversity of endophytic fungal community of Vitis labrusca L. (var. Niagara Rosada) and biological control of Fusarium sp. and Botrytis sp.

M. Cristina Pires Brum¹, W. Luiz Araújo², J. Lúcio Azevedo³

¹NIB - University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
²ESALQ - University of São Paulo, Piracicaba, SP, Brazil
³CPAAU - University of São Paulo, Piracicaba, SP, Brazil

Endophytic fungi are those, cultivable or not, that live in the inner plant parts causing no harm to their hosts. These fungi may protect the host plant against diseases and pests and have been considered an important source for bioactive compounds. Previous studies have shown that plants from tropical areas present a great microbial diversity, which could be exploited for biotechnological purposes. The State of São Paulo is the major Brazilian producer of table grape, mainly the Niagara Rosada (Vitis labrusca L.) variety. Therefore, the objectives of the present work were: i) evaluate the fungal endophytic community associated to stems and leaves of V. labrusca cultivated in agro ecological and conventional orchards and ii) evaluate the ability of these endophytic fungi to inhibit Fusarium sp. and Botrytis sp. The endophytic fungal diversity was evaluated by morphological and molecular analysis. The correlation of this genetic and physiological diversity with environmental data was evaluated by Redundancy Analysis (RDA). Endophytic fungi (275 isolates) were consistently isolated from stems and leaves and showed that this community is composed by the Ascomycota and Basidiomycota phylum, being Alternaria, Botryosphaeria, Colletotrichum, Daldinia, Diaporthe, Fusarium, Guignardia, Nodulisporium, Pestalotiopsis, Phoma and Schizophyllum the most frequent genera. The isolation frequency (IF) in leaves was higher than in stems. The IF from leaves of plants cultivated in agro ecological systems was higher than that cultivated in conventional system. Also, the results showed that the temperature was the most important factor on diversity and density of endophytic community of V. labrusca var. Niagara Rosada. Some endophytic fungi were able to inhibit plant pathogenic Fusarium and Botrytis. The present study is the first attempt to reveal the fungi endophytic diversity inside V. labrusca cultivated in Brazil.

Keywords: endophytic fungi; Vitis labrusca; biocontrol, bioactive compounds.
Ecology of coarse wood decomposition by the saprotrophic fungus *Fomes fomentarius*

T. Větrovský, J. Většiková, J. Šnajdr, J. Gabriš, P. Baldrían

Laboratory of Environmental Microbiology, Institute of Microbiology ASCR, Vídeňská 1083, 14220 Praha 4, Czech Republic

Coarse wood colonised by saprotrophic basidiomycetes represents a unique ecosystem strongly affected by fungal metabolism - low pH, presence of extracellular enzymes of lignocellulose decomposition and large abundance of wood-associated microorganisms [1–2]. The aim of this work was to (1) quantify the activity and spatial distribution of extracellular enzymes in wood and fruit bodies of coarse wood colonised by the white-rot basidiomycete *Fomes fomentarius* and (2) to analyse the diversity of the fungal and bacterial community in a fungus-colonised wood.

Fruit bodies of *Fomes fomentarius* and adjacent wood of beech (*Fagus sylvatica*) - 15 samples, and birch (*Betula pendula*) - 6 samples, were collected in hardwood forests in the Czech Republic. In addition, the spatial distribution of enzyme activities, fungal biomass and the diversity of fungal and bacterial communities were tested in a log colonised by the fungus. Activities of endo-1,4-β-glucanase and endo-1,4-β-xylanase were measured with azo-dyed carbohydrate substrates. Fungal biomass was quantified based on ergosterol content. Composition of fungal and bacterial communities was analysed by Denaturing Gradient Gel Electrophoresis. The comparison of extracellular enzymes distribution in wood and fruiting bodies showed that ligninolytic enzymes were found mainly in colonized wood while the activities in fruit bodies were low. There were also some differences in enzyme production between the two host tree species, the activity of cellulose and xylan-degrading enzymes was significantly higher in beech wood than in birch wood. Spatial analysis of a birch log colonised by the *F. fomentarius* proved that *F. fomentarius* was the only fungal representative found in most samples, except a few where a small amount of other fungi was observed on DGGE gels besides the dominating *F. fomentarius*. In contrary, there was a rich bacterial community that varied with location of the sample. The spatial differences in the composition of bacterial communities in the sample are probably due to the spatial differences in the decay progress. There was a high level of spatial variability in the amount of fungal biomass detected, but no effects on enzyme activities were observed. Samples from the fruiting body showed a high β-glucosidase and chitinase activities compared to wood samples. Samples can be divided into “proximal” and “distal” depending on their distance from the fruiting body as there are significant differences in the amount of measured enzyme activity. Significantly higher relative levels of xylanase, β-glucosidase and cellulohydrolase were found in proximal samples, and higher laccase activity was found in the distal ones. The presence of genes for cellulohydrolase and laccase were detected in both the fruiting body and wood.

The activity of cellulose and xylan-degrading enzymes was significantly higher in beech wood than in birch wood. Ligninolytic enzymes were found mainly in colonised wood while the activities in fruit bodies were low. Spatial distribution analysis of a birch log revealed differences in enzyme activity distribution between wood adjacent to fungal fruit bodies (higher activity of xylanase, β-glucosidase and cellulohydrolase) and more distant wood parts (higher activity of laccase). Samples from fruiting body show high activity of β-glucosidase and chitinase. The composition of microbial communities (although dominated by *F. fomentarius*) differed among these parts and may depend on enzyme activities. These results show that a significant level of spatial heterogeneity shaping the rate of substrate decomposition as well as the composition of microbial community is present even within a single piece of decaying wood.

Effect of PGPR with AMF on tomato lycopene and antioxidant content

Kourosh Ordookhani, *Azam khavazi, Farhad Rejai, Abdolamir Moesi*

Islamic Azad University Science and Research Branch Ahvaz - Iran

Soil and Water Institute, Tehran, Iran.

College of Agriculture, Shahid Chamran University, Ahvaz, Iran.

Tomato, is today the most popular garden vegetable in the world and excellent source of lycopene, which is the pigment that makes tomatoes red and has been linked to the prevention of many types of cancer. Lycopene is an antioxidant which fights free radicals that can interfere with normal cell growth and activity.

Greenhouse experiment was set as follows: tomato (Lycopersicon esculentum F1 Hybrid, GS-15) from seeds after inoculated with bacteria (ppgr) and mycorrhiza (AMF) were grown in mixed of soil field , waterworn sand and peat (1/3 x/ v each of them). After three weeks seedlings transfer to pots with 7 kg soil(mixed) there were 7 treatments for bacteria (pseudomonas, azotobacter, azosprillum , pseudomonas + azotobacter , pseudomonas + azosprillum + azotobacter + azosprillum and pseudomonas + azotobacter + azosprillum) and two treatment for AMF (with AMF and without AMF) . AMF was mixed of (Glomus intraradics + Glomus mossea + Glomus etanicatum). For comparison set control 4 pots. Lycopene and antioxidant in fruit were determined as a result:

In all treatments lycopene and antioxidant were higher than the control treatment. Mamimum lycopene conter in different bacteria levels related to mixed of tree bacteria(90.42 mg/kg fresh weight) and in different bacteria × AMF levels related to mixed of tree bacteria with AMF treatment(98.30mg/kg fresh weight), it showed a positive interaction of bacteria and AMF on tomato lycopene content. Also maximum antioxidant content in different bacteria levels related to mixed of tree bacteria and in different bacteria × AMF levels related to mixed of tree bacteria with AMF treatment(54.6%). But minimum content of antioxidant was in pseudomonas + azotobacter × AMF treatment(40.03%) whearse when AMF added to this treatment the antioxidant activity increased(47.93%), that show the AMF can decrease the negative interaction effect of pseudomonas + azotobacter activity on tomato antioxidant content.

A positive relation was seen between lycopene content antioxidant in all treatment(r=98%).

Keyword: lycopene, antioxidant, pseudomonas, azotobacter, azosprillum, AMF

Keywords: bacteria; basidiomycetes; environmental microbiology; enzyme; fungi; lignocellulose; microbial ecology; wood microbiology
Effect of *Pseudomonas* and *Azotobacter* with mycorrhiza on Two varieties of tomato plant growth

Mahdi Zare a,* and Kourosh Ordookhani a

* Department of Agriculture, Islamic Azad University, Firoozabad, Iran.
Corresponding author. Tel.: +98712358290; Fax: +987126224402

Many marketable biofertilizers are mainly based on plant growth-promoting rhizobacteria (PGPR) that exert beneficial effects on plant development often related to the increment of nutrient availability to host plant (Vessey, 2003). Among the symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) form mutual associations with more than 80% of plant species. Benefits to plants include improved mineral nutrition (Smith and Read 1997), protection against pathogens (Azcon-Aguilar et al. 2002) and enhanced resistance or tolerance to stress (Turnau and Haselwandter 2002).

Glasshouse experiments were conducted to assess the influence of *Pseudomonas putida* strain 41, *Azotobacter chroococcum*, *Pseudomonas putida* strain 41 + *Azotobacter chroococcum* alone and with arbuscular mycorrhizal fungus mixed (*Glomus mosseae*) on growth of tomato varieties (*Lycopersicum esculentum* var. *Tivi* F1 and *Lycopersicum esculentum* var. *Delba* F1). Control treatment without bacteria and AMF was considered. Added N fertilizer to all treatments. Shoot dry weight, root dry weight, total plant dry weight, root dry weight/shoot dry weight, root dry weight/total plant dry weight, concentration of K, P, Mg, and Ca in plant shoots were the factors that measured in treatments. As a result, It was significant difference between interaction effects of bacteria and fungi and varieties on nutrient content of two varieties, and in var. *Tivi* F1, was higher than var. *Delba* F1. *Pseudomonas putida* strain 41 + AMF treatment had maximum of nutrient content in two varieties. *Azotobacter chroococcum* alone treatment had minimum of nutrient content in two varieties.

Pseudomonas putida strain 41 + *Azotobacter chroococcum* with AMF treatment had maximum of shoot and root dry weight in two varieties, and in var. *Tivi* F1, was higher than var. *Delba* F1, but was not significant difference between them. All factors in control treatment were lower than the other treatments. It is peer that use of these biofertilizers can be effective on var. *Tivi* F1 tomato plant growth.

Keyword: tomato, *Pseudomonas*, *Azotobacter*, varieties, AMF, growth, nutrient

Effect of biofumigation with manure amendments and repeated biosolarization on *Fusarium* densities in pepper crops

M.A. Martínez1, M.C. Martínez1, P. Bielza1, J. C. Teilo1, A. Lacasa1

1 Dpto. de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
2 Dpto. de Biotecnología y Protección de Cultivos, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Consejería de Agricultura y Agua, C/ Mayor s/n 30150 La Alberca, Murcia, Spain
3 Dpto. de Producción Vegetal, Universidad de Almería, Escuela Politécnica Superior, Edificio Científico Técnico II-B, Ctra. Sacramento s/n 04120 La Cañada de San Urbano, Almería, Spain

In the region of Murcia (Southeast Spain), sweet pepper has been grown as a monoculture in greenhouses for over twenty years. Soil has usually been disinfected with methyl bromide to control pathogens and to prevent soil fatigue effects until its banning in 2005. Populations of *Fusarium* spp. seem to be related with decline in sweet pepper monoculture performed without soil fumigation, in the absence of soil-borne pathogens. In this study, soils were treated with manure amendments, alone (biofumigation, B) and in combination with solarization (biosolarization, B+S), with or without the addition of plant residues. A gradual decrease in the amount of manure amendment in the case of biosolarization was also evaluated. The treatments were compared with methyl bromide. Experiments were conducted at two different locations, one for three years and another for only one year. Disinfection effects were measured by the density of *Fusarium* spp. isolated from soil before and after fumigation. A soil-dilution plate method with Komada medium was used for isolating *Fusarium*. Three different species were systematically isolated: *Fusarium oxysporum*, *Fusarium solani* and *Fusarium equiseti*, being *F. solani* the most abundant one before and after the treatments. The repeated use of manure amendments with crop residues, without solarization, was not able to decrease the *Fusarium* spp. density relative to methyl bromide-treated soil. However, the effectiveness of biosolarization (with or without adding plant residues) and its repetition - reducing the rate of the amendment - for control of *Fusarium* spp. populations was the same as or even greater than that of methyl bromide.

Keywords: *Fusarium* spp.; manure amendments; biosolarization; pepper
Effect of DFO-B siderophore on lead sorption by Na-montmorillonite

M. Hamidpour¹, M. Kalbasi¹, M. Alyon¹, Sh. Molaie¹, H. Marcusen³, P.E. Holm³ and H.C.B. Hansen¹

¹Soil Science Department, Isfahan University of Technology, Isfahan; ²Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldensvej 40, DK-1871 Frederiksberg, Denmark.

Siderophores are important chelators influencing bioavailability and fate of heavy metals in soils. They are low molecular weight organic ligands excreted by aerobic soil microorganisms (fungi and aerobic and facultative anaerobic bacteria) and some plants roots (grasses) to acquire Fe. Siderophores may also complex other metal cations such as Pb²⁺. This ability to form stable heavy metal–siderophore complexes suggests that these ligands may affect heavy metal bioavailability and mobility in soils. The main objective of this study was to investigate the effects of desferrioxamine B (DFOB) siderophore on sorption of Pb on sodium saturated montmorillonite. The sorption of Pb on montmorillonite was studied as a function of pH (sorption envelopes) and as a function of Pb concentration (sorption isotherms) in the presence of siderophore using a 24h batch equilibration experiment. The sorption envelopes (Figure 1) showed that the siderophore increased sorption of Pb onto montmorillonite at all solution pH, specially at pH ≥ 5, by 76-97%. This increasing in the presence of siderophore was likely due to sorption of the positively charged Pb(DFOB)²⁺ and Pb²⁺(DFOB)⁻ complexes to negative charges of the mineral.

![Figure 1: Sorption of Pb as a function of pH in the presence and absence of DFOB siderophore (2X10⁻¹⁰ M, DFOB 2X10⁻⁴ M, pH 4.2 ± 0.1) at (background electrolyte)](image)

Adsorption isotherms revealed that removal of Pb from solution was not affected by siderophore at pH = 4.5, while the siderophore strongly influenced the isotherm shape and increased Pb sorption on montmorillonite at pH = 6.5. The equilibrium data were well described by a Freundlich isotherm, in which the values obtained for the Kᵣ constant were 4.8 and 197 Lg⁻¹ for s constant were 0.8 and 2.1 in the absence and presence of the siderophore, respectively. These values are indication of high sorption affinity of Pb²⁺ on montmorillonite in the presence of the siderophore. Our results showed that DFOB siderophore can strongly affect Pb sorption on clay minerals. Thus DFOB siderophore is expected to increase Pb sorption to negatively charged soils and may reduce Pb toxicity to plants and leaching to ground waters.

Keywords: Lead, Siderophore, Sorption, Montmorillonite

Effect of different rhizobia on Pallar (*Phaseolus lunatus L.*) in the Valley of Nazca in Peru

Y. Quispe Condé¹, V. Pacheco Ascencio¹, J. Guillermo Albitres¹, M. Salinas Fuentes¹, M. Matsubara Bautista¹, L. Espinoza Melgar¹, and D. Zúñiga Dávila²

¹Faculty of Sciences – Biology and Faculty of Agronomy, Universidad Nacional San Luis Gonzaga de Ica. ²LEMYB Marino Tabuse, Biology Department, Faculty of Sciences, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima, Perú

Pallar, also known as Lima bean, is the most important grain legume in the Ica region located at the southern coast of Peru where it has got ‘the origin of denomination’ [1]. This legume represents an important cultural legacy, since its prehispanic origins, and a great source of protein for the Peruvian population. It can establish symbiosis with certain soil fixing nitrogen bacteria broadly known as rhizobia. The aim of the present study was evaluate the effect of inoculation of eight strains of *Rhizobium* sp. and *Bradyrhizobium* sp. on pallar seeds (*Phaseolus lunatus* L. var. *Congo* Seco de Ica) at field conditions. The experiment was set in the Ingenio Valley in the province of Nazca of the Ica region. Relative humidity was 85% and maximum and minimum temperatures were 30.8 and 7.4°C respectively. Soil was sandy loam, slightly alkaline, fairly saline, with low organic matter content and phosphorus and potassium average availability.

The strains were isolated from nodules of pallar fields of Ica Valley, characterized and selected previously at the LEMYB of the UNAM [2, 3]. These were finger-printed with BOX-PCR and sequenced with rdi and rDNA 165 gene primers. The field experiment was design with Randomized Complete Block design (RCB), with 10 treatments and 4 replications. Nitrogen treatment was fertilized with NPK mixture, while the others were just fertilized with P and K. Two evaluations were done, one during flowering (nodulation, dry weight and N percentage of the aerial part) and the other at harvesting (agronomic characteristics like number of grains/pod, yield by plant and plot, 100 grains weight and seed N percentage).

Different BOX profiles were found in all the strains and the bradyrhizobia were identified as *B. yuanmingense*. During flowering, all strains promote the growth of the crop against the controls, whereas there were not significant differences. The inoculated plants showed nodules much more red and big than the non-inoculated ones. At harvesting, differences in the agronomic characteristics were significant between inoculated and non-inoculated treatments (Table 1). Strains of *B. yuanmingense* 56030, 28 and 56010 were the most effective on pallar. These results showed the great potential of these bacteria as biofertilizers and its consequent use in an environmentally friendly agronomic management practices.

Acknowledgments: INCAGRO Sub-proyecto 2007-548; Asociación de Agricultores de Ica and FDA 111-biol/UNALM.

Keywords: *Rhizobium* sp.; *B. yuanmingense*; *P. lunatus*; effectivity; inoculation.

Table 1. Effect of strains of *Bradyrhizobium* on the yield of pallar

<table>
<thead>
<tr>
<th>Treatments</th>
<th>N of pots</th>
<th>100 grains wt (g)</th>
<th>Yield/plant (g/plant)</th>
<th>Yield/plot (Kg/plot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1: LMT 56004</td>
<td>149.50 hodc</td>
<td>202.84 hodc</td>
<td>420 hc</td>
<td>0.0980 hc</td>
</tr>
<tr>
<td>T2: LMT 56009</td>
<td>147.04 hodc</td>
<td>199.17 hodc</td>
<td>435.45 hc</td>
<td>0.1043 hc</td>
</tr>
<tr>
<td>T3: LMT 5610</td>
<td>166.64 abcd</td>
<td>207.82 abcd</td>
<td>468.75 abc</td>
<td>0.1285 ab</td>
</tr>
<tr>
<td>T4: LMT 5617</td>
<td>154.66 abcd</td>
<td>203.50 hodc</td>
<td>447.5 hc</td>
<td>0.1039 bc</td>
</tr>
<tr>
<td>T5: LMT 56025</td>
<td>142.75 abcd</td>
<td>205.67 abcd</td>
<td>429 bc</td>
<td>0.1026 bc</td>
</tr>
<tr>
<td>T6: LMT 56026</td>
<td>157.30 abcd</td>
<td>207.85 abcd</td>
<td>482 ab</td>
<td>0.1041 bc</td>
</tr>
<tr>
<td>T7: LMT 56030</td>
<td>178.21 abcd</td>
<td>213.99 abcd</td>
<td>540.2 a</td>
<td>0.1345 a</td>
</tr>
<tr>
<td>T8: LMT 28</td>
<td>171.21 abcd</td>
<td>204.50 abcd</td>
<td>490 ab</td>
<td>0.1176 ab</td>
</tr>
<tr>
<td>T9: N =</td>
<td>151.75 abcd</td>
<td>210.92 abcd</td>
<td>456.5 b c</td>
<td>0.1053 bc</td>
</tr>
<tr>
<td>T10: N =</td>
<td>132.54 abcd</td>
<td>197.13 abcd</td>
<td>373.73 abcd</td>
<td>0.0918 abc</td>
</tr>
</tbody>
</table>

Values followed by the same letter do not differ at p<0.05, according to Duncan test

References:

177
Effect of different rhizospheric bacterias in the growth of *Gossypium barbadense* L. in Perú

D. Vino Oshiro¹, L. Ramos Pajuelo², M. Mutsbura Bautista³, L. Espinoza Melgar¹ and D. Zúñiga Dávila¹

¹ LEMYB Marino Tabasso, Biology Department, Faculty of Sciences, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima, Perú

² Faculty of Sciences – Biology and Faculty of Agronomy, Universidad Nacional San Luis Gonzaga de Ica. Prolongación Ayabaca C-9, Ica., Perú

The economical development in Peru is hardly anchored to the cotton. Because it is one of the main activities in the region which is used in the oil, textile and cattle industries. As a result, more than 20 thousand families depend on this crop. Therefore, nowadays new tendencies in agriculture like sustainable management and possibilities of some microorganisms like the plant growth promoting rhizobacteria (PGPR) are being opened in order to research about new alternatives in cotton. Working on this topic, the objective of the current study was research the effect of Bacillus sp., *B. yuanmingense* and *Azotobacter* sp. strains in cotton (*Gossypium barbadense* L. var. Tangüis) in laboratory and field conditions.

The selected strains from Ica soils were previously isolated in the LEMYB-UNALM [1]. In the laboratory assay, 13 treatments with 6 repetitions were used, 2 cotton seeds were inoculated with 1 ml of 1⁰ cell/ml/seed. 0.05% KNO₃ was applied in the N⁺ treatment. In the field assay, 3 strains selected in the laboratory assay and their combinations were studied in Ica fields. A Randomized Blocks Design (RBD) with 7 treatments and 4 repetitions were used. The N⁺ treatment were fertilized with NPK mixture while the others were only fertilized with P and K. The seeds were pelletized with a 1⁰ cell/ml population. The range of soil temperature was between 21.5 and 27.4 °C and the minimum and maximum of environment temperature was between 9 and 34°C, respectively. The plant height was analyzed and the leaf color at the flower buds stage. The microbial activity was determined through microorganism respiration by quantification of the CO₂ production [2].

The interaction *B. yuanmingense* LMTR28* Azotobacter* sp. LMTZ56S4b was one of the best treatments against the control non-inoculated (N⁻). This interaction showed the highest values in dry and fresh weight in the aerial part in the laboratory and plant height in field assay. Oddly, in this field, this treatment had an early flowering. Besides, the best microbial activities were obtained with the treatments with *Azotobacter* sp. LMTZ56S4b, *B. yuanmingense* LMTR28 and the interaction of both. These results showed that the former interaction has a great potential as biofertilizers and then it could have an important role in a sustainable management program. Acknowledgements: Grant PROTEC 249-2008-CONCYTEC-OAJ, FDA 111-biol/UNALM, Asociación de Agricultores de Ica. Keywords: Bacillus sp.; *Azotobacter* sp.; *B. yuanmingense*; *Gossypium barbadense* L.; microbial activity; inoculation.

Table 1. Dry weight and fresh weight in laboratory plants, Height and microbial activity from field essays.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Microbial Activity (mg CO₂/g/h) (field)</th>
<th>Plant height (cm/field)</th>
<th>Fresh weight (g/field)</th>
<th>Dry weight (g) (laboratory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azotobacter sp. LMTZ56S4b</td>
<td>0.0900</td>
<td>64 ab</td>
<td>0.840 ab</td>
<td>0.1267 ab</td>
</tr>
<tr>
<td>Bacillus sp. LMTB 56013</td>
<td>0.0675</td>
<td>49.5 a</td>
<td>0.763 a</td>
<td>0.1067 a</td>
</tr>
<tr>
<td>B. yuanmingense LMTR28</td>
<td>0.0828</td>
<td>59.5 a</td>
<td>0.858 ab</td>
<td>0.1280 ab</td>
</tr>
<tr>
<td>Azotobacter sp. LMTZ56S4b + B. yuanmingense LMTR28</td>
<td>0.0799</td>
<td>63.5 a</td>
<td>0.973 bc</td>
<td>0.1450 ab</td>
</tr>
<tr>
<td>Bacillus sp. LMTB 56013 + B. yuanmingense LMTR28</td>
<td>0.0617</td>
<td>78 b</td>
<td>0.787 ab</td>
<td>0.1217 ab</td>
</tr>
<tr>
<td>N⁺</td>
<td>0.0665</td>
<td>63 ab</td>
<td>1.120 c</td>
<td>0.1667 b</td>
</tr>
<tr>
<td>N⁻</td>
<td>0.0572</td>
<td>54 a</td>
<td>0.748 a</td>
<td>0.1200 a</td>
</tr>
</tbody>
</table>

Values followed by the same letter do not differ at p<0.05, according to Duncan test.

References:

Zúñiga, D. 2009. Uso de Bacterias Promotoras de Crecimiento vegetal para la producción orgánica de cultivos nativos de algodón y palmar en el Valle de Ica. Informe Proyecto PROTEC 249-2008-CONICYTEC-OAJ.

ES Effect of essential oils on decay resistance of wood

Tripti Singh¹ and Colleen Chittenden

SciOn, Private Bag 3820, Rotorua, New Zealand

Despite the wide use of essential oils in pharmaceutical and food industry as antimicrobial agents, their use as wood preservatives has not been fully explored. In this study, essential oils were first screened in nutrient medium for their antifungal activity against common wood inhibiting fungi. Subsequently, one essential oil, eugenol was evaluated for wood durability testing using radiata pine sapwood blocks against 3 common wood decaying fungi.

During the initial *in vitro* screening trial, variability in the tolerance of the tested fungi towards the selected essential oil was apparent. Some of the essential oils such as geranium, cinnamon leaf and eugenol completely inhibited the growth of all test fungi at 0.5% w/v on nutrient medium, whereas, eucalyptus oil tested in this study was unable to restrict the growth of any test fungi even at 1% w/v concentration.

Wood durability test results on radiata pine confirmed the antifungal activity of eugenol but highlighted the leachability (when exposed to wet conditions) of this compound from wood. Blocks treated with 3% w/v eugenol without a leaching cycle had less than 1% weight loss when exposed to all three tested wood decaying fungi, *Oligoporus placenta*, *Coniophora puteana* and *Antrodia Xantha*. However, blocks which were leached showed weight losses in the range of 13.40 to 23.12%.

This study identified eugenol as a potential benign wood preservative for treatment of timber not exposed to severe leaching, e.g. New Zealand hazard class H1.2. However, to be used for higher decay hazard situations, further work for *in situ* polymerization of eugenol to fix active(s) in wood is underway.

Key words: decay resistance test; eugenol; *in situ* polymerisation; radiata pine; wood degrading fungi
Effect of in vivo passage on germination and virulence of entomopathogenic fungi, Verticillium lecanii

Ali Derakhshan
Department of Plant Protection, College of Agriculture, Shahrood University of Technology, Shahrood, Iran

Information on the effect of repeated sub-culturing as well as passage of the pathogen through its host and laboratory storage on spore viability and virulence of entomopathogenic fungi are essential cardinals for using in biological control programmes. This experiment was conducted to determine the effect of serial passage on virulence of Verticillium lecanii. The pathogen was passed through B. brassicae for 10 generations and after each passage, virulence of re-isolated fungus was tested on the aphid. Simultaneously, the fungus was re-cultured from the stock culture on PDA medium.

During the first five passages of V. lecanii through B. brassicae the germination of fungal spores showed no significant difference. At 6th, 7th and 9th passages spore germination slightly increased (93.17-94 per cent). Maximum spore germination (94.33 per cent) was observed at 9th and 10th passages which was significantly higher than other generations. Germination of spores without in vivo passage showed significant decline at 2nd generation. From 4th generation to 7th generation, spore germinations were on par and significant decrease again was observed from 8th generation. Aphid mortality caused by the fungus was enhanced by serial passageing the fungus through the aphid. Aphid mortality after 2nd and 9th passages significantly increased. Mortality caused by the fungus without passing through the aphid significantly decreased in 4th, 5th, 7th, 8th and 9th generations of sub-culturing.

The results indicated a decrease in spore germination and aphid mortality without in vivo passage. On other hand, for mass culturing, the fungus should not be sub-cultured for more than 3 generations without in vivo passage. In vivo passage through the aphid resulted in increased spore germination and aphid mortality after 2nd passage.

Keywords: entomopathogenic fungi, Verticillium lecanii, in vivo passage, virulence

Effect of preservation methods on Beauveria bassiana viability

I. Oliveira, J. A. Pereira, A. Bento and P. Baptista
CIMO/Escola Superior Agrária de Bragança, Quinta de Sta. Apolónia, Apt. 1172, 5301-855 Bragança, Portugal.

Beauveria bassiana is an important entomopathogenic fungus (EF) that has been currently used as a biocontrol agent of insect pests. Maintaining and preserving B. bassiana cultures is essential for the effective evaluation of its potential as microbial agent against insect pest, for biodiversity studies and also for exchange of fungal material between laboratories. There are many possible methods for the preservation of fungal cultures. However, none of them could be universally applied to all fungi. In the present work we intended to evaluate the suitability of different storage methods, in order to maintain the viability of B. bassiana isolates. Fungal isolates were obtained from naturally infected Prays oleae pupae, collected in different olive groves in the Trás-os-Montes region (Northeast of Portugal). Three isolates were selected and their conidia were stored, either in 30% (v/v) glycerol at -20ºC or lyophilized. Subculture on PDA medium was used as control. After one year of storage the vegetative growth, sporulation, spore germination and morphological characteristics of each fungal culture were assessed. The results obtained showed that B. bassiana viability depended on both storage method and isolate. Cultures of all isolates were growth after one year of storage in 30% (v/v) glycerol at -20ºC, whereas in freeze-drying isolates only two were growth. The number of conidia produced by isolates was significantly lower on cultures preserved by lyophilisation, when compared to cultures preserved in glycerol. However, no significant differences were found on the percentage of spores germinated between the several storage methods tested. Also, there were no macroscopic nor microscopic alterations in mycelial morphological characteristics between isolates preserved in the different storage methods. From these results, freezing at -20ºC seems to be the best storage method for B. bassiana. However, the viability of the isolates was probably more strain-specific than dependent on the preservation technique used.

Keywords Fungus stock preservation, viability, Beauveria bassiana, entomopathogenic fungal
Effect of the irrigation by worn water on some physiological and biochemical parameters of the bread wheat (*Triticum aestivum* L.) in the region of Guelma (Algerian East)

Fatiha Bekhouche,1 Ouahiba Bordjiba1 and Djenidi Redha 1
Laboratoire de Biologie Végétale et Environnement, Département de Biologie, Faculté des sciences, Université Badji Mokhtar BP 12, Annaba 23000, Algérie.

A test on bread wheat was led in order to check the effects of worn water on some physiological and biochemical parameters. Two treatments were chosen, irrigation by worn water, compared to a check. The tests concerned the chlorophyll content, soluble sugar and proline. As far as the obtained results are concerned, the total chlorophyll content has been superior in the treated plants. This shows the ability of plants to react favourably under worn water irrigation. The soluble sugars, were often taken as reference's tolerance, to abiotic stress, were accumulated more than at leaves and roots level of the treated plants. The content of proline at the leaves and roots of the treated varieties were superior to check, leading to the probable explanation that there is an ability of the cultivars to sustain abiotic conditions. Eventhough the results that have been obtained are somewhat positive in the expression of the varieties, awareness has to be considered. Numerous studies and experiments have permitted these last decades, to establish standards more and more precise when it comes to deal with worn water in agriculture purpose.

Keywords: Worn water, Chlorophyll, Soluble sugar, Proline, Stress, bread wheat, Tolerance, Semi-arid zone.

Effects of PGPR on tomato plant growth and nutrients uptake

Shahram Sharafzadeh
Islamic Azad University Firoozabad Branch - Iran.

Tomato, is today the most popular garden vegetable in the world. Tomatoes are high in Vitamin A and C and are naturally low in calories. Inoculated with plant-growth promoting rhizobacteria (PGPR) has been attributed to the production of plant growth regulators at the root interface, which stimulated root development and resulted in better absorption of water and nutrients from the soil (Kloepper et. al., 1991; Zimmer et. al., 1995; Hoélich and Kuhn, 1996).

A greenhouse experiment was set as follows: tomato (*Lycopersicon esculentum* Red Cherry) plants were grown from seeds after inoculated with bacteria. There were 7 treatments for bacteria (*pseudoomonas*, *azotobacter*, *azospirillum*, *pseudoomonas + azotobacter*, *pseudoomonas + azospirillum*, *azotobacter + azospirillum* and *pseudoomonas + azotobacter + azospirillum*) which compared to control. Plants were cut at prebloom stage.

Maximum level of shoot fresh weight was shown on *azotobacter + azospirillum*, *pseudoomonas + azotobacter + azospirillum* and *azotobacter + azospirillum* treatments which significantly differ from other treatments. Maximum level of root fresh weight was achived in *azotobacter + azospirillum*, *pseudoomonas + azotobacter* + *azospirillum* and *azotobacter* treatments which significantly differ from other treatments. Maximum level of shoot and root dry weights were shown on *azotobacter + azospirillum* and *pseudoomonas + azotobacter + azospirillum* treatments which significantly differ from other treatments. Minimum level of shoot and root dry weights were achived in *pseudoomonas + azotobacter* + *azospirillum* treatment which significantly differ from other treatments.

The highest amount of N,P and K were shown on *pseudoomonas + azotobacter + azospirillum* treatment which significantly differ from other treatments and the lowest amount was shown on *pseudoomonas + azotobacter* treatment. Maximum level of Ca and Mg were acheived on *pseudoomonas + azotobacter* and *pseudoomonas + azospirillum* treatments which significantly differ from other treatments.

Keywords: tomato, nutrient uptake, pgpr, growth.
Effects of Pseudomonas, Azotobacter and Azosprillum on tomato potassium content and fruit quality

Kourosh Ordookhani a,*, kazem khavazib, farhad rejalli4, abdolamir moezic

a Islamic Azad University Science and Research Branch Ahwaz –Iran
b Soil and Water Institute , Tehran,Iran.
c College of Agriculture, Shahid Chamran University , Ahvaz , Iran.

The tomato (Solanum lycopersicum, syn. Lycopersicon lycopersicum & Lycopersicon esculentum) is a herbaceous, usually sprawling plant in the Solanaceae or nightshade family that is typically cultivated for the purpose of harvesting its fruit for human consumption. Tomato consumption has recently been demonstrated to be beneficial to human health, because of its content of phytochemicals such as lycopene, β-carotene, flavonoids, vitamin C, total soluble solid (TSS) and many essential nutrients.

A greenhouse experiment was set as follows: tomato (Lycopersicon esculentum F1 Hybrid , GS-15) from seeds after inoculated with bacteria (pgpr) were grown in mixed of soil field , waterworn sand and peat (1/3 ,v/v each of them) , after three weeks seedlings transfer to pots with 7 kg soil(mixed). there were 7 treatments for bacteria (pseudomonas, azotobacter, azosprillum , pseudomonas + azotobacter , pseudomonas + azospirillum , azotobacter + azospirillum and pseudomonas + azotobacter + azospirillum). For comparison set control 4 pots. Lycopene and antioxidant in fruit were determined.

As a result:

- Minimum shoot potassium and fruit potassium content were seen in pseudomonas + azotobacter (respectively, 5.95% and 2.82%) and pseudomonas + azospirillum (respectively, 5.67% and 2.72%) treatments, that had significant difference with other treatments. Shoot potassium content of other treatments had no significant difference, however , azotobacter + azospirillum treatment had maximum shoot potassium content (7.21%).

- Minimum fruit antioxidant activity content had related to pseudomonas + azotobacter treatment (40.02%). Maximum and minimum fruit lycopene content related to azotobacter + azospirillum (67.72 mg/kg fresh fruit) and pseudomonas + azospirillum (43.02 mg/kg fresh fruit) respectively. Maximum fruit total soluble solid (TSS) found in azotobacter + azospirillum (6.89%) and minimum found in pseudomonas + azospirillum (5.93%) treatments. A positive relation was seen between shoot potassium content with antioxidant activity , lycopene ant TSS in all treatments.

- It showed that there was a negative interaction between effect of pseudomonas with azotobacter or azospirillum on potassium uptake and fruit quality of tomato.

Keyword: lycopene, antioxidant, pseudomonas, azotobacter, azospirillum, TSS, potassium.

Effects of drought stress and arbuscular mycorrhiza on maize (Zea mays L.) growth characteristics.

A. Gholami1, j. Ahmadi1, and Z. Shahhosseini1

1 Shahrood University of technology, Sharood, IRAN.

A pot experiment was conducted to investigate the influence of arbuscular mycorrhizal (AM) fungus on drought tolerance in tropical maize. This experiment conducted as factorial based on completely randomized design. The arbuscular mycorrhizal species include: G.clarideum, G.spinosa, G.intraradices, G.mossea, G.geosporum, G.hoi, and control(no inoculated plants). Maize plants were subjected to drought stress for two months. Drought stress levels were:100%FC, 66%FC and 33%FC as normal irrigation, medium and severe stress, respectively. Drought stress significantly decreased plant height, shoot fresh and dry weight, leaf number and leaf area, and with increase in drought stress, these traits significantly decreased. These traits were also significantly higher in mycorrhizal plants compared control. The ranking of arbuscular-mycorrhizal fugal effects on drought tolerance, based on the relative decreases in shoot dry and wet weight, was as follows: G.intraradices > G.mossea > G.clarideum > G.spinosa > G.geosporum > G.hoi > control plants.

Keywords: drought stress; arbuscular mycorrhiza; maize (Zea mays L.)
Endophyte screens from Taiwan native Anoectochilus formosanus Hayata roots.

L.-S. Young1, J.-N. Chu2, Y.-H. Shan1, K.-L. Chang1, W.-S. Huang2, and C.-C. Young2

1 Department of Biotechnology, Yuanpei University, 306 Yuanpei St., Hsinchu, Taiwan.
2 Department of Soil & Environmental Sciences, 250 Kuo-Kuang Rd., Taichung, Taiwan.

The Anoectochilus formosanus Hayata (Figure 1) is a perennial terrestrial orchid that belongs to the family Orchidaceae. It is a well known folk medicine that has been reported for treatments in cancer, hypertension, diabetes and hepatitis in Taiwan and several other nations. In addition to their medicinal properties, A. formosanus Hayata has been manufactured into tablets, capsules, and teabags for health food purposes. Because of its high value, these plants have been destroyed from the nature in a tremendous speed for the benefits they provide. Therefore, the production of A. formosanus Hayata at present involves tissue culture and facility cultivation. After tissue culturing, A. formosanus Hayata is planted in pots and acclimated in an open environment facility during which cast great challenge to farmers as it is susceptible to various diseases that decrease plant growth, biomass, and survivability. Most common diseases are Fusarium spp., Phytophthora spp., Pythium spp., Erwinia spp. etc., and they have been reported to cause great losses in A. formosanus Hayata production. In many cases, farmers apply chemical fungicides and bactericides to treat disease infested plants. This kind of management is not effective and will definitely increase consumers doubt on the safety of the product. In order to develop a natural biological control method to manage A. formosanus Hayata diseases, we have collected native A. formosanus Hayata from Ta Hush Shan Mountain in attempt to screen for rhizosphere and endophytic microorganisms that can antagonize common diseases of A. formosanus Hayata to improve disease resistance and yield.

Roots of native A. formosanus Hayata were washed with sterile water, surface sterilized with 1% NaOCl for 5 min, and rinsed with sterilized water for several times. Then, roots were ground by sterile mortar and spread on nutrient agar by serial dilutions method. Growth of microbes was observed after 3-5 days in a 25°C incubator. Each microbe was purified, cultured and their DNA purified for 16S rRNA gene sequencing reactions for positive identification. The microbes identified thus far are summarized in Table 1. It is interesting to note that several of these microbes have been reported to be psychrotolerant, which may reflect the natural habitat of A. formosanus Hayata at high altitude. In addition, Bacillus megaterium has also been reported to inhibit the mycelial growth of Rhizoctonia solani that causes lily root rot. Further studies on these microbes will include confirmation of endophytism, pathogenicity tests, antagonistic interaction towards common diseases of A. formosanus Hayata, and their growth effects on A. formosanus Hayata in the presence of pathogenic strains. These experiments will enable us to develop an effective biological control reagent to improve disease resistance and increase A. formosanus Hayata yield in the field.

Keywords: Anoectochilus formosanus Hayata; endophytic microorganism; biological control; disease resistance.

Table 1. Microbes isolated from roots of Anoectochilus formosanus Hayata.

<table>
<thead>
<tr>
<th>Bacterial isolates</th>
<th>Closest match according to the 16S rRNA gene sequence</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>THS-B14</td>
<td>Bacillus megaritum</td>
<td>99.5%</td>
</tr>
<tr>
<td>THS-B19</td>
<td>Bacillus odyssey</td>
<td>99.4%</td>
</tr>
<tr>
<td>THS-B16</td>
<td>Bacillus soli</td>
<td>100%</td>
</tr>
<tr>
<td>THS-B11</td>
<td>Bacillus weihenstephanensis</td>
<td>100%</td>
</tr>
<tr>
<td>THS-B23</td>
<td>Bacillus psychroduranus</td>
<td>99.0%</td>
</tr>
<tr>
<td>THS-B15</td>
<td>Bacillus mycoides</td>
<td>98.8%</td>
</tr>
<tr>
<td>THS-B2</td>
<td>Bacillus cerebrensis</td>
<td>100%</td>
</tr>
<tr>
<td>THS-B17</td>
<td>Vibrio bacillus arvi</td>
<td>100%</td>
</tr>
<tr>
<td>THS-B9</td>
<td>Lysinibacillus horontoleran</td>
<td>99.0%</td>
</tr>
<tr>
<td>THS-B13</td>
<td>Lysinibacillus spheauricus</td>
<td>100%</td>
</tr>
<tr>
<td>THS-B13*</td>
<td>Lysinibacillus fasciformis</td>
<td>100%</td>
</tr>
</tbody>
</table>

Endophytic bacteria associated with tropical mangrove forests: characterization and biotechnological applications

P. Teixeira Lacava1, R. Assis Castro1, M. Carolina Quecine1, A. Ferreira2, J. Lúcio Azevedo3

1 UNIFAL/MG - Federal University of Alfenas, Alfenas, MG, Brazil
2 CENA - University of São Paulo, Piracicaba, SP, Brazil
3 ESALQ - University of São Paulo, Piracicaba, SP, Brazil

Mangrove ecosystems are rich in organic matter, where microbial activity is responsible for major nutrient transformations and the microorganisms play important role in the nutrient recycling of the mangrove forest. Endophytic microorganisms are those that live inside of a plant at least in a period of its vital cycle, and are found in tissues such as leaves, branches and roots. Apparently, they do not cause any damage to the host, which distinguishes them from the phytopathogenic microorganisms. The aim of this work was to study the diversity of endophytic bacteria from typically plant species from mangrove, such as Rhizophora mangle, Avicenia nitsa and Laguncularia racemosa, by culture-dependent and denaturing gradient-gel electrophoresis (DGGE). Also, the evaluation of enzyme production such as amylase, esterase, lipase, protease, pectinase and cellulase, by the bacteria isolated from mangrove was tested, aiming a biotechnological potential aspect. The predominant main genera of endophytic bacteria found were Methylobacterium, Bradyrhizobium, Novosphingobium, Phalacronas, Flavimonas, Microbacterium, Xanthomonas, Stenotrophomonas, Pantoea, Klebsiella, Salmonella, Escherichia and Enterobacter. The analyses by DGGE (Figure 1) showed similarity of bacteria communities from endophytic groups. The results suggest that DGGE is a practicable protocol to assess the complex endophytic bacteria community of mangroves. As for the biotechnological potential of this endophytic community, the isolates were able to fix nitrogen (BNF), to synthesize IAA, and to solubilize phosphate. Also, the isolates presented enzymatic activity, which were ranked as follows: proteolytic (69%), amylolytic (56%), lipolytic (9%), esterolytic (47%), pectinolytic (75%) (Figure 2). Cellulolytic activity was not detected.

Keywords: biodiversity, DGGE, BFN, IAA, phosphate, enzymatic analysis.
Entomopathogenic fungi to control the cherry fruit fly *Rhagoletis cerasi* Loew (Diptera: Tephritidae) in Shahrood region, northeast of Iran

Ali Derakhshan
Department of Plant Protection, College of Agriculture, Shahrood University of Technology, Shahrood, Iran

Cherry fruit fly is the most important pest of cherries in Shahrood region. Without treatment up to 100% of the fruits can be infested. Pest control against the cherry maggot is difficult because of cherry fruits ripening time and long life of insecticides. For long years broad spectrum and acute toxic insecticides, mainly organophosphates, have been used for its control that resulted in contamination of the fruit and the environment. The use of micro-organisms as biological control agents against *R. cerasi* might be an alternative.

The aim of this study was to investigate the occurrence of entomopathogenic fungi (EPF) in cherry orchards for selecting native fungal isolate. For this purpose 45 soil samples of 15 cherry orchards (each three samples) were collected and EPF were isolated using Galleria bait method. Results of this research revealed that 75.5% of soil samples had fungi. Occurrence of EPF in different orchards was not significantly different. Two fungal species were identified, *Beauveria bassiana* and *Metarhizium anisopliae*. Out of 45 soil samples, 55.5% had only *B. bassiana*, 6.67% had only *M. anisopliae* and 13.33% had both species.

In preliminary tests, all fungal isolates were pathogenic to Cherry fruit fly larvae. The results suggest that cherry orchard soils in Shahrood district are rich of EPF and can be used for managing of this pest.

Keywords: Entomopathogenic fungi, *Rhagoletis cerasi*, microbial control

Erwinia aphidicola on *Phaseolus vulgaris* and *Pisum sativum*: a new pathogen in Spain

M. Santos, F. Díaz, F. Marín, S. Martínez, M. de Cara and J.C. Tello
Universidad de Almería, Departamento de Producción Vegetal. La Cañada de San Urbano s/n. 04120 Almería, Spain

During 2003 and 2004, leaf spot disease of common bean (*Phaseolus vulgaris*) was observed in southeastern Spain (Almería, Granada and Malaga) (Gonzalez et al. 2005) and symptoms of generalised chlorosis as well as necrosis in leaves and tendrils were observed in *Pisum sativum cv.* Tiraleque (Gonzalez et al. 2007). In 2006 and 2007, samples of common bean (cv. Donna) with chlorotic and necrotic leaf spots were collected from Almeria to determine the pathogen. Bacteria isolated from leaves with spots exhibited the biochemical characteristics of the family Enterobacteriaceae. They were Gram-negative, oxidase negative, catalase positive, fermentative, rod shaped, motile, facultatively anaerobic.

Two isolates were selected for pathogenicity tests. Bacterial suspensions (10^8 cfu/ml) were spray inoculated on bean seedlings (*Phaseolus vulgaris*) cv. Donna (2-3 true leaves). Beans were covered with transparent plastic bags for two days and held in an incubation chamber at 22 °C and 80% relative humidity with a 12 h photoperiod. Assays were conducted twice. Symptoms that developed were similar to those originally observed in the field. No symptoms were observed on control plants (inoculated with distilled water).

Preliminary identification of the pathogenic isolates based on 16S rDNA sequencing was as either *Erwinia persicina* or *E. aphidicola* (99-100% homology). Primers for PCR amplification of partial sequences of *dnaJ*, *recA* and *gapDH* were manually designed from sequences of *Erwinia persicina* from GenBank (Accession Nos. AB273647, DQ859883 and AF165028, respectively). The amplified sequences were compared with available DNA sequences by using BLAST giving 100 % homology with *recA* and *gapDH*, and 99% with *dnaJ* of *E. aphidicola*. The same results were obtained for isolates from *Phaseolus vulgaris* (LPPA 373) and *Pisum sativum* (LPPA 408) obtained by González et al. (2005, 2007). Additional biochemical and pathogenicity tests and molecular analysis were performed using *E. persicina* ATCC 49742, *E. persicina* ATCC 35998 and *E. aphidicola* GTC 1688 as controls in which 91%, 85% and 88% homology with *recA*, *gapDH*, and *dnaJ* of *E. persicina* was found.

Previously, *E. aphidicola* was isolated from the pea aphid, *Acyrthosiphon pisum* (Harada et al. 1997), so to our knowledge, this is the first report of *E. aphidicola* as a plant pathogen of *Phaseolus vulgaris* and *Pisum sativum*. Our results confirm that sequence analysis of 16S rDNA may not provide sufficient resolving power in discriminating closely related species.
Evaluation of flow cytometry to assess *Erwinia amylovora* viability under different stress conditions

R.D. Santander, 1, J.F. Catalá-Senent1, M. Ordas2, E. Marco-Noales1, and E.G. Biosca1

1Universidad de Valencia, Departamento de Microbiología y Ecología, Avenida Dr. Moliner 50, 46100, Burjasot, Valencia, Spain.
2Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Carretera Moncada – Náquera, km 4,5, 46113, Moncada, Valencia, Spain.

Erwinia amylovora is a plant pathogenic bacterium causing fire blight, a serious disease that affects cultivated and wild plants of the Rosaceae family worldwide, some of great economical importance as pear and apple trees. Fire blight is a difficult to control highly contagious disease, since the pathogen is easily spread and able to survive in many different reservoirs under adverse environmental conditions. Understanding the persistence of *E. amylovora* in these conditions would improve the control strategies against the disease but little is known on this topic up to now.

In the last years, it has been demonstrated that *E. amylovora* is able to survive in environmental oligotrophic water by adopting the starvation-survival state and the viable but non-culturable (VBNC) state, strategies of non-sporulating bacteria against environmental stress to favour their survival. *E. amylovora* also becomes VBNC after exposure to some chemical compounds such as copper, which is frequently used for fire blight control. In that physiological state, bacterial cells are characterized by their inability to be cultured on conventional nonselective media while remaining viable as evidenced by culture-independent methods, such as fluorescence microscopy (FM) after viability staining. However, counting methods based on microscopy are time-consuming and influenced by investigator bias effect. Flow cytometry (FCM) has been reported as a faster and more accurate counting method than FM. Therefore, we have evaluated FCM to assess *E. amylovora* viability under different stress conditions by using Live/Dead staining combined with FCM detection. To validate the FCM results, FM was performed in parallel. Thus, *E. amylovora* suspensions at 10^3 cfu/ml were exposed to chlorine, acetic acid, hydrogen peroxide and copper at several concentrations. After each treatment, samples were taken for culturable cell counts on King’s II medium and for viable and total counts after Live/Dead staining. Bacterial counts by FCM and FM were compared.

The results of this study have confirmed that *E. amylovora* becomes non-culturable on plates after exposure to different stressful treatments, varying the viable fraction of the population according to the type and concentration of the assayed compound. Interestingly, counts obtained by FCM agree well with those obtained by FM, although FCM often gave slightly higher counts than those obtained by FM. Moreover, FCM allowed a clearer and faster discrimination of *E. amylovora* subpopulations of viable and non-viable cells. Then, FCM is a rapid and reliable technique for quantification of *E. amylovora* viable populations that can be applied to study the physiological state of the pathogen under diverse adverse environmental conditions and may provide new knowledge about the epidemiology of this disease required to improve its control.

Keywords Plant pathogenic bacterium; fire blight; cytometry; fluorescence microscopy; chlorine; copper; acetic acid; hydrogen peroxide; VBNC.

Evaluation of plant growth promoting and colonization ability of bradyrhizobia isolated from sweet potato.

Yoshinari Ohwaki1, Junko Terakado-Tonooka1,2, and Shinsuke Fujihara1

1National Agricultural Research Center, Tsukuba, Ibaraki 305-8666, Japan
2JSPS Research Fellow, Japan Society of Promotion of Science, Chiyoda, Tokyo 103-8472, Japan

Sweet potato (*Ipomoea batatas* L.) is an important root crop for staple food throughout tropical and warm temperate regions. The field study indicated that the sweet potato can be grown in a low fertile soil with little fertilizer application, and possible input of N2-derived nitrogen by endophytic nitrogen fixation has been suggested (Yoneyama et al., 1998). A study of the diversity of endophytic diazotrophs by culture-independent method revealed the presence of bradyrhizobia within the stems and storage roots of sweet potato (Terakado-Tonooka et al., 2008). We have isolated several diazotrophic bacteria from surface-sterilized sweet potato tissues, and identified *Bradyrhizobium* strains based on 16S rDNA and *nifH* sequence analysis. To assess the potential of *Bradyrhizobium* as a growth promoting, nitrogen fixing entophyte, two *Bradyrhizobium* strains, AT1 that has been isolated from storage roots of *Ipomoea batatas* and MAFF210318 having *nifH* sequence highly similar to that expressed in the sweet potatoes were inoculated to micropropagated sweet potato under axenic conditions. Increase in top fresh weight upon inoculation of either AT1 or MAFF210318 was recorded as compared to uninoculated plants after 55 days of growth. Internal populations in the stems of inoculated plants reached to approximately 10^3 to 10^4 cells per gram fresh weight at the end of the experiment, whereas no bacteria could be isolated from the uninoculated control plants. The analysis of nitrogen fixation using 15N-isotope dilution technique suggested some contribution of N2 fixation in plants, although high variability among replicates in inoculated plants was noted. These results suggest that bradyrhizobia isolated from sweet potatoes can colonize in the stems and promote the growth of sweet potato.

Keywords Bradyrhizobium; endophyte; nitrogen fixation; sweet potato

References:

Terakado-Tonooka J. et al. (2008) Expressed *nif* genes of endophytic bacteria detected in field-grown sweet potatoes (*Ipomoea batatas* L.), Microbes Environ. 23, 89-93

Fiber degrading potential of rumen fungi isolated from cattle
Sumit Singh Dagar, Sanjay Kumar, Anil Kumar Puniya and Kishan Singh
Dairy Microbiology Division, National Dairy Research Institute, Karnal - 132001, India

Since the time rumen fungi were discovered, they have been explored in many ways by the rumen microbiologists and animal nutritionists. Among the various accomplishments, their use in the development of direct-fed microbials is most significant. This approach of feeding rumen fungi as direct-fed microbials is gaining popularity as it improves the animal productivity by changing the rumen environment. Anaerobic fungi have ability to produce wide array of hydrolytic enzymes (such as cellulases, xylanases, esterases etc) which helps in degradation of lignified plant-cells walls. Fibre degradation is a important characteristic of rumen fungi because rhizoids of fungi penetrate plant tissue far better than bacteria and protozoa. In addition, they have been found to produce conjugated linoleic acid, which has many health promoting attributes.

In present study, rumen fungi were isolated from fistulated cattle using Hungate roll-tube technique. 20 fungal isolates were selected based on difference in their morphological features (viz., thallus morphology and rhizoid type). For assaying their enzymatic activities, these isolates were grown in Joblin’s broth supplemented with 0.5% of carboxymethyl cellulose (CMC), avicel, cellobiose and xylan separately, for assaying the activity of CMCCase, avicelase, β-glucosidase and xylanase respectively. After 96 hours of incubation at 39°C, the cultures were centrifuged and culture supernatants (enzyme) were then analyzed for estimation of reducing sugars (i.e. glucose for CMCCase and avicelase; xylose for Xylanase and p-nitrophenol for β-glucosidase) employing dinitrosalicylic acid method. For CMCCase, β-glucosidase and xylanase activity the reaction mixture was comprised of 0.2 ml culture supernatant mixed with 1.6 ml of 100mM phosphate buffer (pH 6.5; 10 mg/ml of substrate concentration and 5 mg/ml CMC; and xylan; 5 mg/ml p- nitrophenyl-β-D-glucopyranosidase), while for avicelase; reaction mixture contained 0.25 ml of culture supernatant mixed with 1.75ml of 100mM phosphate buffer (pH 6.5; 50 mg/ml of substrate concentration). The reaction mixture was then incubated at 50°C for 30 min for xylanase, CMCCase and β-glucosidase and for avicelase at 40°C for 4 hours. Absorbance was taken at 575 nm for CMCCase, avicelase and xylanase and at 410 nm for β-glucosidase. The enzyme activities were calculated as IU, i.e., μmol of glucose or xylose or p-nitrophenol released per ml per min.

Among the 20 isolates, C-7 was found to have highest CMCCase activity with 0.26 IU, while, avicelase activity (0.045 IU) was highest in C-15. Maximum xylanase activity (1.62 IU) was found with C-16 and C-10 found to have maximum β-glucosidase activity of 0.028 IU. The average activity of these isolates will also be assessed followed by molecular characterization, so that fungi possessing the maximum fibrolytic potential can be exploited for enhancing rumen productivity.

Fungal diversity associated to Prays oleae in Trás-os-Montes (Northeastern region of Portugal). A survey of potential entomopathogenic fungi
I. Oliveira1, P. Baptista1, S. Pereira1, T. Lino-Neto1, A. Bento1 and J. A. Pereira1
1CIDM / Escola Superior Agrária, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal.
2BioFIG, Departamento de Biologia, Universidade do Minho, 4710-057, Braga, Portugal.

Olive groves are one of the main agricultural activities in the Portuguese region of Trás-os-Montes. They occupy a very large area, where new biological agricultural practices have been increasingly applied. In order to control the pests that attack this culture, using methods that do not rely on chemical substances, an effort must be conducted to achieve new processes. One of the most important pest in the olive groves in this region is the olive moth (Prays oleae Bern.), responsible for high losses in olive yields. One of the promising approaches to control this pest is the use of entomopathogenic fungi that naturally occur in the olive orchards and are able to infect and kill olive moths. The present work intends to evaluate the diversity of fungal species associated to P. oleae in several olive orchards located in Trás-os-Montes region. To achieve this goal, we collected larvae and pupae of the three annual generations (phytophagous, antophagous and carpophagous) of P. oleae. Whenever a fungal agent was associated to the cause of death of the moth, we proceeded to the in vitro isolation of the fungal specimen. Pure cultures of each fungus were obtained and were molecularly identified by sequencing the amplified internal transcribed spacer (ITS) region of rDNA. The higher diversity of fungal species was found in the phytophagous generation, followed by the antophagous and carpophagous. In the phytophagous generation, 77% of the total isolates were entomopathogenic fungi, whereas 18% were phytopathogenic fungi, being the remaining described as antagonistic fungi. Among the entomopathogenic fungi, the most frequent isolated species (97%) was the mitosporic ascomycete Beauveria bassiana. In the antophagous generation, 55% of the total isolates were phytopathogenic fungi, 41% were antagonistic fungi and only 4% corresponded to entomopathogenic fungus. In the carpophagous generation, more than 50% of the total isolates were phytopathogenic fungi. In this work, it will be discussed the extent of the fungal presence in P. oleae, as well as the characteristics of each fungal species and their applicability in pest control.

Keywords: Fungal diversity; Prays oleae; Entomopathogenic fungi; Beauveria bassiana
Fungal microbiota from rain water and pathogenicity of the isolated *Fusarium* species

D. Palmero¹, M. de Cara¹, C. D. Martinez¹, M. Santos¹, C. Iglesias¹, and J. C. Tello²

¹ Universidad Politécnica de Madrid, EUII Agrícola, Ciudad Universitaria s/n, 28040-Madrid, Spain
² Universidad de Almería, Dpto. Producción Vegetal, Carretera Sacramento s/n, 04120-Almería, Spain

Using the dilution-plate method, 12 fungal genera were identified from rain water samples collected during January and February 2009 in Almería (Spain). The rain water analysis revealed a great content of airborne fungal spores (9.084 U.F.C. per m³). Some of them have been considered as plant pathogens, as for examples *Acremonium, B. cinerea* and the species of *Fusarium*. Others have been referred as cause of postharvest losses (*Aspergillus, Alternaria, Cladosporium, Fusarium, Penicillium* and *Rhizopus*). Some others have been used as biological agents to control pest in greenhouses (*Beauveria bassiana*).

Specific analysis of the *Fusarium* microbiota revealed the presence of three species of *Fusarium*: *F. oxysporum*, *F. proliferatum* and *F. equiseti*. Pathogenicity assays were conducted with 22 of the collected isolates of *Fusarium* species. Eleven isolates of *F. proliferatum*, six isolates of *F. equiseti* and five isolates of *F. oxysporum* were tested on tomato (*Lycopersicum esculentum* Mill), melon (*Cucumis melo* L.), cucumber (*Cucumis sativus* L.) and pea (*Pisum sativum* L.) to evaluate their pathogenicity. Pre and Post-emergence pathogenicity was evaluated. The study of the pathogenicity showed that most of the isolates caused pre-emergence damping-off on tomato seedlings. In the case of melon, most of the isolates of *F. oxysporum* (six out of seven) caused pronounced damping-off in pre-emergence. *F. proliferatum* and *F. equiseti* did not show pathogenicity prior to emergence on cucumber and melon. Conversely, both *Fusarium* species caused root rot after emergence of cucumber and melon seedlings. Pea seedlings were affected by *F. equiseti*, *F. oxysporum* and *F. proliferatum* causing damping-off prior to emergence. Pathogenicity (root rot) was also observed after emergence.

This work will allow knowing some epidemiological aspects of plant pathogenic fungi in natural environments. The presence of pathogenic species within the *Fusarium* genus in rain water could indicate long distance dispersal in natural environments.

Keywords airborne mycoflora; aeromycobiota; *Fusarium oxysporum*; *Fusarium proliferatum*; *Fusarium equiseti*.

Fungi and actinomycetes isolated from plant-parasitic nematode infested soils and their biocontrol potential, indole-3-acetic acid and siderophore production

P. Ruanpanun¹,², N. Tangchitsomkid¹, and S. Lumyong¹,³

¹ BIOTECHNOLOGY Program, Graduate School, Chiang Mai University, 50200 Chiang Mai, THAILAND
² NEMATOLOGY Section, Plant pathology and microbiology Division, Department of Agriculture, Ministry of Agriculture, 10900 Bangkok, THAILAND
³ DEPARTMENT of Biology, Faculty of Science, Chiang Mai University, 50200 Chiang Mai, THAILAND

A total of 150 microbe isolates were obtained from 23 rhizospheric soil samples of chili, egg plant, guava, head lettuce, rice and fitweed infested with plant-parasitic nematodes. Sixty-seven isolates (44.67%) were fungi and 83 isolates (55.33%) were actinomycetes. The predominant fungal species were *Penicillium* sp. (37.3%), *Fusarium* spp. (32.8%), *Aspergillus* spp. (7.5%), *Cladosporium* spp. (6.0%) and *Paecilomyces* spp. (6.0%). The *Streptomyces* spp. (97.6%) were predominant actinomycete species. All of fungal and actinomycete isolates were evaluated *in vitro* for their effects on egg hatch and juvenile mortality of *Meloidogyne incognita*. The Results showed that 10 isolates of fungi and 7 isolates of actinomycetes significantly reduced egg hatch rate and also killed hatched juveniles after 7 days. Four isolates of actinomycetes against both of *M. incognita* and fungal plant pathogens. Ten nematophagous microbe isolates showed the abilities to produced indole-3-acetic acid (IAA) and 9 isolates produced hydroxamate siderophore. *Streptomyces* sp. CMU-MB021 reduced egg hatch rate to 46.5% and increased juvenile mortality rate to 76.4% contrasted to the control of 79.6% and 3.6%, respectively. Furthermore, it had high ability to produced antifungal compounds, IAA and siderophore. This strain may be useful to control plant disease and promote plant growth in the agricultural fields in the future.

Keywords nematophagous fungi actinomycetes root-knot nematode antifungal Siderophore Indole-3-acetic acid
Genetic and Functional Diversity among phosphate-solubilizing bacteria from pea rhizosphere in the cold deserts of the Indian trans-Himalayas

A. Gulati, Natasha and P. Rahi
Plant Pathology and Microbiology Laboratory, Institute of Himalayan Bioresource Technology, CSIR, Palampur, 176061, Himachal Pradesh, India

Phosphate-solubilizing rhizobacteria improve soil fertility by converting insoluble phosphorus forms to soluble forms accessible by plants. One hundred and three phosphate-solubilizing bacteria were isolated on modified Pikovskaya agar from the rhizosphere of pea cultivated at different locations in Lahaul and Spiti situated between 31° 44’ 57” N and 76° 46’ 29” and 78° 41’ 34” E in the Indian trans-Himalayas. Eighteen isolates producing prominent phosphate-solubilization zones were evaluated for quantitative estimation of inorganic phosphate solubilization, siderophore production, ACC deaminase activity, production of IAA-like auxins, and plant growth promoting activity in maize and pea under environment controlled conditions. The bacterial isolates significantly enhanced root length, shoot length, and dry weight over the untreated control in maize and pea. Amplified ribosomal DNA restriction analysis of the rhizobacteria placed the bacteria under 14 groups, while 4 isolates stood independently outside the groups. The representative isolates of ARDRA groups were characterized using BIOLOG, FAME analysis and 16S rDNA sequencing. The ribosomal strains showed identity with Bacillus cereus, B. megaterium, B. silvestris, Brevibacillus agri, Enterobacter cloacae, Myxobacter odoratuminus, Ochrobacter grignonense, Pantoea agglomerans, Pseudomonas chlororaphis, P. fluorescens, P. mendelli, P. putida, P. syringae, Providencia rettigiani, Stenotrophomonas maltophilia, S. nitritireducens, S. rhizophila, and Varivoxas paradoxus. Fluorescent Pseudomonas were found to be the dominant phosphate-solubilizing rhizobacteria in pea rhizosphere in the Lahaul and Spiti cold deserts of the Indian trans-Himalayas. Work has led to the selection of Pseudomonas putida strain BBH 1369 and P. fluorescens strain BBH 1433 representing the widespread genotypes with multiple plant growth promoting attributes. The strains could find use in developing microbial inoculants for widespread application.

Keywords: plant growth promoting bacteria; diversity; widespread genotypes; Indian trans-Himalayas

Genetic relationship in the isolates Chromobacterium violaceum by rep-PCR fingerprinting

1 Bolsista de DCR (CNPq/FACEPE). Instituto Agronômico de Pernambuco-IPA. Laboratório de Genômica. Av. G. Sal Martín 1371 Bonita 59714-000 - Recife, PE - Brasil - Caixa Postal: 1022
2 Instituto Agronômico de Pernambuco-IPA. Laboratório de Genômica
3 Universidade Federal de Pernambuco-UFPE. Departamento de Bioquímica
4 Universidade Catolica de Pernambuco-UNICAP. Núcleo de Pesquisa em Ciências Ambientais –NPCIAMB

Chromobacterium violaceum is a versatile, violet pigment (violacein)-producing proteobacterium, confined to tropical and subtropical regions, dwelling in soil and water. The rep-PCR technique is simple, can differentiate between closely related strains of bacteria and shows good reproducibility. Rep-PCR has been applied successfully in the classification and differentiation of strains of many Gram-positive and -negative bacteria. Studies using the repetitive element PCR fingerprinting technique (rep-PCR) revealed that BOX AIR-, REPI- and ERIC-primers reproducibly generate distinctive DNA fingerprints from bacterium. The present study intended to characterize genetic diversity of Brazilian isolates of Chromobacterium violaceum. Fourteen different genetic Brazilian isolates of C. violaceum were identified using the three primers. The ERIC1R and ERIC, REP1R-I and REP2-1 and BOX AIR were used to amplify the DNA of all isolates. PCR mixtures were performed in a volume of 25 μl containing 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 3 mM MgCl2, 200 μM dNTP, 10 pmol of each primers, 50 ng of genomic DNA, and 1.5 U of Taq polymerase (Invitrogen). A control reaction mixture containing 2 μl of the water instead of DNA was also included in each set of PCR. Each PCR was performed with a model Biolarray Gradient Thermoblock by using the faster protocol specific for this thermodenaturant. The PCR performed with primers ERIC1R and ERIC and BOX AIR was initiated by incubating the reaction mixture at 95°C for 7 min, and this was followed by 34 cycles consisting of 94°C for 30 s, 55°C for 1 min and 68°C for 3 min. The reaction was terminated with an extension step consisting of 94°C for 8 min. For PCR performed with primers REP1R-I and REP2-1 the annealing temperature was 42°C and extension step consisting of 65°C for 10 min for primers BOX AIR. The amplification patterns were visualized after electrophoresis in a 1.5% SYBR Gold stained agarose gel. Gel images were captured with Vilber Lourmat Vil3 6771 Fotodocumentation system. The used molecular analyses ERIC-PCR, REP-PCR and BOX-PCR were enough to observe the degree of variability of the isolated ones studied, where the results showed that the REP-PCR, had to high its to be able discriminatory, to determines genetic diversity of bacterial populations. Making an analysis in separate from the markers ERIC, REP and BOX-PCR observed that the clusters after computer-aided pattern analysis of the separate BOX, ERIC and REP-PCR genomic fingerprints and, to an even lives its needs extent, of the three linearly combined profiles dendrogram used the similarity coefficient (Simple Matching). Although there was one band common to all isolates, distinct patterns were observed between isolates. Our results confirm that bigger studies with molecular marker (DNA and Proteins), phenotypic and biochemistry were important goes the bigger security it goes to it determines the taxonomic position the isolates.

Keywords: biodiversity, Chromobacterium violaceum, rep-PCR, fingerprinting, Genetic polymorphism.
Genetic Variability Analysis of entomopathogenic fungi isolated from citrus-growing areas of Mexico

L. Galán Franco¹, K. Arévalo Niño², M. Elias Santos¹, A. Morales Loredo³, G. Alvarez-Ojeda¹, I. Quintero Zapata¹

²Consejo Técnico del Noroeste de México-UANL.
³Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, INIFAP.

Mexican producers hold first place in the world as lemon producers of the variety "Mexican" and second as producers of lemon variety "Persian". The states of Mexico who excel in citrus production are: Yucatán, Campeche, Tabasco, Veracruz, Tamaulipas, San Luis Potosí, Oaxaca, Michoacán, Colima, Sinaloa and Sonora. Mexico is the fifth largest producer of citrus in the world, covers an area of 520 hectares established in 25 states, occurring in approximately 6.7 million tons annually. Currently, the citrus industry in Mexico is at risk caused by the Citrus Tristeza Virus where biological control of vector is essential to prevent the spread of this disease and more recently the threat of the plague known as Huanglongbing (HLB) or yellow dragon. It is considered that citrus regions are important for biological control with entomopathogenic fungi propagated to each region, so that these native agencies perform better. For these reasons, in this investigation native microorganisms citrus regions of Mexico were isolated and characterized genetically, with the aim of establishing a collection of entomopathogenic fungi, so that in the future it could have the potential to solve regional problems involving citrus pests. We collected 142 soil samples from citrus areas of Mexico: Nuevo León (25), Sinaloa (17), Yucatán (5), Campeche (13), Tabasco (5), Tamaulipas (20), San Luis Potosí (25), Michoacán (15) and Sonora (17). We used larvae of Galleria mellonella as bait to trap, multiplicate and detect entomopathogenic fungi in vivo. The isolated fungi were purified and kept in vials with glycerol at - 80 °C, subsequently conducted the microscopic and molecular identification. Of all the soil samples processed 23% were positive in the presence of entomopathogenic fungi according to the macroscopic and microscopic characteristics: Beauveria was detected in 12% (17 isolates), Metharrizium in 1% (2 isolates) and Paecilomyces in 10% (14 isolates). Beauveria was detected in Sinaloa, Tamaulipas, Nuevo León and San Luis Potosí (9, 4, 3 and 1 isolates, respectively); Paecilomyces in Nuevo Leon, Tamaulipas, San Luis Potosi, Sonora, Campeche and Tabasco (8, 2, 1, 1, 1, and 1 isolates, respectively) and only Metharrizium in Nuevo Leon (2 isolates). We analyzed the genetic variability by using the sequences of internal transcribed ribosomal genes (ITS) and subsequently performed the digestion with the enzyme Hae III. The results of the PCR generated fragments of approximately 600 bp for genus Beauveria spp., and Metharrizium spp. In the case of Paecilomyces spp, it amplified a fragment of 650 bp. The restriction analysis of these fragments generated for Paecilomyces spp. 4 fragments of 257, 131, 89 and 56 bp, for Metharrizium spp., were obtained fragments of 404 and 141 bp and for the case of Beauveria spp., 287, 119, 89, 56 and 19 bp. Both reference strains and field isolates obtained similar restriction patterns. Genera of native entomopathogenic fungi were found on each state; this opens the field inside the biological control of pests affecting citrus in each region.

Keywords: entomopathogenic fungi, PCR-RFLP, citrus

Genetic variation within AMF morphotypes from mycorrhizosphere of plants from undisturbed, industrial and agricultural land: An investigation through LSU rDNA sequencing

Kumar S, Beri S, and Adholeya A

Center for Bioresources and Biotechnology, TERI University India Habitat Center, D 5 Block Lodhi Road, New Delhi-110003, India

Arbuscular mycorrhiza fungus (AMF) communities of field soil collected from undisturbed, industrial and agricultural land were surveyed by establishing their trap cultures. Spores of AMF were collected from these trap cultures by wet sieving and their morphology was observed, based on which they were grouped into different morphotypes. DNA was isolated from a single spore and partial sequence analysis was conducted using 28S rRNA gene. Nested polymerase chain reaction (PCR) with Glomus specific primer was used to identify species. Topologies obtained by using extracted LSU rDNA sequences revealed three phylogenetic clusters within the clade of Glomus group A. Phylogenetic analysis also revealed the presence of different sequences within clones of a single spore isolate. In addition, sequences obtained from two different isolates originating from the same field clearly fell in separate clusters of Glomus. The combined analysis of spore morphology and LSU rRNA D1-D2 region sequences obtained from this study showed that there are some isolates similar in morphology but which did not group together within the same cluster of Glomus. Present study revealed higher population of Glomus intraradices in agricultural soil as compared to the industrial wasteland and uncultivated soil. In contrast, loss of non - Glomus AMF in agricultural soil was observed. The difference is due to complex selection pressure, which increases the population of Glomus intraradices in agricultural soil. PCR probes were designed from D1-D2 region of LSU rRNA gene to monitor the presence of selected AMF after application into the field. Our data indicates that use of LSU rRNA sequences is a suitable tool to investigate Glomeromycota diversity in the soil of different ecological habitats.

Key words – Arbuscular mycorrhiza fungus; Mycorrhizosphere; Industrial wasteland
Glomalin production and microbial activity in soils impacted by gypsum mining in the semi arid of Pernambuco

Adália Cavalcanti do Espírito Santo Mergulhão1, Hélio Almeida Burity1, Fábio Sergio Barbosa da Silva1, Sônia Valeria Pereira3, Leonor Costa Maia4

1 Instituto Agronômico de Pernambuco - IPA, Laboratórios Biologia do Solo/Genoma, Av. General San Martin, 1371, Bongi, 50761-000, Recife-PE, Brazil;
2 Universidade de Pernambuco, Faculdade de Formação de Professores de Petrolina-FFPP-PE, BR 203, Km 2 s/n, Campus Universitário, Vila Eduaroldo, 56300-000, Petrolina-PE;
3 Universidade Federal de Pernambuco-UFPE, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental, Av. Prof. Luiz Freire, 700 Cidade Universitária, CEP 50740-540, Recife-PE;
4 Universidade Federal de Pernambuco-UFPE, Departamento de Micologia, Laboratório de Micorriza, Av. Prof. Nelson Chaves s/n, Cidade Universitária, 50670-420, Recife-PE.

In order to evaluate and compare the biological state of soils in a preserved, native, “caatinga” area and impacted gypsum mining areas. Soil samples were collected in four areas: a native, preserved area “caatinga”; surroundings of the mine; waste deposit area; interface between the waste deposit area and a degraded “caatinga” area. The values of hydrolysis of FDA, C from microbial biomass, basal respiration were higher in the preserved “caatinga” area than in the impacted areas. The gypsum mining activity reduced the concentration of easily extractable glomalin in relation to the one found in the native “caatinga” area in both collecting periods. Higher deposits of total glomalin also occurred in the native area, mainly during the rainy period. The mining activity produced a negative impact in the soil macrobiotic, reducing the total enzymatic activity. The microbial biomass was significantly lower in the waste deposit area than in the native and interface areas. The results indicated that the mining activity is harmful to the soil microbiota of the area and that glomalin can be a useful indicator of soil disturbance.

Keywords: Glycoprotein; microbial biomass; gypsum activity; AMF.

Host specificity and pathogenic ability of Phytophthora parasitica and P. capsici on tomato and sweet pepper.

M. de Cara1, D. Palmero2, C. López-Durán1, A. Sánchez-Lorenzo1, M. Santos1, M. D. Coffey3 and J. C. Tello1

1 Departamento de Producción Vegetal, Universidad de Almería. Ctra. Sacramento, s/n, 04120 Almería, Spain
2Universidad Politécnica de Madrid, E.U.T Agricultura, Ciudad Universitaria s/n, 28040 Madrid, Spain
3Department of Plant Pathology and Microbiology, University of California, 3286 Weber Hall, Riverside, CA 92521, U.S.A.

Nineteen wild strains of P. parasitica and six of P. capsici, isolated from diseased tomatoes and sweet peppers respectively, and 8 P. parasitica strains from natural infested sweet pepper soils, were all inoculated on tomato and sweet pepper simultaneously to study host specificity. Two inoculation methods were used: a) irrigating with a Mal-extract agar (MEA) fungal suspension the sterile vermiculite-substrate containing the plants, b) cutting the shoot of the plants and putting a 1cm-diameter disc of MEA containing mycelium and sporangia. So there were 4 treatments per isolate: tomato+drenching, tomato+agar disc, sweet pepper+drenching, sweet pepper+agar disc. Three replicates were incorporated per treatment and isolate. Each replicate consisted on five plants in a 1L plastic pot that were inoculated by drenching when showed two to three true-leaves, and were inoculated with the agar disc when showed four to five true-leaves. Plants inoculated by irrigation were observed for wilting for 30 days. For plants inoculated with the agar disc, rot tissue advance was measured during 12 days, where appeared. All trials were carried out in a climatic chamber with 23-27 °C and 16:8 (light:dark). Controls consisted on three replicates per vegetal species irrigated with a suspension of MEA and other three replicates per species whit cut shoots and a disc of MEA placed on. Isolate identification was achieved through morphological taxonomy and confirmed by sequencing of amplicons of the internal transcribed spacer region (ITS) rDNA. Results highlight the differential response of the isolates. All P. capsici isolates were highly pathogenic to both species by both drenching and cut shoot inoculation, showing no host specificity. From the 19 P. parasitica strains originally isolated from diseased tomato plants, only 3 were pathogenic to sweet pepper, but 11 were to tomato when irrigated with the fungi. When these isolates where cut shoot inoculated only 3 showed stem rot on sweet pepper, but 10 did it on tomato. About the P. parasitica isolates obtained from soils, only two were pathogenic on tomato and three on sweet pepper, in all cases showing low pathogenicity on the stems. These results reflect the host specificity of P. parasitica when comes from root and crown rot diseased tomato plants. This specificity doesn’t exist for P. capsici isolates coming from blighted sweet pepper plants.

Keywords: Solanum lycopersicum; Capsicum annuum; P. nicotianae; parasitism; blight; root rot; crown rot.
Identification of virulence genes in *Fusarium oxysporum* f. sp. *lycopersici* the causal agent of tomato wilt disease

M.L.R. Bastos da Silva¹, M.C.C. Pereira de Lyra², I. R. Souza Arruda³, M.V. da Silva¹ and J. Zoé Brito¹

¹ Bolsista de DCR (CNPq/FACEPE). Instituto Agronômico de Pernambuco-IPA. Laboratório de Genômica. Av. Gil San Martin 1371 Bonji 5076-000 - Recife, PE - Brasil - Caixa Postal: 1022
² Universidade Federal de Pernambuco-UFPE. Departamento de Bioquímica

Fusarium oxysporum f. sp. *lycopersici* is a soil-borne fungus that causes wilting disease in tomato. The soilborne fungus infects plants through the roots via direct penetration or via wounds, after which the xylem vascular tissue of the plants is colonized. Entire plants or plant parts above the point of vascular invasion of the pathogen may die within a period of weeks after infection. The existence of monogenic resistance (i.e., *R* genes) in many hosts, together with pathogenic races in host-specific forms of *F. oxysporum*, suggests that resistance to *Fusarium* wilt is, in many cases, based on specific recognition of molecular patterns. Until now, three host-specific races (races 1, 2, and 3) of this pathogen have been identified. In this study we describe identification SIX genes in *F. oxysporum* f.sp. (races 1, 2 and 3). Despite their polyphylectic origin, races belonging to f.sp. *lycopersici* all contain an identical genomic region of at least 8 kb that is absent in other formae speciales and non-pathogenic isolates, and comprises the genes SIX1, SIX2 and SHH1. In addition, SIX3, which lies elsewhere on the same chromosome, is also unique for f.sp. *lycopersici*. SIX1 encodes a virulence factor towards tomato, and the SIX1, SIX2 and SIX3 proteins are secreted in xylem during colonization of tomato plants. The mycelium was grown in liquid nitrogen using a pestle and mortar and the Genomic DNA extraction was performed using the Qiagen Genomic DNA purification kit (Qiagen, Germany). Following manufacturer’s instructions. The identification of SIX genes was performed using primers SIX1, SIX2, SIX3 and SHH1. PCR with the SIX1, SIX2, SIX3 and SHH1 primers set amplified a 647- 726-bp fragment from three races of the *Fusarium oxysporum* f sp *lycopersici* (FOL). Sequence analysis was performed on an ABI 3700 DNA Analyzer. Raw sequences from both strands were aligned and edited visually using BioEdit. Alignments of sequences were also examined using Clustal X Multiple Sequence Alignment Program version 1.81. The sequences obtained were compared with the Six genes sequences available from GenBank using a BLASTn search. The gene sicl be grouped in one clade where races 1 and 2 showed a genetic identity of 100% and a similarity of 98%, while race 3, the similarity was lower (85%). For six2, and six3 shh1 genes, the race 3 showed a very different behavior from races 1 and 2. Where identity (56%, 50%, 50%) and similarity (65%, 65%, 60%) were much lower than in races 1 and 2, respectively. Our findings have practical implications for the detection and identification of f.sp. *lycopersici*, these genes may be part of a larger, dispensable region of the genome that confers the ability to cause tomato wilt and has spread among clonal lines of *F. oxysporum* through horizontal gene transfer. Identification of genomic regions contributing to the distinction of races when combined with other markers and may help the development of molecular markers race-specific to be used in the characterization of isolates of *F. oxysporum* sp. *lycopersici* circulating in different counties tomato growers of the state of Pernambuco and Brazil.

Keywords: *Fusarium oxysporum*; disease resistance; xylem; tomato.

Impact of Biological Control Agents on Fusaric acid concentrations in Gladiolus grandiflorus corms Infected with *Fusarium oxysporum* f. sp. *gladioli*

Nosir Walid *,1,2, McDonald Jim¹, and Woodward Steve¹

¹University of Aberdeen, Institute of Biological and Environmental Sciences, Department of Plant and Soil Science, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3US, Scotland, UK
² University of Zagazig, Faculty of Agriculture, Horticulture Department, Zagazig, Egypt

Fusaric acid (FA) (5-n-butylpuridine 2-carboxyl acid), a highly toxic secondary metabolite produced by strains *Fusarium oxysporum* strains, plays a significant role in disease development. The abilities of *F. oxysporum* f. sp. *gladioli* isolates G010; 649-91; 160-57 to produce FA in infected Gladiolus corm tissues was evaluated, in relation to the presence of two biological control agents (BCAs), *Trichoderma harzianum* T22, and *Aneurinobacillus migulanus*. Tests of pathogenicity were used to differentiate between the ability of *F. oxysporum* strains to secrete FA. FA was identified using LC/MS and quantified using HPLC. G010 was the only isolate that produced FA among the three examined, and was the most virulent isolate on gladiolus. The presence of *T. harzianum* prevented FA secretion into the corms. In the presence of *A. migulanus*, however, the amount of FA secreted to the corm tissues increased. These results support the use of *T. harzianum* as an effective biological control agent against *F. oxysporum* f. sp. *gladioli*.

Keywords: Fusaric acid; *Trichoderma harzianum*; *Aneurinobacillus migulanus*; Gladiolus
In vitro assessment of fungal endophytes’ ability to confer drought and heat tolerance to wheat

M. Hubbard¹, V. Vujanovic¹, and J. Germida²

¹Department of Food and Bioproduct Science, College of Agriculture, University of Saskatchewan, Saskatchewan, Canada.
²Department of Soil Science, College of Agriculture, University of Saskatchewan, Saskatchewan, Canada.

Fungal endophytes, which can be defined as fungi living asymptomatically within plant tissues, can benefit host plants in a variety of ways, including enhanced tolerance for abiotic or environmental stresses. This presentation aims to determine if one or more fungal endophytes can enhance drought or heat tolerance in wheat-host through the relationship between fungi and seeds in co-culture, known as “mycovitality”, and to investigate the ability of the same fungal endophytes to tolerate drought as free-living organisms in vitro. Drought tolerance was assessed in vitro using potato dextrose agar (PDA) media with 8% polyethylene glycol (PEG) to simulate drought stress. Heat stress was induced in an incubator, held at 36 °C. Wheat stress tolerance was measured in terms of percent seed germination at 3 days and seedling fresh weight at 7 days. The stress tolerance of free-living fungal organisms was measured in terms of survival and colony growth rate. Three of the 6 fungal endophytes stressed showed potential to improve wheat tolerance for heat or drought in vitro.

Keywords: Fungal endophytes, abiotic stress, wheat

Indole-3-acetic acid production by plant associated bacteria: potential to alter endogenous IAA content and growth of Triticum aestivum L.

Basharat Ali*, Anjum Nasim Sabri and Shahida Hasnain

Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan.
*Author for correspondence (Fax: 92-42-9210481)

Bacterial strains of Bacillus, Pseudomonas, Escherichia, Micrococcus and Staphylococcus genera isolated from rhizosphere, histoplane and phylloplane of different plant species were identified by 16S rDNA gene sequencing. Strains were evaluated to enhance endogenous indole-3-acetic acid (IAA) content and growth of Triticum aestivum var. Inqalab-91. Gas chromatography and mass spectrometric (GC-MS) analysis revealed that bacterial strains produced 0.6 to 8.22 μg IAA ml⁻¹ in the presence of precursor L-tryptophan. Plant microbe experiments showed a significant positive correlation between auxin production by bacterial strains and endogenous IAA content of T. aestivum (r = 0.618*) and colorimetric analysis (r = 0.693**). Similarly, highly significant positive correlation for shoot length (r = 0.627**) and shoot fresh weight (r = 0.620**) was observed with auxin production under axenic conditions. Bacterial inoculations also enhanced shoot length (up to 29.16%), number of tillers (up to 97.35%), spike length (up to 25.20%) and seed weight (up to 13.70%) at final harvest in wire house experiments. In the end, it can be concluded that bacterial strains have the ability to increase the endogenous IAA content and growth of T. aestivum var. Inqalab-91. Hence, microbial strains associated with different plant species can be effectively used to enhance the growth and yield of agronomically important crops.
Influence of organic and conventional soil tillage system on soil respiration and enzymatic activity.

L. Dubova¹, V. Šteinberga¹, O. Mutere², I. Jansone³ and I. Alsiņa¹

¹Latvia University of Agriculture, Liela iela 2, Jelgava LV 3001, Latvia
³Latvia University, Institute of Microbiology and Biotechnology, Kronvalda bulv. 4, Rīga LV-1586, Latvia

Soil enzyme activities can act as an indicator of potential microbial activity and often correlate with other indicators of activity such as soil respiration, and microbial biomass. Soil enzyme activities may also provide some insight into the metabolism of the soil. Measurements of soil respiration and enzyme activities can related to soil microbiological activities and thus, may be used as an index of soil functioning. Soil microbial and enzymatic activity depends on tillage system, cultivated plants and environmental conditions.

The aim of experiment was to study the influence of tillage on selected soil microbiological properties. Soils were sampled from nine plots with two variants of tillage methods: conventional (six plots) and organic (three plots). Soils samples were collected five times during vegetation period. Soil basal and induced respiration, activity of dehydrogenase, urease and fluorescein diacetate (FDA) hydrolytic activity was detected.

The results indicate different soil tillage system and crop rotation influence on soil biological activity. The activity of dehydrogenase showed clear gradient among systems and sampling time in comparison with urease and FDA. The highest microbial biomass (C-biomass) was detected in the conventional oats field at the beginning of vegetation period.

Keywords: soil respiration, dehydrogenase, urease, FDA
Influence of the non-symbiotic soil basidiomycete, *Stropharia rugoso-annulata*, on enzymatic activities in tissues of white mustard plants under natural conditions

G. Gramms, and H. Bergmann
Friedrich-Schiller-University Jena, Institute of Geological Sciences, Burgweg 11, D-07749 Jena, Germany

Although the presence of herbaceous plants is crucial to the development of certain non-symbiotic soil basidiomycete fungi, the nature of their interactions receives little attention. This applies in particular to the release of fungal enzymes in rhizospheres of herbs but also to fungal influence on the enzymatic status of the plant itself. Under gnotobiotic conditions, fungal production of several hydrolytic and oxidative enzymes involved in lignocellulose and xenobiotic degradation increases during mycelial contact with roots of white mustard (*Sinapis alba* L., unpublished). In similar interactions of plants with soil bacteria, induction of bacterial dioxygenases is presumably stimulated by root exudates such as terpenes and phenols and results in an accelerated degradation of PAHs and PCBs [1-2].

In the present study, pre-germinated seeds of white mustard were transferred to triplicate 200-ml samples of untreated arable soil (pH 5.9; C total, 7.20 %) densely permeated by the mycelium of the soil basidiomycete, *Stropharia rugoso-annulata* (Sru). Planted non-inoculated and unplanted inoculated soil samples served as controls. The plants were harvested at the second-true leaf state (75 to 110 mm long). Shoot and root homogenates and soil extracts were examined for activities of enzymes which are involved in the degradation of xenobiotics and/or in the control of plant stress. It was the goal to record changes in plant and fungal enzyme activities in pairings of a non-symbiotic and non-pathogenic fungus with an herbaceous plant under widely natural conditions. Relative to plants from non-inoculated soil, the presence of *Sru* increased peroxidative, Mn-dependent peroxidase, and Remazol BB-R decolorizing activities in shoot tissue of mustard to the 8-; >35-; and 130-fold, respectively, whereas the oxidative activity did not significantly change. Surprisingly, the corresponding activities in root tissue diminished to the 0.3-; 0.6-; and 0.2-fold and increased in regard of the oxidative activity to the 5-fold due to fungal influence. Unlike the conditions under gnotobiosis, the presence of the plant did not significantly stimulate the oxidative activity of *Sru* in the rooting soil where the fungus reduced the concentration of plant-released peroxidase to 17 %.

It is concluded that the strongly increased oxidative activity in roots of white mustard was caused by uptake of fungal laccase. This was confirmed in electrophoretic comparisons of fungal culture fluids and root extracts. Shoot oxidative activities were apparently prevented by the interaction of traces in active oxygen species with plant peroxidase. Whereas the strong increases in shoot peroxidase are typical of plant responses to stress [3], the loss in root peroxidase, an enzyme mainly located on the root surface, must be attributed to fungal proteolytic activity. It is further concluded that the rates of Remazol BB-R decolorization and the formation of Mn⁺ are closely correlated with the activity of plant peroxidase (ε = 0.999) which is able to form this abiotic oxidant upon the reaction with plant phenolics [4-5]. The presence of a Mn-peroxidase variant in plants is not postulated. The nature of fungal metabolites with the potential of exerting stress to herbs is discussed.

Keywords Mn⁺; oxidase; peroxidase; Remazol Brilliant Blue-R; soil basidiomycete; white mustard

References

Isolation and comparative molecular diversity analysis of fluorescent pseudomonads by using four DNA fingerprinting techniques

Bhim Pratap Singh1, Mukes Yadav2, Dilip K Arora3
1Department of Biotechnology, Mizoram University, Mizoram, INDIA
2BioSewoom, Institute of Bioscience & Biotechnology, Sangdong-ri, Seoul 133-831, Korea
3National Bureau of Agriculturally Important Microorganisms, Max, INDIA

Fluorescent pseudomonads from chickpea; maize and jatropha rhizospheric soil were isolated and screened for the production of enzymes and hormones such as indole-3-acetic acid (IAA), hydrogen cyanide (HCN), ammonia, 1-aminocyclopropane-1-carboxylate (ACC) de-aminase, phosphorous solubilization and antifungal assay. Out of 34 isolates, 24 isolates produced plant growth hormone IAA in the presence of Tryptophan, 10 isolates produced ACC deaminase and fourteen of these isolates were the best in producing siderophore and indole acetic acid (IAA). In addition to IAA and siderophore-producing attributes, 33 isolates could solubilize phosphorous to various extents, 26 isolates were positive against three major phytopathogenic fungi viz *Fusarium oxysporum f. sp. ciceri* Mu1, *Macrophomina phaseolina* and *Rhizoctonia solani*. Genotypic analysis was carried out using four different fingerprinting methods to assess their usefulness as tools to study the bacterial diversity within this complex group. The methods used were random amplified polymorphic DNA (RAPD), Amplified Ribosomal DNA Restriction Analysis (ARDRA) and repetitive element sequence-based PCR (rep-PCR) utilizing BOX and enterobacterial repetitive intergenic consensus (ERIC). The present study reveals the comparison among the various molecular methods for three different plants. Cluster analysis of the results clearly demonstrated the considerable heterogeneity among the isolates of different crops but homogeneity in the isolates of the same crop validating the above mentioned methods for studying intraspecific variation among the fluorescent pseudomonads. The knowledge on genetic diversity of fluorescent pseudomonads associated with chickpea, maize and jatropha rhizosphere is useful to understand their ecological role.

Keywords- Fluorescent pseudomonads, 16S rDNA, ERIC, rep-PCR, Molecular diversity. DNA fingerprinting.
Leaching of pathogens from manure to drainage water – assayed using classic and DNA/mRNA based methods

1) Geological Survey of Denmark and Greenland, Denmark.
2) University of Copenhagen, Faculty of Life Sciences, Denmark.
3) University of Ávila, Faculty of Agricultural Sciences, Spain.
4) Centro de Investigacion y Formacion Agrarias, Consejeria de Ganaderia, Agricultura y Pesca de Cantabria, Spain.
5) Technical University of Denmark.

The usual practice of addition of animal manure to soil can provide opportunity for contamination of soil and drainage waters. In a large multidisciplinary project involving many institutions the different pathogens in agricultural soils has been assayed. In this study, we examined different pathogens using different techniques to evaluate the survival of the organism in soils: Plate/plaque counting, direct quantification of DNA and RNA-based qPCR.

In one experiment of the survival of Salmonella spp., three different factors were tested: temperature, soil type and manure treatment. A tetracycline-resistant Salmonella typhimurium culture was inoculated to yield 10^7 cfu/g into agricultural topsoil (with or without applied manure) or soil from the B horizon (below plough layer). Soils were stored at 5, 15 and 25°C simulating seasonal temperature exposure. The survival of Salmonella spp. assayed by plating techniques showed a superior survival at lower temperatures, but a general decay was found in all samples. A high number of protozoa was found in the manure amended soil corresponding to a fast decay of inoculated Salmonella spp. Quantification of mRNA and DNA directly in the soil and manure samples showed that mRNA was degraded fast in soils at high temperature while mRNA was more stable at 5°C.

In a field experiment strings of manure were added into agricultural soil. During a period of two months, the sections of soil with different distance to the manure string were assayed to obtain information on survival and spread of enterics (bacteria and viruses), faecal indicators (Enterococci, Bacterioides, E. coli) and tetracycline-resistant bacteria. The die-off of the different organisms was quantified showing an extended survival close to the manure-string. Genomic DNA from 400 tetracycline-resistant bacteria was isolated and their phylogenetic relationship was established using 16SrRNA gene sequencing showing that the main tetracycline-resistant bacterial species is E. coli.

Drainage water from the field was collected weekly from spring 2008. During the samplings in 2008, no tetracycline-resistant bacteria were found, but after manure applications in the autumn 2009 tetracycline-resistant bacteria were recovered. Again, a suite of different organisms were quantified, and in the first drainage water sample after manure application we found approximately 100 tetracycline-resistant cfu ml^-1. The total number of tetracycline-resistant bacteria in the manure was 1x10^6 cfu ml^-1.

In conclusion, the survival and environmental spread of pathogens and indicator organisms shows that not only the upper soil are impacted by the microorganisms originating from non-processed manure, but also drainage water can contain quite high numbers of the organisms. The results also show that DNA-based quantification of Salmonella spp. yields higher numbers than quantification based on mRNA indicating that mRNA will form a very conservative choice for pathogen quantification in environmental samples.

Keywords DNA/mRNA extraction, invA genes; pathogens; public health; water quality; fecal indicator

Microbial analysis of soils from avocado crop modified by organic amendments

N. Bonilla, F. M. Cazorla, J. M. Hermoso, J. González, J. A. Torés, A. de Vicente

1Grupo Microbiologia y Patologia Vegetal – Unidad Asociada-CSIC, Facultad de Ciencias, Universidad de Málaga, 29071- Málaga, Spain, e-mail: bonilla@uma.es;
2Estación Experimental “La Mayora”, CSIC, 29750-Algarrobo, Spain.

One of the most important objectives of any sustainable system of agriculture is to maintain and improve the stock of soil organic matter adding organic amendments, like yardwaste mulches, manures and compost. This agricultural practice also has a direct impact on plant health and crop productivity. In Spain, the ecological production of avocado (Persea americana Mill.) is in extension due to the facilities of this crop for the ecological management, and the addition of organic amendments or mulches is one of the most popular actions performed by farmers. If adequate quality is provided, organic residues act not only as a source of nutrients for the plants, but also may increase size, biodiversity and activities of the microbial populations in soil.

One of the most important objectives of any sustainable system of agriculture is to maintain and improve the stock of soil organic matter adding organic amendments, like yardwaste mulches, manures and compost. This agricultural practice also has a direct impact on plant health and crop productivity. In Spain, the ecological production of avocado (Persea americana Mill.) is in extension due to the facilities of this crop for the ecological management, and the addition of organic amendments or mulches is one of the most popular actions performed by farmers. If adequate quality is provided, organic residues act not only as a source of nutrients for the plants, but also may increase size, biodiversity and activities of the microbial populations in soil.

The aim of this study is to characterize and compare different types of organic amendments applied to avocado soils. For this, a greenhouse experiment was performed using two years-old avocado plants growing on pots with soil supplemented with organic amendments. The different amendments were let mature simultaneously to the plant growth. After one year of maturation, the microbial diversity and enzymatic activities of soil and rhizosphere were analyzed. Microbial diversity was studied by culture-dependent and independent methods.

Microbial counts in selective culture media showed higher microbial populations in soils and rhizospheres of amended treatments if compare with control not amended treatment. The counts were especially high in amendments mixed with chicken manure and the composted grass. Aerobic spirulating bacteria and the Pseudomonas group were the most affected by the treatments. The DQGE patterns were more complex for the amended treatments, indicating higher microbial diversity in these soils. A deeper analysis of these patterns is still in progress, including sequentiation of some interesting differential bands. Enzymatic activities in soil and rhizosphere were determined by the API-ZYM system, able to analyze the presence and relative activity of 19 hydrolytic enzymes. Results showed higher activity of some of the analyzed enzymes in amended soil and rhizosphere if compare with control treatment.

Keywords DNA/mRNA extraction, invA genes; pathogens; public health; water quality; fecal indicator
Microbial characterization of a heavy metal polluted soil phytoremediated with *Populus euroamericana*

C. Musso1, E. Gamalero1, P. Cesaro1, S. Castiglione1, A. Cicatelli1, V. Todeschini1, A. Fabiani1, Jin Dun2, and G. Berta3

1Università del Piemonte Orientale “Amedeo Avogadro”, Dipartimento di Scienze dell’Ambiente e della Vita, Viale Teresa Michel 11, 15121 Alessandria, Italy
2Dipartimento di Chimica, stecce 7, Università degli Studi di Salerno, Via Ponte Don Melillo 1, 84084 Fisciano, Italy
3Centro per la Ricerca e la Sperimentazione in Agricoltura, Istituto di Studio e DiFesa del Suolo, Piazza Massimo d’Azeglio 31, 50100 Firenze, Italy

Heavy metal pollution is one of the major problems negatively affecting both human and environmental health and several technologies and methods have been developed to remove them from polluted soils. Traditional methods such as soil removal or extraction through chemical or physical means are costly from both an economic and an environmental point of view, and could potentially have a deleterious impact on soil physical, chemical, and biological properties.

Phytoremediation, consisting in the use of plants to remediate heavy metal polluted soils is, in a clean and cost-effective technology that is likely to be readily accepted by a concerned public.

Metal phytoextraction can be influenced affected by microorganisms living on the surface or inside the plant roots and in the bulk soil. These rhizospheric microorganisms can act on pollutants, using their own degradative capabilities, but also positively affect plants by improving growth and health, enhancing root development, or increasing plant tolerance to various environmental stresses.

Clones of *Populus x euroamericana* I-214 were grown in an area, polluted by copper and zinc, close to an industrial site. In spite of similar chemical and physical features of the soil, the clones showed very different growth. In order to assess the possible role of the microflora in these heterogeneous plant growth, the microbiological properties of soil near roots of poplar with large (I214G) or small (I214P) size, as well as of the bulk soil (Soil), were characterized by coupling traditional culture-dependent (bacterial density, culturable bacteria identification, carbon utilization pattern and enzymatic activities) and -independent (Denaturing Gradient Gel Electrophoresis - DGGE) techniques.

The rhizospheric soils showed the highest microbial activity. Among culturable bacteria, Gram positive were predominant in the bulk soil, while *Varitiosoros* sp. was found only in rhizospheric soils. Since *Varitiosoros* sp. resulted to be specifically selected by the plant, six strains belonging to this specie, were characterized for their physiological traits possibly involved in plant growth promotion. Thus, enzymatic activities, production of auxin, salicylic acid , siderophore, L-aminocyclopropane-1-carboxy late (ACC) deaminase activity, as well as copper and zinc resistance were evaluated. DGGE analysis of Eubacterial and culturable bacteria communities showed low similarity among the sites. The culturable fraction and the whole Eubacterial community clustered separately. In addition, the culturable fraction and the whole Eubacterial community of the bulk soil showed the lowest biodiversity. Band clonings and sequencing are in progress.

Keywords polluted soil; metabolic profile; enzymatic activities; microbial community structure; DGGE; rhizobacteria

Microbiological and chemical properties of Tarhana during fermentation

Ebru Güney Fundal and Merih Kıvanç*

1Bilecik University, Vocational School of Food Technology Program, Bilecik C. Musso1, E. Gamalero1, G. Lingua1, P. Cesaro1, S. Castiglione2, A. Cicatelli2, V. Todeschini1, A. Fabiani1, Jin Dun2, and G. Berta3

2Anadolu University, Faculty of Science, Department of Biology, 26470 Eskişehir, Turkey

3University of Waterloo, Department of Biology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada

Tarhana is a traditional Turkish fermented cereal food produced both commercially and in homes. Turkish fermented food made with cereal, milk products, various vegetables and spices using yoghurt bacteria and baker’s yeast as culture. Tarhana dough is prepared followed with lactic and alcoholic fermentation for 1–7 days. After fermentation the mixture is sun dried and ground. Similar products are known as “trahana” in Greece, “kiskh” in Egypt, “kushuk” in Iraq and “tahanya/talkuna” in Hungary and Finland.

White wheat flour, concentrated full fat yoghurt, tomato paste, onion, red and green paprika, mint and salt were used in tarhana preparation. Change in some chemical and microbiological properties of Tarhana in fermentation stage of production was investigated. During the 7-day tarhana fermentation period, acidity increased from 12.17 % to 36.11 %, pH decreased from 5.22 to 4.13, wet decreased from 70.12 % to 26.15 %. Average chemical composition of the Tarhana, at the end of fermentation, was wet 9.55 %, protein 20.05 %, total ash 5.65 % and salt 5.65%, fat 4.88 %.

During fermentation, count of lactic acid bacteria increased from 1.32 X 102 to 4.2 X 104 cfu/g and count of Total mesophilic aerobe bacteria increased from 1,75 X 101 to 2.28 X 102 cfu/g, count of yeast increased from 3.45 X 101 to 2.40 X 105 cfu/g, count of mould 1.55 X 101 to 2.45 X 105 cfu/g, content of Tarhana dough. Fermentation in Lactococcus lactis spp. lactis, Lactobacillus acidophilus, Enterococcus durans, Pediococcus spp., Lactobacillus delbrueckii spp. lactis and Lactobacillus paracasei ‘s was seen to play a role. *Kluyveromyces marxianus, Yarrowia lipolytica,Pichia membranaefaciens, Pichia mexicana, Pichia angusta, Debaryomyces hansenii B Candida sorbosisa, Candida fluviatilis, Saccharomyces cerevisiae B clark* tanmlanmştr. Fermantasyon siresince *Kluyveromyces marxianus* ortamda kalkmıştır.
Modeling of nitrogen leaching by using urea fertilizer in sandy loam soil
Khalil Ajdary1 and Hamid Zare Abianeh2

1Ph.D, Shahrood University of Technology, Shahrood, Iran
2Ph.D, Bu Alisina University, Hamadan Iran

To study the N leaching process in sandy loam soil under drip irrigation system a full drip system was designed in Agricultural Research Farm, Shahrood Iran. Selected crop planted for study was radish. In this experiment the lateral lines were spaced at 50 cm interval. The lateral lines were laid in such a manner that the same lateral line supplied water and fertilizer to all the randomized replicated plots. Plant to plant and row to row spacing were 10 cm and 30 cm, respectively. The recommended dose of fertilizers were 120 kg/ha of N, 50 kg/ha of P and 70 kg/ha of K. In this study urea was main source of applied nitrogen. Amount of water applied during each irrigation varied with water requirement. Amount of nitrogen applied varied according to the crop requirement and fertigation schedule. Modeling of nitrogen leaching blow the crop root zone was done by Hydrus-2D model. Amount of N going below the root zone depth was obtained by this model. Water and nitrogen patterns in the entire field described by analyzing the flow in the single volume element irrigated by single emitter. Simulation of nitrogen leaching was done in three types of soils. Results revealed that N leaching was highest in case of sandy loam soil and negligible in case of silty clay loam soil. This implies that in case of permeable soils like sandy loam, fertigation strategies play role in N leaching

Molecular and classical approaches to understand the effect of wildfires on microbial diversity from Mediterranean forests
J. Rodríguez1, A. Turmero1, M. Hernández1, J.A. González-Pérez2, F.J. González-Vila2, M.J. Pérez-Leblic1 and M.E. Arias3

1Departamento de Microbiología y Parastología. Universidad de Alcalá. Ctra. Madrid-Barcelona, Km 33.600, 28871 Alcalá de Henares, Madrid, Spain.
2INCNAS-CSIC. Avda. Reina Mercedes, 10, 41012 Sevilla.

Wildfires are considered the main disturbance in forest ecosystem of the Mediterranean Basin (Naveh, 1990). Forest fires produce undesirable effects on soil health and quality because destroy vegetation cover and reduce soil fertility, favouring the occurrence of erosive processes and the loose of soil nutrients (Fernández et al., 2007). Soil degradation caused by wildfires produces important changes in physical, chemical and biological properties of soil (Acea and Carballas, 1996).

Microorganisms are responsible for the decomposition and mineralization of plant and animal residues in the soil where they play a leading role in soil development and preservation, being considered as indicator of ecosystem function and sustainability (Anderson, 2003; Kara and Bolat, 2009). Although several authors have provided data about total microbial biomass and activity in burned soils, there is little information on the composition of the microbial populations.

Microbial diversity of soils can be studied using classical methods based on culturing procedures, and nowadays, through the use of DNA-based techniques which allow the differentiation of microorganisms within complex microbial communities. The main objective of this work was the study of different fire affected soils at different time scale (crosssequences) in order to obtain information about the effect of wildfire on microbial populations as well as on the functionality recovery of such soils.

A variety of scenarios from Andalucía (South of Spain) have been chosen including different soil types under different vegetation affected by fires during the past 10 years, as well as control soils with no history of forest fires. Soil microbiota has been estimated by viable count technique and direct DAPI count under an epifluorescence microscope. The physiological profiles of soil microorganisms have been characterized by measuring the following enzymatic activities: alkaline- and acid phosphatases, β-glucosidase, invertase, cellulase, β-N-acetylglucosaminidase and urase. DGGE (denaturing gradient gel electrophoresis) and 16S rDNA gene cloning from Bacteria and Archaea domains have been carried out for analysing the microbial biodiversity of the studied soils.

From this work the following conclusions could be obtained: 1) the number of phyla in control soils was greater than in burned soils; 2) the predominant groups in all the samples were Proteobacteria, Acidobacteria and Actinobacteria; 3) similar percentages of Proteobacteria and Acidobacteria were found in control soils while in burned soils an increment of Proteobacteria phylum instead of Acidobacteria was observed; 4) α-Proteobacteria and β-Proteobacteria were the most abundant groups within Proteobacteria phylum; 5) Shannon index calculated from DGGE analysis was higher in burned soils than in control soils but Shannon index obtained from clone library showed greater diversity (high number of phyla) in burned soils than in control soils.

References

Keywords: wildfire, microbial diversity, DGGE, 16S rDNA gene cloning
Molecular characterization of Fusarium oxysporum f. sp. lycopersici causing wilt of tomato

M.L.R. Bastos da Silva1, M.C.C. Pereira de Lyra2, A.C.E.S. Mergulhão2, J. Zoi Brito2 and M.V. vanusa da Silva3

1 Bolsista de DCN (CNPq/FACEPE). Instituto Agronômico de Pernambuco-IPA. Laboratório de Genômica. Av. G. San Martin 1371, Boa Viagem 50761-000 – Recife, PE - Brasil - Cx. Postal: 1022
2 Instituto Agronômico de Pernambuco-IPA. Laboratório de Genômica
3 Universidade Federal de Pernambuco-UFPE. Departamento de Bioquímica

Fusarium wilt of tomato (Lycopersicon esculentum Mill.), caused by Fusarium oxysporum f. sp. lycopersici (Sacc.) W.C. Snyder and H.N. Hansen, is an economically important disease and it is a destructive disease of tomato crop worldwide. With the coming of the molecular methods based on the analysis of DNA, these have been very useful tools in the phylogeny studies of Fusarium and in the differentiation of species, formae speciales, races and isolates.

Three different host-specific races of pathogen (race 1, 2 and 3) have been identified. Three races of the F. sp. lycopersici, f. sp. were assessed for genetic diversity using Random amplified polymorphic DNA (RAPD), Amplified Ribosomal DNA Restriction Analysis (ARDRA) was used to analyze the ITS1 – 5.8S rDNA – ITS2 region, amplified with primers ITS1 and ITS4. The genetic relationship for RAPD of the F. oxysporum races were analyzed using Unweighted Pair-Group Method with Arithmetic Averages (UPGMA) cluster analysis based on Simple Matching Similarity Coefficient. The amplified products were digested with the restriction enzymes AbdI, BamHI, EcoRI, HaeIII, HindIII, HpaI, HpaII, AluI and RsaI and RAPD-PCR showed low variation among the F. oxysporum races studied, indicating close relationship among the races. Banding patterns generated for the enzymes it demonstrated a pattern monomorphic for the three races. The ARDRA technique, using these enzymes is not a promising marker to differentiate the formae speciales lycopersici from within the F. oxysporum complex. Primers ITS1/ITS4 for the region ITS1/ITS2 showed good specificity for the species and yielded a unique fragment of approximately 530 bp. For the region IGS using the primers PN22/PNO observed a fragment of 1244 bp DNA bases. This sequences was determined in ABI 3700 sequence analysis system were further aligned and cladograms reconstructed with Bioedit (7.0.0) and TreeView 1.6.6. Coefficient showed that the F. oxysporum races were grouped into two main clusters with similarity value of 69% (races 1 and 2) and 63% (race 3) RAPD-PCR analysis, respectively. Where the races 1 and 2 formed an independent cluster and the race 3 showed a behavior paraphyletic in relationship the others. Cluster analysis of the combined data also showed that the F. oxysporum races were grouped into two clusters, sharing 80 and 70% of genetic identity for the regions IGS and ITS, respectively for the races 1 and 2.

However the race 3 showed an inferior genetic identity of 50% in relationship the two studied races. The results of the present study indicate that the F. oxysporum races were closely related.

Key words: ITS, IGS, RAPD-PCR, Fusarium oxysporum f sp lycopersici

Reference

Molecular properties and significance of phosphoenolpyruvate carboxykinase in a ruminal bacterium, *Streptococcus bovis*

K. Kanada, N. Asanuma, and T. Hino
Department of Life Science, College of Agriculture, Meiji University, Higashimita, Tama-ku, Kawasaki, 214-8571 Japan

Background
Streptococcus bovis is usually a major lactate-producing bacterium in the rumen, and often proliferates when ruminants are fed diets containing large amounts of readily fermentable carbohydrates, such as starch. Thus, *S. bovis* sometimes causes rapid acidification in the rumen as a consequence of excessive lactate production, and is thought to contribute to the progress of rumen acidosis. Therefore, it is desirable to control the growth and metabolism of *S. bovis* so as to produce lactate at an adequate rate. Since *S. bovis* metabolizes sugar through the Embden-Meyerhof glycolytic pathway, the control of the glycolytic flux in *S. bovis* has attracted considerable attention in connection with the prevention of rumen acidosis. In this study, we focused on the significance of phosphoenolpyruvate (PEP) carboxykinase (PCK, EC 4.1.1.32) in *S. bovis*. This enzyme generally catalyzes the conversion of PEP to oxaloacetate (OAA) in bacteria, but also acts to generate PEP for gluconeogenesis by the reverse reaction in some bacteria. Therefore, we examined the molecular and enzyme properties of *S. bovis* PCK, and factors affecting PCK synthesis. In addition, the role of PCK was also examined by constructing a pck-disrupted mutant.

Results
We identified and characterized the PCK gene (*pck*) and flanking sequences from *S. bovis*. A BLAST search indicated that the deduced amino acid sequence of *S. bovis* PCK showed approximately 50% identity with those of other bacterial PCK proteins. Sequence analysis and mRNA analysis indicated that *pck* was transcribed in a monocistronic fashion. The level of *pck*-mRNA was higher when cells were grown on lactose than on glucose, suggesting that PCK synthesis is stimulated when the growth rate is low. The *pck*-mRNA level was higher in a mutant lacking *ccpA*, which encodes the catabolite control protein A (*CcpA*), than in the parent strain, suggesting that *pck* transcription is suppressed by *CcpA*. Recombinant His-tagged *S. bovis* PCK was purified as a single protein, as verified by SDS-PAGE. PCK activity was detected when the recombinant protein produced from *S. bovis* *pck* was added to the assay mixture, confirming that the *pck* encodes PCK. *S. bovis* PCK showed oxaloacetate (OAA)-decarboxylating activity, but no PEP-carboxylating activity (reverse reaction). The cell homogenate of *S. bovis* had high pyruvate carboxylase activity, but no PEP carboxylase activity was detected. Thus, OAA appears to be produced from PEP via pyruvate in *S. bovis*.

To examine the significance of PCK in *S. bovis* growth, the *pck* gene was disrupted by replacing the entire *pck* gene by an erythromycin resistance gene. Disruption of *pck* was confirmed by Southern-blot and PCR analysis. As expected, no PCK activity was detected in the *pck*-disrupted mutant (JB1-*pck*). In glucose-limited growth medium, the growth rate of JB1-*pck* was significantly lower than that of its parent, JB1, and the OD600 value at growth cessation for JB1-*pck* was also lower than that for JB1, showing that PCK affects growth. The ratios of formate to lactate produced by JB1-*pck* and JB1 in 1 h were not significantly different, suggesting that disruption of *pck* has no effect on the fermentation pattern during exponential growth. Thus, depression of growth does not seem to be caused by a change in the fermentation pattern. When JB1 was grown in a medium containing ammonia as the sole nitrogen source, the lag phase was prolonged and cell yield was decreased. This result suggests that it takes a while to initiate amino acid synthesis, and considerable energy is used for this purpose. Much more pronounced effects were observed when JB1-*pck* was grown, suggesting that PCK is involved in the initiation of growth including the induction of amino acid synthesis and energy metabolism.

Acknowledgments
This study was supported in part by a Grant-in-Aid for Scientific Research (No. 20780196) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT).

Keywords
orotate production; phosphoenolpyruvate carboxykinase; rumen bacteria; ruminal acidosis; *Streptococcus bovis*

Multiple associations involving ectomycorrhizal and endomycorrhizal fungi, nitrogen fixing bacteria and the leguminous species *Dimorphandra wilsonii*, a threatened species from the Brazilian Cerrado

Scotti, M.R1; Kasuya, C2; Cruz, C1; Bacelar, M1; Gomes, M1; Miranda, P1; Pereira, R.A1; and Sprent J4.
1UFMG- Federal University of Minas Gerais, Department of Botany/ Biological Institute of Sciences. Minas Gerais/Brazil
2UL. University of Lisbon. Department of Vegetal Biology. Lisboa, Portugal
3UFV- Federal University of Viçosa, Department of Microbiology, Minas Gerais, Brazil
4U. University of Lisbon. Department of Vegetal Biology. Lisboa, Portugal

Dimorphandra wilsonii is a Caesalpinioideae leguminous tree, native to the Brazilian Cerrado (Savannas type) and is currently threatened of extinction. Nowadays, there are only eleven of these trees that have survived in this region of Paraopeba and Lagoa Santa in the Minas Gerais state. Mutualisms associations between plant and soil microorganisms are strategies closely linked to the adaptive success of plant species. This study aimed to evaluate the presence of symbionts in the roots of *Dimorphandra wilsonii*. Surprisingly there was a concomitant occurrence of nitrogen fixing bacteria (indeterminate nodules), ectomycorrhizal and endomycorrhizal fungi (AMF) found. The Bradyrhizobia was the dominant gender found in plant nodules. The dominant AMF families in rhizosphere were Glomaceae and Acaulosporaceae which were found similarly distributed along of the roots. The root colonization assessment of arbucular mycorrhizal fungi (AMF) was around 30% and there was a predominance of fungal structures related to the Acaulosporaceae family. In contrast there was an abundant ectomycorrhizae colonization found in all the plants analyzed. Morphological analysis of AMF spores from rhizosphere soil confirmed the dominance of *Acaulospora* species. The multiple infection is a rare event, and may be related to the adaptive strategy for the survival of this species.

Keywords
Arbuscular mycorrhiza fungi, Nitrogen fixing bacteria, Ectomycorrhiza, Leguminous species
Mycobiota predominant and aflatoxins content in shell and shelled Brazil nuts

O. Freitas Silva1,2, A. Teixeira1, R. O. Godoy3 and A. Venâncio3

1Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
2Embrapa Food Technology, Av das Américas, 29501, 23020-470, Rio de Janeiro, Brazil
3Departamento de Tecnologia de Alimentos, Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, BR – 265, Km 7, Scopelândia, 23890-000, Brazil

Brazil nuts (Bertholletia excelsa Humb. et Bonpl.) are an important product of the Brazilian Amazon. Currently, its marketing is compromised by the high incidence of aflatoxins (AF). The most known naturally occurring AF are named AFB1, AFB2, AFG1, and AFG2. This study aimed to identify the potentially aflatoxigenic mycobiota associated with shelled Brazil nuts and with the shells, and to determine which one of these fractions contributes to aflatoxins (AF) contamination, since that official method use integral Brazil nuts samples to AF test. Samples of Brazil nuts were collected from the agro forestry system production area in Amazonian rain forest, in Brazil. These samples were split in shell and shelled nuts, and the total count of Aspergillus spp. was analysed after sanitisation (sodium hypochlorite 1% / 10 minutes) and without sanitisation, by plating AFPA medium, for 7 days, at 25 °C. The isolates identified as Aspergillus spp. were plated on YES medium (5days at 25 °C) for determination of the aflatoxigenic potential by agar plug technique. To analyze AF, 500 g samples were milled and were extracted with chloroform. The chromatographic analysis was performed by HPLC-FD system in an isocratic mode ([Waters pump 6000, Waters module autosampler W717, Fluorescence detector W2475 and column Waters X-Terra (4.6x150mm and 5μm – RP18]). The mobile phase was water milli-Q/acetoniaryl/methanol (600:150:150 v/v) and the injected volume was 5μL, both to standards and samples. The average incidence of infection from Aspergillus spp. in sections Flavi, Nigri and Circumdati were 48%, 8% and 1%, respectively. The sanitization treatment reduced the fungi counts. There were AF production by fungi isolated from both types of samples, 30% of the samples were positive for AFB1, AFB2, AFG1, and AFG2. Concerning the Brazil nuts AF analysis, it was observed that the concentration of AFB1 and AFG1 obtained were higher than AFB2 and AFG2. The AFB1 content was 35.281 and 1.782 μg/kg in shelled Brazil nuts and shells, respectively. AFB2 and AFG2 were detected only in shelled samples. The HPLC-FD presented limits of detection (LOD) and quantification (LOQ) of 0.2 and 0.4 μg/kg, respectively.

Keywords: mycotoxins, food safety, fungi, Bertholletia excelsa

N2O and N2 emissions from pasture soils differing in pH – does the linkage between the gas fluxes, denitrifying activity and size of the denitrifier community exist?

J. Čuříl1, M. Siměk1, R. J. Laughlin2, D. Brůa1, D. Cheneb3, C. J. Watson3, and L. Philippot3

1Biological Centre of ASCR, v. v. i., Institute of Soil Biology, and University of South Bohemia – Faculty of Science, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
2Agri-Food and Biosciences Institute, Newforge Lane, Belfast, Northern Ireland, UK
3INRA, Université de Bourgogne, UMR 1229, F-21000 Dijon, France

Denitrification is of environmental concern because, together with nitrification, it is the main biological process responsible for N2O emissions. N2O is a potent greenhouse gas and after some reactions in the stratosphere it can also cause the destruction of stratospheric ozone. Both, the amount of denitrification end products (N2O and N2) evolved, and the N2O/N2(O/N2) ratio, are important in understanding, predicting and mitigating N2O fluxes from soils. Soil pH is one of the most important factors influencing both denitrification and N2O production. In general, denitrification rate increases with increasing pH values, while the N2O/(N2O+N2) ratio decreases. This relationship has already been well characterized in laboratory experiments, but not verified in the field because of methodological limitations for in situ measurement of N2 emissions. Soil pH is also an important factor influencing denitrifier community composition, which can be an important driver of denitrification activity and N2O emissions. The objective of the present study was to explore the effect of changes in soil pH on in situ N2O and N2 emissions and on denitrifying enzyme activity. In addition, we also investigated whether differences in the N-gas fluxes could be related to the size of the microbial community possessing different denitrification genes.

We established a field experiment situated in a grassland area in South Bohemia, Czech Republic, where we manipulated the soil pH. The field experiment consisted of three treatments which were repeatedly amended with KOH solution (alkaline soil), H2SO4 solution (acidic soil) or with water (pH-natural soil) over 10 months. At the site we determined field N2O and N2 emissions using 15N gas-flux method. Soil samples were collected for determination of denitrifying enzyme activity (DEA) and for quantification of the size of the denitrifying community by quantitative PCR of the narG, napA, nosZ, nirK, nosZ denitrification genes. The total bacterial community was quantified using 16S rRNA as molecular marker.

Manipulation of soil pH via the application of acid or alkali solutions resulted in a significant changes in the soil reaction: pH 5.5, 6.8 and 7.7 for the acidic, pH-natural and alkaline soils, respectively. DEA and N fluxes in situ were highest in the alkaline soil and lowest in the acidic soil, but we did not find any differences in N2O production or emissions between the pH treatments. On the other hand, the N2O/(N2O+N2) molar ratio was the highest in the acidic soil and the lowest in the alkaline soil. The total N-fluxes in situ significantly correlated to DEA and the N2O/(N2O+N2) ratio in the field was significantly correlated to the N2O/(N2O+N2) ratio calculated from the DEA assay. For all denitrification genes and the 16S rRNA gene, the highest gene copy numbers were observed in the pH-natural soil. However, the abundance of none of the denitrification genes was correlated to total N-fluxes in situ and only the abundance of the nirK gene was correlated to DEA. The N2O/(N2O+N2) ratio was negatively correlated to the abundance of narG, napA, and narG genes and also to the nirK/16S rRNA, narG/16S rRNA and napA/16S rRNA ratios. We found a positive correlation between the nirK/16S rRNA ratio and soil pH. However, we did not find any negative correlation between the proportion of denitrifiers possessing the nosZ gene and the N2O/(N2O+N2) ratio.

To conclude, our results indicate that manipulation of soil pH affected the N2O/(N2O+N2) ratio, which increased with decreasing pH due to changes in total denitrification activity but not in N2O production. We also showed that denitrification activity and N2O production measured under laboratory conditions were correlated with N-fluxes in situ and therefore could reflect treatment differences in the field. The size of denitrifying community was uncoupled to in situ N-fluxes but the denitrifying enzyme activity was significantly correlated to the number of NirS-denitrifiers. We also found a relationship between the narG, napA and nirK gene copy numbers and the N2O/(N2O+N2) ratio, which remains to be explored. However, in this study, the proportion of denitrifiers capable to reduce the NO2 did not seem to have a role in determining the N2O/(N2O+N2) ratio. It is crucial in future studies to continue to bridge the gap between studies of denitrifier ecology and of N-fluxes for a comprehensive understanding of the role of denitrifier community ecology in determining not only total denitrification rates but also the nature of the denitrification end products. This work was supported by the research grants AV0Z60660521, MSM 6007663801, LC 06066 and IAA600660605, and by the Barrande Programme 2-07-26.

Keywords: denitrification; pH; soil; N2O emissions; 15N; denitrifying enzyme activity; qPCR, narG, napA, nirK, nosZ; nirK, nosZ.
Nematicidal activity of Solanum sisymbriifolium and S. nigrum extracts against the root-lesion nematode Pratylenchus goodeyi

M. Pestana, M. Rodrigues, L. Teixeira, I. M. de O. Abrantes, M. Gouveia and N. Cordeiro

1Laboratório de Qualidade Agrícola, RAM, 9135-372 Santa Cruz, Portugal
2Centro de Ciências da Vida, UMa, 9000-390 Funchal, Portugal
3Instituto do Mar – Centro do Mar e Ambiente, Departamento de Zoologia, FCTUC, 3004-517 Coimbra, Portugal
4Centro de Ciências Exactas e da Engenharia, UMa, 9000-390 Funchal, Portugal

The root-lesion nematode Pratylenchus goodeyi, a parasite of banana plants, is very frequent in Madeira Island (Portugal) affecting culture development and consequently the production, with economical damages. To control phytoparasitic nematodes is common resorting to phytopharmaceutical products of high toxicity to animals and environment in general. In order to find solutions less aggressive to the environment and to man, different alternative pathways to chemical products are being studied.

The nematicidal potential of some plants and its application have been analysed and different plant parts have been tested to identify the possible origin of the nematicidal substances. Recently it was demonstrated that the incorporation of Solanum sisymbriifolium and S. nigrum, in soil, improve banana plant growth by direct action through exudates release with nematicidal effect and by indirect action contributing to promote antagonist development and to turn rhizosphere not favourable to the nematode.

The aim of this work was to identify the organic components of S. sisymbriifolium and S. nigrum with nematicidal properties and to determine the effect of those components on P. goodeyi. In order to guarantee the total components extraction, an extraction sequence of at least 10 hours each from the dried plants was used. The chosen solvent sequence was: dichloromethane, acetone, ethanal and at last, water.

The mortality of P. goodeyi in some extracts was significant being the water extracts the most effective. The water extracts from dried and fresh plants confirmed the mobility and mortality effects on P. goodeyi shown on the water extracts. According to the results both plants have in their composition chemical components that can be found in water, which affects the mobility and mortality of the root-lesion nematode. Therefore, S. sisymbriifolium and S. nigrum have potential to be used as a natural and environmentally friendly nematicide to control the root-lesion nematode, P. goodeyi. Further studies are being done in order to identify the active nematicidal components present in the water-soluble extract.

Keywords Banana plant; root-lesion nematode; Solanum; Nematicidal activity

Nitrifying microorganisms biodiversity in different soils types of the European part of Russia

A. Cherobaeva, A. Stepanov, and I. Kravchenko.

Winogradsky Institute of Microbiology, Russian Academy of Sciences, 7/2, Prospekt 60-letiya Oktyabrya, 117312, Moscow Russian Federation

Nitrifying and denitrifying organisms are important in removing fixed nitrogen pollutants from ecosystems, the NO and N2O produced by these processes are greenhouse gases. Central process in the global nitrogen cycle is the microbial ammonia oxidation, the first and rate-limiting step of nitrification. It was long time believed that microbial ammonia oxidation is solely performed by Bacteria and only bacteria possess the gene encoding ammonia monooxygenase, the key enzyme of nitrification. Recently, this concept has been changed. The isolation of ammonia oxidizing archaea from marine aquatic ecosystems (Könneke et al., 2005) indicate that archaean may play an important role in nitrification. The aim of the present work was estimation nitrifying microorganisms biodiversity in different soils types of the European part of Russia. For this purpose it was elaborated the methods of molecular detection key functional genes ammonia-oxidizing microorganisms and the comparative analysis of results amplification of DNA isolated from soils of different ecosystems.

For our molecular investigations it has been chosen the novel gene encoding ammonia monooxygenase (amoA) in Bacteria and Crenarchaeota. The bacterial amoA gene was amplified by PCR with primers amoA-1F and amoA-2R (Rotthauwe et al., 1997) and the archaean amoA gene – with primers CrenAmoA1F and CrenAmoA1R (Könneke et al., 2005).

Soils were sampled from different bioclimatic zones of the European part of Russia. Four methods by straight lyzys were used for each soil sample. All these methods DNA extractions were successful for amplifications 16S RNA genes. However, amplifications of extracted DNA were successful for amplifications amoA functional genes only with Power Soil DNA Kit (MO Bio).

By PCR amplification analysis it was found ammonia oxidizing bacteria in soddy-podsolic soils and grey forest soils (under forest ecosystems); in chernozem and chestnut soil (under prary ecosystems).

For estimation diversity of ammonia-oxidizing bacteria received PCR products were divided by method of molecular cloning with the help of sequences and phylogenetic analysis. The comparative analysis of results from received clones libraries from soil samples and enriched cultures has shown that in soddy-podsolic soil ammonia-oxidizing bacteria was represented by Nitrosospira while in enriched cultures – by Nitrosospira and Nitrosolobus. In chestnut soil were identified representatives of Nitrosospira, Nitrosolobus, and in enriched cultures – Nitrosocystis, Nitrosospira.

It was developed the report of amplification which gave possibilities to receive a stable product of the fragment gene amoA of ammonia oxidizer archaean. The given report is updating before the published methods (Könneke et al., 2005, Dorador et al., 2008) with change temperatures, time of elixmation and quantities of a DNA matrix. This products of amplification were isolated from soil horizons of soddy-podsolic soil on 5-10 and 40-50 sm depths.

As a results of our work it was selected the primer systems and conditions of amplification for detection the fragment of functional gene amoA in β-proteobacteria and Crenarchaeota. The comparative analysis has shown that the community structure of nitrifying microorganisms in soil samples and enriched cultures were divided. So that in the study of nitrifying microorganisms biodiversity it is necessary to use comparative analysis clones library gene amoA in soils and enriched culture.

References
Nodulation process and nitrogen fixation effectiveness in field beans (Vicia faba)

A. Anševica, V. Šteinberga, I. Alsiņa and L. Dubova
Latvia University of Agriculture, Liela iela 2, Jelgava LV 3001, Latvia

The inoculation of the legume seed material with active nitrogen fixing bacteria strains before sowing has a significant role for the increase of the legume yield. Inoculation can improve crop yields in cases where appropriate rhizobia are not present in the soil or the soil contains a significant proportion of nonnodulating or ineffective nitrogen-fixing strains. The aim of the investigation was to detect the effectiveness of Rhizobium leguminosarum strains in field beans at different soil microbiological activity. The experiment was conducted at the Institute of Soil and Plant Sciences of the Faculty of Agriculture of the Latvia University of Agriculture.

The field beans (Vicia faba. L) cultivars ‘Ada’, ‘Lielplatones’, Rhizobium leguminosarum bv. vicia strains No 110; 408; 501 and 2 types of soils were used in vegetation pot experiment. Obtained results in cultivar ‘Ada’ and ‘Lielplatone’ showed that used Rh. leguminosarum strains resistance on streptomycin decrease in both soil types from the anthesis stage forward. For the cultivar ‘Lielplatone’ the highest resistance on streptomycin showed strain No 110, but for cultivar ‘Ada’ strain No 408. The shoot fresh mass, dry matter, pod number, weight, dry matter and accumulated nitrogen depended on used Rhizobium strain and soil features.

The fingerprintings show significant difference between Rh. leguminosarum strains.

Keywords Rhizobium leguminosarum, field beans, nodulation, nitrogen fixation

Nucleotide Sequence analysis of the fusion protein gene of Newcastle disease viruses isolated from chicken in Iran

Shateri S.1, Golchin menshadi A.2
1 Islamic Azad University Babol Branch, Iran
2 Islamic Azad University Kazeron Branch, Iran

In this study 9 newcastle virus (NDV), obtained from Iranian industrial chicken farms, were isolated. A piece of 1349 nucleotide possessing virus’s F protein cleavage sits was sequentially determined. Amino-acids of F protein in isolated viruses were phylogenetically compared with previous viruses in Iran and the rest of the world. 96.5 -100% of similarity was observed among isolated viruses in different provinces. The nucleotide sequence of the piece was analyzed considering encoding sequence of F protein in NDV-existing in gene bank by using blast software. The highest nucleotide similarity with strains of Italy/3286/00 and sterna/astr. Amino acids and F protein cleavage sits of these viruses is quite the same and RRQRIF. They did not show any change to the previously isolated viruses in Iran, but in 3 viruses out of 9: Amino acid position 265 changed from serin to glycin. Phylogenetic analysis indicated that all beer common source as previous viruses and they were included in a separate group along with Russian, Italy, Ira, Turkey, Saudi Arabia, Kuwait, Kazakhstan, Lebanon, South Korea, Japan, and South Africa viruses.

Keyword: newcastle virus, cleavage sits, Phylogenetic analysis, F protein
Occurrence of Methicilin-resistant \textit{Staphylococcus aureus} at a Dairy Farm

Marcela Vyleťová1, Zora Šťástková2, Renata Karpíšková2, and Juraj Banyk3

1Research Institute for Cattle Breeding, Rapotín, Czech Republic
2Milk Hygiene and Technology, University of Veterinary and Pharmaceutical Science, Brno, Czech Republic
3AgriResearch Rapotín, Rapotín, Czech Republic

Methicillin resistant \textit{Staphylococcus aureus} (MRSA) is a significant cause of human and veterinary infections. There were described cases of the MRSA transfer from humans into animals during veterinary treatments. For now, its occurrence in the dairy cows is fortunately sporadic.

There were 120 bulk milk samples examined, issued from different cow farms in Czech Republic. Single sample was identified as MRSA positive. Consequently, individual milk samples (mixed from the all four teats) were examined in the relative farm from 70 cows. In addition, samples (swabs from the rhinophringes, nose and the navel surroundings) from three dairymen were taken. Samples have been investigated for occurrence of mastitis pathogens, where identification of the MRSA was targeted. All together 32 bacterial species have been identified. The most frequent species found were as follows: \textit{Staphylococcus aureus} (13; 41%), further \textit{Staphylococcus haemolyticus} (3; 9%), \textit{Streptococcus uberis} (3; 9%), \textit{Staphylococcus epidermidis} (2; 6%), \textit{Staphylococcus xylosus} (2; 6%), \textit{Streptococcus faecalis} (2; 6%), \textit{Streptococcus porcinus} (1; 3%), and \textit{Aerococcus viridans} (1; 3%). Five isolates (10%) have been identified just genus-specifically as \textit{Streptococcus} spp. In all \textit{S. aureus} species oxacillin sensitivity (OX 5) has been found, determined by means of diffusion method. Five \textit{S. aureus} have been found as oxacillin resistant, preliminarily signed as MRSA. At the all \textit{S. aureus} strains identified, PCR-amplification has been performed towards the mecA gene detection. Positive identification has been in 3 \textit{S. aureus} strains, which were oxacillin resistant, as well. These strains have been identified as MRSA. Results from human samples were negative.

This work has been granted by projects MZe NAZV QH81111, INGO LA 333 and MSM 267846201.

Pathogenic bacteria can produce exopolysaccharides and use them as carbon source under stress conditions: the case of \textit{Erwinia amylovora}

M. Ordax1, E. Marco-Noales1, M.M. López1 and E.G. Biosca2

1INSTITUTO VALENCIANO DE INVESTIGACIONES AGRARIAS (IVIA), Centro de Protección Vegetal y Biotecnología, Carretera Moncada – Náquera, km 4,5; 46113, Moncada, Valencia, Spain.
2UNIVERSIDAD DE VALENCIA, Departamento de Microbiología y Ecología, Avenida Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.

Bacterial exopolysaccharides (EPSs) have long been related in several bacterial species with cell protection under nutrient scarcity prevailing conditions in nature, and also against metals. However, the information about the protective role of EPSs in plant pathogenic bacteria under adverse conditions is still very scarce because EPSs have been mainly studied as virulence factors. The bacterium \textit{Erwinia amylovora}, a highly virulent and necrogenic pathogen, causes the devastating fire blight disease in several pome fruits and ornamental rosaceous plants, being the fire blight still remains as a serious threat for agriculture due to its difficult control, associated with the ability of \textit{E. amylovora} to persist in nature.

In the plant environment, nutrient scarcity is imposed in leaves when \textit{E. amylovora} is in the epiphytic phase, or even in the endophytic phase when the host plant is in dormancy. Besides, copper is still widely employed to control fire blight, especially in the European Union, since the use of antibiotics is forbidden in plants. In spite of these two common adverse conditions in the plant environment, the role of \textit{E. amylovora} EPSs to face these stresses had not been explored so far. Then, we have investigated whether amylovoran and levan, the major EPSs of \textit{E. amylovora}, could be used as carbon sources under starvation conditions in the presence of copper, using EPS-deficient mutants (AMY \textendash and LEV) in comparison with wild type (wt) strains. Carbon-free AB mineral medium plus 0.005 mM Cu2+ ions was used to assay the simultaneous effect of carbon deprivation and copper, whereas AB with copper but supplemented with amylovoran or levan extract at 0.2% was used to evaluate the use of each EPS as carbon source under these stresses. In all cases, the culturability of \textit{E. amylovora} was monitored on nutrient agar plates throughout six months at the same time that EPS levels were periodically quantified.

In AB with copper but without EPS extracts, the culturability of all \textit{E. amylovora} assayed strains progressively decreased until drop below the detection limit (1cfu/ml), although much more quickly for EPS-mutants than for wt strains. In contrast, when amylovoran or levan were present, the culturability was extended in all strains over the six-month period of study, at the same time that EPSs were depleted, although in greater extent in EPS mutants than in wt strains. Therefore, the proportion of non-culturable cells induced by starvation and copper stresses was significantly reduced by the use of supplemented EPS extracts as carbon source. This phenomenon has been reported in starved cells of some bacterial species, but not in plant pathogens, nor in the presence of copper. Further, culturable numbers were always significantly higher with levan extract than with amylovoran extract, indicating a preferential use of levan over amylovoran as carbon supply by the stressed \textit{E. amylovora} cells.

Overall, the use of \textit{E. amylovora} EPSs as carbon source under deprivation conditions, even in the presence of toxic copper ions, could explain, at least in part, the frequent persistent infections in copper-treated plants, and give new insights into the survival strategies developed by the pathogen to persist in nature.

Keywords: fire blight; copper; EPS; amylovoran; levan; levansucrase; starvation; culturability; carbon supply.
Phenotypic characterization and the application of the rep-PCR technique in the study of new strains of Bacillus thuringiensis in the South of Brazil

G. Cristina Alves1, V. Machado2, and L. Mariana Fiuza1,3

1Universidade do Vale do Rio dos Sinos (UNISINOS), Ciências da Saúde, Laboratory of Microbiology, Av. Unisinos, 950 – CEP 93022-000 São Leopoldo, RS, Brazil.
2Universidade de Caxias do Sul (UCS), Department of Biology, Av. Francisco Getúlio Vargas, 1130 – CEP 95070-560 Caxias do Sul, RS, Brazil.

Phenotypic characterization and the application of the rep-PCR technique in the study of new strains of Bacillus thuringiensis in the South of Brazil

Phenotypic characterization and the application of the rep-PCR technique in the study of new strains of Bacillus thuringiensis in the South of Brazil

Phenotypic characterization and the application of the rep-PCR technique in the study of new strains of Bacillus thuringiensis in the South of Brazil

Phenotypic characterization and the application of the rep-PCR technique in the study of new strains of Bacillus thuringiensis in the South of Brazil

Phenotypic characterization and the application of the rep-PCR technique in the study of new strains of Bacillus thuringiensis in the South of Brazil

Worldwide, the Bacillus thuringiensis (Bt) is the most widely used bio-pesticide. Its toxicity derives from the production of specific proteins (delta endotoxins) during sporulation. In this study, 26 Bt strains from South Brazil were analyzed by phenotype and molecular testing of sequential amplifications of repeated sequences (REP-PCR) to evaluate the intra-specific similarities between the strains, and to determine the internal homogeneity.

The 26 Bt strains were isolated in the rice-growing regions in the South of Brazil (Fronteriza Ocete-FO, Campanha-C, Litoral Norte-LN, Litoral Sul-LS and the Depression Central-DC) and were supplied by the UNISINOS BBB. For the phenotypical tests with original composts, the strains were grown in a simple glucose growing environment (MUG) for 48 hours at 33°C, subjected to growth in 100% ethanol (150 and 250 μL), creoline 4% (40 and 60 μL), phenol 14% (40 and 60 μL) and xylen 40% (150 and 250 μL), adding the corresponding quantity of each component in 10 mL of MUG. The growth was determined after five days in B.O.D at 30°C. In the tests with chemical pesticides-Florinol (4.0 μL), Pirazosulfuronmetil (4.0 μL), Quinclolatoque (0.002 g), Propanil (255 μg/L) and Azoixotrihina (26.0 μg/L), the lineages were grown in petri dices with MUG for 48 hours at 33°C and the recommended amounts of each pesticide were deposited at points of 200 μL apart, in B.O.D at 33°C. After incubation for 24 hours, we measured the area where the growth had been inhibited. For the analysis of the protein profile, in SDS-PAGE (12%), the strains were cultivated until cellular lise, the bacterial suspensions were centrifuged (10,000 rpm; 10°C; 20 min) and the pellet was diluted in 1ml of sterilized water - 75% of this was added to 25 μL of buffer and heated to 100°C for 10 min. The solubilized proteins of each strain were centrifuged (10,000 rpm; 5 min) and the supernatant was applied to the SDS-PAGE at 12%, using the HIGH (Gibco BRL) molecular weight marker. All the strains were submitted to total DNA extraction and molecular characterization by REP-PCR. In the positive control process the we used the B. thuringiensis strain (Bt) for 4412 strain and the DNA negative-free control. The amplification was realized under the following conditions: denaturation (4 min at 94°C; 5 cycles at 54°C for 30suc), annealing (30suc at 45°C), extensions (1 min at 72°C) and 10 min of extensions at 72°C. The amplification products were analysed in an agarose gel at 10% with a 1-kb DNA ladder (Invitrogen). For the statistical analysis a similarity matrix between the lineages was estimated using the software NTYSYS package and the dendrograms were constructed by the UPGMA non-weighted pair group method.

The 26 Bt strains analysed via the phenotypical tests generated similar phenograms for the chemical pesticides, organic composts and SDS-PAGE, presenting distinct protein classes. In these analyses, five different groups (G) were formed in each geographic region (G1-DC; MW: 50, 63 and 130 kDa; G2-LS; MW: 25, 40, 55 and 100 kDa; G3-LN; MW: 40, 50, 80 110 kDa and 130 kDa; G4-FO; MW: 25, 50, 80 and 130 kDa) of strains containing isolates with degrees of similarity ranging from 60% to 85%. The results of the tests with REP-PCR demonstrated polymorphism between the strains, that is, the number of bands found for the group of primers of all the strains varied from 3 and 9 for each sampled region and the bands sizes fell between 0.4 and 3.4 kb. The topology of the dendrogram generated was similar to that generated by the other tests, making it possible in this way to separate the isolates in accordance with the geographical region.

The present study demonstrates the applicability of phenotyping processes allied with REP-PCR, and shows them to be highly selective, rapid and capable of identifying distinct Bt lineages. The tests demonstrated many similarities with the new strains of Bt obtained in the South of Brazil indicating a high degree of clonability between the rice culture regions, probably associated with asexual reproduction and/or ecological speciation. These characteristics are important for the application of these strains in a system of integrated management of rice cultivation.

Keywords: Bacillus thuringiensis; rep-PCR; SDS-PAGE; Southern Regions of Brazil.
Polybiotrophy of Serratia marcescens, a causative agent of an onion disease in arid zone of the South of Ukraine

Institute of Molecular Biology and Genetics of National Academy of Sciences, 03680 Kyiv, Ukraine

Serratia marcescens IMBG291 was isolated from internal swollen leaf bases of naturally infected onion bulbs. Inoculation of slices from symptomless onion bulbs with the bacterial isolate resulted in tissue decay. However, the isolate DNA did not recognize specific primers designed for plant pathogenic strains (Zhang et al., 2005). Inoculation of *Arabidopsis thaliana* (L.) Heynh, onion (*Allium cepa* L.) and lettuce (*Lactuca sativa*) seeds resulted in biomass promotion of symptomless plants. The isolated bacterium exhibited a low potency to induce systemic resistance in *Arabidopsis* plants against *Pseudomonas syringae* pv. tomato 3080. The strain IMBG291 produced red pigment under specific conditions, in contrast to pathogenic strains, and the pigment production was regulated by environmental factors. A mobile genetic element, the integron, has been detected in genome of phytopathogenic *S. marcescens* for the first time. The gene cassettes harbored by the integron have been represented with the promotorless gene encoded forming glutimoluce deaminase, hydrolase that takes part in glutamate metabolism, the gene coded for ascorbate-specific phosphotransferase system enzyme IIC, inner membrane protein, and with additional three senseless noncoding sequences flanked by 59-bp element. The integron may provide additional possibilities for utilization of a wider range of energy sources and better accommodation to changed environment for polybiotrophic IMBG291 strain.

Edible mushrooms have been traditionally recognized for their nutritional and medicinal value, and countless modern investigations have reported highly nutritious content as well as therapeutic properties such as anticancer, hypolipidemic, antioxidant and others, in these organisms. Bioremediation benefits are also associated with mushrooms, going from degradation of various environmental pollutants to antiherbivores and insecticidal properties.

The golden chanterelle (*Cantharellus cibarius*) is an edible ectomycorrhizal mushroom much appreciated for its flavor and quite beneficial for the health through its antioxidant, immunomodulatory, anti-inflammatory and antimicrobial properties. Because of its complex association with trees, sustainable production of the mushroom is tightly linked to forests preservation. *C. cibarius* is also remarkably resistant to insects and parasites and exhibits insecticidal properties. Edible mushrooms are characterized by a short shelf life due to post-harvest changes resulting from the activity of enzymes such as polyphenol oxidase (PPO) that is responsible for browning reactions during storage. PPO is also involved in wound healing and defense mechanisms in plants, including defense against herbivores. It is a bifunctional enzyme, widely distributed in prokaryotes, eukaryotes and plants, catalyzing, in the presence of oxygen, the o-hydroxylation of monophenols (creosolate activity) and subsequent oxidation of o-diphenol to quinone (catecholase activity). Although the active site of PPO is conserved, the amino acid sequence and characteristics of the enzyme such as substrate specificity and sensitivity to inhibitors, varies considerably among species. Because of its role in post-harvest quality loss and its various physiological functions, the purpose of this research was to study PPO activity in the golden chanterelle mushroom hitherto unreported.

C. cibarius was homogenized in phosphate buffer 0.01 M, pH 7 (containing 0.02% phenylmethanesulfonfyl fluoride as protease inhibitor) and centrifuged successively at 3,000 g for 10 min and at 35,000 g for 30 min; the supernatant thus obtained, called “crude extract”, was used for our studies. PPO activity was determined spectrophotometrically by following, at a specific wavelength, the increase in absorbance due to the oxidation of a selected substrate to its corresponding quinone. One unit of PPO would produce an absorbance change of 0.001 min⁻¹.

Results showed that both cresolase and catecholase activities were detectable in *C. cibarius* extract. Limiting oxidation rates and other kinetic parameters obtained with a variety of substrates are indicated in Table 1. Kojic acid inhibited the PPO activity in *C. cibarius* extract, and detectable cresolase and catecholase activities were stimulated by SDS (sodium dodecyl sulfate) to various extents (Table 1).

Table 1 Comparative activity and kinetics parameters obtained with various substrates for PPO activity in *C. cibarius* extract

<table>
<thead>
<tr>
<th>Substrate</th>
<th>PPO Units per mg extract prot</th>
<th>Apparent Vmax (A/Δmin⁻¹ mg prot⁻¹)</th>
<th>K₉₅ (mM) Activation by SDS (% control)</th>
<th>Kojic acid (IC₅₀) (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>35</td>
<td>0.075</td>
<td>2.5</td>
<td>400</td>
</tr>
<tr>
<td>p-cresol</td>
<td>5,480</td>
<td>5.4</td>
<td>3,200</td>
<td>360</td>
</tr>
<tr>
<td>L-Tyrosine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>Ferulic acid</td>
<td>92</td>
<td>0.992</td>
<td>16.0</td>
<td>350</td>
</tr>
<tr>
<td>L-tyrosine</td>
<td>56</td>
<td>0.056</td>
<td>0.4</td>
<td>150</td>
</tr>
<tr>
<td>Catechol</td>
<td>82</td>
<td>0.082</td>
<td>100.0</td>
<td>225</td>
</tr>
<tr>
<td>L-DOPA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>Pycnigallotan</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>None</td>
</tr>
</tbody>
</table>

Non-denaturing polyacrylamide gel electrophoresis of the extract, followed by activity staining for PPO revealed a single band, corresponding to an enzyme with an apparent molecular weight of 90,000.

Data indicated that at least one isoenzyme of PPO that oxidized monophenols and diphenols was detectable in *C. cibarius* extract. The observed limiting reaction rate was at about 60 times higher for p-cresol than for the other substrates that were oxidized. The enzyme exhibited differential activation by SDS and was sensitive to kojic acid, a potent PPO inhibitor, although the concentration required for 50% inhibition differed by up to 20 times, depending on the substrate used. Substrate preference, differential activation by SDS and differential sensitivity to inhibitors have been reported by others for PPO from various sources, illustrating the wide variability of this enzyme among species.

Keywords chanterelle; polyphenol oxidase; cresolase activity; catecholase activity; kojic acid; SDS activation
Population diversity of *Cryphonectria parasitica* in Croatia

1 University of Zagreb, Faculty of Science, Division of Biology, Department of Botany, Marulićev trg 9a, 10000 Zagreb, Croatia
2 Forest Research Institute Jastrebarsko, Cvjetno naselje 41, 10450 Jastrebarsko, Croatia
3 WSL, Swiss Federal Research Institute, 8903 Birmensdorf, Switzerland
4 Department of Genetics, University of São Paulo – ESALQ/USP, Piracicaba, SP, Brazil

Ascomycete fungus *Cryphonectria parasitica*, one of the worst pathogens of sweet chestnut (*Castanea sativa*) has been destroying chestnut trees in Europe for decades. Asian chestnut species are well adapted to the fungus, but European chestnut succumbs to the infection easily. Mycelia enter tree bark through wounds and spread toward cambium, obstructing normal flow of nutrients and water through stem. As a result, the tree more or less rapidly dies. All European chestnut formations have been infected and the cancer problem has become a festering wound in European forests. However, few years after the accidental introduction of *C. parasitica* in Europe, a phenomenon called hypovirulence was observed – some of the trees infected were slowly healing from the disease, and the other were showing much weaker symptoms of infection. It has been determined that for this hypovirulence phenomenon a small double-stranded RNA was responsible. Soon, it was revealed that this dsRNA is a virus which was named *Cryphonectria* hypovirus (CHV1). Hypovirus can be transmitted from one fungus to the other with the consequence of converting formerly virulent strain of fungus to the hypovirulent one. This conversion occurs between compatible strains of fungus.

C. parasitica was introduced in Croatia in 1955, but only recently vegetative compatibility (vc) types of the fungus were determined. This is very important for genetic diversity studies and estimation of the incidence of fungal sexual reproduction which results in recombination and, as a consequence, in new vegetative compatibility types. A total of 18 different vegetative compatibility types were observed in Croatia, more than in other Balkan countries, but less than in Italy and Switzerland. Some of the vc-types observed (EU-1 and EU-2) are dominant in west, while EU-12 is dominant in the south of Europe. EU-12 was also observed only in eastern continental populations in Croatia, while EU-1 and EU-2 are dominant in western and coastal populations. Therefore, in respect to the occurrence of the main vc types, the *C. parasitica* populations in Croatia combine features of both north-western and the south-eastern European populations. Perithecia and both mating types of *C. parasitica* in Croatia were detected in approximately 1:1 ratio were found in all populations suggesting that sexual reproduction of the fungus is common in Croatia.

Microsatellite loci of *C. parasitica* were also analyzed in population studies. Preliminary results on eight microsatellite loci revealed the existence of as much as 37 different haplotypes in Croatia, also much more than in other Balkan countries (Bulgaria, Greece, Macedonia and Romania). Diversity indices were similar to those determined by vc-typing of fungus. G2S estimates showed strong genetic differentiation between coastal and eastern continental populations, and some Croatian mid-continental populations showed mixture of coastal and eastern microsatellite characteristics. When ANOSIM was performed, eastern populations significantly differentiated from the coastal, but mid-Croatian populations showed no significant difference from either coastal or eastern continental populations, also a strong indication of mixing of *C. parasitica* populations from north-west and south-east in Croatia. Multilocus linkage disequilibrium index also supports the hypothesis that *C. parasitica* populations in Croatia predominantly reproduce sexually.

These data show a potential threat of formation of new vc-types, thus making transmission of hypovirulence harder and natural biological control of disease more difficult then assumed. This problem deserves much attention especially in the coastal region of the country where the incidence of hypovirulence is low and human-mediated biocontrol is needed.

Keywords: biological control, genetic diversity, population studies

Potential for biocontrol of *Anthonomus grandis* using a chitinolytic extract of endophytic *Streptomyces* sp.

1 Department of Genetics, University of São Paulo – ESALQ/USP, Piracicaba, SP, Brazil
2 Department of Biological and Earth Sciences; Federal University of Alfenas – UNFAL/Alfenas, MG, Brazil
3 Department of Entomology and Acarology, University of São Paulo – ESALQ/USP, Piracicaba, SP, Brazil
4 Núcleo Integrado de Biotecnologia, University of Mogi das Cruzes – UNIMEC, Mogi das Cruzes, SP, Brazil

The demand for cotton is constant and steady making the production of cotton potentially one of the most financially stable commodities worldwide. About US$ 3–5 billion are spent on pesticides per year, and of that US$ 645 million are used in cotton production. Cotton boll weevil, *Anthonomus grandis* Boheman (Coleoptera: Curculionidae), is an important pest of cotton production in the Americas. This pest is controlled by chemical agents; nonetheless, chemicals are expensive and due to their broad-spectrum activity may disrupt predator and parasitoid populations as well as pests. Thus, biological and other control methods are encouraged in integrated pest management strategies, which require more selective insecticides to decrease the damage on cotton crops by boll weevil pest. The chitin, an insoluble linear polymer, is one of the major structural components of exoskeletons and cylindrical peritrophic membrane in the midgut of most insects. Thus, the degradation of insect chitin has long been considered an attractive target for insect control. The present study deals with the partial characterization of the chitinolytic extract produced by an known chitinolytic endophytic actinomycete (*Streptomyces* sp.) and the evaluation of this extract against *A. grandis*, the cotton boll weevil. Experiments were carried out using the high chitinase producer *Streptomyces* sp. A8 strain, which was previously obtained from *Citrus reticulata*. A chitinolytic extract produced by endophytic *Streptomyces* sp. (A8 strain), was biochemically characterized and then tested against *A. grandis*. The chitinase crude extract from 5 days old cultures of A8 strain cultured in minimum liquid media supplement with chitin was partially characterized employing standard methods. The chitinolytic extract had the optimal temperature (maximum activity at 66°C) and pH from 4 to 9 (around 80% of relative activity) as well temperature and pH stability and inhibitors characterized. The filtered chitinolytic extract was added to an artificial diet for boll weevil (Figure 1). The boll weevil development from egg until adult stage was elongated and the percentage of emerged adults was approximately 65% less than on control diet (Figure 2). This work provided experimental basis for using the chitinase from an endophytic bacterium *Streptomyces* sp. to control plant pest *A. grandis* as a biocontrol alternative.

Keywords: chitinases; endophytes; *Streptomyces*; biocontrol; *Anthonomus grandis*

![Figure 1. Chitinolytic effects on development of boll weevil](image)

Figure 1. Chitinolytic effects on development of boll weevil. The percent of adult boll weevils was obtained from percent of eggs placed in the diet medium. The chitinolytic activity was the remaining activity compared. The statistical difference between the two curves and the regression equation was obtained by ANOVA using four replicate.

![Figure 2. Mortality of boll weevil under chitinolytic artificial diet.](image)

Figure 2. Mortality of boll weevil under chitinolytic artificial diet. The amount of adult emerged from chitinolytic and non-chitinolytic diet was measured after 24 d of incubation of 15 eggs per plate. Diet treatment with and without chitinase differ significantly according to Student's t test (P > 0.05). The results were means of four replicate for each treatment.
Prevalence and Pathogenicity of Airborne *Fusarium* species in south east coast of Spain

M. de Cara1, D. Palermo1, C. D. Martínez2, M. Santos2, M. M. Moreno3, and J. C. Telló2

1 Universidad Politécnica de Madrid, EUIT Agrícola, Ciudad Universitaria s/n, 28040-Madrid, Spain
2 Universidad de Almería, Dpto. Producción Vegetal, Cañada de San Urbano s/n, 04120-Almería, Spain
3 Universidad Castilla la Mancha (UCLM). EUIT Agrícola. Ronda de Calatrava, 7. 13071 Ciudad Real, Spain

The prevalence of airborne *Fusarium* species was determined in the South East coast of Spain. Air-dust (downfall dust) was collected during September 2007, July, August and October 2008. Five different *Fusarium* species were isolated from the dust: *Fusarium oxysporum*, *F. solani*, *F. equiseti*, *F. dimerum*, and *F. proliferatum*. Pathogenicity assays were conducted with 37 of the collected isolates of *Fusarium* species. Twenty isolates from the collected downfall dust: seven isolates of *F. equiseti*, five of *F. oxysporum*, four of *F. solani*, two of *F. proliferatum*, and two isolates of *F. dimerum*. And seventeen isolates from the dust carried with rain water (after evaporation): eight isolates of *F. solani*, four of *F. oxysporum*, three of *F. equiseti*, and two isolates of *F. proliferatum*. Results show differences in the pathogenicity of the isolates tested. Little pathogenicity was observed on tomato caused by *F. oxysporum*, *F. proliferatum* and *F. equiseti*, but none of the isolates of *F. solani* and *F. dimerum* were pathogenic on tomato. On *Cucumis melo* L., two isolates of *F. solani*, and one isolate of *F. proliferatum* and *F. equiseti* caused significant decrease in seedling emergence. Pathogenicity of *F. solani* was also observed on Sorghum vulgare Pers.. One isolate of *F. proliferatum* produced an extensive pre-emergence damping off on cucumber (*Cucumis sativus* L.). On *Pluim sativum* L., all the *Fusarium* species tested produced an extensive pre-emergence damping off.

Almost all plants showed root rot when they were inoculated with different species of *Fusarium*, although fresh weights did not bring any information about the pathogenicity. The evidence of long distance aerial dispersal of pathogenic strains of *Fusarium* species has to be taken into account as survival strategy for plant pathogens within the population dynamics as well as for plant protection strategies. *Fusarium* spores dispersed by wind from infected crops to new cultivated areas may overcome effective resistance.

Keywords: airborne mycoflora; aeromycobiota; biogeography.

Production of beer using sorghum and sorghum malt

P.J. Segura1, C.A. Amaya Guerra2, B. Pereyra-Alférez1, M. Lozano Contreras3, J.L. Meza García1, C.C. Aguilar Lopez1, I. Quintero Zapata1, M.G. Maldonado Blanco1 and M. Elías-Santos1*

Beer is an alcoholic beverage obtained from the fermentation of sugars, especially from barley, and barley-malt. Currently, starch from rice and corn is added to increase fermentable sugars in worts. Since many years ago, small and big breweries have been experimented using alternative grains instead barley, and among that we can find wheat, corn and rice. However the use of sorghum (Sorghum vulgare) for beer elaboration in an industrial plant was launched three years ago in USA. In this study, sorghum and sorghum malt were used as ingredients for beer production. The sorghum was malted for ten days at 26°C and 90-94% RH. The malt was dried and milled. Flour from grain and malt was filled through mesh of No. 60 and No. 45. Fermentation was carried out at 24° C for 7 days with constant agitation at 50 rpm. When the fermentation process star the sugars content (g/l) was of 66 these value decreased to 48 at fourth day, and finally to 9 when the fermentation process end. In the other hand, the pH was reduced from of 6.3 to 4.82. The ethanol content was of 5.2 to 4.7 %. Carbon dioxide was generated by the yeasts in suspension previously obtained in the first filtering after the fermentation. The sensorial properties like flavor, aroma, color, and body were evaluated. This product was evaluated without deviations considerable statistics in comparison with commercial one produced with barley as main ingredient. The elaboration of alcoholic beverages, especially beer, using another grain and malt sources is a good alternative to get gluten-free beer. In this sense, the sorghum could be used to beer production because it is cheap, safe and it is available during all year in our country.

Keywords: Sorghum, beer, fermentation.
Production of Prodigiosin in Serratia marcescens PTCC1111 in Different Mediaes

Fatemeh Nazari * and Roha Kasra Kermanshahi
Department of Biology, Faculty of Sciences, Alzahra University, Tehran, Iran

Abstract

Aim: Prodigiosins are bacterial secondary metabolites and are family of polypyrrol red color pigments that are considered as antifungal and antiphytopathogenic factors. Prodigiosins are reported to have antitumor and anticancer properties. Due to the importance of the medical properties of this pigment, attention has been focused to increase its production. Therefore the present study aims to use various conditions to improve production of this pigment from the host bacterium. Its application are in pharmacology and in biological control of some plant pathogens.

Methods: In this study, Production of prodigiosin was achieved in LB and NB media, peanut and soybean powder and malt extract by standard bacterial strain Serratia marcescens PTCC111. To extract the pigment and estimate the level of production, the soluble was acidified by 4% 1 M Hcl in ethanol and then was centrifuged twice at 7000 r.p.m. for 10 min. The supernatant was used for prodigiosin production measurement.

Results: Results from experiments indicate that mentioned pigment produced in peanut medium and pH of 8 show highest prodigiosin production and malt extract medium with pH of 8 had the lowest pigment production.

Key words: prodigiosin, secondary metabolites, pigment, Serratia marcescens

Production of Prodigiosin in Serratia marcescens PTCC1111 in Different Mediaes and Study of Its Antimicrobial Effect as Biocontrol Some of Phytopathogenic bacteria

Fatemeh Nazari * and Roha Kasra Kermanshahi
Department of Biology, Faculty of Sciences, Alzahra University, Tehran, Iran

Background: Prodigiosins are belonging of bacterial secondary metabolites and the family from polypyrrol red pigments. These pigments considerate as one of the antifungal and antiphytopathogenic plants.

Material & Methods: Standard strain in this research is Serratia marcescens PTCC111 and phytopathogenic bacteria are including Agrobacterium tumefaciens Erwinia carotovora, E. amylovora, Xanthomonas campestris pv. campestris, pv. malvacearum, X. citri, Ralstonia solanacearum, Pseudomonas syringae pv. syringae and Ps. putida. Production of prodigiosin accomplished by mediums of NA, mutated LB and peanut. mentioned pigment extracted by 4% 1 M HCL in ethanol and its effect observed on above bacteria by antibiogram test with disk and cup plate method and measured the rate of growth inhibition zones.

Results: Most effect was against Xanthomonas campestris pv. campestris with growth inhibition zone 33.5 and least effect was against Erwinia carotovora with growth inhibition zone 8.75.

for study of the rate of fault of experiment and existence of significant contrast in results use from variance analysis and STDEV that results showed significantal contrast in comparison with treatment of proof.

Conclusion: The rate of prodigiosin production increase under influence of effective agents and comprise better effects that these effects is different by resistance and sensitivity of various bacteria.

Keywords: prodigiosin, Serratia, Agrobacterium, Erwinia, Xanthomonas, Pseudomonas
Pseudomonas fluorescens S1Pf1Rif increases plant tolerance to chrysanthemum yellows phytoplasma infection (“Candidatus Phytoplasma asteris”)

C. Musso1, E. Gamalero1, R. D’Amelio2, S. Cantamessa1, B. Pivato1, G. D’Agostino2, J. Duan3, D. Bosco4, C. Marzachi1, and G. Berta1

1Università del Piemonte Orientale “Amedeo Avogadro”, Dipartimento di Scienze dell’Ambiente e della Vita, Viale Teresa Michel 11, 13121 Alessandria, Italy
2CNR, Istituto di Virologia Vegetale, Strada delle Cacce 73, 10135 Torino, Italy
3University of Waterloo, Department of Biology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
4Università di Torino, Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, Via Leonardo Da Vinci 44, 10095 Grugliasco (Torino), Italy

Phytoplasma are prokaryotes belonging to the *Mollicutes* class. Knowledge of their biology is limited because they are non-culturable obligate parasites. Phytoplasmas are persistently transmitted by phloem-feeding insects, mainly leafhoppers of the family Cicadellidae, but the specificity of transmission, i.e. the relationships between leafhoppers and the pathogens they transmit, is still poorly known. Although Phytoplasma associated diseases are spread worldwide, strategies to limit their diffusion lead only to partial success. For some crops the losses are relevant and chemical treatments against insect vector are required by law, with a negative impact on environment and human health. In this context, the use of plant beneficial bacteria to control phytoplasmas has never been explored.

Bacteria living in the rhizosphere may influence plant growth and health by a number of mechanisms. Direct stimulation of plant growth are usually related to hormone (i.e. indole acetic acid, IAA) synthesis, mineral nutrition improvement (i.e. phosphate solubilization, nitrogen fixation) and modifications of root architecture. Indirect stimulation relies mainly on plant health improvement through the biocontrol of phytopathogens mediated by antibiotics, lytic enzymes and siderophores, the enhancement of plant tolerance to environmental stress by the production of the enzyme 1-aminoacyclopropene-1-carboxylate (ACC) deaminase, lowering stress ethylene levels in plants, or the triggering the induced systemic resistance (ISR). Hence, the presence of beneficial rhizospheric microorganisms, able to increase plant tolerance to biotic stresses, or to behave as biocontrol agents may represent a valid alternative for controlling phytoplasma diseases.

In the present work a model patho-system represented by *Chrysanthemum carinatum* (Schousboe) / chrysanthemum yellows (CYP) phytoplasma / its leafhopper vector *Macrossteles quadripunctulatus* (Kirschbaum) was used. CYP phytoplasma is a strain of the “Candidatus Phytoplasma asteris” phytoplasma (16Sr-Ib) which infects a number of dicotyledonous plants and is transmitted with different efficiencies by several species of leafhoppers.

The aim of this work was to analyze the effects of a selected rhizospheric bacterium, with characterized physiological traits, *Pseudomonas fluorescens* S1Pf1Rif, on daisies infected by CYP. Plant health was evaluated by measuring symptom severity, plant development and root architecture and discussed in relation to the quantitative determination of the titre and viability of CYP and to the qualitative description of phytoplasma cell morphology by transmission electron microscopy. CYP titre was measured by quantitative PCR (Q-PCR), and a new method for the evaluation of CYP viability in plants through Q-RT-PCR was developed. Reduced plant growth and root development were observed in CYP-infected plants. *P. fluorescens* S1Pf1Rif rescued plant growth reduction, consistently with the less severe and delayed symptoms observed. The phytoplasma titre in young apical leaves of CYP-infected plants, inoculated or not with the fluorescent pseudomonad, did not differ. However, CYP titre increased during time only in plants not inoculated with the strain S1Pf1Rif. Phytoplasma viability decreased over time, irrespectively of the presence of *P. fluorescens* S1Pf1Rif. In fully developed leaves of CYP-infected plants inoculated with S1Pf1Rif, phytoplasma cells appeared often degenerated. Overall, the results indicate that *P. fluorescens* S1Pf1Rif was able to alleviate and delay the disease. The possible mechanisms involved in this symptom relief are discussed in relation to the physiological activities of the fluorescent pseudomonad.

Keywords: copper; zinc; soil; poplar; culturable bacteria; DGGE

Risk characterization of selected contaminants in sewage sludge: microorganisms, total phenols and heavy metals

Ednaldo R. dos Santos; Aline Alves Barbosa da Silveira; Grayce Kelli B. Silva; Nelson Duran; Arminda Saconi Messias; Galia Maria de Campos Takaki; and Kaoru Okada

Sewage sludge’s used in this study was obtained from residues resulting from the urban treatment of wastewater. The sewage sludge’s contain nutrients and organic matter that can provide soil benefits, and are widely used as soil amendments. They also have contaminants including heavy metals, pathogens microorganisms, total phenols and inorganic (metals) pollutants. The aim has been to generate ecotoxicological data and risk characterizations for selected microorganisms and hazardous substances in sewage sludge. The microbiological characterization indicated the presence of total coliforms and absence of fecal coliforms. The investigations with filamentous fungi isolated *Penicillium sp.*, *Chrysosporium sp.*, *Scedosporium sp.*, *Monotospora sp* and *Aspergillus sp.*, and all of them are considering an opportunistic class C2, and no offer risk for health. The analysis of the phenol degradation indicated phenoloxidase production except, *Aspergillus sp*.

The results showed the ability of the microorganisms to degrade phenolic compounds. The chemical characterization of sewage sludge indicated: total carbon content 14.7833 mg/100 mg, and total phenols the value of 0.198 mg/l, respectively. The results indicated the presence of Cu, Mg, Al, Zn, Ni, Cd, Fe, Cr, and Mn, and the levels are according to the Brazilian law, except to Mn. The toxicity test carried out of the dried sewage sludge using *Artemia saline* higher toxicity was observed. The results suggested that the excessive fertilization and prevent unacceptable environmental effects or accumulation of contaminants, the use of sewage sludge must be regulated and controlled.

Keywords: sewage sludges; Microorganisms; Heavy metals; Total phenols; Toxicity
Role of *Pseudomonas fluorescens* containing ACC-deaminase and organic fertilizer on growth promotion of maize and sorghum under water stress field conditions

Muhammad Arshad1*, Rashid Waqas1, and Azeem Khalid2

1Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan.
2Department of Environmental Sciences, PMAS Arid Agriculture University Rawalpindi 46300, Pakistan.

Certain plant growth promoting rhizobacteria (PGPR) are known to mitigate the negative effect of biotic and abiotic stresses on growth and yield of plant1 crops through their ACC-deaminase activity. Field studies were conducted to evaluate the effects of *Pseudomonas fluorescens* containing ACC-deaminase and rock phosphate enriched organic fertilizer (OF) on growth of maize and sorghum under water deficit stress conditions. Water stress was created by skipping the irrigations at critical stages of plant growth. In case of sorghum trial 2, 3 & 5 irrigations while in maize trial, 3 & 5 irrigations were applied, considering 5 irrigations as optimum for plant growth. The results revealed that in case of un inoculated control (chemical fertilizer only), the growth of both crops significantly decreased as number of irrigations reduced from 5 to 2. However, inoculation with PGPR, *Pseudomonas fluorescens* substantially diluted the negative impact of less than optimum number of irrigations on growth of both the crops. Combined use of inoculation plus OF proved the most effective in promoting the growth of maize and sorghum under all the irrigations but impact was more obvious in case where irrigations were skipped i.e. in case of 2 or 3 irrigations. Interestingly, the growth parameters of both the crops were greater in response to inoculation under 2 or 3 irrigations than that recorded in case of uninoculated (chemical fertilizer only) treatments under maximum (5) irrigations.

Keywords: PGPR; organic fertilizer; water stress; cereals

Sequencing of the region of ribosomal internal transcribed spacer (ITS) of *Metarhizium anisopliae* in Pernambuco State

M.L.R.B da Silva1*, M.C.C.P de Lyra1, A.C.E.S Mergulhão1, V.A.L.B Cavalcanti1

1Instituto Agronômico de Pernambuco-IPA, Laboratório de Genômica. Av. Gal San Martin 1371 Bonji 50761-000 - Recife, PE - Brasil - Caixa Postal: 1022
2Bolsista de DCR (CNPq/FACEPE), Instituto Agronômico de Pernambuco-IPA. Laboratório de Genômica

Metharhizium anisopliae a biocontrol agent is capable of infecting a wide variety of pests. Belonging to a genera of entomopathogenic fungi characterized as Deuteromycotina: Hyphomycetes includes several fungi asexual. Currently there are three genera *Metharhizium* and nine varieties: *M. anisopliae* whose varieties are: *anisopliae*, *majus*, *lepidiotum* (*lepidotae*), *acridum*. The second is *M. flavoviride* which varieties are: *flaviride*, *minus* *nouveau langlicum* and the third is called *M. album*. Some pathogens of insects have no restrictions on their hosts, infecting only a few species of insects, while others infect a wider range of hosts, if any of *Metharhizium anisopliae*. In 2001, *M. anisopliae* var. *majus* was identified as the amanomorph of the form the fungus *Cordyceps brittebankisoides* through the ITS sequence (Internal Transcribed Spacer) and from these data considered one Ascomycota. This study aimed to elucidate the phylogeny of the isolates from the laboratory of biological control of the Instituto Agronômico de Pernambuco (IPA) - Brazil. All isolates except IPA217 were the same host order Homoptera: Cercopedeae (sugar cane spittlebug) and the host IPA217 grasshopper (Orthoptera: Acrididae). For DNA extraction the mycelium was ground 25 ml of liquid BD medium for 72 hours from 28°C without agitation and macerated liquid nitrogen and used the DNeasy Blood & Tissue Kit (QIAGEN) according to the manufacturer. The ITS region was amplified using the *primers* ITS1 and ITS4. The sequencing was performed on the platform of DNA sequencing of CENARGEN-EMBRAPA. The sequences were aligned in the program BioEdit v. 7.0.0 and performed phylogenetic analysis with the program Mega version 4.1. It is also used sequences of the database of genes (Genbank) to assist in the classification by phylogenetic sequence of nucleotides of the ITS (EF484924, AY646386, M. anisopliae var. *lepidotis or lepidotum*, FJ387313, M. anisopliae var. *acridum*, EU307926 and EU307906, M. anisopliae var. *anisopliae*; M. flavoviride AY375449, JF095333 *Cordyceps brittebankisoides*; M. album AY375446, AY847486, M. anisopliae var. *majus*). The results showed that the origin of the host was not of great importance for the phylogeny as the fungus IPA217 proved to be monophyletic branch as well as others that were isolates from the spittlebug cane sugar. The genetic similarity of fungi IPA213, IPA215 and IPA217 was higher than 92% with *Metharhizium anisopliae* var. *lepidotis, lepidotis* who between them had a genetic identity of 100% showing that the different nomenclature is no sense. The same occurs with *M. anisopliae var. anisopliae* and a branch also monophyletic with 100% identity to access *Cordyceps brittebankisoides* and to *M. album*. And the isolated IPA216 did most distanced himself from the other isolates showed to have been derived from an ancestor much older and an identity with *Metharhizium ancestry* and that these fungi may be new varieties have not been identified for this is necessary to further genetic studies, morphological and molecular characters of these isolates.

Keywords: *Cordyceps brittebankisoides*, genetic identity, sugar cane spittlebug, phylogeny, ITS1, ITS4.
Silicate weathering potential of bacteria isolated from different soil profiles

C. Balland¹, A. Poszwa¹, and C. Mustin¹

¹Laboratory LIMOS Nancy Université-CNRS, Faculté des sciences, BP 70239, 54506 Vandoeuvre-lès-Nancy cedex, France

Microbial diversity contributes to soil functioning and can be used as biological indicator of soils healthiness and fertility. Heterotrophic bacteria play a major role in the availability of nutrients in soils. They participated directly or indirectly to weathering of primary materials (mainly silicates). These bacterial processes lead to leaching and release of essential elements, which (1) sustain plant growth, (2) determine the chemistry of soil solutions and exchange complex (3) participates to the formation of secondary minerals. In aerobic conditions, the two bacterial major processes involved in silicate weathering are acidolysis (i.e. proton promoted dissolution) and complexolysis (i.e. ligand promoted dissolution). However, these processes are generally studied and quantified without taking into consideration the functional bacterial diversity implicated in silicate weathering in soil and the environmental factors (such as parent rock materials, the climate, the vegetation…).

At a profile scale, soils represent mainly “oligotrophic” and micro-structured environments (microhabitats) where physicochemical conditions, organic matter and mineral contents can change rapidly overtime. Bacteria must adapt to these changes and develop strategies to their survival. In contrast, the rhizosphere of plants provides microhabitats rich in carbon substrates (exudates of plants). Few studies have investigated on silicate weathering potential of bacterial strains isolated from rhizosphere or mycorrhizosphere (1,2,3). They concluded that these bacteria have high weathering ability in contrast to those isolated from bulk soil, and that efficient silicate weathering bacteria were able to adapt to nutrient-poor conditions. However, these works were only focused on the first ten centimeters of soils.

The aim of this study was to determine the weathering potential of bacteria isolated from different soils at different depths to establish relationships between key habitat determinants and bacterial weathering strategies (i.e. acidolysis and complexolysis processes).

Miniaturised bioassays using phlogopite as silicate mineral target were performed in aerobic conditions in order to determine the weathering ability of cultivable bacteria extracted from each horizon of contrasted soils in northeastern France (i.e. gleysic luvisol, calcareous leptosol, colluvial calcaric leptosol, calcic cambisol, luvisol, dystric cambisol, podsol and leptic podsol – WRB nomenclature). A weathering phenotype was determined from quantification of (i) protons and organic acids released in assay solution by bacteria (ii) iron leached from phlogopite lattice into solution by bacteria and (iii) the carbon source consumption (i.e. glucose). These results were then compared to empirical model based on chemical leaching experiments realized in the same conditions in order to simulate the processes involved (4).

This study demonstrated that functional bacterial communities efficiency to weather phlogopite following their origin. Bacterial communities extracted from organic (A) and eluvial (E) horizons were “complexing” bacteria whereas bacterial communities extracted from deeper mineral horizons (B, C) were acidifying. In other words, bacterial communities extracted from A and E horizons produce large amounts of chelating organic acids compared with communities extracted from deeper B and C horizons.

Phlogopite weathering potential of bacterial strains isolated from functional bacterial communities was also determined and quantified. In contrast to bacterial communities, the weathering phenotypes suggest that all isolated strains are “complexing” bacteria (chelate producer). Moreover, no tendencies were observed in function of soil types, organic matter content, rhizospheric effect or leaching of horizons.

Our results suggest that silicate weathering processes by functional bacterial communities depend on soil horizons according to (i) organic matter content, (ii) leaching of horizons and (iii) cationic exchange capacity. Compared with individual bacterial strains, the interaction between strains within communities affect the overall weathering processes, in terms of balance between “complexolysis” / “acidolysis” and also their intensity.

Keywords: silicate weathering; organic acids; soil bacteria; phlogopite; nutrient-poor environment

Soil bioremediation of atrazine pesticide by two strains of soil microorganism

A. Muñoz1, A. López-Piñeiro2, J. A. Regodón3, and M. Ramírez1

1Department of Ciencias Biomédicas (Área de Microbiología), 2Department of Biología Vegetal, Ecología y Ciencias de la Tierra (Área de Edafología y Química Agrícola), 3Department of Química Analítica, University of Extremadura, Avda. Elvas s/n, 06071 Badajoz, Spain

Bioremediation is used in agricultural soils to solve pesticide contamination problems. To maintain soil ecosystems, it is important to avoid the use of foreign microorganisms for soil bioremediation. We used two autochthonous bacteria, Pseudomonas synxantha and Pseudomonas cedrella, to degrade atrazine pesticide in a previously contaminated soil. These two bacteria had previously been isolated from the same soil. The atrazine degradation in sterile and non-sterile soils was measured by HPLC. Soils were inoculated with both bacteria separately, with their respective non-inoculated controls. After 20 days, more than 20% of the atrazine had been degraded in the sterile soil inoculated with Pseudomonas cedrella, and more than 30% in the non-sterile soil. Inoculating sterile and non-sterile soils with Pseudomonas synxantha reduced the pesticide half-life by 50 days with respect to the non-inoculated soils. The non-biological degradation of atrazine in sterile non-inoculated soil was 14%. The implementation of bioremediation with selected bacteria contributed to improving atrazine degradation in the studied soil, without altering the soil's microbial ecosystem.

Keywords: Pesticide bioremediation, atrazine, soil microorganisms.

Soil Characteristic Affecting the Mycorrhizal Spore Density in Alluvial Soil of Raniganj Coalfield Areas

Sanjoy Kumar1, S.chaudhuri 2 and S.K.Maiti 3

1,3 Dept. Of Environmental Science and Engineering, Indian School of Mines University, Dhanbad 826004 (India)
2Dept. Of Mining Engineering, Indian School of Mines University, Dhanbad 826004 (India)

Changes in soil physical, soil organic matter content, soil nutrient concentration, microbial activity and microbial fungal VAM spore density were studied in alluvial soil of different horizon of Raniganj OCP of Eastern Coalfield Limited, India representing about 1-10 m depth of alluvial soil cover over the bedrocks. The characteristics of microbial communities in the humus layer were compared both within different horizon of soil classes and within the pot experiments conducted at the Indian School of Mines, garden campus. During succession or soil genesis processes, the physical and chemical characteristics are correlated with the VAM spore density colonization in different stages of experiments vegetation. The nutrient concentration of the soil OM (organic matter) showed no successional trend on a concentration basis but the C-to-N ratio of organic matter increased with increasing soil age and colonization of Vesicular Arbuscular Mycorrhiza spore density. Thus, the nutrient availability changed during succession. Soil physico-chemical and microbial characteristics increased during the succession changes. The successional decrease in site productivity appeared to be due to leaching of nutrients from the sandy mineral soil and thinning of the humus layer. The present study suggesting the increased importance of VAM mycorrhizal symbiosis for plant performance and increased energy costs among soil microbes in nutrient uptake.

Keywords: Vesicular-arbuscular mycorrhiza, Rhizospheres, Reclamation, Endomycorrhizae; Mining; spores.
Some virulence aspects of *Pseudomonas syringae pv. syringae* strains isolated from mango trees

E. Arrebola, V. Carrión, J. C. Codina, A. Pérez-García, F.M. Cazorla and A. de Vicente

Grupo de Microbiología y Patología Vegetal. Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071.

Pseudomonas syringae pv. *syringae* (Pss) is a common inhabitant of a wide variety of plants and the causal agent of bacterial apical necrosis of mango. This plant pathogen have the ability to produce an arsenal of virulence factors which determine the virulence degree of Pss strains. Studies in Pss strains isolated from mango and others plants, showed the ability to produce lipodepsipeptidic toxins, as syringomycin or syringopeptin and mangotoxin, an antimetabolite toxin described by our research group. Mangotoxin is a virulence factor produced by a high percentage of Pss strains isolated from mango and it increase the incidence and severity of necrotic symptoms. Furthermore, competition experiments showed that survival values of the wild-type strain were slightly but significantly higher than mangotoxin defective mutants, suggesting that mangotoxin production could also improve the epiphytic fitness. Related with Pss epiphytic fitness has been found in the most of Pss isolated from mango indigenous plasmids with a 62-kb plasmid as the most generalized one. Some studies on this indigenous plasmid showed the relationship between the presence of 62-kb plasmid and copper and ultraviolet light resistance. Copper-resistance in such strains, was evaluated by determining the minimal inhibitory concentration (MIC) of copper sulphate, and UV-resistance by performing survival analysis of Pss cells exposed to different doses of B+A UV-fractions. Both resistance factors were also assayed under field conditions. Molecular analysis by cross-hybridization with specific sequences of copper resistance operon *cop* and the UV-resistance determinant *nuvAb* confirmed the presence of homologous genes on 62-kb plasmid. The combination of all theses virulence and epiphytic survival factors present in Pss strains isolated from mango trees, are relevant to understand its lifestyle as epiphytic and pathogenic bacterium.

Keywords: virulence factor, *Pseudomonas syringae*, mango, apical necrosis

Study on the effect of Nitrogen, Glucose and Plant residues on soil microbial C

S. Shahsavani 1 G. Shakeri 1 Z. Ahmadi and 1 M. Hassibi

1, 2 Faculty members of Soil and Water Department
1, 3, 4 students of Soil and water Department
Agriculture College of Shahrood University of Technology

The soil microbial biomass is studied as the agent of transformation of both fresh organic inputs to soil and of native soil organic matter itself. Microbial biomass C and organic C were measured in 5 soils selected from 5 long term field cultivation at Bastam area of Shahrood region in Iran. Nitrogen, Glucose and plant residues were used as treatments in a factorial randomized block design with four replications. The results were used to discuss the effects of Nitrogen, Glucose and organic C in these soils and the relationships between biomass C and total organic C. This suggests that changes in soil biomass C provide an early indication of changes in total soil organic C following changes in soil management.

The dynamics of decomposition and transformation of different substrates (nitrogen, glucose and straw) and the effects of substrate incorporation on the turnover of soil biomass C and the decomposition of soil organic C was studied in 5 soils with different characteristics (e.g. clay content, biomass and organic C contents). From this the mechanisms of priming effects (i.e. accelerated decomposition of soil organic matter following incorporation of substrates) were established. It was also concluded that the measurement of biomass C by fumigation–incubation requires the use of a “control” (unfumigated soil) to estimate the basal respiration (the mineralization of non-biomass organic C) of the fumigated soil during 20, 40 and 60 days of incubations. Soil containing more organic C and receiving larger fresh organic C inputs also have faster rates of soil organic C mineralization, suggesting that the turnover of organic C in such soils is probably faster than in soils containing less organic C and receiving less fresh organic inputs.

Keywords: Organic-C, Microbial biomass, Nitrogen, Glucose
Temporal variations in soil fungi communities after biosolarization and its repeated use in pepper crops in Southeast Spain

M.A. Martinez1, M.C. Martinez1, J. Torres1, P. Bielza1, J. Tello2, A. Lacasa2

1 Dpto. de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, Cartagena, Murcia, Spain
2 Dpto. de Biotecnología y Protección de Cultivos, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Consejería de Agricultura y Agua, C/ Mayor s/n 30150 La Alberca, Murcia, Spain
3 Dpto. de Producción Vegetal, Universidad de Almería, Escuela Politécnica Superior, Edificio Científico Técnico II-B, Ctra. Sacramento s/n 04120 La Cañada de San Urbano, Almería, Spain

The removal of methyl bromide (MB) as a common soil disinfectant in sweet pepper greenhouses in Southeast Spain has led to essay alternatives to it with the minimum environmental effect. A broad spectrum of non-chemical alternatives has been deeply studied for controlling the main pathogens of the crop and keeping acceptable yield levels. Among the different possibilities, the use of organic amendments is recommended by its great number of advantages for soil properties. In this work, biosolarization (BS, biofumigation combined with solarization) disinfectant effects have been evaluated in the same way that repeated application of BS in the same soil with a reduction programme of adding manure amendments (a mixture of fresh sheep and chicken manure). Experiments were conducted at one greenhouse over a 3-year period. The impact of soil disinfestation along time has been measured by soil analysis during the crop cycle to detect the isolated density of non-pathogenic soil fungi depending on the disinfestation treatment.

Isolated soil fungi belonged to the following genera: Aspergillus spp., Fusarium spp., Penicillium spp. and Rhizopus spp., emphasizing the first genus for its abundant presence. The use of manure amendments with a plastic cover increased the non-pathogenic soil fungal density respect to MB, especially with the increase of high temperatures and the moment of maximum crop yield (about 20 weeks after soil disinfection). In general, biosolarization treatments had a greater fungal density than MB, but the repeated application of BS showed that the more number of years BS treatments were made in the same soil, the more its effect was making similar to MB.

Keywords: soil fungal communities; manure amendments; biosolarization; pepper
The efficiency of *Trichoderma harzianum* and *Aneurinobacillus migulanus* in the control of *Gladiolus* corm rot in a soilless culture system

Nosir Walid *,1,2, McDonald Jim1, and Woodward Steve1

1University of Aberdeen, Institute of Biological and Environmental Sciences, Department of Plant and Soil Science, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, Scotland, UK
2University of Zagazig, Faculty of Agriculture, Horticulture Department, Zagazig, Egypt

Gladiolus corm rot, caused by *Fusarium oxysporum* f. sp. *gladioli* is considered one of the most destructive threats to *Gladiolus* production. *Aneurinobacillus migulanus* and *Trichoderma harzianum* were tested separately or in combination for the ability to suppress *F. oxysporum* f. sp. *gladioli* in soilless culture using Perlite as the substrate. The efficiency of both of antagonists against corm rot was evaluated based on vegetative parameters, rooting parameters and flowering parameters. *T. harzianum* was more effective than *A. migulanus* in disease suppression and also enhanced plant growth, increasing flower production and quality. *A. migulanus* enhanced plant growth when tested alone. The mixture of antagonists reduced the efficiency of *T. harzianum*. Numbers of *T. harzianum* CFU in the substrate and on corms increased following application compared with treating with both antagonists. No *F. harzianum* was detected in the substrate by 120 day after planting, however. *A. migulanus* CFU significantly decreased on corms when inoculated in combination with *T. harzianum* and *F. oxysporum* f. sp. *gladioli*. However, *A. migulanus* CFU was not detected in the substrate of the same combination.

SEM suggested that suppressive mechanisms of *T. harzianum* and *A. migulanus* differed. *T. harzianum* appeared to operate through a combination of antibiotic and substrate competition, whereas *A. migulanus* produced an electron-dense substance which may have inhibited the penetration of host tissues by *F. oxysporum* f. sp. *gladioli*. Greater growth of *T. harzianum* was observed when inoculated alone or with *F. oxysporum* f. sp. *gladioli* hyphae. It was concluded that *T. harzianum* provided a more efficient and effective control of *F. oxysporum* f. sp. *gladioli* corm rot of *Gladiolus* when inoculated without *A. migulanus*.

Keywords: *Gladiolus; Trichoderma harzianum; Aneurinobacillus migulanus; Soilless culture; CFU.*

The importance of the biomicroworld on macroproduction

M. Carolino1, M. Barata1, L. Carvalho1, P. Correia1, T. Dias, J. Castro Pinto2, and C. Cruz1

1Universidade de Lisboa, Faculdade de Ciências, Centro de Biologia Ambiental (CBA), Campo Grande, Bloco C2, Piso 5, 1749-016 Lisboa, Portugal
2ADP – Fertilizantes, Apartado 88, 2616-907 Alverca do Ribatejo, Portugal

Like animals, plants in natural environments are colonized by several types of microorganisms. Some may increase plant resistance to biotic and abiotic stress. Bio fertilizers are usually formulated based on soil microorganisms (fungi and bacteria) associated with the rhizosphere that promote and benefit plant nutrition. The mechanisms involved in the relationship may vary, and the effects may be synergistic between distinct microbial functional groups (mycorrhiza, phosphorous solubilizers, and nitrogen fixers). Bio fertilizers are widely used in biological agriculture as an alternative to less sustainable chemical fertilizer inputs used in intensive agriculture. This work attempts to combine chemical and biofertilizers in order to increase plant productivity taking advantage of plant microorganisms interactions in a system not limited by macro-nutrient availability, and increasing system sustainability.

Several field trials have been done in Portugal using chemical fertilizers (P, NP or NPK) coated with microorganisms. It has been observed that, independently of the soil type, and depending on the plant culture, coated fertilizers may improve yield by 5-18% relative to non-coated fertilizer. The aim of this work is to deepen knowledge of the mechanisms associated with this increased plant productivity in the presence of fertilizers coated with microorganisms.

Maize (*Zea mays*, cultivar Moncada) plants were grown under greenhouse conditions in pots (7 L capacity, 6 kg soil, 1 plant per pot) with non-humic litholic soil from a maize field (Montemor-o-Novo, Portugal), from April to May. Fertilizers were applied in concentrations similar to those used by farmers. Plants were allowed to grow until the development of the flag leaf. Immediately before collecting the plants, the reflectometry of each plant was recorded (UniSpec, PP Systems) and used to determine the water index (WI). Shoots and roots were collected separately. Leaf dry weight was determined after drying the plant material at 70°C until constant weigh. Leaf biomass was used to analyse the mineral content and the natural nitrogen isotope signature. Soil from the rhizosphere was sampled to assess the physiological profile of the bacterial community (Biolog), the abundance of fungi and bacteria (CFU), the similarity of the bacterial community among the distinct treatments, arbuscular mycorrhizal colonisation and phosphatase activity.

Results showed that microorganisms can affect plant biomass accumulation through several distinct mechanisms: increased phosphorous and nitrogen availability and higher water use efficiency. It was shown that the source of phosphorus used as a fertilizer was a main component of the micro-organisms plant interaction. When insoluble forms of phosphorous were used, root AM colonization was stimulated, unless the fertilizers were coated with microorganisms efficient in soil solubilization, in which case root AM colonization significantly decreased. It was also detected that when nitrogen in the soil was limiting to plant growth, plants fertilized with coated and non-coated fertilizers used distinct main sources of nitrogen. Finally, results indicate improved water use efficiency in the presence of coated fertilizers.

Together, results show that the use of fertilizers coated with microorganisms had an effect on the structure and function of soil, which was reflected in plant productivity. Results are interpreted as an evidence for the benefits of coating fertilizers with microorganisms as a compromise between the advantages of the "biological" and "intensive" systems of production.
The role of fungi in the decomposition processes in forest soils

P. Baldrian, V. Valášková, M. Štursová, J. Volfíková, J. Šnajdr, P. Dobíšová, P. Baldrian
Laboratory of Environmental Microbiology, Institute of Microbiology ASCR, Videnška 1083, 14220 Praha 4, Czech Republic

Hardwood and coniferous forests represent one of the most important biomes in the temperate zone. Forest soils accumulate significant amounts of carbon deposited annually through litterfall and the accumulation is a prerequisite for the formation of soils with distinct litter and humus horizons. In hardwood forest soils, saprotrophic basidiomycetes and ascomycetes dominate the litter horizon while ectomycorrhizal species dominate in deeper soil [1]. There is a sharp gradient of soil physical and biological properties including the amount of microbial biomass, organic carbon, humic material, soil respiration and the activity of extracellular enzymes participating in carbon transformation [2]. All of these parameters decrease with soil depth reflecting the availability of nutrients. The presence of saprotrophic basidiomycetes in soils results in an increased activity of the ligninolytic enzymes Mn-peroxidase and laccase, polysaccharide hydrolases and chitinase. Isolated strains of saprotrophic cord-forming basidiomycetes (e.g. Hypholoma, Rhodocollybia, and Gymnopus, spp) are able to mineralize significant part of lignin contained within litter and to form humic substances from lignin and other soil components [3]. In a further, slower step, the same fungi continue in the mineralization of humic compounds. In vitro experiments demonstrated that Mn-peroxidase is the required enzyme for humic acid and lignin transformation by basidiomycetes while there is no contribution of laccase to this process. The potential to degrade and transform lignocellulose is, however, limited in situ when basidiomycetes interact with other members of soil biota. In the case of lignocellulose transformation, the competitors are mainly nonbasidiomycetous microfungi and certain soil bacteria, e.g. the Actinomycetes. Their contribution to litter transformation is obvious from the analyses of microbial community composition of litter in different stages of decay and by the fact that the fine chemical properties revealed by pyrolysis and polysaccharide analysis show a distinction between the biomass transformed by basidiomycetes alone and by the whole soil microbial community [3]. The studies on opportunistic micromycetes from forest soils showed that simple carbon compounds are the most widely used substrate while they are unable to attack lignin and their abilities to decompose cellulose are limited. The decomposition of litter seems to be at least partly regulated by the chemical composition: the availability of NH₃ increases litter decomposition while high P content decreases lignin removal. The rate defining step for fungal litter decomposition is cellulose hydrolysis since the loss of litter mass closely correlates with the chemical and physical quality of litter. Functional differences among the members of soil fungal communities are reflected in a vertical stratification of soil fungal communities where saprotrophic species dominate the upper horizons and actomycorrhizal fungi the deeper horizons, but also in the differences of vertical distribution of fungi involved in polysaccharide decomposition in individual soil horizons as demonstrated using the 13C-stable isotope probing.

Keywords: basidiomycetes; enzyme; forest microbiology; lignocellulose degradation; microbial ecology; soil fungi

The role of plant growth promotion rhizobacteria on sustainable field crop production

A. Gholami, A. Biyari, and S. Nezarat
Shahrood University of technology, Shahrood, IRAN.

During the past decades the increasing use of fertilizers and highly productive systems have created environmental problems such as deterioration of soil quality, contamination of surface and groundwater, as well as air pollution, reduced biodiversity, and suppressed ecosystem function. Bacteria that stimulate plant growth are usually referred as Plant Growth Promoting Rhizobacteria. These bacteria can be affected by a wide range of factors including plant type and age, distance from the soil to the root, soil characteristics, and agronomic practices. These bacteria vary in their mechanism of plant growth promotion but generally influence growth via P solubilization, nutrient uptake enhancement; phytohormone, Antibiotics and siderophores production, Nitrogen fixation, reduce environmental stress and ,Induced systemic resistance. This paper try to explain factors affect on bacterial efficiency and mechanisms that effects on plant growth as mentioned above also are reviewed.

Keywords: plant growth promotion rhizobacteria (PGPR); crop production; beneficial effects
The toxicity and histopathology of Bacillus thuringiensis Cry1Ba toxin to Spodoptera frugiperda (Lepidoptera, Noctuidae)

L. Massochin Nunes Pinto1, N. Carolina Drebes Dörr1, and L. Mariana Fiuza1,2

1Universidade do Vale do Rio dos Sinos (UNISINOS), Ciências da Saúde, Laboratory of Microbiology, Av. Unisinos, 950 - CEP 93022-000 São Leopoldo, RS, Brazil.
2EE-A Instituto do Rosgrande do Arroz (IRGA), Caixa Postal 29, CEP 94930-030, Cachoeirinha, RS, Brazil

Bacillus thuringiensis (Bt) synthesizes entomopathogenic toxins, in soluble and activated forms bind to a membrane receptor and therefore lyse midgut epithelial cells. Bt toxins are codified by different cry genes, where Cry1 proteins are well known for their high toxicity against lepidopterans and dipterans insects. In this study, the insecticidal activity and the histopathological effects of bacterial suspension and purified Cry1B protein from Bt thuringiensis strain 4412 in the midgut epithelial cells of S. frugiperda larvae.

The Bt strain utilized in this study, which codifies the protein Cry1Ba was supplied by the International Entomopathogenic Bacillus Center (Institute Pasteur, Paris). For the bioassays with bacteriological suspension the strain was grown in Usual Glucosed Medium at 28°C and 180rpm for 48 h. After that, the cultures were centrifuged at 4.500 rpm for 15min and the supernatant was discarded. The bacterial pellet was recovered with sterile distilled water. The bacterial concentration was determined with Neubauer chamber technique and optical microscopy. Second instar larvae of S. frugiperda were obtained from colonies reared in the insect’s chamber, maintained at 25 ± 2°C, 80% Relative Humidity (RH) and 12 h photoperiod. In vivo assays, with S. frugiperda were realized in Biological Oxygen Demand (B.O.D.) chambers, at 25 ± 2°C, 80% RH and 12h of photoperiod. The culture, corresponding to 1x10^5 cells/mL, was applied to the Poitout diet, previously conditioned in mini-plates (30mm diameter), where larvae were individualized. In the control group, the culture was substituted by sterile distilled water. Twenty larvae were used for each treatment. The mortality was observed until de 7th day after applying the treatment and all bioassay data were corrected by Abbott’s formula. The toxicity of Bt thuringiensis 4412 strain was also determined by the Medium Lethal Concentration (LC50), using purified protein through sucrose gradient (67 to 88%). The insects were individualized, as already mentioned, and the Poitout diet was substituted by disks of fresh corn leaf, where the protein was applied in the concentrations of 2.0, 6.0, 18.0, 54.0 and 162.0 μg/mL. In the control group the protein was replaced by sterile distilled water. Twenty insects were evaluated and each treatment was replicated three times, totalizing 90 insects on treatment. The histopathology evaluations of Bacillus thuringiensis thuringiensis 4412 bacterial suspension and its Cry1Ba purified protein were realized in S. frugiperda larvae of 2nd instar, in which the mortality was evaluated daily. In addition a kinetic experiment was runned with collected larvae in time of 1, 3, 6, 12 and 24 hours after the treatments application.

The tested strain, B. thuringiensis 4412 (Cry1Ba), was highly toxic in the bioassays with 100% of mortality to S. frugiperda larvae and was submitted to protein purification and determination of LC50. The results indicated that the expressed Cry1Ba protein was highly toxic to S. frugiperda, with a LC50 of 10.85 μg/mL. The histopathological analysis of S. frugiperda midgut treated with B. thuringiensis thuringiensis 4412 bacterial suspension and Cry1Ba protein, showed a progressive loss of epithelial cell definition from 3h onward, in both treatments. At 24h post treatment, the majority of larvae treated with bacterial suspension were already dead. Their midgut changes, observed under the light microscopy, included vacuolization of the cytoplasm, hypertrophy of the epithelial cells, and vesicle formation in the apical region of both goblet and columnar cells. Also, the brush border membrane was damaged, especially in goblet cells. The larvae treated with Cry1Ba purified protein, in spite of not dying as fast as in the bacterial suspension treatment, also showed severe damage in the midgut epithelial cells. These injuries included degeneration of the epithelium and consecutive lyses and leakage of cytoplasm material in the lumen, showing debris and disrupted cells.

In conclusion, the present investigation provided evidence that both bacterial suspension and Cry1Ba purified protein of B. thuringiensis thuringiensis 4412, have a strong insecticidal activity against S. frugiperda larvae which was observed by the degeneration of their midgut epithelium.

Keywords: Cry toxin, Bacillus thuringiensis, Lepidoptera, Bioassays.

Adaptation of edible mushrooms to produce feruloyl oligosaccharides from wheat bran by fermentation

Chun-yan Xie, Zhen-xin Gu*, Gai-xia Liu, Xue-jiao You, and Yu-xia Tan

Department of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China

* Corresponding author

Wheat bran is an important by-production of the flour industry. The bran contains some starch, protein and hemicelluloses. It also contains lots of ferulic acid, which was bonded with wheat bran arabinoxylan via an ester bond. So when wheat bran was treated with endoxylanase or some chemicals, feruloyl oligosaccharides (FOs), the important biological and functional substances, were released.

Workers had isolated some different FOs, and the enzymatic method was regarded as the main method. Nowadays, could release FOs from sugar beet pulp, for the secretion of poygalacturonase. However, there was no report on the FOs release by fermentation from wheat bran. Other studies indicated that many species of mushroom could secrete extracellular enzymes such as cellulases, xylanase, proteases and amylases during their growth, which suggested us that edible mushrooms might also release FOs from wheat bran.

The aim of this study was to see whether the edible mushrooms could release FOs, if so, we will screen the optimal specie and determine its optimal fermentation medium components. Six mushrooms (Pleurotus ostreatus, Hericium erinaceus, Auricularia auricular, Cordyceps militaris, Agrocybe cylindracea and Ganoderma lucium), the familiar species in our country, were tested. Results showed that all the mushrooms were found to release FOs, with Agrocybe cylindracea producing the highest yield, at 35.4 μg in wheat bran broth. Enzymes detection showed that Agrocybe cylindracea secreted a significant amount of xylanase (545 mU/ml), which was responsible for the release of FOs from wheat bran. And there was no ferulic acid esterase detected, inhibiting the disassembling of FOs.

Effects of carbon source and nitrogen source on the xylanase activity and FOs yield of Agrocybe cylindracea were also studied. The results showed that xylanase activity and FOs yield were increased by glucose and lactose, as well as the addition of peptone and corn paste. The xylanase activity could get up to 1130 μU/ml and 833 μU/ml by glucose and lactose at best, respectively, as well as 928 μU/ml and 1051 μU/ml by peptone and corn paste. The production of FOs was increased about 140% to 200% by addition of glucose, lactose, peptone and corn paste.

Keywords: edible mushrooms, xylanase, FOs, fermentation, wheat bran
An assessment of the microbial diversity present in water from three Parisian surface water treatment plants

J. B. Poitelon1,2, M. Joyeux1, B. Welté1, J. P. Duguet1, E. Prestel2, O. Lespinet1 and M. S. DuBow2

1 EAU DE PARIS, 9 rue Schoelcher, 75014, Paris, France
2 Université Paris-Sud 11, Institut de Génétique et Microbiologie, CNRS UMR 8621, Bâtiment 409, 91405 Orsay, France

The microbiological quality of drinking water is currently assessed using culture-based methods, even though plate count techniques are known to significantly underestimate the total number of bacteria in any given environment. Any remaining organisms present after treatment in finished drinking water are then released into the distribution system and may interact with microbial populations present in the water distribution network, and can be involved in biofilm formation, nitrification, microbial-mediated corrosion and pathogen persistence. As a consequence, knowledge of the microbial ecology of drinking water treatment plants is of prime concern for drinking water producers.

In order to assess both the bacterial and eukaryotic diversity in drinking water produced from three Parisian surface water treatment plants, we utilized an rDNA based approach to overcome cultivation-based limitations. We used the serial analysis of V6 ribosomal sequence tag (SARST-V6) method to examine the bacterial diversity in finished chlorinated drinking water and observed a considerable degree of diversity. The taxonomic composition of the microbial communities was found to be dominated by members of the phylum Proteobacteria. Additionally, a large proportion of sequences were found to be distantly related to other database sequences and their presence and phylogeny were confirmed by a full-length 16S rDNA analysis. Notwithstanding the potential under-representation of certain bacterial phyla using the SARST-V6 primer pairs, as revealed by a refined computer algorithm, our results suggest that 16S rDNA corresponding to a variety of eubacterial groups can be detected in finished drinking water [1]. An assessment of eukaryotic 18S rDNA diversity present in finished drinking water samples was also performed. The 18S rDNA sequences affiliated to the Amoebozoa, Ciliophora and Metazoa lineages were found to be the most abundant phylotypes observed in the drinking water samples, showing that finished drinking water can also contain 18S rDNA sequences representing a variety of eukaryotic taxa [2].

To ensure the microbial quality of drinking water from treatment plant to consumer tap, a final treatment step of disinfection is performed in order to reduce the number of bacteria to an acceptable level in the processed water and to limit microbial growth in the drinking water distribution system. In order to investigate the consequences of the disinfection step, we examined the variations of bacterial diversity prior to and after chlorine disinfection of drinking water prior to its entry into the distribution network. For this purpose, the bacterial diversity present in treated water was studied after GAC filtration and final disinfection from two surface water treatment plants supplying the city of Paris (France). Through the use of 16S rDNA clone library construction, the bacterial abundance patterns and taxa evenness were found to be different between samples, suggesting that the disinfection step markedly affects the bacterial community structure present in GAC water. Our results indicate that certain bacterial groups are particularly affected following the chlorine-based disinfection treatment performed in the two DWTPs, suggesting different levels of sensitivity to the disinfection treatment.

As a consequence, the data and approaches presented in these studies can be useful to elucidate the complexity and dynamics of the bacterial populations in drinking water treatment plants and their effects on the water distribution network. This will, in turn, improve our understanding of the potential risks associated with the bacterial groups present in drinking water production and distribution networks.

Keywords: Finished drinking water, chlorine disinfection, 16S and 18S rDNA, phylogenetic analysis, microbial diversity

Antibacterial activity of extracts from different Origanum vulgare clones grown in Latvia.

L. Asina, I. Dubova, Z. Krdma, J. Krainis, I. Zukauska and R. Galoburda

Latvia University of Agriculture, Liepa iela 2, Jelgava LV 3001, Latvia

The use of plant compounds for pharmaceutical and antimicrobial purposes is well-known. Origanum vulgare is widely used in pharmacies and folk medicine. Origanum vulgare clones grown in Latvia differ from their phytochemical content. The aim of the study was to determine the antimicrobial activity of these clones. Antibacterial activity of ethanol extracts prepared from 10 Origanum vulgare clones grown in Latvia was screened. The antibacterial activity was assessed against bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Bacillus cereus) and yeast (Candida albicans). A sensitivity tests were performed in the liquid nutrient media for bacteria and liquid malt media for Candida albicans. Plant ethanol extracts from leaves and flowers (25-40 g of fresh matter per L) were added to the growth media. Extract and media proportion was 1:20. Microorganisms growth were detected spectrophotometrically at wavelength 550 nm after 24 and 72 hours of incubation at 28°C. Oreganum vulgare leaves and flowers showed different activity. The antimicrobial activity depends on O. vulgare clone. Different clones showed unlike activity on used microorganisms and it depends on oregano chemical content. Antimicrobial activity decreases during isomolization.

Keywords (Origanum vulgare; antimicrobial activity)
Antimicotic potency of *Drosera intermedia* extracts on fungi and yeasts causing biodeterioration on food commodities

T. Grevenstuk1, T. Domingos 1, S. Gonçalves1, C. Quintas1 and A. Romano1

1 University of Algarve, FCT, Ed 8, Campus de Gambelas, 8005-139 Faro, Portugal and BBB/CGIB – UTAD

2 Federal University of Lavras, Minas Gerais State – Brazil

Fungi may have a great impact in our life as pathogens, in food degradation or in toxin production [1]. For example, *Zygosaccharomyces bailii* is one of the most dangerous spoilage yeast in wine and soft drink industry and *Aspergillus fumigatus* has become the most prevalent airborne fungal pathogen, causing severe and usually fatal invasive infections in developed countries. Some fungal species secrete toxic secondary metabolites, known as mycotoxins, which contaminate feed and food commodities worldwide. When ingested, inhaled or absorbed through the skin, mycotoxins will cause lowered performance, sickness or death on humans and animals [2]. The present work reports the inhibitory activity of *Drosera intermedia* (H.) extracts against four food spoilage yeasts (*Zygosaccharomyces bailii* PYCC 4806, *Saccharomyces cerevisiae* PYCC 4072, *Debaryomyces hansenii* PYCC 2968 and *Pichia membranaefaciens* PYCC 2489) and seven fungi strains (*Aspergillus fumigatus* MUM 98.02, *Aspergillus fumigatus* *Aspergillus niger* MUM 03.43, *Aspergillus niger* *Aspergillus paraisicus* MUM 92.02, *Aspergillus flavus* MUM 92.01 and *Penicillium expansum* MUM 02.03) responsible for food deterioration and associated to mycotoxin production. *D. intermedia* is an insectivorous plant species that is becoming increasingly scarce and has been produced by micropropagation for the purpose of this work [3]. Several *D. intermedia* extracts (water, methanol and hexane) were tested against yeast and fungal strains using the agar disc diffusion assay followed by the determination of minimum inhibitory concentrations (MIC). The hexane extract showed a broad activity spectrum against all tested microorganisms, followed, in activity, by the methanol and water extracts. The two *A. fumigatus* strains were the most susceptible, scoring MIC values of 15.63 μg/ml, 250 μg/ml and 2000 μg/ml against the hexane, methanol and water extracts, respectively. The most susceptible yeast strain to the *D. intermedia* extracts was *Z. bailii* PYCC 4806 for which MIC values of 7.81 μg/ml, 125 μg/ml and >1000 μg/ml were obtained for hexane, methanol and water extracts, respectively. LC-MS and NMR analysis of the hexane extract showed that its major compound was the naphthquinone plum bagin [4]. A further purified extract was used for the MIC assays which afforded increased activities. The MIC values obtained for all tested microorganisms decreased significantly, for *A. fumigatus* MUM 98.02 and *Z. bailii* PYCC 4806 MIC values of 0.08 μg/ml and 1.95 μg/ml were scored, for instance. These results suggest that *D. intermedia* is a source of interesting biocompounds for the food industry and that plum bagin might have antimycotic potential.

Keywords: mycotoxins; food safety; MIC; plum bagin

Acknowledgements: Tomás Grevenstuk and Sandra Gonçalves acknowledge a grant from the Portuguese Science and Technology Foundation (FCT, Grant SFRH/BD/31777/2006 and SFRH/BPD/31534/2006, respectively).
Antimicrobial activity of rhamnolipids from *P. aeruginosa* PA01 against *L. monocytogenes*

L. Vieira de Araújo¹, M. Nitsche¹, and D. M. Guimarães Freire¹

¹LabBiM, Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silva Ramos, 149, Bloco A, Lab.549, Rio de Janeiro, Brazil.

Introduction. The biosurfactants properties are of interest to a wide range of industrial fields, from petroleum to pharmaceuticals. In food industry, these microbial compounds exhibit useful properties as emulsifiers, anti-adhesive and antimicrobial agents. *Listeria monocytogenes* is an important foodborne pathogen and it’s known that many strains are able to develop biofilms in a variety of surfaces. The aim of this work was to evaluate if purified rhamnolipids presents potential to inhibit *L. monocytogenes* planktonic and adhered cells growth.

Material and Methods. The biosurfactants from *P. aeruginosa* PA01 were previously produced and purified. The Minimal Inhibitory Concentration (MIC) of rhamnolipids was evaluated using the microbroth dilution technique. A microtiter plate containing TSYE broth was inoculated with a concentration of 10⁶ CFU/mL and 20 μl of this suspension was inoculated in each well containing the broth and the same concentrations of biosurfactant used in the MIC assay, the microtiter plates were then incubated at 35°C for 24 hours. The growth was evaluated by reading the absorbance (590 nm) against control. Aiming to evaluate if the presence of the biosurfactant would influence the biofilm formation, a bacterial suspension was prepared to attain 10⁹ CFU/mL and 20 μl of this suspension was inoculated in each well containing the broth and the same concentrations of biosurfactant used in the MIC assay, the microtiter plates were then incubated at 35°C for 24 hours. The wells were washed with water, fixed for 15 min with methanol and stained for 20 min with crystal violet 1% (w/v). After washing with water, the stain was extracted from the biofilms using glacial acetic acid (33%). The optical density (570 nm) of this stained solution was used to measure the adhered cells. The tested microorganisms were two strains of *L. monocytogenes* (ATCC 19112 and ATCC 7644) which have great ability to form biofilms.

Results. The results showed *L. monocytogenes* had its planktonic and adhered cells growth inhibited by the rhamnolipids at different concentrations (ranging from 40 μg/mL up to 3600 μg/mL) comparing to unoinoculated control. The rhamnolipids were able to inhibit *L. monocytogenes* ATCC 7644 growth showing a MIC of 40 μg/mL. The adhered cells growth was inhibited about 97% with the purified rhamnolipids at the different concentrations. A similar profile was observed to *L. monocytogenes* ATCC 19112 strain, which demonstrated a MICₐ with 40μg/mL of rhamnolipids, and an increase inhibition reaching 98% with 3600 μg/mL. The adhered cells growth was inhibited at about 95% for all biosurfactant concentrations.

Conclusion. These results demonstrated that rhamnolipids obtained from *P. aeruginosa* PA1 have excellent antimicrobial potential against *L. monocytogenes* strains.

Keywords. microbial growth; adhesion; crude rhamnolipids, purified rhamnolipids; antimicrobial activity

Acknowledgements to CNPq for scholarship.

Antimicrobial susceptibility of *Campylobacter jejuni* isolated from poultry products and human cases of campylobacteriosis

R. Camilo, C. Mena, J. Silva, P. Teixeira

Members of genus *Campylobacter* are well known as leading causes of bacterial gastroenteritis in humans. In general, campylobacteriosis is resolved without antimicrobial intervention; however, treatment is crucial to manage severe or invasive illness. The antimicrobial resistance of *Campylobacter* spp. has been increasing worldwide. In the present study, several strains of *Campylobacter jejuni* (n=159) collected from poultry food products (61%) and from human cases of campylobacteriosis occurred in Portugal (39%) were evaluated concerning their antibiotic susceptibility. The MICs of the tested antibiotics were determined by the agar dilution test according to the CLSI instructions (2009). *Enterococcus faecalis* ATCC29212 and *Staphylococcus aureus* ATCC29213 were used as controls.

0.6%, 5.6%, 30%, 60%, 74% and 80% of the isolates were resistant to chloramphenicol, gentamicin, erythromycin, tetracycline, nalidixic acid and ciprofloxacin, respectively.

Globally, the antimicrobial susceptibility to antibiotics is dependent on the origin of the strains. In fact, and for all the tested antibiotics, the MIC₅₀ of the food isolates was higher than the MIC₅₀ of the clinical ones. These differences in the antibiotic susceptibility between food and clinical *C. jejuni* isolates might be related with the antibiotic drugs that are commonly used in animal production. These resistant bacteria can be transmitted to humans and affect the human health.

Keywords *Campylobacter jejuni*; antibiotic; susceptibility
Antimicrobial and physical and mechanical properties of composite whey protein and starch edible films

Seyed Hadi Razavi1, Mahdieh Ahmadi1, Mohammad Mousavi1 and Hashem Hoseini1

Dept. of Food science & Technology, Faculty of Biosystem Engineering,
University of Tehran, Iran.

In this study antimicrobial properties of composite films from whey protein and starch containing 0.5%, 1% and 1.5% v/v of ziziphora and satureja essential oil against salmonella enteritidis, listeria monocytogenes and penicillium roqueforti were investigated. In order to improve the barrier properties of films against water vapor transmission, oleic acid was incorporated to edible films. Physical and mechanical properties of edible films including thickness, moisture content, water vapor transmission rate, percent elongation at break, tensile strength and elastic modulus were measured.

Films containing ziziphora essential oil showed larger inhibitory effect. Films were more effective against Gram-positive bacteria than Gram-negative bacteria and don’t have more effect on mold.

By addition of oleic acid thickness and percent elongation at break of edible films were increased and the other properties were decreased significantly. Physical and mechanical properties changed by incorporation of essential oils.

Results of this study suggested that antimicrobial activity of some essential oils in whey protein edible film was obvious.

Keywords: Edible film, whey protein, starch, ziziphora, satureja, Oleic acid, Gram-positive bacteria, Gram-negative bacteria, Antimicrobial properties, Physical properties, Mechanical properties

Antimicrobial Properties of Nanostructured Chitosan-Silver Membranes

Ionic silver has long been recognized as an effective biocide against a broad spectrum of microorganisms, its mechanism of inhibition being the subject of considerable research. Ionic silver can exert its antimicrobial action in several ways. It has been reported to complex with the thiol groups of enzymes and proteins altering their structure and function. Silver ions have also been found to bind with DNA and cause structural changes in the cell envelope and cytoplasmic membrane of bacteria. Ionic silver is used as an antimicrobial in the form of salts and more recently in complexes such as silver-zeolite complex and in elemental silver nanoparticles (AgNPs). AgNPs act as nanoreservoirs for the delivery of silver ions ensuring their availability in the substrate over time. In this regard, increasing attention is being paid to the use of AgNPs for the development of antimicrobial films and coatings to prevent microbial contamination. The antimicrobial capacity of the composites formed will depend on the physical and chemical properties of the nanoparticles and also the silver ion release properties of the carrier polymer.

The aim of this work has been to develop antimicrobial films based on chitosan/silver nanocomposites. AgNPs were produced by reduction of silver nitrate in a preformed neutralized chitosan membrane. The salt was added to the film-forming solution in concentrations ranging from 0.1 to 1.5% (g silver/100g polymer). The morphology of the synthesized nanoparticles was determined by transmission electron microscopy and the antimicrobial activity of the resulting membranes was evaluated using E. coli and S. aureus in liquid media (Mueller-Hinton broth) and in the same media highly diluted with phosphate buffer (1:125). The thermal stability of the chitosan/silver nanocomposites was studied by heating the membranes under conditions of high humidity (autoclaving at 120 ºC for 30 minutes).

The procedure developed for the in situ generation of AgNPs in a chitosan membrane gave rise to spherical nanoparticles independently of the initial silver nitrate concentration. The size of the nanoparticles increased with the concentration of silver nitrate in the membrane and it was possible to distinguish different nanoparticle populations at the greatest silver concentration tested. The resulting membranes possessed antimicrobial activity against E. coli and S. aureus, but that diminished considerably for specimens tested in Mueller-Hinton broth compared to the diluted media presumably due to the complexing of available ionic silver by the proteins present in the growth media. The antimicrobial efficacy of the membranes was not directly related to the silver content in the film-forming solution. Thermal treatments with humid heat did not alter the antimicrobial capacity of the nanocomposites.

Keywords: chitosan, silver nanoparticles, antimicrobial nanocomposites.
Application of Quantitative RT-PCR in expression study of the ammonium and hexose transporters during the rehydration of *Saccharomyces cerevisiae* in active dried form

Enrico Vaudano¹, Antonella Costantini², Olta Notiti and Emilia Garcia-Moruno¹

¹CRA-Centro di Ricerca per l’Enologia, Asti, Italy

The use of selected yeasts in the form of active dry yeast (ADY) in winemaking implies a short reactivation period in aqueous media. The rehydration restores the active metabolic condition that is necessary to face the fermentation with good fermentative and competitive abilities. Despite the importance of this phase, to date, there have been a small number of reports on the events that occur during rehydration.

In this work we report the application of the quantitative RT PCR (RT qPCR) to study gene expression during the rehydration using a relative quantification method. The goal is to observe transcriptional modifications in some genes codifying for ammonium and hexose transporters during the rehydration process and to determine whether their expression could be modulated by altering the composition of the rehydration medium.

First, we evaluated the expression stability of eight potential reference genes using three statistical methods: BestKeeper, GeNorm and the method proposed by De Kok. Generally, using these three methods, more stable genes included *18S*, *ACT1*, *QCR9*, and *LSC2* but using the GeNorm classification, *LSC2* was classified in the last positions. To select the best genes, an arbitrary score was attributed to each gene for each statistical calculation. Based on this ranking, *18S*, *ACT1*, and *QCR9* provided the best results.

This reference system was then applied to study the expression levels of the ammonium transporters *MEP1*, *MEP2*, and *MEP3* and the hexose carriers *HXT2*, *HXT3* and *HXT6/7*.

Regarding the ammonium transporters tested, the results demonstrated that the yeast immediately reacted to rehydration only when a fermentable carbon source was present in the medium. Furthermore, *MEP2* expression was modulated by the ammonium concentration, indicating that nitrogen catabolite repression (NCR) is active during the rehydration phase. The rehydration in water, frequently used by wine producers, doesn’t modify the transcriptional pattern of dry yeast. These results were confirmed by the data relative to the ammonium assimilation.

The study of the expression of the hexose carrier shows that the sugar assimilation system is fully active and it is responsible for the sugar uptake in the cell after few minutes of rehydration. It was observed that the substrate affinity is not the only mechanism that modulates the expression of the hexose carriers but other unknown regulation factor influence the transcription of some of them.

New information on expression changes during rehydration could lead to improvements in this step of winemaking by changes in the medium composition, temperature, rehydration time, and other factors. This could lead to competitive advantage for the inoculated strains and contribute to successful vinification.

Keywords: RT qPCR, ADY, *Saccharomyces cerevisiae*

Aspects of the regulatory mechanisms in the Alkali-Tolerance Response (AITR) in *Listeria monocytogenes*

Efthathios S Giotis¹,², Arunachalam Mathaiyan¹, Ian Blair¹, Brian J Wilkinson¹, and David A Micolwell³

¹CEEED RVC Centre for Emerging, Endemic & Exotic Diseases, Royal Veterinary College, London, Hawkshead Ln, AL9 7TA UK
²IFSE Center for Food Safety -, University of Arkansas, Fayetteville, AR 72703 USA
³UU Food Microbiology Group - University of Ulster, Northern Ireland, Newtownabbey BT37 0QB UK

Listeria monocytogenes can survive and grow in relatively high pH environments, giving it a significant competitive advantage in the transient alkaline conditions environments, which can occur during decontamination of food processing systems and the human gastrointestinal system. *L. monocytogenes* is able to launch a significant adaptive response to alkali stress, the Alkali-Tolerance Response (AlTR), enabling it to [a] withstand alkali stress and/or become resistant (stress hardened) to higher levels of such stresses, and [b] be cross protected against unrelated stresses, such as osmotic or ethanol stress. Studies using *sigB* isogenic null mutants have established an important role for the alternative sigma B factor in such alkali tolerance in *L. monocytogenes*. Scanning Electron Microscopy, hydrophobicity assay and gas chromatography studies have established that alkali adaptation(s) in *L. monocytogenes* involve changes in cell morphology, cell surface and in the proportions of cellular membrane fatty acids. DNA microarrays and 2D- gel electrophoresis have demonstrated that alkali responses involve a complex network of changes in gene and protein expression. There is a clear distinction between the mechanisms involved in short and longer term alkali stress responses, and clear differences between resistance mechanisms at different sublethal pH values e.g. (pHs 9.0 and 9.5). Microarray studies established that AITR involves activation of processes which cause an intracellular accumulation of protons, including metabolic changes leading to increased acid production, activation of ionic pumps (mainly Na⁺/H⁺ antiporters) and the production of alkali specific (i.e. aminases) and general stress proteins. The improved understanding of the AITR gained in this study contributes to a wider understanding of the pH homeostasis of *L. monocytogenes* and should underpin the development of better methods for the control of this significant pathogen.

Keywords: alkali stress, *Listeria monocytogenes*, microarrays
β- Glucans Production and Manoproteins Release in Yeasts

Maria Chacón-Ocaña¹, María Arévalo-Villena¹, Juan Úbeda-Irano², and Ana Briones-Pérez²
Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla La Mancha Avd Camilo José Cela, 13071 Ciudad Real, Spain.

It is largely known that in Enology, the contact between wine and lees after alcoholic fermentation, offers to final product some good characteristics that consumers can appreciate. Polysaccharide and manoprotein are the most important compounds liberated coming from yeast cellular walls. This process is, indirectly linked, to beta glucanase activity. Autolysis capability of yeast and production of 1, 3 beta endoglucanase were studied in the present work, and therefore, the liberation of polysaccharide / manoprotein into a culture medium that simulated fermentation conditions. 23 Saccharomyces strains isolated from spontaneous fermentations in different wineries were used for this study.

The most important conditions for beta glucanase enzyme production and time of growth in appropriate culture medium were optimized. For each culture yeast, the enzymatic activity and polysaccharide liberation were quantified, both in supernatant and cellular extract.

Results show that there is not relationship between enzymatic activity and polysaccharide liberation. On the other hand, all yeasts were significantly different regarding to polysaccharide liberation, in the two different fractions. These results offer for next works, the possibility of studying the effect of cellular extracts on quality wine.

Keywords: Yeast, manoprotein, enzyme.

Bacteriocin production by Lactobacillus ssp.V69 and some aspects of its mode of action against Listeria monocytogenes ScottA

V. Biscóla, V.S.A.C. Capuano, D.N. Furtado, S.D. Todorov, B.D.G.M. Franco
Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Nutrição Experimental, Laboratório de Microbiologia de Alimentos, 05508-000, São Paulo, SP, Brasil

Lactic acid bacteria are widely used as starter cultures and play an important role in food preservation, microbiological stability and production of aroma compounds in various food products. Many of these lactic acid bacteria produce bacteriocins. By definition, bacteriocins are small proteins with bactericidal or bacteriostatic activity against genetically closely related species. Their mode of action may include pore formation in the cell wall, degradation of cellular DNA, disruption through specific cleavage of 16S rDNA, and inhibition of peptidoglycan synthesis. Strain Lactobacillus ssp. V69 was isolated from charqui, a traditional salted and dried fermented meat product from Brazil. Despite the low Aw in charqui, halophilic microorganisms can grow and cause spoilage. The growth of these undesired bacteria can be inhibited by antimicrobial components produced by microorganisms that are part of the natural microflora of the product.

Strain Lactobacillus ssp. V69 produces an antibacterial substance (bacteriocin) active against L. monocytogenes ScottA in MRS broth at 30°C or 37°C. The bacteriocin showed to be inhibitory to different serotypes of L. innocua and L. monocytogenes, besides Lactobacillus sakei, Staphylococcus aureus and halophilic bacteria isolated from charqui. Antimicrobial activity complete inactivation was observed after treatment of the cell-free supernatant with Proteinase type XIV, pointing the proteonaceus nature of the antimicrobial agent. No change in activity was recorded when treated with catalase or α-amylase. The stability of the bacteriocin was not affected by the presence of 1% SDS, Tween 20, Tween 80, Urea, EDTA or NaCl and remained stable after incubation for 2 h at pH from 2.0 up to 12.0. Stability of the bacteriocin was recorded after 120 min at 25, 30, 45, 60 or 100°C.

Different levels of absorption were recorded when bacteriocin V69 was in contact with Listeria monocytogenes ScottA, Lactobacillus sakei ATCC 15521 and Enterococcus faecium ATCC 19443. This absorption was dependent of temperature (tested 4, 25, 30 and 37°C), pH (tested 4, 6, 8, 10) and the presence of selected chemicals (NaCl, tween, glycerol and SDS). The highest adsorption to Listeria monocytogenes Scott A was recorded at 4°C, pH 2.0 and 4.0 and in presence of NaCl. These results are important knowledge in order of application of this bacteriocin in the food biopreservation.

Addition of bacteriocin V69 to a 3-h-old and 7-h-old culture of L. monocytogenes ScottA were recorded after 25h of treatment, suggesting that the mode of action of bacteriocin V69 is bactericidal.

Keywords: bacteriocin, Lactobacillus ssp., anti-Listeria activity, halophilic bacteria
Bacteriophage contamination and fermentation of Natto by Bacillus subtilis (natto) – Study of phage related key enzyme that spoils sticky texture of natto-

K. Kimura¹ and Z. Fujimoto²

¹Applied Microbiology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
²Protein Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan

The natto, a traditional Japanese soybean food fermented by Bacillus subtilis (natto), is occasionally spoiled by bacteriophage contamination. The spoilage can be seen even when the number of the contaminated phage is very small and B. subtilis (natto) grows normally. We isolated a bacteriophage PhiNIT1 and identified a key enzyme (PgliP) produced by the phage that hydrolyzes poly-gamma-glutamate (PGA). PGA is a polymer of glutamate linked by gamma-glutamyl peptide bond (degree of polymerization (DP) >10,000). It is a viscous material and provides sticky texture to the natto. The sticky texture is accepted as an essential quality of the natto. The enzymic degradation of PGA dramatically reduces the DP and the viscosity, and damages the natto products. We examined the degradation of PGA by PgliP in detail. PgliP hydrolyzes PGA by endo-type manner to penta-, tetra-, and tri-, oligo-peptide. PgliP requires Zn ion for the activity and is inactivated by a Cys-modifying substance moniodoacetate. The PgliP gene encoded by the phage genome was cloned and the nucleotide sequence was determined. However, deduced amino acid sequence has no similarity to known peptidases, which makes molecular level elucidation of the catalysis difficult. Recently, 3D structure of PgliP was determined and it revealed that the tertiary structure of PgliP, unexpectedly, was homologous to that of bovine carboxypeptidase A or putative N-formylglutamate amidohydrolase of Rastonia eutropha and that PgliP belonged to MI4 metallo peptide family. Catalytic residues (His-Glu-His) and Zn binding motif were assigned. The α/β open sheet structure is conserved well between PgliP and phylogenetically very far enzymes in spite of the diversity in amino acid sequence.

Keywords: Fermented soybean, Bacteriophage, Bacillus subtilis (natto), poly-gamma-glutamte, hydrolase, natto,

Bee pollen-containing culture media can stimulate production of patulin by Penicillium expansum

F. M. Valle-Algarra¹, Eva M. Mateo², M. A. García-Esparza¹, R. Mateo¹, J. V. Gimeno–Adelantado¹, M. Jiménez²

¹Departamento de Química Análítica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
²Departamento de Microbiología y Ecología, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain

Patulin (PAT) is a mycotoxin that occurs worldwide in apple and apple products. PAT is produced by several fungal species, but mainly by Penicillium expansum. These molds are common post-harvest pathogens of apples and pears. Fruits decayed by these molds are also likely to be contaminated with PAT, which is heat stable, resists processing, and has been found in apple products. It has been reported that PAT is genotoxic and causes damage to DNA or chromosomes.

It is usually accepted that mycotoxin production is dependent on various factors, such as the strain, the substrate and environmental conditions. Patulin-producing species are widely distributed but only a percentage of the strains belonging to reported producing species are PAT producers. This percentage may increase when studies in progress can establish the ideal conditions for PAT biosynthesis. The correct characterization of patulin-producing strains is necessary to correctly assess their occurrence in contaminated substrates, the suitable characterization of chemotypes and for other studies, especially DNA-based studies.

Bee pollen is a basic food for bee larve development due to its high protein content. This food contains all the essential amino acids, minerals, vitamins, enzymes, growth regulators, fatty and organic acids, flavonoids, lipids, sterols and certain carbohydrates. Beekeepers catch pollen in traps put at the hive entry. Pollen remains in traps for some time. Afterwards, it is taken out and carried to stores where it is cleaned, dried, sometimes fumigated, stored and marketed. Before harvest or during these stages pollen may be contaminated by several fungal species.

The aim of the present study was to assess the capacity of bee pollen as a substrate for production of PAT by strains of P. expansum. The solid media assayed were Yeast Extract Sucrose medium (YES), YES supplemented with 0.5, 1, and 3% bee pollen, Potato-glucose medium, Wickerham medium, Aflatoxin Production medium and Bee Pollen-glucose medium at different concentrations of bee pollen (0.5, 1 and 3%). Cultures were kept at 25 °C for 2 weeks and analyzed for PAT by LC with UV detection on days 3, 7, and 14.

PAT production in media containing bee pollen was significantly higher than production in the other culture media regardless of incubation time. A correlation between the proportion of pollen added to medium and PAT level was observed. On the basis of the preliminary results obtained in this study it can be hypothesized that bee pollen consumption may constitute an important risk factor concerning the presence of PAT in the diet of consumers of that nutritious food.

Keywords: bee pollen; patulin; Penicillium expansum

Acknowledgements: the authors wish to thank financial support from FEDER and Spanish Government “Ministerio de Ciencia e Innovación” (Project AGL2007-66416-C05–01/ALI, and two research grants).
Behavior of shiga-toxin-producing *Escherichia coli* (STEC) of serotype O113:H21 to front pH, water activity, time and temperature.

L. Justo Beserra 1; A.M. Figueiredo Cerqueira1; R.R. Bonelli2; J. Bezerra do Carmo2; J. Braz Frazão2; R.R.M. Pinto Barbosa2; K.G. de Lima Araújo2; J.R. Costa Andrade3; P. Gomes Lima2; A.G. Martins Gonzalez2

1Department of Microbiology and Parasitology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil; 2Department Bromatology, Faculty of Farmacy, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil; 3Department of Microbiology and Immunology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil.

Escherichia coli strains are part of the intestinal microbiota of humans and most warm-blooded animals. However, several pathotypes are recognized and involved in intestinal disease, including enteropathogenic *E. coli* (EPEC), enterotoxigenic *E. coli* (ETEC), enteroinvasive *E. coli* (EIEC), enteroaggregative *E. coli* (EAEC) and Shiga toxin-producing *E. coli* (STEC/EHEC). STEC is involved in severe human diseases such as bloody diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS). Two subgroups to STEC are described based on the presence of a pathogenicity island called Locus of Enterocyte Effacement (LEE). Despite the most serious cases are generally associated with LEE-positive strains, a crescent number of cases has been related to LEE-negative strains, especially due to O113:H21 serotype that was already isolated from HUS outbreaks and sporadic cases. The alarming expansion of STEC infections in recent years is attributed to a combination of factors, including the modern practice to raising animals, changes in dietary habits and urban populations, the small infective doses required and the inability of conventional procedures and the inspection of food (sensory) to detect the pathogen. The soft white cheese is a product that has wide commercial acceptance in Brazil. Although the legislation required the use of pasteurized milk in its preparation, this legal regulations is not always met. Raw milk is an important vehicle of many intestinal pathogens such as *E. coli* pathotypes. The behavior of distinct STEC serotypes can vary in relation to physical and chemical properties found in foods and frequently used control measure procedures. So, the aim of this study was to evaluate the behavior of a O113:H21 STEC Brazilian strain (EC 784) isolated from food, under the individual and combined effect of four factors (pH, temperature, time and water activity - Aw) in soft white cheese. The effect of the four independent variables on the response (dependent variable) was assessed by using a central composite design experimental planning created by the software Statistica 7 (StatSoft, OK, USA). The assays were performed using as substrate the whey of soft white cheese with the variables set to mimic the conditions found in cheese. The experimental design involved the combination of the variables pH (5, 6 and 7), Aw (0.92, 0.94 and 0.96), time (0, 7 and 15 days) and temperature (8, 26 and 35°C), generating 27 runs, with a central point and two authentic replications of the experiment, amounting to 81 tests. From these experimental data the statistical program achieved the construction of an equation ($R^2 = 0.8$) which describes the variation of the microbial counts according to the variables. The results showed that the effect of all variables even individual or combined were significant over the response. Only at the condition of pH 7, Aw 0.94 and 26°C for 15 days there was an increase in the microbial population related the initial inoculum. In other assessed conditions, the number of viable cells has decreased. The condition of pH 5, Aw 0.96 and 35°C for 15 days, was shown to be the less favorable for STEC, since no viable cells recovering was possible in any of the repetitions. Despite their virulence potential previously described, the STEC strain studied (EC 784), seems not to have a distinct behavior in relation to other commensal *E. coli* strains.

Keywords: *Escherichia coli*, STEC O113:H21, soft cheese.

Betalactam resistance in food *Escherichia coli* isolated from broilers

V. Knet 1, D. Bujnakova 1, M. Knetova 2

1 Institute of Animal Physiology, Slovak Academy of Sciences, Soltsaaje 4, 040 01 Kosice, Slovakia
2 University of P. J. Safarik, Faculty of Medicine, Department of Medical Microbiology and Clinical Microbiology, 040 01 Kosice, Slovakia

E. coli is a common inhabitant of the human and animal gut and is considered an indicator of fecal contamination in food. ESBL (extended spectrum beta-lactamases) producers are not very frequent in animals. TEM-1 is the most common variant among *E.coli*, however during last years TEM-52 ESBLs have been described in poultry and beef isolates. The aim of study was to compare minimal inhibitory concentrations (MIC) and betalactam resistance in *E. coli* strains isolated from poultry and turkey meat and faeces during six months period.

Eighty seven *E. coli* faecal isolates from various poultry and turkey farms showed relatively lower betalactam (ampicillin, ampicillin with sulbactam, ceftiofur, cefquinome) resistance in comparison with fifty one *E. coli* isolates from poultry and turkey meat bought directly in supermarkets. Similarly lower were levels of MICs to betalactams in faceal *E. coli*. High level betalactamasases (TEM1,2/SHV1) were detected more frequency in *E. coli* isolates from meat (27%) compared to isolates from faeces (13,7%). ESBL TEM were detected by interpretative reading of MICs. ESBLs s were present in 27% food strains while in faecal group *E.coli* were only in few strains. Integron 1 and virulence factors were detected by PCR in *E. coli* from both groups.

Results showed that source of surface meat microflora is not only faecal microflora, but also environmental microbes in poultry abattoirs. This is the first report of a quantitative antibiotic susceptibility testing and of phenotype resistance mechanisms determination in *E. coli* isolated from poultry meat in Slovakia.

This study was supported by slovak grants APVV-0028-07 and VEGA-0012-08.

Keywords ESBL, *Escherichia coli*, food, environment
Biocontrol of the patulin-producing *Penicillium expansum* by yeast: *in vitro* and *in vivo* assays

M. Doménech, C. Vázquez, M.T González-Jaén and B. Patiño

1Microbiology III, Fac. Biology. José Antonio Novais, 28040-Madrid. Spain
2Genetics, Fac. Biology. José Antonio Novais, 28040-Madrid. Spain

Penicillium expansum is one of the main fungal contaminants causing decay in fruits and is the main postharvest pathogen in apples. This fungus also produces patulin, a mycotoxin that causes acute toxic effects in humans and which maximum limits in foods for human consumption are under legal regulation in UE.

Traditionally, *P. expansum* is controlled by the application of synthetic fungicides. Recently, biological control has been proposed as a feasible alternative. Yeasts possess many characteristics which are desirable in a biocontrol agent: not fastidious as to nutritional requirements, capable of growth in fermenters on inexpensive media and non-productive of secondary metabolites.

In this study we have analysed 16 yeast strains (of genus *Debaryomyces*, *Pichia*, *Saccharomyces*, *Zygosaccharomyces* and *Torula*sope) in *in vitro* tests against 17 strains of *P. expansum* isolated from apples. The antagonistic effect was observed on YMA plates with methylene blue. *D. hansenii* and *P. anamorpho* showed the greatest antagonistic efficiency, particularly *D. hansenii* CYC 1244 strain, and therefore was selected for further *in vivo* studies.

In the *in vivo* studies, apples were wounded in three points with the sterile head of a needle and were subsequently inoculated with 20 μL yeast (1 x 10^7 cell/mL), after two hours a 20 μL *P. expansum* suspension (1x10^7 spores/mL) was added. The apples were stored at 4°C, 15°C and 25°C. A reduction of 30-50% in rot lesions was observed at 25°C, the most permissive temperature for *P. expansum*, and reached 75% at 4°C, a usual temperature for long term storage of apples. The main conclusion of the present study is that *D. hansenii* CYC 1244 is a good candidate its use in the integrated strategies to control *P. expansum* growth on apples and other fruits.

Keywords: Biocontrol, *Debaryomyces hansenii*, *Penicillium expansum*

Characterization and identification of a bacteriocin produced by *Leuconostoc pseudomesenteroides* KM432BZ

Kahina M. Makhloufi, Alyssa Carré-Mlouka, Jean Peduzzi, Carine Lombard, Carol A. van Reenen, Svetoslav T. Todorov, Leon M. T. Dicks, Sylvie Rebuffat

1Laboratory of Communication Molecules and Adaptation of Microorganisms, FRE3206 CNRS-National Museum of Natural History, CP 54, 57 rue Cuvier, 75005 Paris, France
2Department of Microbiology, Stellenbosch University, 7600 Stellenbosch, South Africa

Many food-grade microorganisms are used to produce a variety of fermented food. Lactic acid bacteria (LAB) are among the most important groups of microorganisms used in food fermentations. They contribute to the taste and texture of fermented products and inhibit food spoilage bacteria by producing large amounts of lactic acid and growth-inhibiting substances named bacteriocins [1]. Thus, research and development of probiotics is a field in full expansion.

Bacteriocins are antimicrobial peptides ribosomally synthesized by bacteria with an activity against related species. This has prompted new approaches to inhibit foodborne pathogens, in particular *Listeria* and *Enterococcus*. Boza is a fermented beverage from the Balkans prepared from cereals, such as rice, maize or wheat. Many LAB producing antimicrobial compounds have been isolated from this beverage [2, 3], such as *Leuconostoc* [4], which produces peptides active against *Listeria ivanovii*, a pathogen known to be responsible for animal and human infections [2, 5].

We here isolated a bacteriocin-producing bacterium from Boza that we identified as *Leuconostoc pseudomesenteroides* by biochemical and molecular analysis. Purification of the bacteriocin was performed by ammonium sulphate precipitation followed by reversed-phase HPLC. Mass spectrometry analysis indicated a molecular mass of 3930 Da. The primary structure, determined by Edman degradation and ESI-MS/MS indicates that this antimicrobial peptide is a class IIa bacteriocin. Analysis of the genes involved in the bacteriocin biosynthesis need to be elucidated further.

Keywords bacteriocin; lactic acid bacteria, food grade microorganism, boza, *Leuconostoc pseudomesenteroides*.
Characterization and Purification of Natural Food–Biopreservative Produced from Bacillus subtilis A12 Isolated from a Refreshing Drink Whey

Nivedita Sharma, Riti Kapoor & Neha Gautam
Microbiology Research Lab, Department of Basic Sciences, Dr Y S Parmar University of Horticulture and Forestry, Nauni Solan (H.P.), India

Whey is a popular refreshing fermented milk drink of North India. The whey consumption has been linked to the disease prevention and health improvement. In the present study, bacteriocin producing food grade bacterial strain isolated from whey has been identified as Bacillus subtilis by 16srRNA gene technique. Bacteriocin has been defined as extracellularly released primary or modified products of bacterial ribosomal synthesis which can have a relatively narrow inhibitory spectrum. Bacteriocin of Bacillus subtilis showed antagonism against deadly food borne pathogens viz, Listeria monocytogenes, Lactobacillus plantarum, Clostridium perfringenes. Bacteriocin of Bacillus subtilis was purified by single step gel exclusion chromatography and molecular weight was found to be 13 kDa by SDS-PAGE. Purified bacteriocin withstood temperature up to 121°C, found active at wider pH range and was sensitive to proteolytic enzymes viz, trypsin and pepsin. The antibacterial substance showed bactericidal effect against sensitive indicators and it was stable for 3 months at 4°C.

Characterization of Bacillus bacteriophage isolated from the fermented soybean, chungkookjang

Eun Ju Kim, Jeong Won Hong, Na-Rae Yun and Young Nam Lee*
*Dept. of Microbiology, Chungbuk National University, Cheongju, Chungbuk, 361-763, Rep of Korea

Recently, the fermented soybean products has drawn a great attention from people as a well being-healthy food. Chungkookjang, a traditional fermented soybean which is comparable with natto of Japan, has been consumed over many hundred years by Korean. Chungkookjang is made by fermenting the steam cooked-soybean with Bacillus subtilis for a couple of days. A high grade chungkookjang would be covered with couple amount of sticky substance (Fig. 1), which is identified as poly-γ-glutamate (γ-PGA), a metabolic product of Bacillus subtilis. Productivity of γ-PGA, the key substance of chungkookjang quality, is affected by the physiology of B. subtilis as well as bacteriophage infecting host strains.

To gain insights of bacillus phage in the starter strain of chungkookjang fermentation, a virulent bacteriophage (we named it as bacillus phage K2) isolated from chungkookjang products was investigated with respect to infectivity toward a number of B. subtilis starter strain, morphology, and its genomic nature including genome size and DNA restriction pattern.

Bacillus phage K2 showed a different lytic spectrum against numbers of B. subtilis strain. K2 is highly active against B. subtilis starter strains which were isolated from the Korean chungkookjang products, but much less active against a Japanese natto strain. Lytic activity of K2 phage toward host strains varied depending upon culturing temperature of host cell. For instance, a complete lysis of the K2 phage infected B. subtilis strains cultured at 37°C showed nearly complete lysis within 5-6 hours, whereas culturing at 42°C showed a poor lysis. Bacillus phage K2 is a tailored phage with an isometric icosahedral head (40 nm long of lateral side), a long contractile fiber (85-90 nm long, 15-20 nm wide), thin tail fibers (75-80 nm long, 6.3 nm in wide), and basal plate (12.6 nm long, 45 nm wide) with a number of spikes, but no collar. The shape of phage K2 differs from other bacillus phages such as SPO1- like viruses or phi 29-like viruses in its size and detail structures. The bacillus phage K2 is rather a small DNA phage. When genome size was estimated by agarose gel electrophoresis and endonuclease analysis, it turned to be around 17 kb. Analysis of deoxyribonucleotide sequence of K2 genome and its gene structure is being undertaken for new insights on the bacillus phage that causes economic loss in chungkookjang industry.

Keywords: fermented-soybean, chungkookjang, Bacillus subtilis, bacillus phage K2, isometric icosahedral tailed phage
Chitosan Matrices as Carriers for the Delivery of Natural Volatile Antimicrobials

L. Higueras, C. López-Carballe, R. Gavara and P. Hernández-Muñoz

Chitosan [of 1→4]-2-amino-2-deoxy-D-glucan] is a cationic linear amino polysaccharide obtained from partial N-deacetylation of chitin, one of the most abundant natural biopolymers present as a structural component of the exoskeletons of crustaceans, insects and other arthropods, as well as in the cell walls of certain fungi. Chitosan is biodegradable, biocompatible and non-toxic and displays specific properties due to the presence of free amino groups which make it a versatile polymer with a broad range of applications in several fields including biomedicine, pharmacy, agriculture and the food and paper industry.

β-Cyclodextrins are natural cyclic oligosaccharides consisting of seven α-1,4-linked units of D-glucopyranose and are obtained from the enzymatic degradation of starch. Cyclodextrin forms a toroidal truncated cone structure giving rise to an internal cavity with a relatively hydrophobic surface and an external hydrophilic surface. This shape allows the formation of inclusion compounds with a large variety of organic molecules.

The aim of this work has been to develop novel biobased matrices capable of carrying and releasing controlled amounts of biocidal compounds. For this purpose, chitosan in the form of chitosinium acetate was blended with hydroxypropyl-β-cyclodextrins (HP-β-CD) in the proportion of 1:1 (w/w) in aqueous media, and films were obtained by casting. The ability of the films to absorb carvacrol was evaluated after its immersion in the pure liquid. The results showed that the incorporation of HP-β-CD in the polymer matrix greatly increased the sorption of carvacrol. However, the content of carvacrol in the composites was related to the initial concentration of glycerol and the degree of hydration of the polymer matrix. Thus, depending on the composition of the film, the chitosan matrix was able to hold up to 260% (g carvacrol/100 g dry film) of volatile compound. The amount of carvacrol retained in films lacking HP-β-CD and with different amounts of water and glycerol in their composition in no case surpasses 1%. Chitosan films exhibited long lasting release of carvacrol, exerting antimicrobial properties against E. coli and S. aureus after 20 days kept in air at 23 ºC and 40% RH. The new matrices could be used in the design of antimicrobial food preservation systems.

Keywords: chitosan, hydroxypropyl-β-cyclodextrins, carvacrol, sorption, antimicrobial films.

Comparison between Lactic Acid Bacteria populations present in two green table olives fermentative processes

Salvador Rodríguez*, Stephen Shiley*, Francisco Montes*, Enrique D. Sancho*

*Department of Microbiology, University of Córdoba, Campus de Rabanales, Ed. S. Ochoa, E-14014, Córdoba (Spain)

Introduction and Experimental Procedures. The main commercial table olives preparation in the international market is called “Spanish-style green olives”. Brines for this study were obtained from S.C.A. Olivarera Jesús Nazareno (Aguilar de la Frontera, Córdoba). The preparation is a fermentation process which can be carried out in different kinds of vessels [1]. Hence, buried vessels are used in the traditional elaboration system instead of fermentation warehouse. Both processes show significant differences as much structural as of handling, affecting mainly the temperature of fermentation and the final time of fermented olive. Without heating, the warehouse system maintains higher temperature than the buried vessel system and, therefore, it decreases the fermentation period [2]. In addition, the warehouse system with an installation of automated heating can maintain the temperature around 25 ºC, independently of the room temperature, which reduces significantly the processing time (in other words, it decreases the time needed to get the final table olives).

The aim of this study is to compare the Lactic Acid Bacteria (LAB) populations from the traditional elaboration system, which uses buried vessels, with those from the fermentation warehouse system. Samples of brine and temperature data were taken from the vessel at three heights (up, medium and down).

The brine solutions were used for microbiological analyses (pH, titratable acidity and salt content measurement). Colonies showing general characteristics of lactic acid bacteria were picked. Initially, Gram staining and catalase test were used to check all the isolates. Then, only the selected LAB were grown at different temperatures on MRS broth. Sherrman test, survival after heating, gas production from glucose (determined in MRS broth containing inverted Durham tubes) and pattern of fermented carbohydrates were studied too.

Results

All strains examined were Gram positive, motility negative and catalase negative. Lactic acid bacteria isolates were classified as Lactobacillus plantarum and L. brevis mainly.

Thus, there were important differences as far as the final time fermentations of the olives in both vessels, with the consequent repercussion of the price paid by the fruit. Likewise, total LAB populations were higher in fermentation warehouse.

References

Keywords: Olive fermentation, Lactobacillus, lactic acid bacteria.
Comparison of eleven *Escherichia coli* quantitative methods for Malaysian ready-to-eat food (poultry)

Ratna Dewi Abdul Rahman and Norrakiah Abdullah Sani

1 School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia.

Various international methods are available for *Escherichia coli* enumeration in food. These methods need to be validated with local food samples before they could be considered as national methods. Hence, this study was conducted in order to validate and compare eleven standard methods by using ISO 16140 procedure. The methods were pour, spread and drop plating, Petrifilm™, three types of direct plating and four types of MPN methods. Five types of ready-to-eat food (poultry) were spiked with three *E. coli* strains which were ATCC 25922, IMR 1/3 107B and IMR E243. The artificially contaminated foods were finally exposed to heat at 55°C for 4 to 6 min to stress *E. coli* before the eleven standard methods were applied onto the food. The correlations of data were analysed by using the Ordinary Least-Squares (OLS) Regression. All methods gave similarities for the recovery of stressed *E. coli* (p < 0.05) in food (poultry). Practical approaches were also considered in order to identify the three best methods for the recovery of stressed *E. coli* in food (poultry). The observation found that pour plating, drop plating and Petrifilm™ were more practical than the other methods.

Keywords: Ready-to-eat food, OLS Regression, ISO 16140, *Escherichia coli*

Cronobacter sakazakii, Enterobacteriaceae and microbial population of infant formula milk

Norrakiah Abdullah Sani and Lim Yen Yi

1 School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia;

This study was carried out to detect and identify the presence of Enterobacteriaceae, *Cronobacter (Enterobacter) sakazakii* and microbial population of infant formulas in the Malaysian market. Samples that were analysed included 16 infant formulas (RB 1 - RB 16) and 14 special infant formulas (RB 17 - RB 30) from 8 manufacturers. The samples were obtained randomly from hypermarkets and private hospital in Ampang area. Aerobic plate count (APC), identification of Enterobacteriaceae and *C. sakazakii* were carried out. A total of 5 samples (RB 11, 13, 18, 19 and 29) failed to comply with the microbiological criteria for APC as stated in the Malaysian Food Act 1983 and CAC. For the identification of Enterobacteriaceae, Klebsiella pneumoniae spp. *pneumoniae*, *E. cloacae*, *E. amnigenus*, *E. asburiae* and *Pantoea* spp. 3 were detected in 7 samples after confirmation using ID 32E biochemical test (Biomerieux). For the *C. sakazakii* identification test, EE broth and CSB were used as enrichment medium for the isolation of *C. sakazakii* on two types of chromogenic agar (CES and DFI) before the identity of presumptive colonies was confirmed with ID 32E. No *C. sakazakii* positive samples were detected after the confirmatory test. The combination of CSB and CES had the highest specificity (90.9%), followed by CSB and DFI (88.2%), EE and CES (81.1%), EE and DFI (78.9%) in the detection of typical *C. sakazakii* colonies (blue-green).

Keywords: Enterobacteriaceae, *Cronobacter (Enterobacter) sakazakii*, microbial population, infant formula
Dairy using kefir grains: production and development

J. A. Gama¹, A. V. U. S. Gomes¹, S. B. Rezende¹,², R. F. Santana², C. M. F. Soares¹,², A.S. Lima¹,²
¹ UNIT, Tiradentes University, Avenida Murilo Dantas, 300- Farolândia- 49032-490, Aracaju-SE, Brazil
² ITP, Institute of Technology and Research, Building ITP Avenida Murilo Dantas, 300- Farolândia- 49032-490, Aracaju-SE, Brazil

Kefir grains is originated from the Caucasus mountains in Russia, it is considered an initiator of natural lactic acid fermentation and composed of several bacteria and yeasts, in symbiosis. The maintenance of kefir grains can be performed into juice, molasses, sugar and any kind of milk, like cow, goat, sheep, camel, buffalo and soya milk; and the fermentation produce a single self-carbonated beverage and cool slightly, known as kefir. This study aims to develop the processing conditions to obtain a probiotic milk product using kefir grains, applying the surface response methodology. The response variables were viscosity, pH and the number of lactic acid bacteria into the product, it was used a randomized 2⁵, repeat the central point for evaluating the response variables according to the following variables: the concentration of milk powder (0, 6.25 and 12.5%), temperature (25, 35 and 45°C) and the concentration of kefir grains (5, 7.5 and 10%), in static fermentation. The variables were analyzed in the following range 0, 6, 18 and 24 hours. The best process condition obtained for the production of a product with high viscosity and high potential probiotic was 12.5% milk powder, 10% of kefir grains and a temperature of 45°C, which has viscosity of 2840 cP, pH value 3.53 and 1.83x10⁹ CFU/mL of lactic acid bacteria in 24 hours fermentation. According to Brazilian legislation, for a product to be probiotic is necessary that it contains the viable cells number in the order of 10⁶ CFU/mL, confirming that the product, is already considered a probiotic. The pH value at end of fermentation ranged from 3 to 6. Based on the results, it was conclude that the temperature rise and the addition of milk powder are significant variables (p< 0.05) to increase the viscosity, obtaining a milk drink with similar consistency marketed in the Northeast of Brazil and the temperature and concentration of grains of kefir significantly influenced (p< 0.05) for the higher potency of probiotic milk drink.

Keywords kefir, response surface, probiotic.

Damages to cattle dairy by intake of a corn based concentrate contaminated by Aspergillus flavus

S.C. Salvador¹, Y. Chalfoun¹, F.C. da Silva¹ and S.M. Chalfoun²
¹ Federal University of Lavras, Minas Gerais State – Brazil
² Agricultural and Livestock Research Institution of Minas Gerais State – Brazil

Aflatoxicosis is a public health problem in Brazil and in the world. It’s one of the major sources of injury to the producers. Aflatoxins are produced by fungi of Flavi section, mainly Aspergillus flavus and A. parasiticus. Minas Gerais State, Brazil, is one of the biggest milk producers of the country. In 2008/2009 crop year, that was particular rainy, it was observed a case where dairy cattle submitted to the intake of corn based concentrate showed the following symptomatics: taimpanism, ruminal atony, abortions in different stages of gestation and an acute fall on the milk production. Samples of the corn used in the concentrate were sent to the Microbiology Laboratory of EPAMIG in Lavras, Minas Gerais State. The grains were submitted to the Blotter Test and it was observed that 63% of them were infected by the fungus Aspergillus flavus, a potential producer of aflatoxins B1 and B2. This confirms that, beyond the injury to the cattle, there’s the risk of exposure of humans, once the cows didn’t die and their product (milk) was introduced into the food chain. Once milk is an important component of human diet, this work shows the importance of a severe inspection of the components of animal diets and when contamination is detected, the immediate condemnation of the lot. In these cases it isn't necessary the analysis of aflatoxins presence, once the state of deterioration of the grains can be clearly seen. So a detailed report about it, describing these aspects, signed by a professional of the area is already enough. It's relevant considering the high cost of these analysis.
Detection and antibiotic susceptibility of colliform bacteria in fresh vegetables

M. P. Falomir1, D. Gozalbo1, C. Sebastiá1, and H. Rico1

1Departamento de Microbiología y Ecología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés
s/n, 46100 Burjassot, Spain
2Laboratorio de Análisis Clínicos, Pasaje Dr. Bartual Mored nº 1, 46010 Valencia, Spain

The consumption of fresh vegetables, which generally are eaten without further processing, is increasing as consumers strive to eat healthy food. These products carry natural non-pathogenic epiphytic microorganisms, although during growth, harvest and further handling, the produce can be contaminated with pathogens from human and animal sources. Contamination can arise as a consequence of treating the soil with organic fertilisers, such as sewage sludge and manure, and from the irrigation water, as well as from the ability of pathogens to persist and proliferate in vegetables. Most of the reported outbreaks of gastrointestinal disease linked to the fresh produce have been associated with bacterial contamination, particularly with members of the Enterobacteriaceae family. In addition, the presence of antibiotic resistances both in normal flora and pathogenic microorganisms in fresh vegetables may contribute to horizontal spreading of resistances. Therefore, microbial contamination of fresh vegetables constitutes a relevant risk factor for consumer safety.

In this work we have determined the presence of colliform bacteria, as well as their antibiotic susceptibilities, in fresh vegetables as an indicator of their microbiological quality and their potential as a risk factor for consumers. We have studied ten samples from six different vegetables: two kinds of tomato, three of lettuce, and one of carrot. All fresh products were purchased from supermarkets and greengrocer’s shops in Valencia city (Spain). Colliforms were isolated in 50% out of the 60 samples analyzed, although only one isolate was identified as Escherichia coli. The identified species included enterobacteria: Klebsiella pneumoniae (n: 5), Klebsiella oxytoca (n: 10), Serratia marcescens (n: 1), Serratia rubidaea (n: 1), Enterobacter cloacae (n: 20), Kluyvera ascorbata (n: 2), and Pantoea agglomerans (n: 3), as well as other bacterial species: Acinetobacter baumannii (n: 1) and Stenotrophomonas maltophilia (n: 1). The susceptibility to eleven chemotherapeutic agents was determined in all bacterial isolates (n: 45). Most isolates were resistant to ampicillin (all except the S. maltophilia isolate and two P. agglomerans isolates) and most of them also to amoxicillin/clavulanic acid (all except the S. maltophilia isolate and the three P. agglomerans isolates). Resistances to other agents were sporadic: tetracycline (four resistant isolates), nitrofurantoin (four resistant isolates), sulphamethoxazole/trimethoprim (two resistant isolates), streptomycin (one resistant isolate), cefoxitin (one resistant isolate), and chloramphenicol (one resistant isolate). No resistances were found to gentamicin, ciprofloxacin, and cefazidime. Only three bacterial isolates (two P. agglomerans and the one of S. maltophilia) were susceptible to all antibiotics tested, whereas three isolates (A. baumannii, E. cloacae and S. marcescens) showed multiresistance to four agents, and one isolate (E. cloacae) was resistant to five antibiotics. The presence of resistant bacteria in fresh vegetables arises mainly from the large amounts of antibiotics used in agriculture and animal husbandry, as applying manure from animal farming to agricultural fields or contamination of irrigation water can spread antibiotic resistant bacteria to plants.

The bacterial isolates from fresh vegetables include several opportunistic human pathogens, which may cause a variety of infectious diseases in the immunocompromised host and, in addition, antibiotic resistances can be horizontally disseminated, after ingestion by the consumer, to other gut commensal or pathogenic bacteria. Therefore, consumption of fresh vegetables may represent a potential risk factor for the consumer health, particularly in debilitated or immunocompromised individuals, and microbial contamination of these products can be considered as a food safety concern.

Keywords: colliform bacteria; fresh vegetables; antibiotic resistance
Detection of Lactobacilli from Fecal Flora of Some Infants

S. Soleimanian-Zad1, M. Sheikh- Zeinodin1 and M. Mirlohi1
Department of Food Science and Technology, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran.

During the past two decades identification of lactobacilli isolated from normal flora has received great interest due to their health promoting effects. This study has aimed at characterizing the lactobacilli strains isolated from the fecal flora of Iranian infants based on phenotypic oriented methods. Moreover, the diversity of identified species among tested infants has been looked into. Thirty two strains of lactobacilli were included in this study. The given strains were previously isolated from the fecal samples of 6 infants between 1-19 months of age. They were examined through 14 carbohydrate fermentation tests, growth ability at different temperatures and in the presence of different concentrations of NaCl. Cell and colony morphology were assessed as well. The examined strains were identified as L. acidophilus (12 strains), L. plantarum (9 strains), L. rhamnosus (7 strains), L. paracasei (3 strains) and L. fermentum (1 strain); 2 strains remained unidentified. Accordingly L. acidophilus was the most predominant species among the tested samples. Some biochemical differences were observed among the strains of L. acidophilus group and some morphological peculiarities were obtained among the strains of L. paracasei and L. rhamnosus in comparison to the typical strains of L. casei group. These differences revealed the necessity of application of complementary molecular methods for clear identification of examined Lactobacillus strains.

Keywords: Lactobacilli, fecal flora, phenotypic techniques.

Development and Evaluation of a Real–Time Quantitative PCR Assay for Detection and Enumeration of Pathogenic Yeast in Dairy Products

Hiroshi Makino1,2, Junji Fujimoto1, and Koichi Watanabe1
1 Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan
2 Yakult Honsha European Research Center for Microbiology, ESV, Technologiepark 4, 9052 Gent-Zwijnaarde, Belgium

Yeast contamination is a big problem in the food industry as a cause of spoilage. Moreover, some yeast species produce mycotoxins that can cause a range of pathologies, including gastroenteritis and cancer. We have developed a real-time quantitative PCR (qPCR) assay to directly detect and quantify nine pathogenic yeast species (Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Clavispora lusitaniae, Filobasidiella neoformans, Issatchenkia orientalis, Trichosporon asahii, and Trichosporon jirovecii) in dairy product samples to provide producers with a rapid and sensitive method to detect and prevent spoilage thereby ensuring safety. We designed six primer pairs to detect the yeasts and demonstrated their specificity. The qPCR assay could accurately quantify pathogenic yeasts in an artificially contaminated dairy product. The lower detection limits for an accurate quantification of yeasts by each primer were as low as 10²cells/ml. qPCR with the primer pairs we designed, was very sensitive and will allow producers to enumerate contaminating yeasts and identify whether they are pathogenic or not, in only 4 to 5 h. This assay can easily be extended to other food items and to a variety of food-monitoring initiatives.

Keywords: yeast, pathogenic yeasts, real-time quantitative PCR, dairy product, specific primer.
Discrimination of bacteria using optic fiber-based in situ synchronous fluorescence spectroscopy of colonies

Leriche Françoise

| Buenos Aires, Argentina | Buenos Aires, Argentina |

Bourdaj Jean-Louis

| Buenos Aires, Argentina | Buenos Aires, Argentina |

Boubellouta Tahar

| Buenos Aires, Argentina | Buenos Aires, Argentina |

Tourkya Belal

| Buenos Aires, Argentina | Buenos Aires, Argentina |

Methods:

- In the field of medical, environmental or food analysis spectroscopic methods are gaining increasing interest. Among them, the Raman and Fourier transform (FT)-infrared spectrometers are the most finalized for the bacterial discrimination purpose. But fluorescence methods offers several inherent advantages compared to the FT-infrared for example: it is 100 to 1000 times more sensitive allowing to investigate a given molecule; while another major interest of fluorescence is the absence of signal from water. Bacteria contain several intrinsic fluorophores that emit photon following excitation in the ultraviolet region. Trytophan, phenylalanine and tyrosine are some of the most common fluorescent molecules. The nucleotides could also fluoresce, but their quantum yields are about 100-times lower than the quantum yields of tryptophan. In addition, several enzymes or cofactors, such as reduced nicotinamide adenine dinucleotide (NADH) and riboflavin being the most prominent examples, exhibit pronounced native fluorescence after excitation set at 320 nm and 380 nm, respectively. In the case of colonies on agar plates, bacterial populations are highly heterogeneous in terms of physiologic state, and genotypic and phenotypic status and are embedded in complex polysaccharide matrices. It is probable that numerous intrinsic fluorophores co-occur, with overlapping spectra, causing a loss of information when analyzed at one set excitation wavelength. That's why we explored the potentialities of synchronous scanning fluorescence spectroscopy (SyF). According to this technique, both the excitation and emissions monochromators are scanned simultaneously in such a manner that a constant wavelength interval is kept between emission and excitation wavelength (λe). Using suitable λe and step analysis, SyF reduces spectral overlapping by narrowing spectral bands and simplifying spectra. This technique is very useful for the study of mixtures of fluorescent compounds. It is largely used in the fields of oil, pharmaceutical, and specific aromatic hydrocarbon analysis but has never been used for bacterial analysis to our knowledge.

This work presents the application of the method for Pseudomonads characterization, which form one of the most adaptative flora and present the highest phylogenetic and genotypic diversity so far depicted. The reference species were selected in order to cover representatives of phylogenetically unrelated taxa (*Burkholderia*, *Xanthomonas*, *Burkholderia* and *Stenotrophomonas*), and, within the genus *Pseudomonas*, relatively unrelated (*P. stutzeri* versus *P. chlororaphis*) as well as related species e.g. *P. chlororaphis*, *P. fragi*, *P. lundensis* and *P. taetrolens*. Several biotypes of a same species were also tested (*P. putida*: 3 strains, *P. fluorescens*: 4 strains, *P. fragi*: 2 strains, *P. chlororaphis*: 2 strains, *P. stutzeri*: 2 strains, *P. syringae*: 2 strains, *S. enteritidis*: 2 strains).

Synchronous fluorescence spectroscopy was successfully developed coupled with acquisition of spectra directly from colonies on agar plates using an optic fiber. The variance analysis has shown an excellent repeatability of the results, but also no significant effects of “the optical fibre position in the colony” nor of the incubation time before reading (between 48 and 72 hours). Sensitivity and selectivity reached 100% for bacterial discrimination at the genus, species or subspecies level.

The method appears as a very reliable tool for a taxonomic purpose since our results are in agreement with the generally admitted rRNA and DNA bacterial homology grouping but they also bring out additional information about strain relatedness.

Keywords: Fluorescence spectroscopy, synchronous, Pseudomonades, Optical fibre, chemometrics, bacterial traceability.

Effect in vitro of lactic acid bacteria isolated from guirra sheep against Salmonella spp

C.M. Amorocho Cruz, J. García Hernández, Y. Moreno Trigos, A. Jimenez Belenger, M.A. Ferrús Pérez, M. Hernández Pérez

Departamento de Biotecnología, Universidad Politécnica de Valencia, Camino de Vera, 14, 46022 Valencia, Spain.

Salmonella is food borne pathogen associated with processed poultry and may cause severe illness as inflammation in ileum and colon and even death in human. *S. enteritidis* can grow substantially in fermented milks because they have the ability to adapt and proliferate between pH 2 and 4. It invades enterocyte-like Caco-2 cells, Peyer’s patches and M cells of the small intestine are the first to be invaded. There are experiences about the role of lactic acid bacteria in the inhibition of growth, prevention and treatment of gastrointestinal disorders for *S. typhimurium* and *S. enteritidis*.

Lactic acid bacteria is present in human intestinal tract and in different environments as milk, meat, vegetales, fermented products, etc. “Guirra” sheep is a animal indigenous from Valencia, in Spain. Guirra’s milk seems to contain Lactic Acid Bacteria (LAB) with probiotic potential.

Objective: To determine “in vitro”, antimicrobial effects of lactic acid bacteria isolated from “guirra” sheep milk on *S. typhimurium* and *S. enteritidis* strains.

Methods: 131 strains isolated of sheep, were identified by CH50 API system. Four strains of *Salmonella* genus of different sources (reference, clinical, food and faeces) were used for the antimicrobial assays. Inhibitory activity was assayed both, with agar discs containing lactobacilli plated on a *Salmonella* culture plates and with “well test” method by adding 50 μl of the lactic acid bacteria MRS broth culture, without cells, in wells performed on *Salmonella* plates.

Results: Lactic acid bacteria strains isolated from Guirra’s milk were identified as *L. acidophilus*, *L. brevis*, *L. delbrueckii*, *L. lactis*, *L. paracasei paracasei*, *L. pentosus*, *L. plantarum*, *L. rhamnosus*, *Lc. lactis*, *Lc. raffinolactis*, *Pediococcus pentosaceus* and *Leuconostoc*. Nineteen out of 131 isolated strains showed inhibitory activity. The antimicrobial capacity of each isolate depends on the method used and the *Salmonella* strain tested. Antibiotic resistant *Salmonella* strains were also less sensitive to lactic acid bacteria inhibitory effect.

Keywords: Lactic acid bacteria, *S. typhimurium*, *S. enteritidis*, antimicrobial activity.
Effect of methyl-2-benzimidazol carbamate and physicochemical factors on the growth and ochratoxin A production by Aspergillus ochraceus in bee pollen medium

M. A. García Esparza1, Eva M. Mateo2, F. M. Valle-Algarra2, R. Mateo-Castro2, M. Jiménez2

1Departamento de Química, Bioquímica, Biología Molecular y Microbiología. Universidad CEU Cardenal Herrera, Avda. Senamiro s/n, 46113 Monzada, Valencia, Spain.
2Departamento de Microbiología y Ecollogía. Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.

Bee pollen is a natural, highly appreciated food product due to its high content of proteins and free amino acids. It also contains carbohydrates, lipids, including fatty acids and sterols, vitamins and minerals. It is usually included in the diet of highly exigent consumers.

The natural mycobiota occurring in bee pollen and production of mycotoxins in this substrate was previously studied. It has been reported that some fungicides influence either positively or negatively the growth of mycotoxins. The aim of this study was to examine the efficacy of the fungicide methyl-2-benzimidazol carbamate (carbendazim) to control mycelial extension of an ochratoxigenic strain of Aspergillus ochraceus and its effect on ochratoxin A (OTA) production by that strain in bee pollen medium. The effect of different fungicide doses (0.01 – 5 mg/l) at water activities (aw) ranging from 0.99 to 0.94 was studied.

The strain of A. ochraceus was deposited at the collection of the Department of Microbiology and Ecology, University of Valencia (Spain) (ref. Aso2) and at the Spanish Collection of Type Cultures (CECT, University of Valencia, Spain) (ref. CECT 20510), where its identity was confirmed. A solid medium containing 2% bee pollen, water and agar was used in this study. Cultures were maintained at 25°C for two weeks and mycelia extension rates were measured over time. Lag phase for growth was considered as the time to reach a colony 5 mm diameter. For each aw-value and fungicide dose, five Petri dishes were prepared and two right-angled diameters of the colonies were randomly chosen and measured every day until the colony filled the whole dish or the cultures were analysed for OTA by liquid chromatography with fluorescence detection.

Lag phases lasted two days at fungicide doses ≤ 2 mg/l regardless of the aw-value. The highest lag-times (6 – 7 days) were observed at 5 mg/l and 0.98 aw. They decreased to 3 – 4 days at 5 mg/l and 0.96 aw. No growth was observed in cultures at 5 mg/l and 0.99 aw.

The growth rate of A. ochraceus decreased at fungicide concentration > 2 mg/l. The highest growth rate was observed at 0.98 aw. OTA production in cultures was studied as a function of aw and fungicide concentration. The highest OTA level was found at 0.05 mg/l and 0.99 aw. Addition of carbendazim at the levels assayed inhibited OTA production in cultures at 0.96 and 0.94 aw. However, at 0.99 and 0.98 aw, OTA was detected only at carbendazim doses ≤ 2 mg/l.

Keywords: Ochratoxin A; carbendazim; Aspergillus ochraceus

Acknowledgements: the authors wish to thank financial support from FEDER and Spanish Government “Ministerio de Ciencia e Innovación” (Project AGL2007-66416-C05-01/ALI, and two research grants).

Effect of pure and mixed cultures of the main wine yeast species on grapemust fermentations

I. Andorrà1, M. Berradre2, N. Rozés1, A. Mas1, J. M. Guillamón3* and B. Esteve-Zarzoso1

1 Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili. Marcel.lí Domingo s/n, 43007, Tarragona, Spain
2 Laboratorio de Alimentos, Departamento de Química, Facultad Experimental de Ciencias, Universidad del Zulia, Estado Zulia, Venezuela
3 Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), P.O. Box 73, E-46100 Burjassot, Valencia, Spain

The non-Saccharomyces species were considered to be of secondary significance or undetectable to the wine process. However, this trend is changing. In a recent review, Fleet (2008) discussed the possibilities of using yeast other than those in the genus Saccharomyces for future wine fermentations and the commercial viability of mixed cultures. These species present a great potential to introduce appealing characteristics into wine improving its organoleptic quality. The major non-Saccharomyces yeast present during alcoholic fermentation is Candida zemplinina and Hanseniaspora uvarum. Although a clear reduction in the population size of these species happened throughout wine fermentations, several quantitative ecological studies indicated that its growth was not completely suppressed, either in spontaneous or in inoculated fermentations (Hierro et al., 2006; Hierro et al., 2007; Andorra et al., 2008). Consequently, the impact of non-Saccharomyces yeasts on wine fermentation cannot be ignored. They introduce into the process an element of ecological diversity that goes beyond Saccharomyces species and they require specific research and understanding to prevent any unwanted consequences they might cause or to exploit their beneficial contributions (Fleet, 2008).

Thus, mixed inoculation between non-Saccharomyces and S. cerevisiae yeasts are of interest for the wine industry for technological and sensory reasons. We have analysed the effect of mixed inoculums of these main non-Saccharomyces species and S. cerevisiae upon the fermentation performance, on the amino acid consumption, volatile compound and acetic organic production in Macabeo fermentation, as well as the interactions among the different microorganisms involved. Sterile must was fermented, this were performed in triplicates in six conditions: 3 pure cultures of S. cerevisiae, Hanseniaspora uvarum and Candida zemplinina and the mixtures of H. uvarum:S. cerevisiae (90% and 10%), C. zemplinina: S. cerevisiae (90% and 10%) and H. uvarum:C. zemplinina: S. cerevisiae (45%, 45%, and 10%).

In the fermentations studied, the presence of non-Saccharomyces yeasts slowed down the fermentations, H. uvarum was the species which presented the slowest rate of fermentation and only pure H. uvarum fermentations were unable to finish the fermentation. We have observed the ability of our selected strain of C. zemplinina being able to finish the alcoholic fermentation in a reasonable time and in the mixed fermentations, the proportion between S. cerevisiae and the non-Saccharomyces yeasts being preserved until mid fermentation, when the levels of S. cerevisiae were in the 106 cells/ml range. The only difference with the quick imposition of the C. zemplinina strain was in the inoculated population, which was 10 times lower than the regular inoculation practice. Furthermore, the ethanol production do not seem to have a great influence by the yeast involved on fermentation, with the exception of Hanseniaspora which can not finish the sugar content. The non-Saccharomyces yeast produced higher levels of glycerol and acetic acid. Mixed fermentations produced higher consumption of available amino acids as well as higher complexity in the synthesis of volatile compounds. However, the amount of acetic acid well above the admissible levels compromises an immediate application of mixed cultures.

Keywords: Saccharomyces, Candida, Hanseniaspora, wine fermentation, volatile compounds, amino acids.

References:

Effect of the inoculum characteristics on the first stages of a growing yeast population in beer fermentations by means of an Individual-based Model

X. Porte1, C. Prats3, M. Silber1 and M. Ginovaro1

1Department of Agrifood Engineering and Biotechnology, Technical University of Catalonia, Edifici D4, Estave Terres 8, 08860 Castelldefels (Barcelona), Spain
2Department of Physics and Nuclear Engineering, Technical University of Catalonia, Edifici D4, Estave Terres 8, 08860 Castelldefels (Barcelona), Spain
3Institute of Food Research, Norwich Research Park Colney, Norwich, UK
4Department of Applied Mathematics III, Technical University of Catalonia, Edifici D4, Estave Terres 8, 08860 Castelldefels (Barcelona), Spain

The budding yeast Saccharomyces cerevisiae has a limited replicative lifespan. The cell mass at division is unequally partitioned between a bigger, old parent cell and a smaller, new daughter (virgin) cell. Industrial fermentation performed to produce beer is the unique within the alcoholic beverage industry in that the yeast is maintained and reused a number of times. At the end of fermentation a portion of the yeast is ‘cropped’ from the fermentation vessel for ‘serial repitching’. Typically this is the centre-top portion of the yeast crop, potentially comprising middle-aged and virgin cells. However, increasingly yeast is removed early to decrease process time via a ‘warm’ or ‘early’ cropping regime that this facilitates removal of the lower portion of the crop, comprising a greater proportion of aged cells. Harvesting yeast may therefore select a population with an imbalance of young and aged individuals. In fact, the output of a bioprocess is strictly dependent on the physiology of each single cell in the population, on the distribution of the cells throughout the cycle and on the effects of environmental conditions on the population.

Unlike continuous models, Individual-based Modelling (IBM) is a bottom-up approach, meaning that it considers each microbe as an individual, a unique and discrete entity, with more than one characteristic that changes throughout its life. IBM are in an increasingly established approach to diverse microbial communities and their use is also becoming more widespread in food microbiology. Of those available we have used INDISIM, the simulator developed by our group, and which has already been used to study different features of bacterial growth, providing an ample pool of interesting results [1]. INDISIM-YEAST constitutes the adaptation of INDISIM to study the specific characteristics of the yeast cell cycle and to deal with yeast populations growing in liquid media [2]. The aim of this contribution is, by means of individual-based simulations of INDISIM-YEAST, to explore the effects of inoculum size and cell genealogical age on the dynamics of the yeast fermentation, focusing on: i) the lag phase and the first stages of yeast population growth, ii) the rate of glucose uptake and ethanol production, and iii) biomass and genealogical age distributions, in order to be able to integrate these results and to improve the representation of yeast population and its temporal evolution in fermentation. This simulator provides, from a previous simulation of a yeast fermentation, a complete virtual characterization of a pre-inoculum to be used in this study. For instance, we remove the inoculum, in the ensuing simulations, combining different inocula sizes (i.e., from 1 to 1000 cells) and genealogical age distributions (i.e., virgin (daughter) cells with 0 cells, young parent cells with 1 to 5 cells and older parent cells with more than 5 cells). Fifty independent simulations of each combination were performed, for a new inoculum with specified characteristics from the pre-inoculum at each time. All these simulation results show that there is an influence of these initial features of the inocula on the overall metabolic characteristics, which are usually emblematic of the population at the beginning of fermentation.

Acknowledgements
After careful analysis of the results obtained, we conclude that the use of a yeast inoculum with a good biomass and genealogical age distribution is essential for a successful fermentation. Therefore, a good yeast inoculum should be used in order to obtain a high-quality beer. In addition, the results obtained in this study could be applied to the industrial production of beers.

References
Effects of oxidative stress on viability and selected characteristics of probiotic bacteria

Mariam Farhad1, K. Kailasapathy1 and M. Phillips1
1Probiotics and encapsulated foods research Unit
Centre for Plant and Environment, School of Natural Science, UWS, Australia.

Abstract
Probiotic bacteria as an alternative to antibiotics are gaining popularity worldwide (Mattila-Sandholm et al., 2002). Large amount of probiotic bacteria has been supplemented with dairy products and nutraceuticals and the biggest hurdle for maintenance of bacterial viability in oxidative damage as a result of exposure to high oxygen environment. The aim of this research is to screen probiotic bacteria for oxidative stress on the basis of physiological, biochemical and cellular characteristics and to identify the key physiological traits responsible for their survival at oxygen-rich atmosphere.

The RBGR (Relative bacterial growth ratio) study was performed for the selection of four strains (oxygen sensitive and resistant strains) from total of eleven probiotic bacterial strains. Confocal laser scanning microscopy (CLSM) was used for the determination of variation in concentration of viable bacterial cells, using Bac-light LIVE/DEAD viability kit, the results indicated that, 38% of Lc1 (O2 sensitive), 12% of DR20 (O2 resistant), B. lactis Bb12 (O2 resistant) strain observed 52% and 18% of B1912 (O2 resistant) cell growth was reduced when comparing the treated (21% O2) to the control (0% O2) bacteria.

The survivability in aerobic conditions is considered to be a significant factor that influences physiological activities of probiotic bacteria. Up to date there is limited research that utilizing proteomics to observe protein expression changes due to the oxidative stress from probiotic bacteria. From proteomic study it has been found that, the three probiotic bacterial strains showed varying results in protein expression because of oxygen treatments on the cells. Both Lc1 and DR20 expressed three proteins by 4-fold or more and 138 proteins by 2-fold or more were either over up regulated or down regulated. Three proteins that were differentially expressed by 3-fold or more were identified by MALDI-TOF MS/MS and the MASCOT and BLAST databases. Also, 52 proteins were up regulated by 4-fold or more and five proteins were down regulated by 4-fold or more when comparing the control (21% O2) to the treated (0% O2) B. infantis strain. Nine and twelve up regulated and down regulated proteins, respectively, were subsequently identified by MALDI-TOF MS and the MASCOT and BLAST.

In addition, probiotic characteristics such as, acid and bile tolerance, hydrophobicity assay and cell adhesion capacity was measured to evaluate the physiological basis of oxidative tolerance. This data may more helpful for the adaptation of oxidative stress resistant in probiotic bacteria and potentially useful to improve viability in fermented dairy products.

Keywords: Probiotic bacteria, Oxidative stress, Physiological.

References

Evaluation of the activity of different fungicides against ochratoxigenic Aspergillus spp. in barley-based medium

Eva M. Mateo1, A. Medina1, F. M. Valle–Algarra1, F. Mateo1, M. A. García Esparza1, M. Jiménez1
1Departamento de Microbiología y Ecología, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
2Departamento de Química, Bioquímica, Biología Molecular y Microbiología. Universidad CEU-Cardenal Herrera, Avda. Seminario s/n, 46113, Moncada, Valencia, Spain
3Instituto de la Tecnologías de la Información y de la Comunicaciones Avanzadas (ITACA), Universidad Politécnica de Valencia. Camino de Vera, 14, 46022, Valencia, Spain

Barley is a nutritious cereal that contains carbohydrates, protein, vitamins and minerals among other nutrients. It is the fourth largest cultivated cereal crop in the world. In 2007/2008 crop the world total production of barley was 133 millions metric tons. Fungal species can grow in barley and produce great losses in crops. Some of them can produce mycotoxins that contaminate grain and can be hazardous to consumers. Two Aspergillus sections are known to produce ochratoxin A (OTA). They are the section Circumdati (the Aspergillus ochraceus group) and the section Nigri (Aspergillus carbonarius and Aspergillus niger aggregate). In Spain, A. carbonarius and A. ochraceus are the most frequently isolated ochratoxigenic species in barley. Application of chemical fungicides is the most widely used strategy to control fungal infection in cereal crops.

A study on the application of three fungicides (mancozeb, copper oxychloride and sulfur) on the growth of ochratoxigenic strains of A. carbonarius and A. ochraceus was performed in barley-based medium cultures. Water activity was 0.97 and temperatures were 15 or 25ºC. Lag phases and growth rates were determined for each fungicide in these conditions. A statistical treatment of the data was carried out.

Mancozeb inhibited fungal growth at 30 mg/l while at 10-20 mg/l and 15ºC it provided lag phases > 24 days. Copper oxychloride at 15ºC proved inhibitory at 500 mg/l but at 25ºC it did not delay fungal growth with respect to controls without fungicide. Sulfur proved inhibitory or provided large lag phases at 3-8 g/l at 15ºC. However, at 25ºC and up to a dose of 8 g/l growth of the strains was unaffected. The three fungicides were more effective (i.e. produced shorter lag phases and higher growth rates) at 25ºC than at 15ºC. Mancozeb was more effective than copper oxychloride, which was more effective than sulfur. The response of both isolates to each chemical was similar or different depending on the dose.

The efficacy of these fungicides on the growth of both species of Aspergillus in barley-based medium has not been reported previously.

Keywords: barley-based medium; fungicides; Aspergillus spp

Acknowledgements: the authors wish to thank financial support from FEDER and Spanish Government “Ministerio de Ciencia e Innovación” (Project AGIL2007-66416–C02-01/ALI, and two research grants).
Evaluation of the persistence of viable *Listeria monocytogenes* cells in chlorinated water

Moreno, V., Sanchis, M.C., Beltrán, L., González, A., and Ferrús, M.A.

Background. *Listeria monocytogenes* is the causal agent of one of the most important foodborne diseases worldwide. *L. monocytogenes* is widely distributed in the natural environment. Being tolerant to adverse conditions such as extreme pH, high temperature or nutrient starvation, it can be found in soils, water, effluent and foods (Liu, 2006). The extended distribution of *L. monocytogenes* in the environment and its ability to persist in food-processing environments cause the frequent contamination of foods, which represents the main source of human infection. Our objective was to assess the effect of chlorine water treatment on *L. monocytogenes* and to study this organism’s survival strategies in chlorinated water.

Materials and Methods. *Listeria monocytogenes* NCTC 930 was inoculated into chlorinated water with different concentrations of free chlorine (0.07, 0.16 and 1 mg/L). Samples were aseptically removed after 10s, 1 min, 5 min, 2h, 16h and 24h. RNA content, 16S rRNA (FISH), DNA content (16S rDNA and hlyA gene), culturability and substrate responsiveness combined with FISH detection (DVC-FISH assay) were assessed.

Results. *L. monocytogenes* cell culturability was lost at 2h in drinking water with 0.16 and 1 mg/L of free chlorine. Number of *L. monocytogenes* cells with membrane damage was increased after 1 min in contact with 1 mg/L chlorinated water, but viable cells were detected until 2 hours. Viability was conserved for more than 16 hours at minor chlorine concentrations. Both, the 16S rDNA gene amplicon and the hlyA fragment specific for *L. monocytogenes* were detected after a 24-hour chlorine exposure. The analyzed bands intensity was constant throughout. 16S RNA levels were constant during chlorine treatment, thus chlorine-killed bacteria are unlikely to involve ribosome degradation.

Combining modified DVC and FISH techniques can rapidly and specifically detect and identify viable *L. monocytogenes* cells in water samples. Some normal disinfection practices used in drinking water treatment (free chlorine lower than 0.2 mg/L) proved to be inadequate to control this organism what could pose a public health risk.

Fluorescence in situ hybridisation for direct quantification of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentations

I. Andorra³, M. Monteiro³, B. Esteve-Zarzoso², H. Albergaria¹

¹Unidade Bioenxeitza, LNEG, Estraída do Paço da Lumiar, 22, 1649-038 Lisboa, Portugal
²Universidad Rovira i Virgili, Dept Biosci & Biotech, Fac Enologia, Tarragona 45007, Spain
³Estudante-Intern, Dept Enologia, Fac Enologia, Tarragona 45007, Spain

Both morphophysiological and molecular methods have been used to monitor the growth population dynamic of the indigenous yeast populations during wine fermentations. While classical methodologies are laborious, time-consuming and somewhat unreliable, genotyping methods, such as DGGE, RFLP, RAPD, MSP-PCR, electrophoretic karyotyping and optimized interdela sequence analysis, have been successfully applied to differentiate yeast species and strains.

Using plate-depending methods, spontaneous wine fermentations show a typical yeast growth pattern where the less fermentative non-*Saccharomyces* species grow during the early stages, being the final stages invariably dominated by the alcohol-tolerant *S. cerevisiae* strains. However, the recent use of direct molecular methods (e.g. DGGE, qPCR) have allowed detecting yeast species throughout the fermentation process that were previously unnoticed by plate-depending methods (Andorra et al. 2008).

Fluorescence in situ hybridisation (FISH) is a molecular method that uses fluorescein-labelled DNA oligonucleotide probes targeted to the complementary sequence of the ribosomal RNA. This technique combines the direct visualisation of the cells with the reliability of molecular methods. In wine-related applications, it has been used both for the rapid monitoring of lactic acid bacteria (Blasco et al., 2003) and for the detection of the slow growing yeast *Dekkera bruxellensis* (Stender et al., 2001). In a recent study, Xufre et al (2006) applied this method, in combination with plate counts, to follow the evolution of yeast populations in two winery fermentations of white and red grape musts. In both cases, a high diversity of non-*Saccharomyces* yeast species was detected, including *Candida stellata*, *Hanseniaspora uvarum*, *H. guilliermondii*, *Kluyveromyces marxianus* and *K. thermotolerans* and *Torulaspora delbrueckii*.

In the present work, FISH probes, specifically designed for *S. cerevisiae* and *H. guilliermondii* and labeled with FITC, were used to quantify the cell density of each yeast species during the course of single and mixed fermentations. FISH methodology was applied to daily samples and hybridised cells enumerated on polycarbonate filters using an epifluorescent microscope. Cells were doubled stained with DAPI and with FITC, which allowed measuring the efficiency of the FISH hybridization. Culture-independent cell density profiles obtained from both DAPI stained-cells counts and FISH-probes hybridized cells were also compared with viable cells profiles obtained from the classical plate-counting method.

Keywords: fluorescence in situ hybridisation; direct monitoring of yeast population evolution; wine fermentations;

References:

Fungi associated with coffee berries in different ripening stages and submitted to five bagging times

Sára Maria Chalfoun1, Carolina Lima Angelico2, Carlos José Pimenta3, Yasmin Chalfoun1, Marcelo Cláudio Pereira1, Sabrina Carvalho Bastos2,3, Lucas Silveira Tavares1

1Agriculture and Livestock Research Institute of Minas Gerais State /CRSM, P.O. Box 176, Federal University of Lavras, Minas Gerais State, Zip Code: 37200-000, Lavras – MG, Brazil.
2Agronomy engineer DSc - Department of Food Science, Federal University of Lavras, Minas Gerais State, P.O. Box 3037, Zip Code: 37200-000, Lavras – MG, Brazil.
3Teacher of Department of Food Science, Federal University of Lavras, Minas Gerais State, P.O. Box 3037, Zip Code: 37200-000, Lavras – MG, Brazil.
4Federal University of Lavras, Minas Gerais State, P.O. Box 176, Federal University of Lavras, Minas Gerais State, Zip Code: 37200-000, Lavras – MG, Brazil.
5Agriculture and Livestock Research Institute of Minas Gerais State /CRSM, P.O. Box 176, Federal University of Lavras, Minas Gerais State, Zip Code: 37200-000, Lavras – MG, Brazil.
6Nutritionist – DSc on DCA/ UFLA, teacher UFLA - Department of Food Science (DCA), Mailbox 3037, CEP 37200000, Lavras MG.
7Food Engineer – MSc on DCA/ UFLA.

Coffee berries were harvested and separated according to different ripening stages (green/cane green, cherry, overripe/dry and fruit mix), then stored in braided polyethylene bags and submitted to five bagging times which varied between 0, 1, 2, 3 and 4 days. As each bagging time ended, we collected samples and submitted them to microbiological analysis in order to determine the dominant fungi genera associated with the berries and to observe the behavior of these microorganisms in the fermentation processes. The results demonstrated that the bagging process caused variations in diversity and in intensity of fungal microbiota for each ripening stage, and also that a longer bagging period favored the development of a yeast in the cherry stage that inhibited filamentous fungi growth. The overripe/dry stage demonstrated a greater occurrence of fungi section Circumdati and Nigri. All isolates of section Circumdati were identified as Aspergillus ochraceus Wilhelm, which are producers of ochratoxin A, and the amount of sclerotia varied according to the intensity of fluorescence. When the toxigenic potential of the isolates was tested by the Plug Agar technic, Aspergillus niger var. niger and Aspergillus flavus failed to produce fluorescence. In the in vitro test the yeast did not affect the development of isolates of Aspergillus niger var. niger; yet it reduced mycelial growth of Aspergillus ochraceus.

Keywords: coffee, fungal microbiota, fermentation, ochratoxin A.

Fusarium spp. occurrence in feeds and cereal grains (Portugal-2007)

Inês Almeida1, H. Marina Martins1, Marta Marques1 and F. Bernardo1

1DIRECÇÃO GERAL DE VETERINÁRIA (DGV)- Largo da Academia Nacional das Belas Artes, nº2- 1249-105 Lisboa, Portugal
2INRB-LNIV, Estrada de Benfica 701, 1500-011 Lisboa
3MICROBIAL BIOCHEMISTRY GROUP ITQB-UNL - Av. da República Estação Agronómica Nacional, 2780-157 Oeiras

Fusarium spp. is an extended genus of moulds belonging to Ascomyceta group. Some of these moulds play a negative role on plant health and in the preservation of nutritional value of crops and feeds during its primary production and commercial life. Its growth in those matrixes allows to nutrients losses and may enhance to toxicological effects. Fusarium spp. are moulds referred as one of the most problematic on feed safety. Growth of some Fusarium spp. strains in crops enhance an huge range of mycotoxins, with a special reference to trichothecenes, zearalenone, fumonisins, moniliformin, Toxin T2 and H-T2 toxin. These natural toxicants pose a threat to human and animal health; even for plant health they have also been found hazardous. The aim of this paper is to highlight the hygienic and sanitary meaning of the occurrence of Fusarium spp. in cereal grains used for animal nutrition (corn, oats and barley) and compounded animal feeds (poultry, swine and bovine) traded in Portugal. Fusarium spp. were searched and enumerated in 295 samples of feed and cereal grains during 2007. Samples were analysed using an internal official mycological method, performed in a duplicated procedure. Poultry feed (N=50) showed Fusarium contamination in 15 sample (30.0 %). Samples of swine feed (N=75) revealed the presence of Fusarium in 45 samples (60.0 %). Bovine feed (N=35) had that mould genera in 12 samples (34.3 %). In 37 samples of corn, Fusarium were identified as Aspergillus ochraceus Wilhelm, which are producers of ochratoxin A, and the small number of positive granulated feeds showed a very low level of contamination with Fusarium spp. Contamination levels of feeds are affected by the percentage of incorporation of each cereal and by the technological procedure: hot treatments (granulation). Although the low number of mould cells present in feed do not excluded the possibility of the presence of its toxic metabolites in feed, because these biological toxicants are chemical compounds are more resistant to thermal treatments than fungi cells.

Keywords: Fusarium spp; feed; contamination
Genetic diversity of *Streptococcus thermophilus* strains isolated from plant sources

NCDC LAB, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana-132 001, India

To date, the search for starter cultures has relied on surveying a large number of isolates, preferably selected from natural sources as the use of limited starters over the years limited their biodiversity. So in order to add new strains, study their heterogeneity and establish their habitat, 72 isolates of *S. thermophilus* have been isolated from vegetables, fodder crops and fermented cereals from 15 different regions of India. The isolates displayed the major phenotypic characters of *S. thermophilus* and also genotypically confirmed by species specific PCR using *lacZ* gene.

Thirty isolates were selected each representing different regions and kind of sample which included twenty five isolates ... 16S rDNA gene. Except 6 isolates viz., UUtCt (82%), UKSp2 (88%), UKFM1 (85%), UKD3 (87%), UKD2 (98%), UKCF (95%), the partial sequencing of the 16S rDNA of remaining isolates demonstrated high similarity (99-100%) with 16S rDNA sequence of *S. thermophilus* available in the NCBI GenBank database (FJ172679, FJ172680, FJ667758-FJ667772, FJ982785-FJ982797). Phylogenetic analysis of 16srDNA sequences resulted in 6 major clusters by UPGMA using Mega software (Version 4.1). The genetic distance of UUtCt and UKFM1 is found to be more than the other genotypes. Majority of the isolates were found to be moderate acidifiers i.e., capable of producing 0.5 to 0.6% lactic acid (LA) after 6h and fast acidifying activity (>0.6% LA) was found in only 2 isolates, UKFc and UKCu1. Among 11 flavor exhibiting isolates, 10 were found to be plant isolates and 21 were capable of producing capsaicin polycyclicaridir. In contrast to commercial strains, 9 were known to be uscease negative and 5 isolates were galactose fermenters. Only plant isolates viz., UKSp1, UMbCt, UUtCt2, UHrPt and URjCA were known to utilize galactose sugar which is a desirable technological trait. Majority of the isolates exhibited weak proteolytic activity ranging from 1.58 to 16.03 μg of leucine mL⁻¹ which is in accordance with *S. thermophilus* reference strains. Yogurt prepared using *S. thermophilus* plant isolates and standard *Lb. delbruckeii ssp. bulgaricus* (NCDC 09) was evaluated for sensory attributes received acceptable scores equivalent to that of reference dairy cultures. Hence, plant sources can also be a source of interesting new strains with specific functional properties, for their potential use in development of new starter cultures. Optimal exploitation of them requires further more detailed studies of their technological properties and performance in small-scale food fermentations.

Keywords: Isolates from plant sources; *Streptococcus thermophilus* characterization; 16srDNA partial sequencing; technological properties; yogurt starter

Glucosidases of *Lactobacillus brevis* and *Oenococcus oeni* for aroma release in wine

H. Michlmayr¹, N. M. Barreira Braz Da Silva², C. Schümann²,³, K. D. Kulte²,³ and A. M. del Hierro⁴
¹BOKU-University of Natural Resources and Applied Life Sciences, Vienna
²DFST, Food Biotechnology, Muthgasse 18, A-1190 Vienna, Austria.
³Escola Superior Agrária de Bragança, Departamento de Ciências Básicas Campus de Santa Apolónia, Bragança, Portugal.
⁴Applied Biocatalysis Research Centre, Petersgasse 14, A-8010 Graz, Austria.

Lactic acid bacteria (LAB) are responsible for olfactory changes in wine during malolactic fermentation (MLF). A side characteristic of MLF is the release of grape derived aroma compounds from their glycosylated precursors by β-glycosidase activities of these bacteria. Therefore, several LAB strains were isolated from wine and malolactic starter cultures. Screening for glycosidase active cells was performed on plates with 4-methylumbeliferyl-β-D-glucopyranoside (β-MUG) and 5-bromo-4-chloro-3-indolyl-β-D-glucopyranoside. Microscopic identification, Gram staining, catalase tests and restriction analysis of the amplified 16s rDNA were performed. The identified *O. oeni*, *L. hilgardii* and *L. brevis* strains were glycosidase positive. The *L. brevis* strains showed β-glycosidase, β-xylolysidase and α-arabinosidase but not α-rhamnosidase activity. The β-glucosidase of a *L. brevis* strain with high intracellular activity was purified and characterized. The pure enzyme is a homotetramer of 330 kDa. The Km values for *p*-nitrophenyl-β-D-glucopyranoside and *p*-nitrophenyl-β-D-xylopyranoside were 0.22 mM and 1.14 mM, respectively. The β-glucosidase is partly inhibited by glucose but not by fructose. Ethanol (12.5%) increases the activity up to 200%. The β-glucosidase of a *L. brevis* strain with high intracellular activity was purified and characterized. The pure enzyme is a homotetramer of 330 kDa. The Km values for *p*-nitrophenyl-β-D-glucopyranoside and *p*-nitrophenyl-β-D-xylopyranoside were 0.22 mM and 1.14 mM, respectively. The β-glucosidase is partly inhibited by glucose but not by fructose. Ethanol (12.5%) increases the activity up to 200%. The β-glucosidase of a *L. brevis* strain with high intracellular activity was purified and characterized. The pure enzyme is a homotetramer of 330 kDa. The Km values for *p*-nitrophenyl-β-D-glucopyranoside and *p*-nitrophenyl-β-D-xylopyranoside were 0.22 mM and 1.14 mM, respectively. The β-glucosidase is partly inhibited by glucose but not by fructose. Ethanol (12.5%) increases the activity up to 200%

The protein sequence was identified by LC-ESI-QTOF-MS/MS analysis of its tryptic peptides. A similar sequence was identified in the genome of *Oenococcus oeni*. The β-glucosidase gene of *O. oeni* was cloned and expressed in *E. coli*. The enzyme displayed properties similar to the glucosidase from *L. brevis*. Both enzymes were able to hydrolyze glycosides extracted from Muskat wine.

Keywords: β-glucosidase; Lactobacillus brevis; Oenococcus oeni; wine aroma
Growth Kinetics of Biopigment Production by Thai Isolated *Monascus purpureus* in a Stirred Tank Bioreactor

S. Kongruang

Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, 1518 Pibulsongkram Road, Bangsue, Bangkok, Thailand 10800

Monascus purpureus is one of the biopigment producing fungi which its pigment can be applied in many biotechnological and food industries. The growth kinetics of biopigment productions were investigated in the liquid medium fermentation in a 5 L stirred tank bioreactor at 30 °C, pH 7 for 8 days with 100 rpm/min agitation and 20 lb/in² aeration. Thai isolated *Monascus purpureus* TISTR 3002, 3180, 3090 and 3385 were studied for color production with the nephrotoxic activity as the citrinin evaluation. Scanning spectra of the biopigment production revealed that each strain had the maximum absorptions of yellow, orange and red color at different wavelengths. TISTR 3002 produced lower amount of color than 3180 approximately 2.80, 1.37 and 2.62 times. Total color difference value between these two strains was 21.94 UA. Growth kinetics showed that the specific product formation of TISTR 3180 in the pigment productions were higher than these of 3002, which were 2.19, 6.38 and 13.12 times. For the specific substrate consumption of TISTR 3002, value was found higher than that of 3180 about 10%. Pigment production revealed that 3090 produced colors lower than that of 3385 equivalent to 1.41, 1.03 and 1.12 times. The total color difference between two strains was 47.20 UA. Growth kinetic exhibited that the specific substrate consumption of TISTR 3090 was lower than 3385 about 27%. The specific product formations of both strains were relatively the same with the values of 1.01, 0.83 and 1.25 times. TISTR 3385 had the higher pigment productivity than 3090 equivalent to 1.65, 2.06 and 1.89 times, respectively. HPLC results showed that all strains were not produced citrinin. L*, a* and b* values of the CIELAB color system for the derivative pigments of all strains were also reported.

Keywords *Monascus purpureus*; Biopigment; Growth kinetics; Citrinin

Haloarchaeal Fermentation Technology for Recovery of Nutrients from Fish-waste

I. Furtado1 and S. Geeta

1GOA UNIVERSITY, Department of Microbiology, Taleigao Plateau, Goa – India. 403203

In the coastal state of Goa - India, large fishes such as kingfish, tuna, shark, catfish and ribbon fish are sold in local markets as fish-fillets or fish-slices. The process generates fish-waste (FW) that includes substantial quantities of fish-flesh adhering to skeletal parts, skin, heads, bones besides entrails and off-cuts. Although FW is a rich source of edible nutrients, often times, can only be used as manure, because of its liability to autoxysis and putrefaction, at tropical temperatures. This paper describes a microbial fermentation process, for the conversion of raw fish waste by Haloarchaea, under high salt conditions.

Seven different Halobacteria, isolated from “Salt pans” of Goa - India and having proteolytic activity at, 15 to 25% of crude – salt, at ambient temperature (28-30 °C) were used as a consortium to ferment raw solid fish - waste (FW) to “fish-sauce”, which yielded “Fish-paste” and “Fish-hydrolysate” in ratio of (1:3.5 w/v).

The deep brown liquid - fish - hydrolysate, at pH 5, had a pleasant fruity aroma and was rich in essential amino acids, phenylanine < tryptophan < valine < tyrosine, and non-essential amino acids, namely glutamic acid, asparagine, proline and taurine. Substantial quantities of fatty acids such as undecenoic acid, linolenic acid, linoleic acid, arachidic acid, docosahexaenoic acid, terricic acid and behenolic were also present.

The devised process of “Haloarchaeal fermentation of Fish waste” is a user-friendly, hygienically clean, viable microbial-biotechnology for release and recovery of beneficial nutrients as fish-hydrolysate which in turn could be used in preparation of “Functional foods”.

Key words: Fish –waste, Haloarchaea, Fermentation, Hydrolysate, Functional –foods
Heat stress adaptation of *Escherichia coli* under dynamic conditions: effect of inoculum size and heating rate

I. Cornell1, C. E. Van Derlinden1, A. M. Cappyns2, S. Ramakers2, J. F. Van Impe1

CPMF2 - Flemish Cluster Predictive Microbiology in Foods – www.cpmf2.be

1 Biotech C - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
2 Department of Applied Engineering and Technology, Artesis University College of Antwerp, Antwerp, Belgium

Introduction and objectives. Temperature influences largely microbial behaviour and is one of the most studied abiotic stress factors. Several studies focus on the bacterial thermostolerance induced by temperature. Van Derlinden et al. (2008) observed disturbed growth curves of *E. coli* K12 MG1655 at temperatures near the maximum temperature of growth (T\text{max}). After a first growth and inactivation phase, the cell concentration increases again. This phenomenon can be explained by considering two subpopulations, i.e., a thermostable and a thermosensitive one. To further study the behaviour of *E. coli* at temperatures around T\text{max}, experiments are performed in a computer controlled bioreactor under dynamic temperature conditions. By varying the initial cell concentration and the slope of a linearly increasing temperature profile crossing T\text{max}, the microbial adaptation to heat stress is studied.

Results. Depending on the initial cell concentration and the slope of the temperature profile, the evolution of the microbial population shows three, four or five subsequent phases, i.e., an exponential growth phase, a stationary phase (when the cell concentration reaches its maximum value or when growth stops due to the high temperature), an inactivation phase, a secondary growth phase and a secondary stationary phase (see Figure 1).

Conclusions. The acquisition of temperature resistance by *E. coli* is reflected in three aspects of the experimental results. (1) The exponential growth ends when the maximal growth temperature, T\text{max}, is reached. The steeper the profile, the higher T\text{max}, except when the maximum cell concentration is attained first. (2) An analogous conclusion can be formulated for the influence of the slope of the temperature profile on the inactivation temperature, i.e., a steeper slope results in a higher temperature of inactivation. (3) Consistent with the findings of Van Derlinden et al. (2008, 2009), a secondary growth phase is observed after the inactivation of the sensitive cell population, picturing the growth of a resistant cell population. Figure 1 (right) shows that *E. coli* stills grows at the highest temperature of the profile, i.e., 65.2°C, a temperature significantly higher than the expected T\text{max}.

Acknowledgements. Research supported in part by KULeuven-BOF Projects OT/09/025 and EF/05/006 OPTEC Optimization in Engineering, and by the Belgian Program on Interuniversity Poles of Attraction, initiated by the Belgian Federal Science Policy Office. Iris Cornet is supported by the Artesis University College of Antwerp.

References

Keywords *Escherichia coli*, temperature; heat resistant; stress adaptation

Heterogeneity of heat resistant proteases from milk spoiling *Pseudomonas* spp.

Sophie Marchand2, Gonzalo Vandriese2, An Coorevits1, Katrien Coudijzer1, Valerie De Jonghe1, Koen Dewettinck1, Paul De Vos1, Bart Devreese3, Marc Heyndrickx1 and Jan De Block1

1 Institute for Agricultural and Fisheries Research – Technology and Food (ILVO-T&V), Antwerp, Belgium
2 Ghent University, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Laboratory of Food Technology and Engineering, Cooperate Links 653, 9000 Ghent, BELGIUM.
3 Ghent University, Faculty of Science, Department of Biochemistry, Physiology and Microbiology, Laboratory for Protein Biochemistry and Biomolecular Engineering, K.L. Ledeganckstraat 35, 9000 Ghent, 11 BELGIUM.

Introduction and objectives. Temperature influences largely microbial behaviour and is one of the most studied abiotic stress factors. Several studies focus on the bacterial thermotolerance induced by temperature. Van Derlinden et al. (2008) observed disturbed growth curves of *E. coli* K12 MG1655 at temperatures near the maximum temperature of growth (T\text{max}). After a first growth and inactivation phase, the cell concentration increases again. This phenomenon can be explained by considering two subpopulations, i.e., a thermostable and a thermosensitive one. To further study the behaviour of *E. coli* at temperatures around T\text{max}, experiments are performed in a computer controlled bioreactor under dynamic temperature conditions. By varying the initial cell concentration and the slope of a linearly increasing temperature profile crossing T\text{max}, the microbial adaptation to heat stress is studied.

The unexpected influence of the temperature profile on the temperature resistance of *E. coli* and the observed growth at a temperature of 65.2°C are very important for food safety and temperature treatments of microorganisms.

Acknowledgements. Research supported in part by KULeuven-BOF Projects OT/09/025 and EF/05/006 OPTEC Optimization in Engineering, and by the Belgian Program on Interuniversity Poles of Attraction, initiated by the Belgian Federal Science Policy Office. Iris Cornet is supported by the Artesis University College of Antwerp.

References

Keywords *Escherichia coli*, temperature; heat resistant; stress adaptation
Host responses to Saccharomyces cerevisiae isolates: new criteria to select safe strains

M.P. Falomir1, A. Yáñez2, C. Murciano3, S. Llopis1, T. Fernández-Espinar1, M.L. Gil1 and D. Gozalbo1

1Departamento de Microbiología y Ecología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés nº 46100 Burjassot, Spain
2Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), P. O. Box 73, E-46100 Burjassot, Spain

Saccharomyces cerevisiae strains are the most widely used yeasts in industrial food and beverage production, traditionally regarded as absolutely safe and even S. boulardii, considered as a subtype of S. cerevisiae, has been described as a biotherapeutic agent in the prevention and treatment of antibiotic-associated diarrhoea and colitis in humans. Moreover, S. cerevisiae strains can colonize the respiratory, gastrointestinal and genitourinary tracts in a saprophytic way without causing disease; however, in the last decades there is increasing evidence indicating that S. cerevisiae is responsible for superficial diseases, that are not life-threatening, although in severely immuno-compromised individuals serious systemic infection may occur [1].

Using molecular techniques to characterize S. cerevisiae clinical isolates, both S. boulardii and baker’s yeasts were identified; the link between a subset of clinical isolates and probiotic or baking S. cerevisiae strains has been confirmed by phylogenetics and metabolomics [2-4].

The association between clinical isolates and non-clinical strains points out to food and probiotic/biotherapeutic strains from Saccharomyces species as a possible origin of human systemic infections [5]. Therefore, as the reports of S. cerevisiae infections are increasing steadily, this yeast species is now considered as an emerging low virulence opportunistic pathogen rather than a non-pathogenic yeast.

We have studied the virulence and host responses to several clinical and non-clinical Saccharomyces cerevisiae isolates: two vaginal isolates (60, 61), one isolate from faeces (20), a brewer’s yeast isolate used in dietsets (D14), one S. boulardii isolate from a commercial probiotic product, and a reference natural wine yeast (ECT 10431) [6].

Hematogenously disseminated infection in a mouse model demonstrated that four isolates (all, except 20 and 10431) were able to colonize preferentially the brain, as well as kidney and spleen to a lesser extent, of immunocompetent mice. In vitro adhesion assays to epithelial and endothelial cell lines also showed an increased adherence ability of strains 60, 61, D14 and S. boulardii. In vitro cytokine production assays by RAW 264.7 murine macrophages challenged with yeasts showed a relative increased production of TNF-α in response to the 20 and 10431 strains; viability of RAW cells after coculture was similar in all cases (2-5% non-viable cells) except for 60 strain (11% non-viable cells). In vitro phagocytosis assays of yeasts by RAW cells showed that two isolates (D14 and particularly S. boulardii) were engulfed less efficiently. These results point out that S. cerevisiae isolates, from both clinical and non-clinical (dietetic and probiotic) origin, may vary in the expression of putative virulence factors contributing to their ability to develop the infectious process.

In conclusion, our results support the notion that clinical and non-clinical (dietetic and probiotic) S. cerevisiae isolates may share some properties in their relationship with the host (such as adhesion to host tissues, resistance to phagocytosis and the ability to modulate the proinflammatory response) that contribute to the infectious process [6]. These properties can be considered as new putative virulence factors that should be added to the already described (growth at 42 °C, pseudohyphal development, and production of proteases and phospholipases) [4,7]. Therefore, we propose that selection criteria for industrial strains should also include studies concerning host-pathogen interactions, such as virulence in animal models, adhesion to cell cultures, and in vitro cytokine production and phagocytosis, in order to select totally safe strains.

References

Keywords: Saccharomyces cerevisiae; virulence; adhesion; proinflammatory cytokines; phagocytosis
Inability to resuscitate viable-but-nonculturable cells of *Escherichia coli* and *Listeria monocytogenes*

D. Pinto¹, M. A. Santos¹, and L. Chambel¹

¹BioFIG – Center for Biodiversity, Functional and Integrative Genomics, Campo Grande, 1749-016 Lisboa, Portugal

Viable-but-nonculturable (VBNC) cells were identified in 1982 and since then obtained a lot of attention from the scientific community. Today this is one of the most important areas of work in the food safety area.

When in the VBNC state, bacteria are no longer culturable on conventional growth media, but the cells exhibit active metabolism, respiration, membrane integrity, gene transcription and present cell wall modifications that may be seen as a cell protection mechanism in adverse environmental conditions. Recognition of this state occurred initially in *Vibrio* spp. but currently is documented in a large number of species, mostly in gram-negative bacteria. Moreover, today there are evidences that a great amount of conditions usually taken as killing bacteria actually induce VBNC state. Among these conditions we can find those used as food hurdles, like extreme temperatures, low oxygen availability, high saline concentrations, extreme pH and low relative humidity.

This work started by induction of VBNC state in six strains of *Escherichia coli* and six *Listeria monocytogenes*, two internationally recognized food borne pathogens. Amongst the strains there are four clinical strains, five food strains and three isolated from food contact surfaces.

The VBNC state was induced by water, saline solution (0.9% sodium chloride), saline solution at pH 5, and 4% and 7% sodium chloride at 4ºC and room temperature (totaling 10 different conditions). With these conditions we intended to simulate environments encountered by bacteria in food products, like acid pH, high salinity and in some special cases low nutrient content; saline solution provided us with a condition closer to the physiological one.

Periodically we tested the suspension for culturable cells in rich medium and in rich medium supplemented with an H2O2-degrading compound, to detect in this way cells susceptible to oxygen reactive species. When culturability was no longer obtained in any of the media viability was confirmed by Direct Viable Counts. At this point resuscitation experiments were carried on.

Resuscitation trails were promoted in a great number of conditions: rich medium diluted to different strengths, supernatant of late exponential phase cells in rich and minimal media diluted to different strengths, rich medium supplemented with ATTC® trace mineral supplement, minimal medium supplemented with amino acids, temperature upshift and heat shock. To exclude growth of some residual culturable cells that might be present in the suspension we followed two approaches: VBNC cells were incubated in resuscitation conditions with ciprofloxacin, in a concentration higher to minimal inhibitory concentration, to prevent growth; Micro Most Probable Number Method was used with the different resuscitation media.

In none of these conditions resuscitation was observed. This suggest that the exact combination of factors that lead to resuscitation of VBNC cells of *E. coli* and *L. monocytogenes* induced by conditions similar to those employed as food hurdles were not achieved in the performed experiments. If the stimulus that leads to resuscitation is unique, like one single molecule, that molecule was not present or not in the correct amount in the media used. If the stimulus that leads to resuscitation of these cells is a composed one (like a combination of molecules or abiotic variables), that could guaranty the cells that resuscitation only occur when the best conditions for survival of the population are achieved, that combination was not present in the conditions tested. More resuscitation conditions are currently being tested.

Keywords: viable-but-nonculturable; resuscitation; *Escherichia coli*; *Listeria monocytogenes*

Influence of Bacteriocin producing *Lactobacillus casei* RN 78 in Growth Control of *L. monocytogenes* in Experimental Cheese samples

Naheed Mojgani², Mansoureh Ameli¹, Narges Waseji², Cyrus Amirinia³, A K Torshizi⁴ and Mohammad A Hejazi⁵

¹Biotechnology Dept, Razi Vaccine and Serum Research Institute, & 1, 2, 3 National Research Institute of Animal Sciences, Karaj, Iran, *²Department of Poultry Science, College of Agriculture, Tarbut Modares University, Tehran* and ⁵Agriculture Biotechnology Research Institute of Iran (ABRII), North West and West Region, IR Iran

In this study, anti-listerial effect of a previously isolated *Lactobacillus casei* RN 78 strain and freeze dried fractions of its partially purified bacteriocin (Fd-PPL Lactocin RN 78) was evaluated in experimental cheese samples stored at two different temperatures (4 and 35ºC). With the addition of 6400 AU/g of Fd-PPL fractions to the cheese samples the initial concentration of 6.81 +/- 0.06 log CFU per g of *Listeria monocytogenes* was reduced up to 0.71 +/- 0.01 log CFU/ml. In comparison to the bacteriocin fraction (Fd-PPL), addition of 10⁷ CFU/ml of the bacteriocinogenic strain (LP and LB9) in the cheese samples stored at 35ºC, appeared more effective in inhibiting and controlling the growth of mentioned pathogen. The viability of the sensitive cells decreased sharply (0.21 log CFU/ml) in the presence of the live bacterial cells of *L. casei* RN 78. The effect was more pronounced after 24 hrs of incubation and high levels of bacteriocin activity (12800 AU/ml) was seen in these cheese samples. Moreover, the pH of these cheese samples was significantly effected by the presence of producer viable cells and very comparatively lower (4.8-5.0) compared to the other cheese samples which did not include the producer strain. A synergistic bactericidal effect of Lactocin RN 78 and 3% NaCl in BNP cheese samples was observed, and in combination they were able to reduce the *L. monocytogenes* population to 0.59 log CFU/ml within 90 days of incubation at 35ºC. The antibacterial effect of Lactocin was more pronounced in samples stored at 4ºC then at 35ºC. In contrast, the producer strain was more effective in control of *L. monocytogenes* in cheese samples during storage at 35ºC.

The texture of the experimental cheese samples including odor, color and consistency in different batches were also recorded through out the study.

Keywords: bacteriocin; growth; cheese; *L. monocytogenes*; *L. casei*; RN 78
Influence of different photoperiods on the incidence of *Aspergillus niger* in coffee beans stored

Carlos José Pimenta¹, Sara Maria Chalfoun de Souza¹, Marcelo Claudio Pereira¹, Lucas Silveira Tavares¹, Sabrina Carvalho Bastos¹, Caroline Lima Angelico¹.

¹Teacher of Department of Food Science, Federal University of Lavras, Minas Gerais State, P.O. Box 3037, Zip Code: 37200-000, Lavras – MG, Brazil.

To ensure the quality of coffee is essential to identify the critical factors that can influence it, among which, the conditions that leading to the proliferation of *Aspergillus niger* when the grains are stored, since this fungus can negatively influence the characteristics crucial to their marketing. This study aimed to investigate the influence of different times of light exposure on the proliferation of *Aspergillus niger* in coffee beans stored for a period of nine months. For both coffee beans with and without inoculation of *Aspergillus niger* were stored in wooden boxes for the control of photoperiod (dark, 12 hours and 24 hours of light) in order similarity to the conditions of storage of coffee. ...

The pH was not significantly different in the coffee beans inoculated with *Aspergillus niger*, indicating that the fungus had little influence this parameter, unlike acidity, where the highest incidence of this species had a significant influence in reducing the levels of phenolic compounds. To ensure the quality of coffee is essential to identify the critical factors that can influence it, among which, the conditions that lead to the proliferation of *Aspergillus niger* can negatively influence the characteristics crucial to their marketing. This study aimed to investigate the influence of different times of light exposure on the proliferation of *Aspergillus niger* in coffee beans stored for a period of nine months. For both coffee beans with and without inoculation of *Aspergillus niger* were stored in wooden boxes for the control of photoperiod (dark, 12 hours and 24 hours of light) in order similarity to the conditions of storage of coffee. It was observed that, in general, grains inoculated with greater exposure to light (24h) showed a higher content of phenolic compounds, coinciding with the highest level of contamination by fungi and also indicating the involvement of phenolic compounds in the defense mechanism of plants. Such behavior was not observed in non-inoculated seeds. The pH was not significantly different in the coffee beans inoculated with *Aspergillus niger*, indicating that the fungus had little influence this parameter, unlike acidity, where the highest incidence of this species had a significant influence in reducing the levels of phenolic compounds. Therefore, it was observed that the storage time associated with an excessive amount of light and presence of high levels of contamination by *Aspergillus niger* influenced in a index color of coffee beans, leading to depreciation of the quality by their whitening. The grain moisture was similar in all conditions of storage of coffee. Thus, it is concluded that light and photoperiods with longer time (24h) can directly affect the quality of coffee beans, since they allow greater proliferation of *Aspergillus niger* and consequently higher levels of phenolic compounds and a drastic reduction of its coloring.

Index terms: coffee, *Aspergillus niger*, quality, chemical composition, storage.

Influence of pesticides on the growth kinetics of yeasts used as starter cultures in green table olives

A. Martín, J. Rubio, F. Pérez-Nevado, A. Hernández, E. Aranda, R. Casquete, M.G. Córdoba

Área de Nutrición y Bromatología, Department of Animal Production and Food Science, University of Extremadura, Ctra. de Cáceres s/n, 06071 Badajoz, Spain

Lactic acid bacteria and yeast are essential in the fermentation stage of different kinds of green table olives. The role of lactic acid bacteria can be partially replaced by a rapid acidification with lactic or tartaric acids in elaborating seasoned green table olives, with the fermentation mainly carried out by yeasts. The presence of pesticide residues in the olives and brine may affect the activity of yeast fermentation. Any interruption or delay in this process can alter the end product’s qualitative and quantitative characteristics. The aim of the present work was to study the growth of potential starter culture *Pichia anomala* strains for seasoned green table olives in synthetic brines containing different pesticides as the main carbon source. For this purpose a synthetic brine was prepared which contained 0.5% (w/v) calcium lactate, 7% (w/v) NaCl, 1% (w/v) Yeast Nitrogen Base, together with different concentrations of several pesticides. An automated turbidimeter Bioscreen C Microbiology Reader was used in an *in vitro* experiment to monitor the growth of yeast isolates in the presence and absence of pesticides by reading the optical density (OD) at 600 nm at regular intervals. In a pilot plant experiment, survivals of the yeast strains were examined by plating onto their specific media at 0, 1, 5, 21, 35, 70, and 90 days of fermentation. Although the growth of yeast strains was affected by the pesticides in the *in vitro* experiment, there was no such effect in the pilot plant experiment. This suggests that the pesticides are partially adsorbed by olive constituents, thus minimizing their effect on the yeast growth.

Keywords: Olives; yeast; pesticides; biodegradation
Interactions between *Saccharomyces cerevisiae* and non-*Saccharomyces* wine-related strains: inhibitory activity of small peptide produced by *S. cerevisiae* CCMI 885

H. Albergaria1, D. Francioso1, N. Arneborg2, F. Girio1

1LNEG, Unidade de Bioenergia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal

2Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark

During spontaneous wine fermentations non-*Saccharomyces* (NS) yeast strains begin to die off after the first days of alcoholic fermentation leaving way to the more fermentative *S. cerevisiae* strains to complete the vinification process (Egli et al., 1998; Fleet, 2003). This behaviour has been always attributed to the weaker capacity of these yeast strains to withstand the increasingly stressful conditions - high ethanol and organic acid concentrations, low pH values, scarce oxygen availability or nutrient limitations-, occurring during wine fermentations (Fleet and Heard, 1993). However, previous work (Pérez-Nevado et al., 2006) carried out with two *Hanseniaspora* strains (*H. guilliermondii* and *H. uvarum*) showed that early death of these two NS strains during mixed fermentations with *S. cerevisiae* (Sc) was not primarily induced by ethanol, nutrient or oxygen depletion, low pH values or classical killer toxins, but rather by other unknown toxic compounds. In the present study we investigated the nature of those toxic compounds and evaluated their inhibitory effect on the growth of some NS wine-related strains.

Firstly, the capacity of Sc supernatants to induce death of *H. guilliermondii* (Hg), *Kloeckera marxianus* (Km), *K. thermotolerans* (Kt) and *Torulaspora delbrueckii* (Td) was determined and showed that all NS strains died on those supernatants. Then, protease treatments of death-inducing supernatants, either with pepsin or with a mixture of trypsin plus alkaline protease, revealed the proteinaceous nature of the toxic compounds. The analysis of the protein pattern of mixed (Sc/NS) supernatants on Tricine SDS-PAGE showed that Sc CCMI 885 secretes small peptides (<10 kDa) that were detected only when death of Hg was already established. Death-inducing supernatants were ultrafiltrated by 10 and 2 kDa membranes, respectively, and lower than 2 and 10 kDa protein fractions tested regarding their ability to induce death of Hg. Results showed that the (2-10) kDa protein fraction of Sc supernatants exhibited inhibitory activity against Hg. These (2-10) kDa protein fraction, containing three peptides with apparent molecular weight (MW) of 4.0, 4.5 and 6.0 kDa, was concentrated using membrane ultrafiltration systems and its antimicrobial activity tested against strains of Hg, Km, Kt and Td. Under the growth conditions used for these tests, the small peptides inhibited the growth of all NS strains and induced death of Km.

Keywords: antimicrobial peptides; yeast-yeast interactions; wine fermentations; yeast population dynamic;

References:

Investigation of the ochratoxin A levels in plasma from Valencian Community healthy citizens and relationship with their diet

A. Medina1, E. M. Mateo1, R.J. Roig2, A. Blancaer2, V. Mirabel2, M. Jiménez1

1Department of Microbiología y Ecología, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain

2Centro de Transfusiones de la Comunidad Valenciana, Conselleria de Sanitat, Generalitat Valenciana, Avda. del Cid, 65-acc. 46014, Valencia, Spain

Ochratoxin A (OTA) is a toxic secondary metabolite of several fungal species belonging to the genera *Aspergillus* and *Penicillium*. OTA contaminates agricultural products representing a serious threat to human and animal health throughout the world since it has been involved in a wide range of toxicological effects. The IARC has classified OTA as a “possible human carcinogen (Group 2B)”.

Several authors have described contamination of OTA in a variety of products such as cereals, beans, roasted coffee and cocoa, malt and beer, bread and bakery products, wines and grape juices, spices, poultry meat and kidney, pig kidneys and pork sausages.

There are numerous reports all over the world describing high frequencies of human blood contamination with OTA, although at low levels, showing widespread human exposure to this mycotoxin. Nothing is known about Spanish populations living in areas where the Mediterranean diet, appreciated by its healthy properties, is typical. A clear example of this situation is the Valencian Community.

The aims of this work were to i) evaluate the consumption of foods and beverages considered as potentially contaminated with OTA in a wide number of healthy blood donors from the Valencian Community population (Mediterranean region in Spain), ii) to quantify the OTA plasma levels from these healthy blood donors, and iii) to study the potential correlation between the OTA levels in plasma and the diet.

One hundred sixty-eight blood plasma samples were collected from healthy blood donors at the Valencian Community Transfusion Centre. In conjunction with the blood collection, detailed information about the diet of the healthy blood donors was obtained by using a questionnaire that includes a wide range of food products potentially contaminated with the toxin.

OTA was detected in 100% of the samples at concentrations ranging between 0.15 and 5.71 μg OTA/L of plasma. OTA level in men’s blood plasma was slightly higher than level observed in woman’s blood plasma but no significant statistical differences were found between men and women populations.

Correlations between individual consumption of 26 food groups described as possibly contaminated with OTA and plasma level of OTA, and some data about habits, were examined. Correlations tests performed did not show strong correlations between OTA levels in plasma and some variables; even when some of them resulted statistically significant the correlation coefficients or probabilities were very small.

Keywords: mycotoxins, ochratoxin A, blood, diet

Acknowledgements: The authors wish to thank financial support from FEDER and Spanish Government “Ministerio de Ciencia e Innovación” (Project AGL2007-66416-C05-01/ALL and two research grant/s) and the Generalitat Valenciana (Project ACOMP2009/371). The authors are also indebted to Ms Silvia Sarrion, Ma. Angel, Carme Mat and M. Angeles Arnau for their helpful collaboration concerning blood sampling and data collection from donors.
Isolation and characterisation of exopolysaccharide producing lactic acid bacteria

J.L. Savage, P. Ross, C. Stanton and G.F. Fitzgerald

Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Teagasc, Moorepark Research Centre, Fermoy, Cork.

Exopolysaccharides (EPS) synthesized by lactic acid bacteria (LAB) are of economic importance because they can impart functional properties on foods and may confer health benefits to the consumer. For example, β-glucan, which can be produced by some LAB, is suggested to have the ability to lower cholesterol. Claims have also been made that other EPS may have immunostimulatory activity and antiinflammatory effects. In this study a bank of 3500 LAB strains from milk, beer and grain sources, were screened for EPS production, using Congo-Red and mMRS agar (containing 5 to 10% sucrose or glucose). Based on their EPS-producing ability, an initial group of 600 EPS producing LAB was identified and from these a sub-group, containing LAB which produced the highest levels of EPS, was further characterized. This sub-group was found to include strains of Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus brevis, Lactobacillus curvatus, Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus fermentum, Leuconostoc citreum, Leuconostoc mesenteroides, Lactococcus lactis, Weisella cibaria and Weisella confusa. When the initial bank of 600 EPS producers was screened for genes responsible for β-glucan production, using primers based on glucosyltransferase genes (gtf) from known elaborators of β-glucan, the strains Lactobacillus brevis, Lactococcus lactis and Leuconostoc citreum gave a positive amplicon. The bank of EPS producing LAB generated in this study represents a source of potentially valuable strains for use in the development of functional foods.

Isolation and characterization of cysteine biosynthetic gene in Lactobacillus casei encoding cysteine lyase and synthase activity

B. Bogicevic1,2, S. Irmler 1, L. Meile2, H. Berthoud

Agroscope Liebefeld-Posieux Research Station ALP, Bern, Switzerland

Laboratory of Food Biotechnology, Institute of Food Science and Nutrition, ETH Zurich, Switzerland

Lactic acid bacteria are widely used as starter and nonstarter cultures in the dairy industry. In cheese they play an essential role in the degradation of casein-producing amino acids which are converted to essential flavour compounds mainly by enzymatic pathways. Metabolism of sulfur-containing amino acids in Lactobacillus casei has not been extensively studied. Recently, we observed that several Lactobacillus casei strains isolated from Gruyère cheese could grow in a chemical defined medium containing methionine as the sole sulfur source (Irmler et al., 2008). This indicates that cysteine biosynthesis must occur. There are no data about cysteine biosynthesis pathway in Lactobacillus casei and our first goal was the characterization of the cysK gene potentially encoding cysteine synthase. The cysK gene was cloned from the Lactobacillus casei FAM 18110 strain isolated from Swiss Gruyère cheese and recombinant protein was overproduced in E.coli. It was shown that recombinant enzyme is active in synthesis of cysteine from O-acetylserine and sodium sulfide and on the other hand in production of hydrogen sulfide from L-cysteine. Km and Vmax values of the enzyme for both activities were determined. The role of cysK gene product in role in cysteine biosynthesis was confirmed in complementation experiments with the cysteine auxotroph mutant strain, E.coli NK3.
Isolation and identification of molds associated with table olives

F. Pérez-Nevado, P.P. Mateos, A. Hernández, A. Martín, M.J. Benito, S. Ruiz-Moyano, M.G. Córdoba,
Área de Nutrición y Bromatología, Department of Animal Production and Food Science, University of Extremadura, Ctra. de Cáceres s/n, 06071 Badajoz, Spain

Mold growth on table olives may be implicated in different problems of spoilage, one of which is related to their ability to produce mycotoxins. In this study twelve mold strains were isolated during the processing of green table olives. These molds were identified by different methods: studying their macroscopic and microscopic characteristics; according to their secondary profiles of metabolites analyzed by micellar electrokinetic capillary chromatography (MECC); and using internal transcribed spacer regions 1 and 2 (ITS 1-5.8S-ITS 2). The results showed that four of the isolates belong to Penicillium expansum, one to Penicillium glabrum, three to Aspergillus flavus; two to Fusarium solani, one to Beauveria bassiana and two were identified as the yeast-like fungus, Galactomyces geotricum. The ability of the isolates to synthesize mycotoxins on malt extract agar was investigated by MECC. Four strains produced a total of three mycotoxins: three strains, identified as Penicillium expansum, produced roquefortine, and one, identified as Aspergillus flavus, produced two mycotoxins, cyclopiazonic acid and aflatoxin B1.

Keywords: Olives; mold; identification; micellar electrophoresis; mycotoxins

Killer toxin of Pichia anomala strains isolated from olive brine and active against human pathogens

S. Muccilli1, A. Sciacca2, C.L. Randazzo1, C. Caggia1, and C. Restuccia1*
1 DOFATA, Sezione Tecnologie Agroalimentari, University of Catania, via Santa Sofia 98, 95121 Catania, Italy
2 Dipartimento Scienze Microbiologiche e Ginecologiche, Laboratorio di Microbiologia, Azienda Polyclinico, University of Catania, via Santa Sofia 78, 95123 Catania, Italy

Killer activity has been shown in many P. anomala isolates; the killer system described in this species shows toxic activity against a wide variety of nonrelated microorganisms, such as hyphomycetes and bacteria, including important opportunistic pathogens, such as Candida albicans. Because the killer phenotype could not be cured by the application of cycloheximide, high temperature, ethidium bromide or acridine orange, it was suggested that the killer genes are chromosomally located.

In this study, 22 Pichia anomala strains, isolated from naturally fermented olive brine, showing high killer capacities against sensitive strain (strain 5×47) of Saccharomyces cerevisiae, were characterized according to the interactions among the isolates and prokaryotic and eukaryotic human pathogens (Candida albicans, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Enterobacter aerogenes, Enterococcus faecalis) and examined for detection of genetic elements, which code for the killer character (dsRNA, ds linear DNA or a chromosome). Killing ability and resistance among P. anomala isolates and pathogenic C. albicans and S. cerevisiae were determined on YEPD-MB agar (1.0% yeast extract, 2.0% peptone, 2.0% glucose, 0.1M citrate-phosphate buffer pH 4.5, 0.01% methylene blue and 2.0% agar). The strains with killer activity appeared surrounded by a clear zone, surrounded by a blue precipitated halo indicative of cellular death. Killing assay against bacterial clinical isolates was carried out in Trypticase Soy Agar; in this case antimicrobial activity was recorded as growth free inhibition zones.

Nucleic acids were extracted from P. anomala isolates; RNA/DNA samples were treated with Nuclease SI, DNaseI, RNaseH and RNaseA buffered at different ionic strength.

The killer yeasts of P. anomala showed considerable activity against bacterial pathogens, both gram positive and gram negative. In fact, 12 strains of P. anomala have shown antimicrobial activity against Staph. aureus and Staph. hominis and 14 strains were active against Enterobacter aerogenes. These results confirmed previous studies, which suggested a widespread antimicrobial activity of yeast killer toxin against gram positive but also demonstrate action against gram negative bacteria, probably due to the cell wall composition and permeability among different species.

Regarding yeast clinical isolates, no killer activity was detected against Candida albicans and Cryptococcus sp., while it was effective against S. cerevisiae.

At a molecular level, all K+ isolates of P. anomala do not display any EGEs, suggesting that the phenotype is encoded in the genome of the cells.

Keywords: Pichia anomala; killer toxin; clinical yeast and bacterial isolates; killer phenotype encoding
Microbial conversion of major ginsenosides to pharmaceutically active minor ginsenoside C-K by Dyella sp. QGC-49

Qing-Mei Liu, Wan-Taek Im, and Sung-Taik Lee

Department of Biological Sciences, Korea Advanced Institute of Science and Technology

Ginseng saponin, the most important secondary metabolite of ginseng, has various pharmacological activities. To obtain minor saponins from major ginsenoside using microbial biotransformation, many soil bacteria which has strong β-glucosidase activity were screened. One bacterial strain QGC-45 could convert ginsenoside Rb1, Rb2, Rc showing the biotransformation pathway: Rb1 → Rd → F2 → C-K; Rb2 → C-O → C-Y → C-K; Rc → C-Mc1 → C-Mc2 → C-K, respectively.

Keywords: ginseng, ginsenoside, biotransformation, compound-K

Lactic acid bacteria from wines from Ribeira Sacra (Spain): Isolation, identification and characterization of some oenological properties

J.M. Mesas Mesas1, M.C. Rodriguez Pérez2, and M.T. Alegre Arribas2

The appellation of origin (DO) “Ribeira Sacra” is a young DO from Galicia (Spain) in which red wines of high quality are produced from “Mencia” grapes. As red wines, the malolactic fermentation (MLF), always necessary, is usually carried out spontaneously by the autochtonous lactic acid bacteria (LAB), which characterize the organoleptic properties of the wines from every zone.

The objectives of the present study were: the establishment of a wide collection of LAB isolated from this DO, including representative LAB from every zone, as well as the characterization of the isolated LAB and the conservation of the strains with oenological properties of interest in order to provide them to the winemakers of Galicia.

To achieve a large and diversified collection of LAB, two vintages (2007-2008) and four wine-cellar were selected, thus the variability due to differences in the climate and the different five zones of the DO were covered.

The samples were taken from must in 2008 and after alcoholic fermentation in 2007 and 2008. Appropriate dilutions of must and wine were plated on Petri dishes containing MRSCNT (MRS + 0.5g/l of L-Cysteine + 50mg/l of Nistatin + 50ml/l of tomato juice) and incubated at 30ºC during 5 days in anaerobic jars. 20-40 colonies from every sample were plated in patches on MRSCNT and incubated in anaerobic jars during 4 days at 30ºC. Using the grown patches, tubes containing MRSMT (MRS + 5g/l of DL-Malic acid + 50ml/l of tomato juice) were inoculated and incubated in order to stock the isolates with glycerol, identify the species and analyze their putative functions of oenological interest and their content in plasmids.

To identify the species, biochemical tests, API strips, and PCR and Multiplex-RAPD techniques (Araque et al, 2009; Beneduce et al, 2004; López et al, 2008; Reguant and Bordons, 2003) were used. Plasmid analysis was made according to O’Sullivan and Klaenhammer (1993). B-glucosidase and tannase activities were assayed as per Barbagallo et al (2004) and Vaquero et al (2004) respectively.

The results obtained showed that the diversity of the population of LAB in the musts and wines from the “Ribeira Sacra” is influenced by all factors analyzed in this work: vintage, wine-cellar (zone) and addition of sulfite. The presence of Lactobacillus at lower pH and alcoholic degree. This diversity, wide in must, becomes narrower during the MLF in which Pediococcus and Leuconostoc disappear favouring the presence of Oenococcus at lower pH and alcoholic degree. This diversity, wide in must, becomes narrower during the MLF in which Pediococcus and Leuconostoc disappear favouring the presence of Oenococcus at lower pH and alcoholic degree.

Keywords: wine; lactic acid bacteria; B-glucosidase; tannase

References

Keywords: wine; lactic acid bacteria; B-glucosidase; tannase

Microbial conversion of major ginsenosides to pharmaceutically active minor ginsenoside C-K by Dyella sp. QGC-49

Qing-Mei Liu, Wan-Taek Im, and Sung-Taik Lee

Department of Biological Sciences, Korea Advanced Institute of Science and Technology

Ginseng saponin, the most important secondary metabolite of ginseng, has various pharmacological activities. To obtain minor saponins from major ginsenoside using microbial biotransformation, many soil bacteria which has strong β-glucosidase activity were screened. One bacterial strain QGC-45 could convert ginsenoside Rb1, Rb2, Rc showing the biotransformation pathway: Rb1 → Rd → F2 → C-K; Rb2 → C-O → C-Y → C-K; Rc → C-Mc1 → C-Mc2 → C-K, respectively.

Keywords: ginseng, ginsenoside, biotransformation, compound-K
Microbiological Changes in Cheese of Algarvian Goat Breed during Ripening

I. Ratão1, D. Guerreiro1 and L. Dionísio1
1Faculty of Science and Technology, University of Algarve. Campus de Gambelas, 8005-139 Faro, Portugal
2Superior Institute of Engineering, University of Algarve. Campus da Penha, 8005-139 Faro, Portugal

A traditional cheese from Algarve region (Portugal) is produced with raw milk from algarvian goat breed and is coagulated by aqueous extracts from cardoon flowers (Cynara cardunculus).

These cheeses are produced under artisanal conditions, and during the processing procedures several contaminations may occur, which could influence their quality during ripening.

The main goal of this work was to monitor the cheese microbial quality along a ripening period of sixty days.

Samples were prepared for microbiological analysis according to NP1829 (1982). Aerobic bacteria, coliforms, yeasts and moulds were enumerated according to NP1995 (1982), NP3788 (1990) and NP3277-1 (1987), respectively. Presumptive lactobacilli were incubated on Rogosa agar (RA) (Biokar) at 36 ± 1 ºC, during 72 h and presumptive lactococci were incubated on M17 agar (Biokar) at 30 ± 1 ºC, during 48 h. All assays were done in triplicate and expressed as colony-forming units per gram (cfu/g) of cheese.

During cheese ripening, the total viable microorganisms showed no considerable differences, presenting values of 9.02 log cfu/g after 60 d of ripening. The initial increase of one log should be due to the Lactic Acid Bacteria (LAB) growth, but it was rapidly compensated by the decrease of coliform bacteria.

The enumeration of presumptive lactobacilli reached a maximum after 42 days of ripening (9.18 log cfu/g) and for presumptive lactococci at 14 days (9.86 log cfu/g). A slightly decrease was observed after that. Nevertheless, the concentrations of both lactobacilli and lactococci reached similar levels after 28 days of cheese ripening.

Total coliforms reached maximum concentrations values after 14 days of ripening, decreasing thereafter gradually by about 4 log units until 28 days of ripening. After this period, their concentrations become approximately constant.

Faecal coliforms started from a maximum of 3.98 ± 0.65 log cfu/g, at the production day and reached zero value by the 21 days of ripening.

Other microbial groups like moulds and yeasts reached maximum values at 14 days of ripening (7.70 log cfu/g) and then decreased at different rates until the end of the ripening period.

These results suggested that the lactic acid produced by the LAB in the beginning of the ripening period contributed to the decrease of the remaining microbiota, including the inhibition of the faecal coliforms, which can contribute to the safety of the ripened cheeses.

Keywords: goat cheese, microbiology, ripening

Microbiological control of wines from Denomination of Origin Rías Baixas in Galicia (NW Spain)

P. Blanco1, A. Losada1, A. Lago1, I. Orriols1
1Estación de Viticultura e Enoloxía de Galicia (EVEGA), Ponte San Clodio s/n, 32427-Leiro (OURENSE). E.mail: evegalab@cesga.es
2Consello Regulator Denominación de Orixe Rías Baixas, Pazo de Mugartegui, 36002, PONTEVEDRA

Microorganisms play an essential role in wine elaboration. Thus, yeasts are responsible for alcoholic fermentation and lactic acid bacteria are involved in malolactic fermentation. However, when fermentation processes are finished, these microorganisms have to be eliminated during the wine maturation period by different procedures to avoid wine spoilage due to undesirable proliferation of yeasts and/or bacteria. Despite the importance of microbiological growth in wine stability not many studies have been published on this subject. Moreover, maximum levels of microbial contamination in wines have not been legislated by the Office International de la Vigne et du Vin (OIV).

In this work we exposed the microbiological evaluation of wines from 10 different wineries within Denomination of Origin Rías Baixas in Galicia (NW Spain). The study includes samples from bottled wines and samples of wines during storage in tanks before bottling for each winery.

Wine samples (100 ml) were filtered through out a 0,45 μm filter using a MilliflexTM filtration system from Millipore. The filter was placed on a WL nutrient media plate and incubated at 28ºC until visible colonies appear. Those plates presenting microbial growth were used for viable cells count and to isolate colonies for further analysis. Additionally, PCR amplification of D1/D2 region of 26S rDNA and sequencing was used to confirm yeast identification.

A total of 35 samples were processed. The results showed that 18 of them (51%), including all the bottled wines examined, did not contain viable microorganisms. The remaining samples presented a variable number of cells ranging from only 9 cell in 100 ml to concentrations of 103 (cells/mL) or higher. The microorganisms found were mainly yeasts, although 4 samples presented also bacteria growth.

The identification of yeast isolates revealed that they belonged to at least four different species: Saccharomyces cerevisiae (found in 5 wines), Pichia membranifaciens (isolated in 3 wines), Zygosaccharomyces bailii (found in 8 wine samples), and Debaryomyces hansenii (only present in one sample). These yeasts have been previously reported as common population of wineries during winemaking and wine storage.

Taking all the results together, it can be concluded that commercial wines from Denomination of Origin Rías Baixas show acceptable levels of microorganisms. The absence of yeasts and bacteria in bottled wines guarantees their microbial stability. In addition, the low number of yeast cells in bulk wines is within values considered to keep the wine clear. Nevertheless, the presence of Z. bailii in a high number of samples should be taken under consideration because this species has been described to be resistant to chemical preservatives used in winemaking.

Keywords: wine, microbiological control, yeast species identification
Microbiological risk assessment of *Staphylococcus aureus* in sandwich products consumed by airline passengers

Norrakiah Abdullah San1, Norazam Hassan1, Abdul Salam Babji1 and Jamal Khair Hashim1

1 School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
2 Surveillance, Risk Analysis and Laboratory Section, Food Safety and Quality Division, Ministry of Health Malaysia, Federal Government Administrative Centre, 62590, Putrajaya, Malaysia.

A microbiological risk assessment of *Staphylococcus aureus* in tuna (TBFS) and meat (MBFS) based filling sandwich products consumed by airline passengers were conducted to investigate the probability of health risk resulting from sandwich consumption. The risk assessment model was based on the results of the concentration of *S. aureus* in sandwich products and the rate of *S. aureus* contamination sampled in the airline catering from 2007-2008. Two different exposure models were proposed for TBFS and MBFS. Because of limited data and absence of human dose - response model on *S. aureus*, simulated dose - response from animal study was carried out with the assumption that conversion from animal to human is 1000. For each of these two sandwich groups, one hit dose-response model was used to estimate the probability of gastroenteritis as a function of the ingested dose using Monte Carlo simulation technique. The estimated amounts of contaminated TBFS and MBFS with *S. aureus* were found to be between 198 to 354 and 166 to 234 meals per year respectively. The estimated number of illness due to consumption of MBFS among airline passengers from a total of 703,320 passengers per year. These risk assessment models are important to the management in reviewing the critical factors such as effectiveness of temperature control and processing practice that have a great impact in preventing and reducing risk of *S. aureus* poisoning.

Keywords: Microbiological risk assessment, *Staphylococcus aureus*, sandwich products, airline passengers

Modulation of the gut microflora by dietary fibres and characterization of extracellular metabolites and fermentation products by GC-MS analyses

I.M. Aasen1, P. Bruheim1, B. Moen1, I. Rud3, and S.H. Knutsen3

1 Department of Biotechnology, SINTEF Materials and Chemistry, N-7465 Trondheim, Norway.
2 Department of Biotechnology, The Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
3 NOFIMA Mat, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, N-1430 Ås, Norway.

Dietary fibres may act as prebiotics, i.e. stimulation of growth of health-promoting probiotic bacteria such as *Bifidobacteria* and *Lactobacilli*. Fermentation of carbohydrates by the gut microflora generates short-chain fatty acids (SCFA), of which particularly butyric acid is considered as beneficial for the health. In vitro fermentations of fibres with human faeces have frequently been used for comparison of fibres with respect to the formation of SCFA, analysed by GC or HPLC. In contrast to techniques directed against analyses of specific compounds, the use of LC- and/or GC-MS will generate an overall metabolite profiling, a "metabolic footprint". Such data may provide valuable information about the function of the microbiota, as a supplement to information gained from DNA-analyses, telling which bacterial genera and species that are present.

A range of fibres have been screened by *in vitro* batch fermentations with faeces from infants (3-7 months age) and adults. The fibres include polysaccharides or selected fibre fractions, such as β-glucans, arabinoxylan and poly-uronic acids (pectin, alginat). The commercial prebiotic inulin was included for comparison. SCFA were monitored by HPLC-analyses, while a complete metabolite profiling was achieved by use of GC-MS. Independent of the faeces source, the highest amount of SCFA, with acetate as the dominating acid, was produced from inulin and a pectin fraction from white cabbage. Highest amounts of propionic and butyric acids were produced from inulin and barley fibres. In general, the fermentations with infant faeces gave a higher fraction of propionic acid and less acetic and butyric acid than faeces from adults. The GC-MS analyses revealed that monomers of the polysaccharides were detectable only for a short period early in the fermentation, and that the inoculum included significant amounts of amino acids, probably from dead bacteria. Some of the amino acids were consumed during the fermentation, and the relative production rates of the individual SCFAs varied dependent on the substrate being consumed.

Changes in the composition of the infant faeces microflora after growth on the fibres were characterized by establishment and analyses of a 16S rRNA clone library. Distinct differences in the development of the flora during the fermentations were observed. For instance, β-glucan and barley fibres stimulated *Bacteroides*, while the pectin from cabbage stimulated growth of *Lactobacillaceae*. Inulin promoted an increase in *Bifidobacterium*, a well-known effect of this prebiotic. Cultivable bacteria enriched on each of the fibres have been isolated and are further characterized with respect to fibre degradation and fermentation products. The present results demonstrate interesting differences between the action of dietary fibres, as well as the usefulness of more extensive analyses of substrate consumption and product formation.

Keywords: Gut microflora; *in vitro* fermentation; GC-MS analyses
Bacteria, yeast and filamentous fungi are isolated during all the stages of coffee processing. Thirteen samples of Coffea arabica L. were collected during different processing stages of semi-dry coffee from a farm in the South of Minas Gerais. The isolated bacteria and yeasts were identified by Amplified Ribosomal DNA Restriction Analysis (ARDRA) and sequence analysis of the 16S-23S of the rDNA (yeasts). The filamentous fungi were identified by analyses of macro and microscopic characteristics of the colonies. Denaturing gradient gel electrophoresis (DGGE) of the product of PCR of the rRNA 18S and rRNA 16S was carried out to analyze the yeast and bacteria communities. Bacteria, yeast and filamentous fungi counts were in the order of 4.7 x 10^1 to 1 x 10^3 CFU/g, 2.3 x 10^2 to 7.5 x 10^2 CFU/g, and 1 x 10^3 to 5 x 10^3 CFU/g, respectively. Using the technique ARDRA of the 16-23S region of the rDNA, 16 distinct restriction fragment patterns, corresponding to 16 different bacterial species were obtained. Bacillus subtilis, Escherichia coli, Enterobacter agglomerans, Bacillus cereus and Klebiella pneumoniae were the predominant bacteria during the coffee processing. Lactococcus lactis, Serratia sp., Acinetobacter spp and Bacillus megaterium were isolated in culture medium, but not detected by DGGE analysis of the same samples. All of the species detected by DGGE were also isolated for cultivation, except for the nonculturable bacteria. The method ARDRA of the ITS1-5.8S region of the rDNA allowed 15 distinct restriction pattern fragments corresponding to 14 different yeast species. Pichia anomala was present in all the samples, with counts to the order of 10^2 to 10^3 CFU/g. Torulaspora delbrueckii and Rhodotorula mucilaginosa were also predominant yeasts during the coffee processing. Some yeast species such as Candida eronbi, C. faykamaensis, Pichia caribbica, C. membranaefaciens, Saccharomyces bayanus and Arxula sp. were isolated in culture media but not detected in the DGGE analyses of the same samples. All of the yeast species detected by DGGE were also isolated in the culture media. Among the filamentous fungi identified, the genus Aspergillus was of higher incidence followed by the genera Penicillium sp., Fusarium sp. and Cladosporium. There was a good correlation among the species found by isolation in culture medium and sequencing and the DGGE profiles obtained, for bacteria, as well as yeasts, however the molecular techniques need to be associated to the traditional techniques in order to obtain better characterization of the microbiota present in coffee processing.

Financial support: FAPES/M/CAPES/CNPq

Keywords coffee processing, approach polyphasic, microbiota, fermentation

Molecular characterization and biodiversity of Saccharomyces cerevisiae in spontaneous fermentation in D. O. “Condado de Huelva” (Southern Spain)

A. Clavijo 1, L. Calderón 2, and P. Paneque 3

1 Area of Soil Science and Agricultural Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
2 Department of Genetics, University of Seville, Av. Reina Mercedes s/n, 41012 Sevilla, Spain

Traditionally, wine has been produced by the natural fermentation of grape juice carried out by yeasts present in the grapes and winery equipment. This spontaneous fermentation is a complex process characterized by the presence of large number of different yeast genera and species. Yeast species with low fermentative activity, such as Hanzos&nigpora (Kloeckera), Candida and Metschnikowia, are dominant in the fresh must and during the early phase of fermentation. By mid-fermentation these yeasts begin to decline and die off. Under these conditions, different strains of Saccharomyces cerevisiae become dominant and complete the process (Fleet and Heard, 1993). However, the number of species and their presence during fermentation depends on several factors, with subsequent wine quality variations from region to region and from one year to another. All this make the outcome of spontaneous fermentation difficult to predict (Maro et al., 2007). Thus, in the last decades, the use of commercial Saccharomyces strains as starters is becoming a common practice in most wine-producing regions. However, there is some controversy about this practise due to the lack of some desirable traits provided by natural or spontaneous fermentation (Fleet and Heard, 1993). On other hand, the maintenance of biological patrimony is essential both to obtain starter strains that are able to fully develop the typical flavours and aromas of wines originating from different cultivars, and to ensure the conservation of gene pools of primary importance for the preservation of productive activities based on yeast-mediated processes (Maro et al., 2007).

In this context, we have studied the Saccharomyces population which participate in spontaneous fermentations in six different wineries belonging to the DO “Condado de Huelva”, in which active dry yeasts have never been used, during two successive vintages (2007 and 2008). Samples were taken at the middle and the end of fermentation, serially diluted and 0.1 ml aliquots were spread onto plates of YEPD agar plates and incubated at 28 °C for 72 hours. For each sample, 30 colonies were randomly chosen and subjected to further studies. Isolates were identified by PCR-RFLP of the region encompassing the 5.8S rRNA gene and the ITS1 and ITS2 regions; PCR products were digested with the restrictases Hinf I, HhaI and HaeIII (Guillamón et al. 1998). Strains of S. cerevisiae were differentiated by RFLP of mtDNA using HinfI (Querol et al., 1992).

Of a total of 577 yeast colonies isolated, 569 corresponded to Saccharomyces cerevisiae strains presenting 195 different mitochondrial restriction patterns thus evidencing a great biodiversity (34 %). The number of different patterns isolated in each winery varied from 12 to 75 reflecting significant differences in the biodiversity degree among the wineries. Most of the characterized patterns were unique (137) and were isolated only in one of the vintages under study. Conversely, a great number of the strains isolated (47.3 %) matched to only 9 different patterns and some of them were isolated during both vintages and in several of the wineries, thus indicating that they might be resident yeasts characteristic of this region. Additionally, a clear sequential substitution of Saccharomyces strains was observed between the mid and the final fermentation stages, with only 33 patterns present in both phases in any of the wineries.

Keywords Saccharomyces, winey, biodiversity, succession

Acknowledgements: This study was supported by the project RM2007-00088-C02-00 from INIA (Ministerio de Educación y Ciencia de España)

References
Molecular identification of yeast species associated with green table olive production

J. Bautista Gallego 1, F.N. Arroyo López 2, A. Querol 3, E. Barrio 2, and A. Garrido Fernández 1

1 Departamento de Biotecnología de Alimentos. Instituto de la Grasa (CSIC). Avda. Padre García Tejerizo nº4, 41012 Sevilla, Spain.
2 Instituto Cavanilles de Biodiversidad y Biología evolutiva. Universidad de Valencia. Edificio de Institutos del Parque Científico de Paterna. P.O. Box 2205, E-46071 Valencia, Spain.
3 Departamento de Biotecnología de Alimentos. IATA (CSIC). P.O. Box 73, E-46100 Burjasot, Valencia, Spain.

Worldwide table olive production reached 2,153,500 tones in the 2007/2008 season. The presence of yeasts is very common in this food, where they have an important influence on the organoleptic characteristics of the final product. The aim of this work was to isolate and identify the yeast population associated with fermentations of both directly brined and green Spanish-style olives. Three different cultivars (Gordal, Manzanilla and Aloreña) were used in the experiments. A total of 199 isolates, obtained along fermentation process, were identified by molecular methods such as RFLP analysis of the 5.8S-ITS rDNA region and sequencing of the D1/D2 domains of the 26S rDNA gene. The most important species related to directly brined Aloreña olives were Pichia membranifaciens (33%), Candida diddensiae (38%) and Saccharomyces cerevisiae (30%), while for directly brined olives of Gordal and Manzanilla varieties were Pichia galeiformis (45%), Pichia anomala (30%) and Candida tropicalis (21%). In green Spanish-style Manzanilla and Gordal olives, the predominant yeast species were Debaryomyces etchellsii (35%), Kluyveromyces lactis (20%), P. galeiformis (18%) and C. tropicalis (12%). Other species isolated from these processes but at lower frequencies were Candida holmii, Debaryomyces Hansenii, Hanseniaspora guilliermondii, Issatchenka orientalis and Tornalalpora delbrueckii. The restriction analysis of mitochondrial DNA carried out with isolates from the S. cerevisiae and K. lactis populations showed 5 different profiles for S. cerevisiae. On the contrary, a single profile was reported for K. lactis. This survey describes the yeast biodiversity present in table olive production.

Keywords: table olives; yeasts, molecular methods; biodiversity

New antifungal bacteriocin synthesizing strains of Lactococcus lactis ssp. lactis as the perspective biopreservatives for protection of raw smoked sausages

L.G. Stoyanova, E.A. Ustlugova, T.D. Sultimova, E.N. Belanenko, A.I. Netruov
Department of Microbiology, Biological Faculty, M.V.Lomonosov’s Moscow State University, Lenin’s Hills, b. 1/12, Moscow, Russia, 119992

Fungal spoilage of food is a common and global phenomenon. In additional to economic losses, the potential productions of toxins by fungi are of particular health concern. The aim of this study was to isolate and identify antifungal lactococci and evaluate their potential in preventing fungal spoilage. In our experiments we used raw smoked sausages that were infected with fungi. The identification of this spoilage showed the presence of Aspergillus repens on the sausages. The traditional use of the dairy lactococci in various food fermentations, their "GRAS" status, non-pathogenicity, the ability to synthesis of bacteriocins can be safety used in food protections as a food biopreservatives. Screening of effective bacteriocin synthesizing strains of Lactococcus lactis as the perspective biopreservatives was performed. We used the raw milk and milk products from differed climatic regions and also powerful drinks of mixed lactic acid and alcoholic fermentation: kurunga, kumiss and Iranian drink ‘Dough’ which were widely used by people to prevent diseases. The special interest was paid to isolates of lactococci with antagonistic activity. According to their morphological, cultural, physiological, biochemical properties and gene sequence of 16S rRNA they were identified as Lactococcus lactis ssp. lactis. Antimicrobial activity studies revealed differences between the strains to the effects on individual groups of microorganisms. The activities of these strains were also distinct from Nisaplin one (commercial preparation of the bacteriocin nisin). Nisin kills Gram-positive bacteria including spore forms and is not effected on fungi). Only nine of the selected 94 strains expressed a broad spectrum of activity including against moulds: Aspergillus, Fusarium, Penicillium genera, as well as yeasts: Rhodotorula, Candida and other pathogens (Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella). There are unique biological properties for isolated natural strains of Lactococcus lactis species. Most effective new bacteriocin-synthesizing strains 194 and K-205 were isolated from raw cow milk and kurunga from Buryatia. These strains have high antibiotic activity up 3600 and 2700 IU/ml compared to nisin and 2500-1700 IU/ml compared to fungicidal antibiotic nistatine. Treatment of the infected by Aspergillus repens raw smoked sausages with cultural broth of these strains of L. lactis subsp. lactis inhibited the spoilage. After treatment the sausages had prolonger shelf life and integrated products correspond to technological and microbiological indexes. The results of this study indicated that the treatment with lactococci strains can prevent a contamination of raw smoked sausages by potential food born pathogens. So, potential applications of bacteriocin synthesizing Lactococcus lactis subsp. lactis strains in various food fermentations, allow recommend its as potential perspective biopreservatives for preventing fungal spoilage of foodstuffs and edible raw materials.

Keywords: antifungal bacteriocine, biopreservatives, lactococci, smoked sausages, spoilage.
Non-selective and selective isolation of DNA from food matrices and other real samples by magnetic particles

A. Španová1,2, J. Tvrdičková1, D. Horák1, B. Rittich1,2
1Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdoňho 14, CZ-611 37 Brno, Czech Republic
2Brno University of Technology, Faculty of Chemistry, Purkyňova 118, CZ-612 00 Brno, Czech Republic

Recent research has been focused on the development of innovative magnetic micrometer-sized particles for specific applications in DNA analysis in food matrices and other real samples. A rapid, small-scale DNA isolation method is needed to take full advantage of the speed potential of PCR technology. Non-selective and/or selective isolation of high-quality DNA can be performed using suitable functionalised magnetic particles. Carbonyl group-containing magnetic nonporous hydrophilic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (PHEMA-co-GMA) microspheres were used for non-selective isolation of whole DNA from the sample. This procedure was used for PCR-ready DNA isolation and identification of Lactobacillus, Bifidobacterium and psychrotrophic bacteria in different dairy products or sediments. The magnetic microparticles (PHEMA-co-GMA) functionalised with streptavidin were used for immobilisation of biotinylated DNA probe and for selective isolation of target DNA from complex samples (e.g. food supplements) using DNA/DNA hybridisation. Isolation of target DNA was verified by PCR using genus-specific primers R16-1 and LBHMA-rev (Dubernet et al., 2002) in food supplements.

References

Keywords magnetic particles; streptavidin; DNA; PCR

Occurrence of spoilage bacteria Pseudomonas and Pectobacterium on Finnish carrots

M. Kahala, L. Blasco, and V. Joutsjoki

MTT Agrifood Research Finland, Biotechnology and Food Research, Jokioinen, Finland

Carrot is the most important storage vegetable in Finland. Storage of carrot (Daucus carota) is a prerequisite for a year-round supply of domestic vegetables, but long storage period can impair the quality of carrot and storage diseases may cause considerable storage losses. Storage diseases are caused by pathogenic fungi, many species of bacteria and yeasts. Bacteria belonging to genera Pectobacterium and Dickeya, both formerly belonging to Erwinia genus, and Pseudomonas have been reported to cause soft rot on a wide variety of plants. Recent research has been focused on the development of innovative magnetic micrometer-sized particles for specific applications in DNA analysis in food matrices and other real samples. A rapid, small-scale DNA isolation method is needed to take full advantage of the speed potential of PCR technology. Non-selective and/or selective isolation of high-quality DNA can be performed using suitable functionalised magnetic particles. Carbonyl group-containing magnetic nonporous hydrophilic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (PHEMA-co-GMA) microspheres were used for non-selective isolation of whole DNA from the sample. This procedure was used for PCR-ready DNA isolation and identification of Lactobacillus, Bifidobacterium and psychrotrophic bacteria in different dairy products or sediments. The magnetic microparticles (PHEMA-co-GMA) functionalised with streptavidin were used for immobilisation of biotinylated DNA probe and for selective isolation of target DNA from complex samples (e.g. food supplements) using DNA/DNA hybridisation. Isolation of target DNA was verified by PCR using genus-specific primers R16-1 and LBHMA-rev (Dubernet et al., 2002) in food supplements.

According to the results of ARDRA with four selected restriction endonucleases, isolates as well as reference and type strains of Pseudomonas species could be classified into eight separate groups. Identification of carrot-spoiling isolates revealed that the majority of the Pseudomonas strains belonged to group I (Ps. fluorescens, Ps. marginalis and Ps. veronii) and group II (Ps. putida). High level of diversity within the Pseudomonas ARDRA group I (Ps. fluorescens/Ps. marginalis/Ps. veronii) and group II (Ps. putida) was revealed by genomic fingerprinting by RFLP-PFGE. The reference strains of Pe. carotovorum, Pe. atrosepticum and D. chrysanthemi were clearly distinguished by ITS-PCR and digestion of the products with RsaI. Pe. carotovorum was found in carrot batches studied. The samples infected by Pectobacterium were usually very soft and slimy. All isolates belonging to the genus Pectobacterium macerated carrot discs in pathogenicity tests. Heterogeneity was revealed on genotypic analysis of the type strains and isolates belonging to the genera Pectobacterium and Dickeya.

The three rDNA-based identification methods 16S ARDRA, 16S-23S rDNA ITS-RFLP and rDNA sequencing, supplemented with genomic fingerprinting by RFLP-PFGE allowed us to characterize the main spoilage bacteria involved in Finnish carrots and to explore the level of genetic differences of the isolates.

References

Keywords Pseudomonas, Pectobacterium, carrot spoilage; ARDRA; ITS-PCR; RFLP-PFGE

The financial support of the Ministry of Education, Youth and Sports of the Czech Republic, grant No. 2B06053, and a long-term research programme MSM 0021622415 of the Ministry of Education of the Czech Republic are gratefully acknowledged.

Keywords magnetic particles; streptavidin; DNA; PCR
Ochratoxin A and ochratoxigenic fungi in coffee (Coffea arabica L.) in southern Minas Gerais State-Brazil (1998 to 2005)

L. R. Batista¹, S. M. Chalfoun², C. F. Silva¹, G. Prado³, M. Cirillo⁴, E. A. Varga⁴ and R. F. Schwan,³

¹ Professor Depto Ciência dos Alimentos, Universidade Federal de Lavras, Caixa Postal 3037, Campus Universitário da UFLA, Lavras – MG, Brazil
² Researcher EPAMIG, CTSM/EcoCentro, Caixa Postal 137, Campus Universitário da UFLA, Lavras – MG, Brazil
³ Professor Depto de Biologia, Universidade Federal de Lavras, Caixa Postal 3037, Campus Universitário da UFLA, Lavras – MG, Brazil
⁴ Researcher - Fundação Ezequiel Dias – Fundação Ezequiel Dias (FUNED)- Rua Conde Pereira Carneiro, 88. Belo Horizonte, MG, Brazil
⁵ Departamento de Ciências Exatas, Universidade Federal de Lavras, Caixa Postal 3037, Campus Universitário da UFLA, Lavras – MG, Brazil
⁶ Researcher – Laboratório de Controle de Qualidade e Segurança Alimentar/LACQSA, Ministério da Agricultura. Cidade Jardim, Belo Horizonte – MG, Brazil

During the period of 1998 to 2005, 309 samples of coffee (Coffea arabica L.) from eleven producers locations have been analyzed at South of Minas Gerais State Region about the contamination by ochratoxigenic fungi and ochratoxin A. The levels of contamination varied from non-detected to 181.66 μg/Kg in the different fraction (portion of coffee beans). It was also evaluated the fungi producers of ochratoxins A present in coffee beans. The main ochratoxigenic species are: Aspergillus ochraceus and A. sulphureus. Other producers species have also occurred, but with low incidence: A. sclerotiorum, A. petraki, A. elegans, A. ostianus and A. auricomus. Considering only the contaminated samples and supposing there wasn’t any lost of ochratoxin A during the coffee roasting, the different samples would show different risks of exposition to ochratoxin A to Brazilian consumers. Therefore the aim of this work was to optimize the mead fermentation process. For that purpose several fermentation conditions have been tested, based on oenological fermentations. Those manipulations included nitrogen supplementation, addition of malic acid and potassium tartrate as well as pH adjustment. A wine Saccharomyces cerevisiae strain known for its high fermentative ability was used in all assays. Yeast growth and fermentation performance was periodically monitored and at the end of the process, samples were collected for routine analysis, according to the official wine methods. Additionally, aroma compounds formation was also assessed by SPME coupled to GC-MS. The results obtained showed that nitrogen addition had a strong impact on yeast performance by reducing significantly the time required by yeast cells to complete alcoholic fermentation. In contrast, fermentative activity was not affected by the addition of acids and/or pH modification. While no significant differences were found on the final ethanol concentration, ranging within 10.7 to 11.4%, important quantitative variation on the volatile compounds were observed within treatments. Further studies are under way in our laboratory to optimize this biotechnological process in order to obtained high quality mead.

Acknowledgements: The support FAPEMIG and CNPq is gratefully acknowledged.

Key words: mycotoxins, toxigenic fungi, Aspergillus, coffee.
Partial fermentation of must from Tempranillo dried grapes by selected yeasts

N. López de Lerma; J. Moreno; R.A. Peinado.
Department of Agricultural Chemistry. University of Córdoba. Campus Rabanales 14014 Córdoba. Spain

Two batches of musts from dried grapes of the Tempranillo variety, with a sugar concentration around 500 g/L have been inoculated with two selected Saccharomyces cerevisiae yeast strains (X4 and X5) characterized by its osmoethanol tolerance. A third batch was fermented with the native yeast strains of the must. These batches were fermented to a final ethanol concentration of 8% (v/v) of ethanol. Fermentations were stopped by adding ethanol until 12 % (v/v). A fourth batch of must was supplemented with ethanol to a final ethanol concentration of 12 % (v/v) and used as control. Volatile aroma compounds were analyzed by gas chromatography and the results were statistically compared to establish differences among the batches. Significant differences among the fermented must and the control were observed in the carboxilics acids, lactones, esters and phenolics compounds. Odor activity values (OAV) of the volatile aroma compounds were calculated as the relation concentration-odor perception threshold. Grouping the OAV of the aroma compounds according its odor descriptor ten odorant series were obtained which can be used as a fingerprint of the resulting wines. Only the sweet series showed no significant differences among the four batches. Musts fermented with the selected yeast strains showed significant higher values in relation with the other two batches in the floral, fruity and toasty series. Lastly the organoleptic analysis showed that the must fermented with the X4 yeast strain was valued as the best in term of taste and aroma. This can be probably due to the metabolism of the yeast strain.

Key words: Aroma compounds; Dried grapes; Odorant series;
Polyphasic study of Lactococcus lactis isolates from diversified sources

Poornima Rani, Rameshwar Singh, Uma Maheshwari, T. and S.K. Tomar

NATIONAL DAIRY RESEARCH INSTITUTE, Karnal, Haryana-132001, India

Lactococcus lactis is mainly used as a starter organism for milk fermentation. Lack of variability in the strains isolated primarily from the milk products is always a reason for screening of a new and improved strain as a replacement for the starter strains currently used in industrial fermentation. The present work aims to explore the isolation of L. lactis from diversified sources. L. lactis strains have been isolated from dairy and non-dairy sources on the basis of their biochemical attributes. L. lactis sp. lactis and L. lactis sp. cremoris were further differentiated biochemically and confirmed genotypically, by using gadB gene sub-species specific PCR. Additionally, the strain typing was performed by (GTG)-REP PCR fingerprinting and diversity analysis was done by NTsys software package using simple matching coefficient and UPGMA clustering method.

A total of 139 isolates of L. lactis were identified from 45 samples collected from different regions of India. Out of 139 total isolates, 137 were genotypically identified as L. lactis sp. lactis (26 from dairy and 111 from non-dairy) while only two isolates (from yak milk and maize leaf) were identified as L. lactis sp. cremoris. A total of 12 isolates from plant, dahi, kefir, cheese and sprouted grains were found to be diacetyl flavor producing, thus characterized as L. lactis sp. Lactis bv. diacetylactis. It has been revealed that 9 isolates showing cremoris phenotype were genotypically found to be lactis and 8 isolates did not show arginine hydrolysis, moreover one isolate genotypically confirmed as L. lactis sp. cremoris showed lactis phenotype. Interestingly, a total of 35 isolates of L. lactis sp. lactis from plants, sprouted grains and flowers were found to be able to grow under hostile conditions viz., 6.5% NaCl and pH 9.5. Thus, high levels of discrepancies have been found in phenotypic analysis. Therefore, for the isolation of L. lactis subspecies was confirmed on the basis of the size of the product obtained after PCR amplification of gadB gene, L. lactis sp lactis and L. lactis sp lactis bv. diacetylactis generating 660bp band as compared to the 560 bp band of L. lactis sp. cremoris. The isolates could be divided into 2 major clusters comprises of 39 sub-clusters of lactis and 2 sub-clusters of cremoris subspecies after REP PCR. Analysis of these sub-clusters revealed the presence of phenotypically different isolates in the same cluster and vice-versa. The simple matching coefficient between lactis and cremoris subspecies was found to be 78%. The percentage of genetic diversity of L. lactis sp. lactis, L. lactis sp. Lactis, Lactis bv. cremoris was found to be 90%, 8.6% and 1.4% respectively. As, cremoris subspecies has been rarely isolated form plants, but 1 strain of cremoris subspecies has been isolated from maize leaf in our study showed 96% similarity with 16s rDNA partial sequencing. Furthermore, to the best of our knowledge this is the first report for the isolation of L. lactis sp. lactis from flowers like Erysimum coronaria, Cassia fistula and Rosa cinnamalis as well as from sprouted grains like Phaseolus mungo, Vigna unguiculata and Cicer arietinum showing 99% to 100% similarity with 16s rDNA partial sequencing. Apart from these isolates, eight more L. lactis (seven of lactis and one of cremoris subspecies) strains isolated from vegetables, dairy products were partially sequenced and showed 98% to 100% similarity. It also has been demonstrated that after sequencing CLC sequence viewer software provided similar outcomes to the results generated by NTsys software package after REP-PCR. The nucleotide data generated were submitted to NCBI Gene Bank under following accession numbers are FJ664888, FJ664889, GQ267534, GQ267535, GQ267536, GQ267541, GQ267537, GQ267538, GQ267539, GQ267543 and GQ267542.

It has been concluded that, only phenotypic tests are unable to differentiate L. lactis subspecies, as phenotypic characters are the outcome of the interaction between genes and environment and thus can lead to the ambiguous results. Phenotypic results were not found to coincide with genotypic outcomes. REP-PCR was found to be reproducible and able to discriminate lactis and cremoris subspecies but not its biovar diacetylactis. Plant-derived strains are found to be genetically close to the milk-derived strains but possess greater stress tolerance as compared to the milk-derived strains. Thus, isolation of some robust strains from non-dairy sources showed that these sources can be further explored to isolate and add new strains of lactococcus to be used as dairy starters.

Keywords: L. lactis, Isolation of L. lactis isolates, gadB gene specific PCR, (GTG)-REP PCR

Preliminary selection of autochthonous Saccharomyces strains from Ronda (Malaga, Southern Spain) based on their oenological characteristics

A. Clavijo 1, R.M. Caldeirón 2, L.L. Calderón 1, M.L. Morales 1, and P. Paneque 1

1 Área de Soil Science and Agricultural Chemistry, University of Sevilla, c/ Profesor García González 1, 41012 Sevilla, Spain
2 Departamento de Genética, University of Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla, Spain
3 Área de Nutrition and Food Science, University of Sevilla, c/ Profesor García González 2, 41021 Sevilla, Spain

Wine fermentation is a complex microbial process involving the transformation of must into wine by the action of different species of yeasts and lactic acid bacteria originally present on the grapes and the winery equipment. The main responsible agents of the alcoholic fermentation are strains of the species S. cerevisiae. Commercially available dried yeast strains of S. cerevisiae can be inoculated into the grape juice in order to establish a high population and accomplish well-controlled must fermentations. However, the use of local, autochthonous strains of S. cerevisiae is preferable since they are better acclimated to the environmental conditions thus assuring the maintenance of the typical sensory properties of the wines of a given region. Thus, for local strains selection purposes, it is necessary the isolation and identification of yeast species present in the fermenting must , together with their evaluation in accordance with established oenological criteria.

In a previous work, the yeast population present in a newly built winery from the Serranía de Ronda (D.O. Sierras de Malaga, Southern Spain) was studied. Yeasts were isolated from three different sources: i) Microinfections (80 ml) carried out in laboratory using Merlot, Syrah and Cabernet Sauvignon grapes collected in the neighbouring vineyard, carried out during 2006 and 2007 vintages; ii) winery and equipment surfaces after 2006 vintage; and iii) grape musts at different stages of alcoholic fermentation from three vats (containing Merlot, Syrah and Cabernet Sauvignon must, respectively) during the 2007 vintage. Out of 1,582 isolates, 602 were identified as Saccharomyces cerevisiae by PCR-RFLP of rDNA, and were further characterized by RFLP of mtDNA. This technique revealed a low level of polymorphism, with only 13 different mtDNA restriction patterns of autochthonous Saccharomyces (259 isolates) and 5 restriction patterns which matched to none of the commercial yeasts employed since the first vinification in 2003 vintage. For further studies, the 5 commercial yeasts and the 8 autochthonous strains most frequently found, were selected. Their oenological properties and the characteristics of the wines obtained under laboratory controlled microinfections were evaluated.

Firstly, some oenological properties such as low SH2 production, low foam production, and resistance to killer toxins were evaluated together with good enzymatic profile (high β-glucosidase and proteolytic activities). Other characteristics were also tested, such as the ability to ferment media with different glucose concentrations (225 and 275 g/L) at different temperatures (20 and 30 ºC), exhaustation of sugar potential and high fermentation activity (> 0.2 g/L CO2), volatile acidity and ethanol production. No autochthonous or commercial strain satisfied all the first criteria. In fact, all but two of the autochthonous strains had β-glucosidase activity but only two of them showed proteolytic activity. Only one local strain did not produce SH2, but it produced foam. Almost all strains used up sugars to a level < 5g/L in both 225 g/L and 275 g/L glucose containing media at 20 ºC, and in 225 g/L media at 30 ºC, but none did it in 275 g/L media at 30 ºC. Most of the strains produced < 0.8 g/L of volatile acidity expressed as acetic acid in the 225 g/L glucose assays, but greater values were obtained in 275 g/L glucose fermentations. All strains produced at least 8.0 % vol alcohol in the 225 g/L sugar media, and all but one commercial and one local strain, at least 10.5 % vol in the 275g/L sugar media. For further studies, two commercial and one local strain were discarded because they turned out to be sensitive to killer yeast toxins; the rest, were used for micro-scale fermentations (330 ml of sterile Merlot) carried out under controlled conditions. The results showed that there were no great differences among them in the analytical parameters of the fermented products. However, sensory analysis results and volatile composition of the produced wines showed that autochthonous strains seem to produce wines with better quality. Finally, one commercial and four autochthonous strains were preselected for a pilot scale fermentation in the winery.

Keywords: Saccharomyces, oenological characteristics, selection

Acknowledgements: This study was supported by funds from the Andalusia Government (EXP 92162/11).
Presence of *Arcobacter* spp. contamination in fresh lettuces for human consumption

A. González Pellicer1, E. Vero1, C. M. Gentil de Farias1, Y. Moreno1, and M. A. Ferrús Pérez2

1Department of Biotechnology (Microbiology), Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain

Arcobacters are considered emerging foodborne pathogens causing diseases in domestic animals and diarrheal illness in humans. It has been suggested that water may play an important role in the transmission of these organisms. Raw meat is also considered as another source of *Arcobacter* infection in humans. In fact, *Arcobacter* spp. are frequently isolated from animal food products, in particular from poultry, as well as various types of water samples. However, there is no data on the presence of *Arcobacter* spp. in fresh vegetables and it could be interesting given that in recent years the consumption of salads has increased driven by the trend towards healthier eating. Therefore the objective of this research was to study the presence of *Arcobacter* spp. in fresh lettuces.

Fifty fresh lettuces purchased from different local shops in Valencia (Spain) between January and July of 2009 were analyzed. Because there is no standard method for *Arcobacter* spp. detection, the assay was performed simultaneously by PCR and cultural methods. The samples were analyzed directly and after 48 h enrichment in *Arcobacter* broth (AB) with Cephoperazone-AmphotericinB-Teicoplanin (CAT) selective supplement at 30ºC under microaerophilic conditions.

For PCR detection, 1mL aliquots from the broths were centrifuged at 12,000 rpm for 5 min, and DNA was extracted using a commercial food DNA extraction kit. Then, an *A. butzleri*, *A. cryaerophilus* and *A. skirrowii* species-specific multiplex PCR assay was performed according to Houf et al. (2000) with few modifications on temperature conditions (González et al., 2007). In addition, for isolation of bacteria, 80 µl of each broth was dropped on a 0.45 µm cellulose membrane filter which was placed on sheep blood agar plates with CAT. After one hour incubation at 30ºC in aerobic atmosphere, the filters were removed and the plates were incubated for 48 h at 30ºC under microaerophilic conditions. Presumptive *Arcobacter* colonies were selected from each plate, checked by Gram stain microscopic appearance, and subcultured onto blood agar plates. The cultures were purified and analyzed by multiplex PCR for species identification.

Arcobacter sp. was detected in 10 of the 50 samples (20%) by PCR, but just in one of them the detection was possible without enrichment. *A. butzleri* was the only detected species by multiplex PCR. Seven samples were found to be positive also by culture. Nineteen isolates were obtained, being all of them identified as *A. butzleri*. To our knowledge, this is the first report of *Arcobacter* spp. detection in fresh vegetables such as lettuces. Although these foods are generally considered safe and the incidence of major pathogens on raw vegetables is low, given the large quantities consumed and the fact that further cooking is absent, these foods could be a potential public health risk.

Keywords *Arcobacter* spp.; lettuces; culture; multiplex PCR

References

Prevalence of *Salmonella* among food handlers in Owerri metropolis

Dr. AGBAKWURU CHINEDU WILLIAM; Mrs. Amuzii Gladys; Dr. Onwosi Chukwudi Ogbonna and Dr. Anyanwu Joeachin Onyenichukwunyere.

Faculty of Sciences, School of Postgraduate Studies, Imo State University Owerri, Imo State Nigeria.

A study of *Salmonella* amongst food handlers in Owerri metropolis was carried out between February and August, 2006. This was done with a view to elucidating the level of hygiene employed by food handlers. Of the 50 stool samples collected 36(72.0%) had growth on the selective media used. After biochemical and morphological characterization of the isolates were done, 19(52.8%) and 17(47.2%) had *Salmonella* and *Shigella* species respectively. The frequency of isolation of *Salmonella* from stool sample of food handlers obtained from different eating houses showed that open-air eateries had the highest prevalence (60.0%), while the least prevalence was observed amongst canteens, low-class hotels and fast food outfits (25.0%). No *Salmonella* species were isolated from middle class and high class hotels. The present result indicates that the prevalence of *Salmonella* amongst food handlers in Owerri is high and calls for proper health education package for these group of people. This study was therefore designed and carried out to ascertain the prevalence of *Salmonella* infection among food handlers in Owerri metropolis, with a view to elucidate the level of hygiene employed by food handlers and the danger inherent in poor handling of foods.

Keywords: Food handlers, Frequency, Morphological characterization, Infection, Isolates.

335
Prevention of food-transmitted human pathogen virus and bacteria in fruits and vegetables by use of indicator organisms

TM. Damgaard1, L. Bjerrum1, K. B. Sorensen1, A. C. Schultz2 and A. M. Saunders1

1Danish Technological Institute, LiSciences, Denmark
2Danish Technological University, Food Sciences, Denmark

Human pathogen viruses like Norovirus, which can be transmitted from one human to another is likely to be transmitted via foods and drinking water. Especially foods that are consumed without heating or other microorganism-reducing step are in the risk of being contaminated by human pathogen viruses and/or bacteria. Contamination can take place by use of contaminated water or due to inefficient hygiene of the labour.

Practically it is not possible to monitor virus contamination by traditional sampling because the methods available are very labour-intensive and hence too expensive to be part of the normal quality control procedures in the food industry. This work is done in order to offer the food industry an analysis tool to control the risk of foods to be contaminated by viruses. We have developed a real time PCR method that detects specific indicator organisms (Bacteroides dorei), that unambiguously links to contamination by human faeces/wastewater. The method can also be used to control process and drinking water quality.

The promising method as well as examples of its use in different contaminated fruits will be presented.

Keywords: Indicator Bacteria, Bacteroides dorei, Food-born viruses, qPCR, Fecal contamination,

Production of lactic acid, biosurfactants and bacteriocins by Lactococcus lactis using trimming vine shoots and vinasses as substrates for fermentation

Noelia Rodriguez1,*, José Manuel Salgado1, Belén Mas1, Julio Rodriguez-Lopez1, Sandra Cortés2, José Manuel Domínguez2
1Department of Chemical Engineering, Sciences Faculty, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, CITI · Centro de Investigación, Transferencia e Innovación, Avda. Galicia Nº 2, Parque Tecnológico de Galicia (Tecnópole), San Cibrao das Viñas, 32900 Ourense, SPAIN
2Estación de Viticultura e Enoloxía de Galicia (EVEGA). Ponte San Chlod s/n, 32427. Leiro (Ourense), Spain.

Lactic acid is a valuable product with many practical applications: as a preservative, pH regulator and taste-enhancer in food industry, for implants and suture in the medical practice, or as a reagent for polymers synthesis for biodegradable polymers (1). Meanwhile, biosurfactants are amphiphilic compounds of microbial origin with a pronounced surface activity that exhibit a wide variety of chemical structures, such as glycolipids, lipopeptides, polysaccharide–protein complexes, protein-like substances, lipopolysaccharides, phospholipids, fatty acids and neutral lipids, and with several advantages over chemical surfactants including lower toxicity and highly biodegradability, and effectiveness at extreme temperatures or pH values (2). The interest in these biosurfactants has increased considerably in recent years, as they are potential candidates for many commercial applications in the petroleum, pharmaceuticals, biomedical and food processing industries (3). Finally, bacteriocins are proteinaceous antibiotics produced by lactic acid bacteria with bactericidal activity against close related microorganisms. Among them, nisin, produced by some strains of Lactococcus lactis, is the only bacteriocin currently approved as GRAS (Generally Recognized as Safe) and allowed to be used as a food preservative against many common food spoilage Gram-positive bacteria as Listeria monocytogenes. Interesting advantages of using nisin as a food additive are heat-stability, non-toxicity, and sensitivity to digestive proteases (4).

Lactic acid bacteria (LAB) are industrially important microorganisms that are used worldwide in a variety of industrial food fermentations. Their contribution primarily consists of the rapid formation of LA from the available carbon source, but LAB are also applied at an industrial scale in the production of other metabolites, including biosurfactants and bacteriocins. Among LAB, Lactococcus lactis is quite desirable for LA industry because it is homofermentative and highly productive (5).

Nevertheless, L. lactis is, among lactic acid bacteria, a specially demanding species since it has strong nutritional requirements, which imply the use of complex and expensive culture media.

This work deals with the study of the potential of L. lactis CECT-4434 as a biosurfactant and nisin producer for industrial applications considering two strategies: a) exploiting the possibility of recovering separately both metabolites, or b) reducing the economical cost of L. lactis cultures replacing the MRS medium by the use of two waste materials: the cellulosic fraction of trimming vine shoots as C source, and distilled wine lees (vinasses) as N, P and micronutrients sources.

The results showed the ability of this strain to produce cell-bound biosurfactants. Furthermore, an extraction procedure was designed to separately recover the biosurfactants and bacteriocin produced.

A simultaneous saccharification and fermentation process using the cellulosic fraction of trimming vine shoots and vinasses as economic nutrients for L. lactis cultures allowed the effective generation of lactic acid and cell-bound biosurfactants.

Keywords: Trimming wastes; vinasses; SSF; biosurfactants; bacteriocin; lactic acid; L. lactis

Production of sweet probiotic milk using mixed culture of Lactobacillus and Bifidobacterium strains and studying its effect on IBD.

Elham jabarensari 1, Manan Hajimahmoudi 1, Mohammadreza Fazeli 1, Mohammad Abdollahi 1 ,Taher Nejadsatari 1

1 Science and Research Branch Islamic Azad University, 2 Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

A probiotic is a “live microbial food ingredients that, when ingested in sufficient quantities, exerts health benefits on the consumer. Probiotics exert their benefits through several mechanisms; they prevent colonization, cellular adhesion and invasion by pathogenic organisms, they have direct antimicrobial activity and they modulate the host immune response. We have many probiotic products. We try to produce sweet probiotic milk by using mixed culture of indigenous lactobacillus and Bifidobacterium strains that are isolated in Iran (L.casei, L.plantarum, Bif.longum and Bif.bifidum). The milk has no fermented qualities, thus delivering the benefits without the high acidity and flavour, considered undesirable by some people.

These four strains were cultured in MRS broth, and then confirmed by biochemical tests. These strains were grown in Permatte media for 48 hours. The fresh sterilized milk(100 cc) was then inoculated with 5 cc 48 hours old pure culture of L.casei, L.plantarum, Bif.bifidum and Bif.longum and stored in 4 °C to reach sweet probiotic milk with concentration of 10^7 cfu/ml. The properties and permanency of this milk were investigated for pH, taste, smell, number of probiotic microorganisms and its effect on treatment and prevention of IBD disease during 14 days at 4 °C, 25 °C, 37°C. In 4 °C, flavor and smell were constant for 14 days. After 12 days PH was about 5.80 (early PH was 6.6). Also total count demonstrated stability of bacteria and their growth during 14 days at three different temperatures. At 25 °C and 37°C, after 14 days the PH reached to about 3. Flavour of milk became acidic after 4 days at 25°C and after 2 days at 37°C. Numbers of bacteria reach to 10^6 cfu/ml in a few days.

Studies in experimental animals give a clue about the potential application of lactobacilli and bifidobacteria to prevent or treat colitis, IBD.

The results confirmed it and showed a beneficial effect of probiotic bacteria in IBD. However, it must be kept in mind that data on the use of these agents in IBD are still very limited and not always consistent.

Keywords: Probiotic Inflammatory Bowel Disease (IBD)

Pulsed light treatment for the shelf-life extension of packaged cooked ham slices

M. Fernández, S. Manzano, E. Barroso and E. Hierro

Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.

Ready-to-eat (RTE) products are becoming very popular among consumer preferences in developed countries due to the current lifestyle and dietary habits. Some of these products are cooked meats which are prepared in small portions from heat treated blocks. Pasteurization ensures the inactivation of vegetative bacterial cells and provides a reasonable shelf-life to the product, but superficial recontamination during subsequent handling (i.e. slicing, packaging, etc.) may occur, which could affect both, preservation and safety. Among the new technologies that are being assayed for the higienization of RTE foods, pulsed light (PL) treatment seems to be adequate due to its efficacy for the decontamination of surfaces. The process consists of the application of short duration pulses (10^-3-10^-2 milliseconds) of an intense broad spectrum (200-1000 nm) light. The UV-C region of the spectrum (200-290 nm) is the main frequency band responsible for the bactericidal effect, which is primarily attributed to a photochemical damage on DNA (Wang et al., 2005). The present work is a study on the suitability of PL for extending shelf-life of packaged cooked ham slices.

Cooked ham blocks (10.5 cm diameter) were sliced and packaged in plastic bags (48 μm thickness polyamide/polyethylene/vinyl acetate–based copolymer) under aerobic and vacuum conditions. Preliminary studies were carried out in order to select the most appropriate fluence for PL treatment. In this way, microbial decontamination and sensory attributes (odour and visual appearance) were evaluated after applying 0.7, 2.1, 4.2 and 8.4 J/cm² (both sides of the slices were treated). The 8.4 J/cm² treatment was chosen for this study since it showed a good level of decontamination without modifying the sensory properties of the product. Control samples (non-pulsed) were also processed. Pulsed light treatment was applied in a desktop equipment Steribaum SBS-XeMatic-2L. Samples were stored at 4 °C and shelf-life was determined by periodical bacterial counting (TSA 32 °C, 24h) and sensory analysis (by a panel of 20 tasters).

The initial bacterial numbers in non-treated slices were approximately 2 log c.f.u./cm². However, in pulsed samples no counts were obtained immediately after PL treatment. Aerobiologically packaged untreated samples resulted sensorially unacceptable after 8 days of storage, although bacterial counts did not reach 6 log c.f.u/cm². In pulsed slices this condition was reached 4 days later. Vacuum packaging alone is a very useful tool to extend the shelf-life of sliced cooked ham. In control samples the lag phase was extended approximately one week and the product was acceptable until day 19 of storage. On day 26, a light hot culture medium odour appeared coinciding with counts of 5.7 log c.f.u./cm², followed by a clear vacuum packaged odour after 33 days of storage. On the other hand, in pulsed slices the lag phase lasted 26 days and samples were acceptable for 49 days, which means that PL treatment provided an additional shelf-life extension of 30 days in vacuum packaged slices when compared to non-pulsed samples.

This work was supported by the projects AGL2007-65235-C02-02 and CONSOLIDER-INGENIO 2010-CA RNISENUSA (Ministerio de Educación y Ciencia, Government of Spain).

References

Keywords: pulsed light treatment, cooked ham, RTE foods, shelf-life.
Quantifying the effect of (in)organic acids on the thermal inactivation of Escherichia coli

E. G. Velliou1, E. Van Derlinden1, A. M. Cappyns1, A. Vermeulen1, E. Nikolaidou1, A. H. Geeraerd1, F. Devlieghere2 and J. F. Van Impe1

CPMF2 - Flemish Cluster Predictive Microbiology in Foods – www.cpmf2.be
1 BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
2 MeBioS - Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems (BIOSYST), Katholieke Universiteit Leuven, Leuven, Belgium
3 Laboratory of Food Microbiology and Food Preservation, Department of Food Technology and Nutrition, Ghent University, Ghent, Belgium

Introduction

The ability of stress adapted micro-organisms to resist when they are exposed to a different environmental stress is known as cross protection (Juneja and Novak 2003). It is widely known that acids and temperature are stress factors for bacterial cultures. The type of acid, used during acid stress may affect the level of stress and/or cell injury. Strong acids –such as HCl- lead to trafficking of the dissociated \([H^+]\) in the cell via the membrane, leading to a decrease of the internal pH of the cell to levels that can be toxic or lethal. The weak acids –such as acetic and lactic- enter bacterial cells in their undissociated form and they partly dissociate in the cytoplasm (Foster 2004). Weak acids are more stressful for the cells compared to a strong acid. The aim of this research is to investigate the influence of rapid pre-acid shock –with different types of acids each time- on the heat resistance of \(E.\ coli\) at lethal temperatures.

Materials and Methods

\(E.\ coli\) cells have been grown in Brain Heart Infusion broth until they reach the stationary phase (≈ \(10^9\) cfu/mL). These stationary phase cells have been added in normal Brain Heart Infusion Broth (pH=7.4) and in pH re-adapted (pH in the range from 5 to 6) Brain Heart Infusion Broth. Inactivation experiments take place at constant, lethal temperatures for \(E.\ coli\), and specifically at 54\(^\circ\)C and 58\(^\circ\)C. The duration of the pre-acid shock is approximately 30 minutes. The re-adaptation of the pH has been achieved with the addition of 50% (v/v) of different acids each time (acetic acid, lactic acid, hydrochloric acid). Induced resistance is defined as a prolongation of the shoulder and/or a reduction on the inactivation rate and/or an occurrence of a tail on the inactivation curve, indicating the presence of a stress resistant population.

Results

It is observed that rapid pre-acid shock can lead to resistance of \(E.\ coli\) to heat. The induced heat resistance is dependent on the type and the amount of acid used, since different levels of acidification (different pH values of the broth) lead to a different level of heat resistance. More specifically, addition of acetic acid in the medium for pH in the range of 5-6 always leads to an induction of resistance, the extend of which is dependent on the pH value for both studied temperatures. For addition of lactic acid in the range 5-6 a slight induction of resistance was observed at 58\(^\circ\)C but no resistance was observed at 54\(^\circ\)C. Addition of hydrochloric acid in the medium at 54\(^\circ\)C leads to an induction of resistance which is similar for all the pH values in the range 5-6. At 58\(^\circ\)C for pH 6.6 a prolongation of the shoulder is observed and there is an occurrence of a tail. The presence of the tail is the result of a stress resistant population. The formation of this resistant population – which is not present in non acidified conditions - is possible that occurs due to the pre-acid shock, which increases the bacterial resistance to heat.

This work aims at providing additional quantitative knowledge on the reaction of high density bacterial cultures to acids and heat on the extent of their level of adaptation and induced resistance.

Acknowledgements

This work was supported by grant DR/08/006/BRM and KULeuven-BOF Projects OT/09/25 and EF/05/086 OPTIC Optimization in Engineering of the Research Council of the Katholieke Universiteit Leuven, and the Belgian Program on Interuniversity Poles of Attraction, initiated by the Belgian Federal Science Policy Office.

Keywords \(E.\ coli\); pre-acid shock; heat resistance; acid stress; heat stress; predictive modeling

References

Quinolone resistance in nontyphoidal *Salmonella enterica*: role of chromosomal mutations and plasmid-mediated determinants

M.J. Campos, G. Palomo, S. Vadillo, S. Pérez and A. Quesada

1Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
2Grupo de Investigación en Recurso Marinos, Instituto Politécnico de Leiria, Peniche, Portugal

The use of quinolones in antimicrobial chemotherapy is widening the spread of resistant microbial strains. Among *Salmonella* isolates are still rare, but they are becoming more frequent. The main mechanisms of quinolone resistance are mutations in the (chromosomal) quinolone resistance determinant region (QRDR) in the *gyrA, gyrB, parC* or *parE* genes. Moreover, resistance to quinolones might be acquired by conjugal mobilization of plasmids. The plasmid mediated quinolone resistance (PMQR) originates a low level of resistance and is thought to enhance the selection of microorganisms with higher resistance level to quinolones by lowering the susceptibility threshold at which they can be selected.

This work focuses on the study of quinolone resistance in *Salmonella enterica* strains (n=364) isolated in humans from different locations in the mid-west of Spain (Cáceres), between the years 2004 to 2008. Minimum inhibitory concentrations for nalidixic acid, ciprofloxacin and enrofloxacin were determined by both dilution, and the QRDR of *gyrA, gyrB, parC* and *parE* were sequenced. In addition, the presence of PMQR genes *qnrA, qnrB, qnrS, qnrC, qnrD, aac(6´)-Ib-cr and qepA* was determined. According to the Eucast criteria, 34% of strains were resistant to at least one of the tested quinolones. From the resistant strains, 77% had a single *gyrA* mutation, 4% had a single *parC* mutation and 3% had both mutations. Strains with more than one mutation in *gyrA or parC* were not found. Resistant strains lacking mutations in *gyrA* or *parC* were screened for mutations in *gyrB* and *parE* genes, but no such mutations were found. The mutations in *gyrA* were often associated to serotypes Enteritidis and Typhimurium, while mutations in *parC* were exclusively found in serotypes different from the previously mentioned. A high-level of resistance to the quinolone nalidixic acid and a low-level of resistance to the fluoroquinolones enrofloxacin and ciprofloxacin were found associated with mutations in *gyrA, parC* or simultaneously with both genes in the same strain. The only PMQR determinants detected have been *qnrS* and *qnrB*, each one in a different strain of S. Typhimurium. Both strains lack mutations in the QRDR of *gyrA, gyrB, parE* and *parC* genes. The strain containing the *qnrB* determinant, carrying a new allelic polymorphism, presents high resistance to both quinolone and fluoroquinolones, whilst the strain with *qnrS* shows low-level resistance to nalidixic acid, enrofloxacin and ciprofloxacin. Thus, although chromosomal mutations (*gyrA* or *parC* coding sequences) or plasmid mediated (*qnrB* or *qnrS* genes) determinants can explain the majority of the strains’ resistance phenotype, a fraction of them had resistance phenotypes relying on unknown resistance mechanisms.

Keywords: *Salmonella, quinolones, QRDR, PMQR.*

Acknowledgements: This work has been funded by grants AGL2008-04147 (Ministerio de Educación y Ciencia) and PRII8I001 (Junta de Extremadura).

Red Bacterial Cellulose Production by Fermentation of *Monascus purpureus*

B. Wonganu and S. Kongruang

Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, 1518 Phulsongkram Road, Bangsue, Bangkok, Thailand 10800

Red Pigment is one of the secondary metabolic products produced by *Monascus purpureus* strains. It has widely applications in many industries such as foods, pharmaceutics and cosmetics. Red pigment production were studied on bacterial cellulose derived from *Acetobacter xylinum* TISTR 975 by using *M. purpureus* TISTR 3002, *M. purpureus* TISTR 3385 grown in Modified Yeast Malt Extract supplemented with soybean flour.

The experiment was carried out on the rotating shaker at 250 rpm under 30 °C for 14 days. Result showed that rate of red pigment production of 3385, 3002 and 3180 are 0.093, 0.036 and 0.029 UA, in that order. TISTR 3385 revealed the highest pigment production with the ratio of 1.18 and 1.68 times when compared with those of 3002 and 3180. The substrate consumption decreased as an increasing fermentation time. Result also showed that 3385 consumed substrate 1.22 and 1.85 times higher than 3180 and 3002 with the rate of substrate consumption 0.168, 0.138 and 0.091 g/L/day. Total color differences were also evaluated and showed that 3002 exhibited higher color yield than 3385 and 3180 about 2.25 and 3.78 times with the values of 1.51, 0.67 and 0.40 unit/day. Red bacterial cellulose derived from *M. purpureus* TISTR 3002 which approved by Food and Drug Administration was analyzed for nutritional composition. Results revealed that this red bacterial cellulose contained 3.41 g/1 carbohydrate, 0.054 g/l protein, 20% (w/v) lipid, 95% (w/w) moisture content with the mineral values of calcium, iron and phosphorous of 10, 4 and 1 mg/100g, respectively.

Keywords: *Monascus purpureus, Acetobacter xylinum, bacterial cellulose*
Risks of *Vibrio parahaemolyticus* in black tiger shrimps (*Penaeus monodon*)

Norrakiah Abdullah Sani1, K.W. Sujeeewa Ariyawansa2, Abdul Salam Babji1 and Jamal Khair Hashim3

1 School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
2 Post Harvest Technology Division, National Aquatic Resources Research and Development Agency, Crow Island, Colombo 15, Sri Lanka.
3 Surveillance, Risk Analysis and Laboratory Section, Food Safety and Quality Division, Ministry of Health Malaysia, Federal Government Administrative Centre, 62590, Putrajaya, Malaysia

A study was undertaken to determine the risks posed by *Vibrio parahaemolyticus* in black tiger shrimps (*Penaeus monodon*) and culture environment. The prevalence of *V. parahaemolyticus* in frozen shrimps (30), live shrimps (40), sediments (38) and water (48) samples collected from a shrimp factory and 3 farms, respectively, were determined. A total of 251 isolates were tested including 60 from frozen shrimp, 50 from live shrimp, 67 from sediments and 74 from water targeting the toxR, thermostable direct hemolysin (tdh) and related hemolysin (trh) genes for confirmation of total and pathogenic *V. parahaemolyticus*. Microbiological risk assessment was conducted in order to estimate the risk of getting infected by consuming cooked shrimps for Malaysians and also for Japanese by consuming raw frozen shrimp imports from Malaysia. *V. parahaemolyticus* was detected in 98% of water samples with densities ranging from 10 to 420 cfu/ml whereas it was 200 to 9000 cfu/g for pond sediments. *V. parahaemolyticus* was detected in all live shrimp samples with densities ranging from 300 to 8000 cfu/g. Frozen shrimp samples (43%) were positive for *V. parahaemolyticus* ranging from 4 to 93 MPN/g. The strains (51%) were found to be positive for toxR and 15% of the isolates from culture environment and 7% of the isolates frozen shrimp possessed the virulent genes. Estimated illness per year was 123 persons (age from 18 to 59 years) for Malaysian and 63 for Japanese people. This study indicated that pathogenic *V. parahaemolyticus* strains were present in shrimp culture environment in Malaysia and suggest a probable risk for health of people consuming raw shrimp.

Keywords: Microbiological risk assessment, *Vibrio parahaemolyticus*, black tiger shrimps

Screening of lactic acid bacteria from wine and grapes for malolactic and glycosidase activities

H. Michlmayr1, C. Schümann1,2, N. M. Barreira Braz Da Silva3, K. Rohovich1, M. Grandits1, A. M. del Hierro1 and K. D. Kulbe3

1 BOKU-University of Natural Resources and Applied Life Sciences, Vienna
2 IST, Division of Food Biotechnology, Muthgasse 18, A-1190 Vienna, Austria
3 Escola Superior Agrária de Bragança, Departamento de Ciências Básicas Campus de Santa Apolónia, Bragança, Portugal.

Lactic acid bacteria (LAB) have significant impact on the composition and sensory expression of wine by conducting the malolactic fermentation (MLF). There are only a few species adapted to the harsh conditions in wine, mainly *Oenococcus oeni* and several species of *Pediococcus* and *Lactobacillus*. The main characteristic of MLF is the conversion of malic acid into lactic acid by the malolactic enzyme. Also the β-glycosidase activity of these species may play an important role in aroma enhancement of wine during MLF by the release of terpenic compounds from their glycosylated precursors.

Therefore, several methods have been developed to isolate LAB and to screen for malolactic and glycosidase activities. The sources of strains were malolactic starter cultures as well as samples from Austrian wines and grapes. The isolated strains were identified by microscopy, Gram staining, catalase tests and restriction analysis of the amplified 16S rRNA gene.

To screen for malolactic active strains a selective medium containing bromocresol green to indicate deacidification was developed, HPLC analysis was used to verify malate decarboxylation. Screening for glycosidase active cells was made by streaking onto agar minimum media plates with 4-methylumbelliferyl-β-D-glucopyranoside (β-MUG) and 5-bromo-4-chloro-3-indolyl-β-D-glucopyranoside. Furthermore, the glycosidase activity of the isolated strains was determined by their ability to hydrolyse p-nitrophenyl-β-D-glucopyranoside.

Keywords: lactic acid bacteria, malolactic fermentation, glycosidases
Selection of a broad lytic spectrum phage for *Salmonella* detection

Elisabete R. Fernandes, Silvio R. B. Santos, Leon D. Kluskens, and Joana Azeredo

IBB- Institute for Biotechnology and Bioengineering, Center of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057 Braga, Portugal

Salmonella infection continues to be a major cause for food-borne illness throughout the world. Therefore, the rapid detection and identification of this pathogen is extremely important to maintain public health safety. Many conventional methods currently used take several days, therefore new and expeditious methods are being developed, based on the direct interaction of the pathogen with a specific bioelement, such as antibodies, DNA, enzymes and very recently bacterio(phages). Phages are viruses that detect and eliminate specific bacteria. As such, they have been applied in phage therapy, water treatment, high-throughput screening and also biosensing. Moreover, compared with other bioelements, phages are more stable and less sensitive to environmental stress, such as pH and temperature fluctuations. Also, their production costs are very low.

In order to obtain a phage suitable to serve as a bioelement, we analysed the lytic spectrum of several *Salmonella* phages (isolated in the scope of the European project Phagevet-P) against *Salmonella* sp. and *E. coli*, among other bacteria. The results showed that *Salmonella* phage phi PVP-SE1 had the broadest lytic spectrum among all tested phages. The morphology of phage phi PVP-SE1 was analysed using TEM. It was shown to have a contractile tail and resembles typical 01-like phages that belong to the *Mycobacteria* family. Comparing the lytic spectrum of this phage to the well known Felix 01 (a virulent phage originally isolated by Felix and Callow), on the different isolates, we observed that phi PVP-SE1 presents a broader host range than Felix 01. Felix 01 only lysed 75% of the strains lysed by phage phi PVP-SE1. This is interesting as Felix 01 is routinely used as a diagnostic tool in the identification of *Salmonella* strains. The broad range lytic spectrum makes the phi PVP-SE1 a potential tool in phage therapy, because it may cover many types of *Salmonella* strains, which is a huge advantage as method of detection.

Despite having a high throughput, conventional microbiological detection techniques such as enzyme linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are consuming, and require expertise and suitable laboratory conditions. Therefore, this newly isolated phage phi PVP-SE1 can be an excellent element of choice to include in the construction of an advanced and user-friendly biosensing system with high levels of specificity, selectivity and stability.

Keywords: Bacteriophages; *Salmonella* sp.; Felix 01; lytic spectrum; Biosensing system

Selection of lactic acid bacteria for the production of phenyllactic acid for food conservation

Noelia Rodriguez1,*, José Manuel Salgado1, Belén Max1, Julio Rodriguez-Lopez1, Sandra Cortés1, José Manuel Domínguez2

1Department of Chemical Engineering, Sciences Faculty, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, CITi - Centro de Investigación, Transferencia e Innovación, Avda. Galicia nº 2, Parque Tecnológico de Galicia (Tecnópole), San Cibrao das Viñas, 32900 Ourense, SPAIN

2Estación de Viticultura e Enologia de Galicia (EVEGA). Ponte San Chido s/n, 32427. Lleiro (Ourense), Spain

The growing interest of consumers towards the use of high quality foods that are more natural and minimally processed, while being safe and with a long life, together with stricter legislation regarding the preservatives used, has challenged for the food industry and has led to increased research and use of natural preservatives. Today it is known that certain lactic acid bacteria (LAB) produce antifungal, thus offering a potential alternative to the use of synthetic preservatives.

These LAB have many applications in fermented food production as a major influence on nutritional, sensory and shelf life of products. LAB are known to produce bioactive molecules (such as organic acids, fatty acids, hydrogen peroxide, diacetyl and bacteriocins) showing antimicrobial activity against organisms and pathogens. Due to their antimicrobial activity, *Lactobacillus plantarum* has been investigated especially in connection with the production of organic acids and/or cyclic dipeptides, showing for example, that *L. plantarum* ITM21B, used as initiator in yeast bread, slows the growth of *Aspergillus niger* and *Penicillium roqueforti* for 7 days and significantly prolongs the life of bread (1). In the filtrate of the culture was observed the presence of phenylactic acid (PLA) and its derivative 4-hydroxy phenyllactic (OH-PLA). There is evidence that PLA is a novel antimicrobial compound, first found in *Geotrichum candidum* and found to inhibit growth of *Listeria monocytogenes* (2). It is also active against Gram-positive and Gram-negative bacteria and fungi (3). It has also been observed inhibitory properties of PLA against several species of fungi isolated from bakery products, flour and cereals, including species such as *Aspergillus ochraceus, Penicillium verrucosum* and *P. citrinum*, and certain contaminating bacteria such as *Listeria spp.*, *Sphingobacterium aureus* and *Enterococcus faecalis* (4).

It has also been reported that PLA and OH-PLA are metabolites produced by LAB strains through the degradation of phenylalanine (Phe) and tyrosine (Tyr). Therefore, this work evaluates five strains of LAB (*L. plantarum*, *L. acidophilus*, *L. pentosus*, *L. rhamnosus* and *Lactococcus lactis*) to assess their ability to produce PLA and OH-PLA. Another aim is to investigate the influence of the metabolism of Phe in the formation of PLA in these strains. Consequently, different carbon sources (syntetic or with an agroindustrial waste origin) as well as different nutrient sources, all of them with different Phe content, were evaluated.

Keywords: phenylactic acid, phenylalanine, lactic acid bacteria

Selection of *Oenococcus oeni* strains to employ as starters in malolactic fermentation.

CRA-ENOCentro di ricerca per l’Enologia, via P. Micca 35 14100, Asti, Italy.

Malolactic fermentation (MLF) is the second fermentation of wine that causes significant changes of wine sensory properties: in fact the acidity of wine reduces and the organoleptic characteristics of the final product improve. This fermentation is principally carried out by *Oenococcus oeni*. Sometimes its performance has some problems and the use of commercial starter often does not help to enhance its management.

A selection of *O. oeni* strains was made in the collection of the CRA- Centro di Ricerca per l’Enologia to test their speed of adaptation in wine and the speed with which they complete MLF.

Screening was made with different steps evaluating the growth rate of each strains: in the first step the growth at 20°C in MRS broth within 7 days was tested; in the next steps different media with stressing conditions were used: poor sugar and with the addition of compounds that make them similar to the wine such as malic acid (3g / L) and ethanol (10%); the last selection step was done in Nebbiolo wine. The evolution of lactic acid was monitored by HPLC.

Macrorestriction analysis with Sfi I and Apa I endonucleases and subsequent PFGE was carried out in order to identify the strains obtained at the end of the selection. Moreover MLST (Multilocus Sequence Type) analysis was applied by sequencing recP, gyrb and ddl genes.

Then the selected strains have been used as starters in Nebbiolo wine both individually and in pairs; a control trial was made by inoculating a commercial starter widely employed in winemaking. The process of MLF was monitored by HPLC and the sensory analysis of the obtained wines was made.

The results showed that the starters selected in this study were able to complete MLF in wine. In particular, the strains used in mixture completed MLF more rapidly than the commercial strain. Moreover after sensory analysis, performed with a trained panel, it was proved that the mixture allowed to obtain a wine quality comparable with the one obtained using the commercial strain.

Keywords *Oenococcus oeni*, Malolactic fermentation (MLF), starter selection, molecular characterization, sensory analysis

Spatial distribution of bacterial colonies in a model cheese

S. Jeanson1,2, J. Chadœuf 3, M.N. Madec1,2, S. Aly1,2, J. Floury 1,2, T. Brocklehurst 4, and S. Lortal1,2

1INRA, UMR1253 STLO, F-35000 Rennes, France
2AGROCAMPUS OUEST, UMR1253, F-35000 Rennes, France
3INRA, UR546 BioSP, F-84914 Avignon, France
4Institute of Food research, Norwich Research Park, Colney, Norwich NR4 7UA, UK

In cheese matrixes whatever the cheese variety, bacteria are immobilised and grow as colonies. Bacterial colonies are the bioreactors of ripening processes. Therefore, their distribution as well as the distance between them is of major importance for ripening steps since metabolites (carbon sources and bacterial products) must diffuse within the cheese matrix. It has been previously shown that the distance between colonies as well as their diameter could influence pH microgradients between colonies in gelatine (Malakar et al., 2000). No data is available up to date about spatial distribution of bacterial colonies and distances between them within the cheese. Our purpose was to explore this distribution and which factors it may be influenced by (quorum-sensing, inoculation rate…).

We had two approaches: (1) experimental measurements were obtained by using a GFP-*Lactococcus* strain in inoculated UF (Ultrafiltration) cheese and taking stacks of confocal microscopy photos of the fluorescent colonies at different inoculation rates in order to check if colonies were randomly distributed and if they all developed in cheese (2) theoretical calculations of distribution densities and distances between colonies were performed on the basis of a random distribution and the development of all the colonies.

Numerations showed that the final numbers of cfu/g was identical whatever the inoculation rate. By the first approach, we confirmed that bacterial colonies in the UF model cheese were effectively randomly distributed, accurately fitting Poisson's model. We demonstrated that the initial inoculation rate strongly influenced the distances between colonies, but also their diameter. Theoretical 3D distances between colonies (from 55 μm at inoculum 10^6 cfu/mL to 257 μm at inoculum 10^3 cfu/mL) were calculated added with the diameters of colonies. In order to experimentally validate these theoretical values, a mathematical model is under construction to calculate experimental 3D distances between colonies and their diameters in the cheese matrix. For this model, we have to face two major problems: the elliptic distortion of colonies by the confocal microscopy, and the attenuation of fluorescence in depth within the cheese matrix which have to be corrected.

It is the first study to demonstrate that bacterial colonies are randomly distributed when growing in a cheese matrix and to calculate distances between bacterial colonies in cheese according to the initial inoculation rate. These new results are crucial in the understanding of the mechanisms of ripening at a microscopic scale. The technological implications of this varied spatial distribution will be discussed.

Key words bacterial colonies - cheese - lactic acid bacteria – spatial distribution – modelisation – confocal microscopy
Species specific PCR detection protocol for the main mycotoxin-producing Aspergillus species in paprika.

N. Sardiñas1, J. Gil-Serna1, B. Patiño1, M.T. González-Jaén2, C. Vázquez1

1Microbiology III, Fac. Biology. José Antonio Novais, 28040 - Madrid. Spain
2Genetics, Fac. Biology. José Antonio Novais, 28040 - Madrid. Spain

Paprika is an important food additive in many countries. Extensive data recently available indicate mycotoxin contamination, being Aspergillus the genus most frequently isolated from the paprika samples analysed. The rapid, specific and sensitive PCR methods represent a useful strategy to predict the risk of the most important mycotoxins and to assist strategies to prevent them entering the food chain. In this work, we have developed a protocol to detect the main aflatoxin (A. flavus and A. parasiticus) and ochratoxin A producers (A. niger, A. carbonarius, A. ochraceus, A. westerdijkiae and A. steynii) by specific PCR assays in paprika. We have evaluated several rapid commercial DNA extraction kits and determined the appropriate sample size for detection of the critical toxigenic species (visualization of a specific PCR product on agarose gel).

We have checked 23 paprika samples testing different sample size for DNA extraction with commercial kits (0.1 and 1 g). Subsequently, samples were incubated in Sabouraud-Chloramphenicol broth to obtain three different time points (0, 1 and 2 days). Finally, DNA was extracted with several commercial kits and tested for specific PCR assays previously developed in our group.

Incubation of the samples increased the percentage of contaminated samples (from 16 % at time 0 to 46% after 2 days of incubation). The highest number of species detected was also observed after two days of incubation (when all the species tested could be detected), being A. flavus the predominant species.

In conclusion, the paprika samples had high contamination levels and the optimum results were obtained starting from 0.1 g of paprika, incubating the samples for 2 days and using the DNeasy Plant Mini Kit extraction kit.

Keywords Paprika; Mycotoxins, Aspergillus

β-lactam resistance and extended-spectrum β-lactamases in Salmonella strains isolated from animals.

G. Palomo 1, M.J. Campos1, S. Piriz1, S. Vadillo1, A. Quesada1

1Departamento de Sanidad Animal, Facultad de Veterinaria de Cáceres, Universidad de Extremadura. 2Grupo de Investigação em Recursos Marinhos (GIRM), Instituto Politécnico de Leiria (IPL), Portugal. 3Departamento de Bioquímica, Facultad de Veterinaria de Cáceres, Universidad de Extremadura.

Human salmonellosis is recognized as the second most prevalent food-borne disease in the European Union. Although the disease is normally self-limiting, it requires antimicrobial chemotherapy for children, elderly and immunocompromised patients. A mortality of 0.1% has been reported associated to salmonellosis in the European Union, mainly produced by strains expressing extended-spectrum β-lactamases (ESBL) or quinolone resistance.

A collection consisting of 203 non-typhoid Salmonella strains (27 different serotypes) isolated from slaughtered animals or clinical cases by the Infectious Diseases Units of three veterinarian faculties (Cordoba, Caceres and Madrid) between 1998 and 2008. Minimum inhibitory concentrations (MICs) for cephalexin, cefotaxime, cefquinome, cefazidime and cefepime were determined by microdilution broth and 56 resistant strains were found. The presence of blaOXA-1, blaTEM, blaSHV, blaCMY and blaCTX-M genes was analyzed among the resistant strains, and the β-lactamase activity was calculated in all strains containing resistance determinants. The blaTEM gene was detected in 13 strains, belonging to 7 different serotypes, whilst blaOXA-1 gene was found in 13 strains of S. Typhimurium. In general, blaTEM positive strains were more resistant to cephalexin (1st generation cephalosporine), and more sensitive to cefepime (4th generation cephalosporine) than blaOXA-1 positive strains, although no significant differences were observed with 3rd generation cephalosporines. The β-lactamase activity expression was higher for blaTEM than blaOXA-1 genotypes.

Keywords: Salmonella, resistance, β-lactamases

Acknowledgements: This work has been funded by grants AGL2008-04147 (Ministerio de Educación y Ciencia) and PR08B001 (Junta de Extremadura).
Study of cell envelope proteinase systems of natural isolated thermophilic lactobacilli

1YEREVAN STATE UNIVERSITY, 0025, A. Manoogyan 1, Yerevan, RA
2PC “VITAMAX-E” 0015, Rubinyants 27/55, Yerevan, RA
3UIR 1268 INRA BIA FIPL, B.P. 71627 – 44316, Nantes, Cedex 3, France

Clinical ecology data show that 84% of world population suffers from food allergies, and particularly in 60% cases, the reason of such allergies is milk. As far as cow milk is a source of proteins, essential amino acids, fats and carbohydrates, its exclusion from diet is undesirable. On the other side the high allergenicity of milk makes us to seek new ways for the solution of this problem. The most appropriate way is the use of LAB, which pre-digested milk proteins, especially casein.

Otherwise, k-protein bioactive peptides derived from milk proteins are inactive within the sequence of the parent protein and can be released and activated only by proteolysis which can be accomplished by the action of proteinases and peptidases from LAB. The proteolytic system of LAB consists of cell wall bound proteinases and several intracellular peptidases. Transport systems specific for amino acids, di- and tripeptides and oligopeptides (up to 18 amino acids in length) are present in LbAB and serve for the nitrogen uptake. Longer oligopeptides, not transported into the cells, can be a source for the liberation of bioactive peptides in fermented milk products when further degraded, for example by intracellular peptidases of LAB after cell lysis. In the human gastrointestinal tract, digestive enzymes will contribute to the further breakdown of long casein-derived oligopeptides, which may also lead to release of bioactive peptides. Once liberated in the body, bioactive peptides may act as regulatory substances.

Objects of research were more then 30 LAB strains isolated from matsun and cheese samples collected from small farms in different regions of Armenia. All of them were screened on proteolytic activity, and only two strains exhibited proteolytic activities - L. bulgaricus and L. salivarius. These two strains were identified on their morphological, cultural, biochemical and physiological properties. These strains were analyzed by two methods for casein hydrolysis activities: skim milk (1) and milk-citrate (2) systems. Both total casein and β-casein were used as substrates. At 37ºC the optimal pH was 6.6 for both strains. In parallel, temperature optimum (measured at pH 6.6) for each strain was 45ºC. Finally, determination of caseinolytic activities was carried out at optimal pH and temperature for each strain and these samples were used for analyses by HPLC. Comparative study of hydrolysis rates of these strains revealed differences in hydrolysis profiles. The study of the influence of inhibitors on the proteolytic activity of whole cells revealed that mercaptoethanol, ethanol and iodoacetic acid had no effect. In the presence of a chelating agent such as EDTA (inhibitor of metalloproteinases), the activity of proteinases was reduced to some extent. PMSF (serine proteinase inhibitor) inhibited proteinases of L. bulgaricus and L. salivarius too. It can be concluded that both strains produce serine-type proteinases.

So the cell-surface proteinases of L. bulgaricus and L. salivarius may represent a novel source of proteinases. Mentioned LAB can be used for starter culture construction not only in production of cheese and matsuns, but in production of new probiotics.

Keywords: lactic acid bacteria, proteolytic activity, pH optimum of hydrolysis, temperature optimum of hydrolysis, type of proteinase

This work performed at supporting of NATO S/P 982 164 grant and by PC “Vitamex-E”.

Sublethal injury, growth and inactivation rates of stressed E. coli O157:H7

A.A. Gabriel, H. Nakano
Laboratory of Food Microbiology and Hygiene, Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan

This study determined the responses of E. coli O157:H7 to resuscitative challenge in nutrient medium and inactivation challenges in unheated and heated apple juice following prior exposures to mildly and moderately injurious combinations of pH (3.0-8.0), osmotic pressure (αw=0.93-0.99) and temperature (3.0-62 ºC) stresses. The individual and interactive effects of the stress factors on the measured E. coli responses were determined by multiple regression analyses.

Results showed that sublethal injury was significantly influenced by the individual linear and curvilinear effect of prior exposures to αw, and the linear effect of temperature stress. On the other hand, growth lag times of the organism were influenced by the individual effect of pH and the pH-temperature, and αw-temperature interactions. On the contrary, the microbial growth rate and maximum population was not influenced by any of the stress factors. Acid inactivation rates, measured in decimal reduction times, in unheated (25 ºC) apple juice were significantly influenced by the individual effect of αw and the interactive effects of pH-temperature and αw-temperature. Moreover, the decimal reduction times of E. coli O157:H7 in heated apple juice (55 ºC) was influenced significantly by the individual effects of prior pH and αw stresses.

By correlating the % sublethal injury and lag times of the organism, results showed that injury rates alone may not correctly predict the subsequent resuscitation of the organism. The nature of the resulting injury contributed by specific stress factors should be considered. Occurrence of injury did not induce resistance to subsequent acid challenge. On the other hand, sublethal stress due to low pH was found to result in enhanced thermal resistance of E. coli O157:H7. The results obtained in the study contribute to further understanding of how the test pathogen responds to environmental stresses commonly encountered in food and food processing ecologies; and how such responses are related to cellular stress and damage. These results may have significant implications in the improvement of food safety evaluation and control.

Keywords: acid inactivation; acid stress; E. coli O157:H7; heat inactivation; osmotic stress; sublethal injury; temperature stress
Supercritical fluids for pasteurization - on-line investigation of the inactivation mechanisms

Sara Spillimbergo and Claudio Cinquemani
Dept. of Materials Engineering and Indust. Technologies Fac. of Engineering University Trento via Mesiano 77 I-38050 Trento

Fungi, moulds, bacteria and viruses represent a wide range of possible threats for bioprocesses on one hand and for the human body on the other. Conventional processes for inactivation of microorganisms using heat-treatment or gamma-irradiation do not meet basic requirements concerning consumer demands and cannot preserve nutritional or physico-chemical properties of the product. Thus, the strive for alternative inactivation methods has been going on for decades [1].

High-pressure CO₂ (HP-CO₂) can be used in an innovative and environmentally friendly process. The method has shown to be applicable for food pasteurization without causing organoleptic alterations [2, 3]. Recent investigations have clearly proven that besides pathogenic vegetative bacteria also spores can successfully be inactivated using compressed fluids with additional dissolution of oxidizing agents. Thus the process seems to be also suitable for sterilization of e.g. thermolabile pharmaceuticals or implants [4, 5].

However, the inactivation mechanisms (cell perforation, enzyme denaturation etc.) using highly compressed fluids, had not been fully understood yet [6]. The present study investigates a pH drop of non-buffered medium (extra-cellular) during HP-CO₂ treatment. So far speculative intracellular mechanisms that are responsible for the inactivation, particularly pH drop, have been determined in the present work for the first time on-line at pressures up to 90 bar. The newly developed measurement system, however, allows measurements even at much higher pressures.

The pH within the cytoplasm of various organisms - including acid tolerant Listeria species - has been investigated using fluorescent indicators: cFDA-SE and cFDCA-SE (covering pH values between 6.5 and 3.0). The results of this work also strongly support the hypothesis that the inactivation mechanism using compressed CO₂ is based upon the acidification of intra-cellular liquids of treated cells and not of the extra-cellular medium. However, pressure induced permeabilization of the membrane seems to be induced by non-acidifying fluids as well.

The presentation will show that the eco-friendly treatment is a genuine alternative to conventional disinfection and sterilization processes and could boost innovative developments not only within the field of food treatment but also in medicine, drug processing and biotechnology.

Survey, identification and control of aflatoxinogenic fungi and aflatoxins in grains and nuts.

F.C. da Silva¹, S.M. Chalfoun², L.R. Batista³, M.C. Pereira³ and Yasmin Chalfoun¹

¹Federal University of Lavras, Minas Gerais State – Brazil
²Agricultural and Livestock Research Institute of Minas Gerais State – Brazil

The fungal presence is associated not only the question of deterioration of grain or derivatives, but mainly to the contamination of food by toxins produced by certain fungi, called mycotoxins. Among the mycotoxins found in food sources, aflatoxins are the most important. They are products of secondary metabolism of fungi and Aspergillus flavus and Aspergillus parasiticus are the major producers. They are a group of at least 16 derivatives biurally oocumarinicos, and the four main naturally produced aflatoxins are B1, B2, G1 and G2. Characterized by show carcinogenic, mutagenic and teratogenic effects, the problem of the presence of these toxins in food becomes even more serious because the processes for their inactivation in foods are not effective. In addition, the eliminating of only small parts of such substances can cause undesirable changes in foods, such as loss of nutrients and changes in aroma and flavor of products. In Brazil, the occurrence of aflatoxins has been observed frequently, and at high levels in foods used for human consumption and animal feed such as corn, peanuts and dairy. The contamination of peanut products as mentioned products and other sweets, took prominent public health relevance, given that children are the main consumers of these products. Added to this scenario, the production of feed, produced mostly by cereals that are not as well monitored when compared to studies for mycotoxins in food for human consumption. It stands out, thus a global concern for the high probability of contamination by the toxin of these animals and the possibility of transmission of toxic mycotoxins to meat, milk and eggs, resulting in a potent risk to human health. In this sense, a scientific research is being conducted by a team from the Federal University of Lavras - UFLA and the Institute of Agricultural Research of Minas Gerais - EPAMIG, in order to obtain a natural preservative able to control the development of toxicogenic fungi in grains. The activities that comprise this research began with the construction of a fungal germplasm consisting, until this moment, of toxicogenic species of Aspergillus flavus and Aspergillus parasiticus isolated from various grains (peanuts, corn, coffee, nut, Pará), consisting of 43 isolates previously identified and cataloged. Tests in vitro of essential oils anise (Pimpinella anisum L.), ginger (Zingiber officinale R.), peppermint (Mentha piperita L.), sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) on mycelial growth and sporulation of Aspergillus flavus and Aspergillus parasiticus and production of aflatoxins indicated their potential antifungal and inhibition synthesis of aflatoxins. The encapsulation of essential oils with inhibitory effects observed in vitro step for tests in vivo have also shown promising results. Finally, a proposal is being discussed with researchers from the University UMINHO, Braga / Portugal, for the implementation of proteomic analysis of different isolates of the species Aspergillus flavus and Aspergillus parasiticus isolated from different grains and nuts grown in Brazil. The aim is to verify different expressions of aflatoxin production among different isolates and to compare the toxin production with fungal isolates obtained from grain grown in Portugal.

New antibacterial molecules produced by endophytic Paenibacillus polymyxa

P. Blanco, I. Orriols and A. Losada

Estación de Viticultura e Enoloxía de Galicia (EVEGA), Ponte San Clodio s/n, Leiro 32427, Ourense, Spain.

Inoculation of commercial yeasts in wine-making process has become a common practice in most wine-producing regions. Active dry yeasts (LSA) have been selected on basis of their oenological properties and, therefore, they guarantee a successful vinification process increasing fermentation speed and reproducibility of wine characteristics. Since wine quality is significantly affected by the strain of Saccharomyces cerevisiae leading fermentation, the use of LSA can contribute to loose some typical sensorial properties of wines. In addition, the introduction of LSA may affect the diversity of indigenous population of yeasts in the winery, and they are even able to become the dominant strains in spontaneous fermentations.

The aim of this work was to study the incidence of commercial yeasts on the native S. cerevisiae strains diversity and their ability to lead spontaneous fermentations in the experimental winery of Estación de Viticultura e Enoloxía de Galicia (EVEGA). To do this, several spontaneous fermentations were carried out in the experimental cellar of EVEGA for a period of 7 years (2002 to 2008). Samples were taken from must and at the beginning, vigorous and final fermentation. A representative number of colonies was isolated from each sample. S. cerevisiae strains were characterized by analysis of mitochondrial DNA restriction patterns (Querol et al. 1992. System. Appl. Microbiol. 15: 439-446). The results showed that ten different strains of S. cerevisiae were found as dominant strain or in codominance with other strains from a total of 64 spontaneous fermentation processes studied. Almost all of them showed genetic profiles (mtDNA-RFLPs) similar to those found in different commercial yeast that had been previously used in EVEGA cellar. Although more than 20 different strains of autochthonous S. cerevisiae strains were identified from these fermentations, only a reduced number of them were able to reach implantation frequencies as high as commercial yeasts did.

These results clearly indicated that commercial wine yeasts are perfectly adapted to wine cellar conditions and they successfully compete with the indigenous strains of S. cerevisiae even during spontaneous fermentations. On the other hand, autochthonous dominant strains that presented desirable oenological traits could be of interest to preserve wine typicality.

Keywords: spontaneous fermentations; commercial yeasts; S. cerevisiae strains
Synergism of natural compounds in struggle for safe and healthier food

Szczepaniak, S1 and K. Willems1

1Department Microbial & Molecular Systems (M2S), Faculty of Industrial and Biosciences, K.U.Leuven Association Scientia Terrae Research Institute, Fortsesteenweg 30A, B-2860 Sint-Katelijne-Waver, BELGIUM

Nowadays consumers expect safe food products with excellent taste and appearance, produced without any use of chemicals. In order to fulfil the commission food producers apply modern processing techniques and use preservative additives. Physical preservation suppose to rapidly inactivate undesired bacteria. The role of different means of packaging is to sustain sterile conditions, while preservative supplements suppose to guard the safety of the food product by suppressing the uncontrolled growth of pathogenic and spoilage bacteria. Unfortunately many additives influence the sensory characteristics as colour, texture, flavour or taste of the foodstuffs, what results in low consumers’ acceptance. Additionally, strategies used to reduce spoilage and pathogenic bacteria are not selective enough and may inactivate also desired micro-flora. Food is usually overdosed with antimicrobials which are supplemented ‘in case’. Little is said about impact of such ‘bacteriostatic food’ on human microflora and human health. Unfortunately consumer of XXI century is condemned to buy unhealthy food in one place and ‘health’ in another under the form of pro-biotic bacterial cultures, served in plastic cups or other healthy food supplements. That’s why food producers must reach for natural preservation methods truly harmless to humans.

Nature offers wide spectrum of biologically active (phyto)chemicals which may be used as potential natural preservatives. Many characterise desired taste and, therefore have been used in cuisine for hundreds of years as flavourings and spices. Antibacterial compounds are detected in all parts of plant: leaves, flowers and their petals, fruits, stems, seeds, roots etc. These are mostly acids, alcohols, medium and long-chain organic acids (especially lauric acid, caprylic and capric acid), terpenic compounds and their derivatives. Probably their organic lipophilic character improves their affinity to the components of bacterial cell membrane, facilitates their penetration of the cell, and possibly improves transport of other bacteriostatic compounds to the cell, what increases their bacteriostatic properties. Plant extracts are effective not only against bacteria but also yeasts, fungi and viruses; for example water as well as alcoholic plant extracts containing alkaloids show antiviral effects against hepatitis B virus and HIV.

The effectiveness of plant extracts e.g. synergism between terpenoids and medium chain fatty acids was studied in liquid medium, simulating environment of cured cooked meat. Tested bacterial strains constitute typical spoilage microflora in vacuum (Lactobacillus curvatus) and MA-packed (Brochothrix thermosphacta) meats. Results were also validated in meat environment.

Lactobacillus curvatus was observed to be very resistant against used either terpenoids or fatty acids alone, while its growth was strongly inhibited when both types of products were applied together. Growth of *Brochothrix thermosphacta* was significantly inhibited when antimicrobial compounds were applied alone, while blend of terpenoids and fatty acids showed to be bactericidal.

keywords: food preservation, functional food, synergism, plant extracts.

The prevalence of *Vibrio parahaemolyticus* in sea foods in Isfahan, Iran

Jalali, Mohammad 1, and Mahdavi, Manije

1Department of Nutrition, School of Health, Isfahan University of Medical Sciences

Background: *Vibrio parahaemolyticus* is widely distributed in marine environments and is associated with gastroenteritis cases caused by consumption of contaminated seafood. Clinical manifestations of *V. parahaemolyticus* infections include diarrhea, abdominal cramps, nausea and vomiting. *V. parahaemolyticus* food poisoning was mainly caused by consumption of seafood such as fish, crab, shrimp, shellfish and mollusks. However, other food products may also be cross-contaminated. The objective of present study was to investigate the vibrio species contamination in various type of fish and shrimp in Isfahan.

Methods: A total of 411 fish and shrimp samples were collected from 18 fish stores in Isfahan. The samples were obtained between 2003-2004. The prevalence of vibrio species was determined by using pre-enrichment in selective media and streaking on TCBS. Then, the isolates were identified by biochemical reactions.

Results: *Vibrio parahaemolyticus* and other species of vibrio were present in (6) 1/5% and (10) 2/4% of samples respectively.

Conclusion: The Results of the present investigation indicate the fact that there is a need to improve hygienic condition of seafoods in Isfahan.

Keywords: Vibrio, *Vibrio parahemolitycus*, contamination, seafoods, fish, shrimp
Use of interdelta polymorphisms of *Saccharomyces cerevisiae* strains to monitor the population evolution during wine fermentations

A. Xufre,1 H. Albergaria,1 F. Girio,2 I. Spencer-Martins

1 Unidade de Bioenergia, LNEG, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa
2 Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica

Aims: Use of interdelta polymorphisms to monitor the population dynamic of *Saccharomyces cerevisiae* strains during fermentation of grape juice.

Methods and Results: Three industrial *S. cerevisiae* wine strains were screened for interdelta polymorphisms using a set of three pair of primers (delat1-delta2; delta12-delta2 and delta12-delta21). PCR-amplification reactions originated different fragment patterns for each pair of primers and the pair delta12-delta2 exhibited the best resolution and discriminatory power. This pair of primers (delta12-delta21) was thus selected and used to follow the yeast population evolution during a mixed fermentation performed in synthetic grape juice and inoculated with similar amounts of each strain. All strains exhibited exponentially growth during the first three days of fermentation, attained maximal cell densities ranging from 10^4-10^7 CFU ml^-1 and kept these high density cell values throughout the stationary growth phase (from 3rd to 10th day) without significantly changing their relative population proportion.

Conclusions: Population quantification demonstrated that these three *S. cerevisiae* strains were able to grow together during the whole fermentation process, thus indicating that each strain, albeit at different levels, should influence the chemical composition and final flavor of wine.

Significance and Impact of the Study: Molecular typing of *S. cerevisiae* strains by PCR-amplification of DNA delta sequences is a reproducible, strain-specific and simple method that can be successfully used to monitor the population dynamic of wine fermentations.

Keywords: strain-specific primers; interdelta polymorphisms; mixed starter cultures; wine fermentations; yeast population dynamics; molecular methods;

Use of the E-beam radiation to diminish the late blowing of cheese slices

R. Velasco, J. A. Ordoñez, M. C Cabeza, L. de la Hoz and M. I. Cambero

Departamento de Nutrición, Bromatología y Tecnología de los Alimentos. Facultad de Veterinaria. Universidad Complutense. 28040 Madrid. Spain

The late blowing of cheeses is a spoilage caused by the growth of *Clostridium tyrobutyricum* and related species. It is due to the butyric fermentation of lactate by these organisms accompanied by the gas generation. The products more frequently involved are both the long ripening time cheeses make with enzymatic curd and processed cheeses. This phenomenon is relatively uncommon if the product is stored under refrigeration because of the mesophilic condition of clostridia but their frequency increases markedly when a temperature abuse occurs if the environmental conditions are favourable for the growth of clostridia even if a lactic acid microbe is present. This paper is an attempt to prevent the growth of clostridia responsible for the late blowing to statistically negligible levels by applying E-beam irradiation.

Cheese slices of about 5 month of ripening acquired in the market were contaminated with spores of a *C. tyrobutyricum* suspension at the rate of 10^8 spores/g and then vacuum packed. Samples were submitted to different doses of radiation in an E-beam irradiation plant. The absorbed radiation was controlled by the cellulose dosimeters. After treatment, the bacterial survivor count was made by pour plate method and the sensory quality was estimated using preference and descriptive tests. The colour and texture were also estimated by instrumental techniques. The rate of clostridia death by radiation was fitted to a first-order reaction according to the equation log c.f.u/g = (−0.5645 dose + 7.3171, from which a value D = 1.77 kGy was determined. A treatment of 3 kGy will reduce a 99%, decreasing a hundred-fold the spoilage possibility.

As the non-sporeforming microbiota present in the cheese (mainly lactic acid bacteria) is much more radiosensitive than the spores, a 3 kGy treatment also produced a very important kill of these organisms, in such a way that the mesophilic aerobic counts was reduced from 7.69 log c.f.u./g in non-treated samples to 5.60 log c.f.u./g, 3.76 log c.f.u./g and 2.53 log c.f.u./g after the application of 1, 2 and 3 kGy, respectively. The counts of non-sporeforming bacteria were increasing afterward to reach normal values (> 7.00 log c.f.u./g) after 1 – 3 months of storage at 4 °C.

To study the effect of E-beam radiation on the sensory properties of the processed cheese, many slices were treated at doses of 1, 2 and 3 kGy and analysed by both sensory and instrumental methods. Some significant differences (p < 0.05) were found between non-treated samples and those treated with 3 kGy dose. Differences were found in the flavour just after treatment and after 14 days of storage but these differences were minimised during storage and after 28 days were not detected. Differences were found at 28 days of storage even when 1 kGy was applied. However, samples were considered by testers as acceptable for consumption. The instrumental analysis of the colour showed that irradiation gave rise to light changes in the colour. In general, samples showed a trend to approach to the red (increase a* values) and move away from the yellow (decrease b* values). The luminosity (L*) was no affected.
Wine ecological practices increase the chromosomal polymorphism of yeasts

María Sanchoa, Francisco Montesb, Enrique D. Sanchoa

1Department of Microbiology, University of Córdoba, Campus de Rabanales, Ed. S. Ochoa, E-14014 Córdoba (Spain)
2Department of Graphic Engineering, University of Córdoba, Campus de Rabanales, Ed. G. Mendel, E-14014 Córdoba (Spain)

Introduction and Experimental Procedures. Yeasts taking part in the aging sherry-like wines elaboration in the Montilla-Moriles area (Córdoba, Southern Spain) belong to different varieties of *Saccharomyces cerevisiae*. This microbe has been characterized, emphasizing the populations stability, the sexual isolation and the low level of genetic polymorphism (1, 2). Besides, in that region, since 1999, an "ecologic" aging sherry-like wine is produced by using natural procedures friendly with the environment. In this work we study the chromosomal polymorphism level of aging yeast populations present in this type of wine, made under special conditions, remarkably different to those used by traditional methods. Wine samples were taken from aging barrels belonging to a wine prepared according ecological procedures. Yeasts were isolated and selected from different aging stages (200 strains in total). The identification of the isolations was made on the basis of physiologic, metabolic and molecular trials We performed karyotype electrophoretic determination (PFGE), which separates DNA fragments (250 to 2700 Kb), equivalent to the yeasts chromosome size (3), by using Bio-Rad material (CHEF-DRIII Systrem and GelDoc-3000 chamber).

Results and discussion. Microscopic observation of cellular morphology of yeasts, together with some biochemical tests allowed to rule out 40 strains that did not belong to the *Saccharomyces* genus. The remaining 160 *Saccharomyces* strains were classified on the basis of different identificative assays. The results (all strains formed film, high sensitivity to lithium -no growth in 50 mM LiCl-, sucrose fermentation) showed the predominance (95 %) of *capensis* variety. This percentage is similar to the corresponding one of traditional wines of the same region.

We performed total DNA electrophoresis (PFGE) to 60 aging strains and we found 9 different karyotypes (I, II, III, IV). The comparison between these karyotypes with the marker of *S. cerevisiae* YNN295 showed the following relevant differences: disappearance of chromosome XII, appearance of a new chromosome over the XV, appearance of one chromosome between IV and XV, chromosomes VI and X are separated from XIV, and chromosomes VI and X are separated. The figure shows the distribution pattern of the detected karyotypes. During the aging stages karyotype II was the predominant at all the stages and it was the only pattern found at the end of the aging period.

Conclusions. The chromosomal polymorphism level detected in ecological wine was higher (7,5 %) than the corresponding to the traditional wines (5%), which is in accordance to the less restrictive conditions and larger biodiversity during ecological vinification. The adaptation and predominance of one population line (karyotype II) of yeasts during the aging period suggests the putative feasibility of that line as selected starter to be used at industrial level. The potential risk due to the usual presence of undesirable strains of non *Saccharomyces* yeasts during the aging wine makes reasonable to develop strategies at different levels (physical, chemical, microbiological, building design) in order to elaborate a healthy and quality product maintaining sustainable winemaking practices.

References

Keywords: Wine, ecological practices, chromosomal polymorphism, yeast.

Variability analysis of microbial inactivation by different preserving treatments.

Aguirre, J.S., Rodríguez, M.R. and García de Fernando, G.D.

Dept. Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, Ciudad Universitaria, Madrid 28040, Spain

Microbiology and shelf life of food products depend on many, either intrinsic or extrinsic, factors, being one of the most important the microbiota characteristics and behaviour. Microbial inactivation is well documented since many years ago, but there is a lack of knowledge about the variability of the inactivation process. Variability may become critical in some foods, mainly when absence is required in a determined amount of food, as well as minimally processed or ready to eat foods. Therefore, it is important to perform accurate simulations of microbiological behaviour and risk assessment in order to increase the food safety. Quantitative microbial risk assessment and identification of potential hazard scenarios require probabilistic modelling approaches.

The objective of this work is to analyze the variability of *Enterococcus faecalis* inactivation by different treatments (irradiation, acidification and heat) and to compare them in statistical terms.

Samples (saline solution and milk for heat treatments, trypetic soy agar and cooked ham for irradiation, and buffer citrate, peptone and commercial chicken soup for acidification) were inoculated with *Enterococcus faecalis*. Each batch was composed by ca. 100 samples, and 10 for controls (untreated samples). Samples were heated, irradiated (electron beam) or acidified (acetic acid) at several extents in order to get from 0 to 4 decimal reductions. Survivors were enumerated in trypetic soy agar (Promedia, Spain) and data were statistically analyzed by Varr!t program kindly donated by their programmers from the Computational Microbiology Group of the Institute of Food Research (Norwich, United Kingdom) and Stat Graphic plus 5.0.

The variability followed a similar pattern in all substrates and inactivation treatments (Figure 1). The untreated samples always showed a smaller standard deviation than the treated ones. Furthermore, the more intense the treatment conditions, the more variable the number of survivors is. The statistical comparison of the distributions obtained for each batch shows noticeable differences. In general terms, there were statistical differences between system models and foods (buffer vs. milk, agar vs. ham, and citrate buffer and peptone vs. chicken soup) for the same microbial treatments. Nevertheless, similar microbial treatments resulted in similar survivor variability in the three foods tested. Independently of the nature of the treatment applied (irradiation, heat and acidification). In conclusion, the more intense the microbial treatment was, the more variable the outcomes were. Furthermore, the microbial inactivation variability is more affected by the applied microbial treatment intensity than the food matrix (ham, milk and chicken soup) where it is applied. On the contrary, significant differences of the inactivation variability were observed when comparing the data on substrate models and foods. Therefore, it is advisable to continue studying the microbial inactivation variability and the factors that affect it.

Acknowledgements: Authors thankfully acknowledge the support of the Ministerio de Educación y Ciencia (Spain), project AGL-2005-01239, and Program Consolider CARNIESNA USA CSD2007-0016.
Yeast, beer and fermentation an opportunity to involve young students in biotechnology.

Javier Méndez Viera1 and Josep M. Fernández-Novell1

1Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain

This biotechnology and its applications have an important role in economics, industry, health, nutrition, on environment and more science fields. However, our society has a negative perception of the biotechnology. In order to change this situation it is essential to improve biotechnological dissemination with secondary school students, our future society.

Designing a simple research work to secondary school students related to biotechnology could be complicated because it is difficult to correlate it with a specific subject, chemistry, biology, technology, etc. Furthermore, secondary school laboratories are not usually provided with adequate facilities and equipment. Finally, introducing secondary school students to the safety and conduct rules working in a microbiology laboratory is necessary.

We have prepared and developed some experiments focused on growing microorganisms and fermentation revision. In this way, cellular morphology and metabolism were studied; yeast replication and glucose catabolism were also measured and compared in two different Saccharomyces cerevisiae strains: CECT 1318, CECT 1383. Both are non pathogenic yeast with important significance in the beer industry. In addition, they are the most widely utilized yeast strains in undergraduate laboratories. Experiments were carried out in university laboratories with several groups of secondary school students (16 to 18 years old), each group spent two days in performing these experiments.

This microbiologic-educational approach has involved science secondary school students. The approach was based in microbial physiology and fermentation technology with a trouble-free communication and debates about biotechnology with laboratory researchers. Every simple experiment was focused in showing how indispensable the biotechnology and its application are in our society. Moreover, laboratory exercises are directed to secondary school students to modify their general negative opinion about biotechnology.

This project has increased the relationship between science secondary school (students and teachers) and university teachers and researchers. Working together, secondary school and university will improve microbiology and biotechnology knowledge in the whole of the society.

Keywords: Biotechnology, fermentation, education and secondary school students.

A Biodegradation Study of Forest Biomass by Aspergillus niger Strain Showing Correlation Between Enzymatic Activity, Hydrolysis Percentage and biodegradation Index

N. Sharma, R. Kaushal & S. Dolma

Microbiology Research lab, Department of Basic Sciences, Dr Y S Parmar University of Horticulture and Forestry, Nauni Solan (H.P.) India

In the current time, the importance of alternative energy source has become even more necessary not only due to the continuous depletion of fossil fuel stock but also for the safe and better environment. With an inevitable depletion of the world’s energy supply, there has been an increasing worldwide interest in alternative sources of energy. The production of liquid biofuels from lignocellulosic biomass can significantly reduce the world dependence on oil, so it has become a research area of great interest to many governments, academic groups and companies. Today it is possible due to advances in biotechnology to propose the inexpensive production of ethanol as biofuel. However, the cost of ethanol as an energy source is relatively high compared to fossil fuels. A potential source of low cost ethanol production is to utilize lignocellulosic materials such as forest biomass, crop residues and grasses, etc. due to their abundance, low cost, easy availability and regenerative capacity for bioconversion to sugars. In the present investigation, an attempt has been made to utilize forest waste as substrate for its degradation by potential cellulolytic and hemicellulolytic microorganisms isolated from soil under solid state fermentation and to enhance their rate of hydrolysis which is a key step for its bioconversion to ethanol. Different substrate used for bioconversion were wood chipping of Pinus roxburgii, Cedrus deodara, Toona ciliata and Celtris australis. SSF of biomass moistens with water by A. niger has produced high level of hydrolytic enzymes cellulase and xylanase which inturn led to efficient hydrolysis and thus enhanced biodegradation index of different lignocellulolytic substrates. Highest extracellular enzyme activity of 220 U/g by A. niger was shown in pretreated Celtris australis wood resulting in 6.5 % hydrolysis and 6.99 BI. The lowest BI of 1.40 was observed in untreated saw dust of Cedrus deodara having the least release of cellulase + xylanase i.e. 238 U/g of dry matter and 1% hydrolysis. It has been found in the study that SSF of forest biomass by A. niger increased remarkably when water is replaced by modified BSM as moistening agent. In modified basal salt medium (BSM) mediated degradation of forest waste with A. niger extracellular enzyme activity was increased to 4088 U/g of dry matter resulting in higher BI of 32.42 and 20 %hydrolysis of C. australis wood. Statistically a positive correlation has been shown between these three factors i. e. enzyme activity, BI and percent hydrolysis of forest biomass by A. niger proving that these are directly proportional to each other.
Ability of xylitol production by new yeast strains

Bruno Guedes Fonseca¹, Flávio Oliveira Ferraz¹, Bruno Fernandes Baratella¹, Rita de Cássia Lacerda Brambilla Rodrigues¹, Erick Pimentel Gonzaga¹, Zhang Hou-Rui², Sílvio Silvério da Silva¹,³

¹IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
²Department of Biotechnology, Engineering College of Lorena, University of São Paulo, Estrada Municipal do Campinho s/n, 12602-810, Lorena/SP, Brazil
³Laboratório de Catálise e Materiais, Laboratório Associado LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.

Xylitol is a natural sweetener used commercially as a substitute for sucrose, mainly by its low-caloric and anticariogenic properties. Moreover, its metabolism is independent of insulin, which can be used by people with diabetes and obesity problems. Currently, xylitol is produced by catalytic hydrogenation of D-xyllose, a costly process because it requires highly purified xyllose syrup. As an alternative to the conventional process, xylitol can be obtained from the fermentation of xylitol-rich solutions, without the need for prior substrate purification. Several microorganisms have been identified as fermenting xyllose to xylitol, among them stand out Penicillium, Aspergillus, Rhizopus, Byssoschlamys, Candida, Pichia, Schizosaccharomyces and others. In this study, we analyzed the efficiency and productivity of xylitol production by Issatchenka occidentalis CCTCC M 206097 and Issatchenka orientalis CCTCC M 206098 yeasts. The experiments were conducted in triplicate, for 48 hours, in 125 mL flasks with 50 mL of semi-synthetic medium composed by xyllose in two different concentrations (12.0 and 50.0 g/L), supplemented with (NH₄)₂SO₄ (2.0 g/L), MgSO₄.7H₂O (0.2 g/L), K₂HPO₄ (2.0 g/L), KH₂PO₄ (6.0 g/L), urea (2.0 g/L), yeast extract (6.0 g/L). The xylitol and xylitol concentrations were quantified by liquid chromatography and cell growth was monitored by turbidimetry at 600 nm. After 48 h tests showed a higher cell growth for I. occidentalis yeast for both xylitol concentrations. The results showed a higher yield of xylitol (0.23 g/g) when given 12.0 g/L of xylitol to I. occidentalis yeast, and a lower yield (0.05 g/g) when given 50.0 g/L of xylitol for I. orientalis species. Regarding productivity, the best results were obtained when used 50.0 g/L of xylitol for I. occidentalis species (0.067 g/Lh). The results show that tests in bioreactors, with optimized conditions, can result in good yields and productivity in xylitol production by those yeasts.

Keywords: Xylitol, Issatchenka

Acknowledges: CNPq, FAPESP

Activated carbon production from brewer’s spent grain lignin

S. I. Mussatto¹, M. Fernandes¹, G. J. M. Rocha¹, J. J. M. Orfão², J. A. Teixeira², and I. C. Roberto³

¹IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
²Department of Biotechnology, Engineering College of Lorena, University of São Paulo, Estrada Municipal do Campinho s/n, 12602-810, Lorena/SP, Brazil
³Laboratório de Catálise e Materiais, Laboratório Associado LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.

Activated carbons are adsorbents that are industrially used in multiple processes for product separation and purification, and for the treatment of liquid and gaseous effluents. Despite its frequent use in the water and waste industries, activated carbons remain an expensive material. In view of the high cost and the tedious procedures for the preparation and regeneration of activated carbons, there is a continuing search for low-cost potential adsorbents. The preparation of activated carbons from lignin is an attractive way of giving added value to this material, which is mainly used as in-house fuel for the recovery of both energy and residual inorganic matter. Over the past few decades, some works have been done on the activation of agricultural lignocellulosic waste materials to carbons, due to their low cost and high availability. Nevertheless, there is not any literature report about the activated carbon production from brewer’s spent grain (BSG) lignin. Use of BSG lignin as starting material for activated carbon production is interesting because BSG (the main brewery by-product) is produced in large amounts during all year, and is a lignin-rich material. Lignin can be converted in activated carbon by physical or chemical activation, the last one being more amply used than physical activation, because it requires lower activation temperatures and gives higher product yields. The purpose of the present work was to prepare activated carbon from BSG lignin, by chemical activation using phosphoric acid as impregnating agent, and to examine the influence of preparation conditions (acid/lignin ratio and carbonization temperature) on the textural characteristics of the materials produced (surface area, volume of pores, and pores size distribution) as well as on its adsorption capacities.

Chemical activation of BSG lignin using phosphoric acid as impregnating agent was performed at various acid/lignin ratios (1, 2, or 3 g/g) and carbonization temperatures (300, 450, or 600 ºC), according to a 2² full factorial design. The resulting materials were characterized (regarding the surface area, volume of pores, and pores size distribution), and used for detoxification of the BSG hemicellulosic hydrolysate, which consists in a mixture of sugars, phenolic compounds, metallic ions, among other compounds. BSG carbons presented BET surface areas between 33 and 692 m²/g, and volume of pores between 0.058 and 0.453 cm³/g, which generally consisted in micro and mesopores. Adsorption capacity also varied to each carbon, according to the used activation condition. However, all of them showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium and silicon. In most of the cases, the BSG carbons efficiency for removal of these metals was higher than that obtained when using a commercial carbon sample. Phenolic compounds concentration and color were also reduced by using these sorbents, and the sugars content was practically not affected, which is benefic if the hydrolysate use in bioconversion processes is desired. The present work allowed to conclude that it is possible to produce activated carbons with good efficiency for phenolic compounds and metallic ions removal (mainly Ni, Fe, Cr, and Si), by chemical activation of the BSG lignin. The adsorption capacity of the carbons compared well and even favorably with that of a commercial activated carbon, suggesting that they have potential to be successfully used in detoxification processes in substitution of commercial sorbents. Regarding to the preparation of these activated carbons, an impregnation ratio and activation temperature of 3 g H₃PO₄/g lignin and 600 ºC, respectively, was the best combination of operating conditions leading to activated carbons with good capacity for adsorption of different toxic compounds. Acknowledgements: CAPES, FAPESP and CNPq (Brazil).

Keywords: brewer’s spent grain, lignin, chemical activation, activated carbons; hemicellulosic hydrolysate
Acute toxicity evaluation of several compounds involved in fossil fuels biodesulphurisation studies

L. Alves, S.M. Paixão and F. Gúvio

The increasing use of fossil fuels has led to increased emissions of sulphur oxides into the air, which is a major cause of acid rain. Legislation already adopted in 2009 stipulates that the maximum level of sulphur allowed in fuels is only 10 ppm. The process of hydrodesulphurisation (HDS) used in refineries is based on very expensive physico-chemical techniques, and has limitations in the removal of organic sulphur. As for stricter legislation on the maximum levels of sulphur in fossil fuels, the most HDS recalcitrant compounds needs to be removed. This implies an increase in the intensity of the physical-chemical treatment and inherently its associated costs. As a result, the recalcitrant compounds to HDS represent a significant barrier to the achievement of very low levels of sulphur in some petroleum fractions.

The alternative to the physical-chemical treatment could be the use of biological processes (biodesulphurisation) which is more effective for the desulphurization of fossil fuels, especially as the removal of sulphur covalently bound to organic matrices. The biodesulphurisation (BDS) occurs in more mild conditions of operation under conditions of atmospheric pressure and temperature, giving greater specificity of reaction due to the nature of the biocatalysts, not requiring molecular hydrogen. Thus, in the last 15 years there has been an increase of studies involving the use of microorganisms with the ability to specifically remove the HDS recalcitrant sulphur compounds.

Several model compounds such as dibenzothiophene (DBT), DBT sulphone or benzothiophene (BT) are used in BDS studies to characterise organic sulphur in coal, coal tars and crude oils. The desulphurising microorganisms are able to remove the sulphur atom from these compounds and use it in their metabolism. However, such compounds are very toxic to the cells. The aim of this work was to evaluate the toxicity of several compounds used in BDS studies, such as DBT and its derivatives and organic solvents used to dissolve these hydrocarbons, to two typical desulphurising strains, namely: Gordonia alkanivorans strain 1B and Rhodococcus eritropolis strain D1.

The toxicity bioassays evaluated the inhibitory effect of the studied compounds to the described bacteria by measuring the respiration rate (mg O2/l) under defined conditions in the presence of different concentrations of those compounds. The inhibitory or toxic effect of each chemical at a specific concentration is expressed as a percent of the baseline respiration rate. From these results the several IC50s were estimated and are described in Table 1. These toxicity values showed that strain 1B was less sensitive for almost all of the hydrocarbons, which is an important advantage considering the desulphurisation of fossil fuels process. On the other hand, strain 1B was more sensitive to dimethylformamide (DMF), a typical solvent used in BDS studies. However, a good correlation can be observed between IC50-1B versus IC50-D1 (IC50-D1 = 0.504 x IC50-1B + 2.84; r² = 0.908, p < 0.05).

This study also shows the high toxicity of 2-Hydroxybiphenyl (2-HBP), the final microbial product from DBT desulphurisation, to both desulphurising microorganisms tested. The physiological response of 2-HBP concentration was also studied in a bioreactor system using both strains.

Alternative method for biological airborne agents detection in only few hours / Innovative microbial air sampler.

Quitterie Desjonquères et Esmeralda Carvalho
Bertin Technologies, Biotech System Department, Parc d’Activités du Pas du Lac, 10bis Avenue Aumpère, F-78180 Montigny le Bretonneux, France

In the context of environmental contamination control and bio-sample preparation, Bertin Technologies (France) has developed a range of laboratory equipments based on new technologies dedicated to collection and sample preparation.

One of these technologies is dedicated to the monitoring of airborne bio-particles. The goal is to propose a sampling method compatible with Rapid Microbiological Methods in order to get rapid, reliable and specific data on airborne biological agents and go beyond impactation method limits.

This technology aims at going beyond the traditional impactation method (impaction on agar plates) in terms of time-to-result, more information than only cultivable flora (VNC, viruses, allergens…) and no saturation of the collection media.

With the Coriolis® technology, many studies have been carried out for the sampling of airborne bio-particles to detect bacteria, virus, pollens, allergens or non-cultivable pathogens with rapid microbiological methods as PCR analysis (Pneumocystis, Respiratory Syncytial Virus (RSV), bacteriophage, Legionella, Stachybotrys chartarum…).

The content of the speak could include:
- the technology qualification validated by ISO14698-1 (Health Protection Agency HPA, Porton Down, UK)
- the application fields (pharmaceutical industry, food industry, hospitals, aerobiology…)
- the cases studies in production site, hospital environment, clean rooms…

Keywords: air sampler, environmental contamination control, monitoring of airborne bio-particles.
Amino acid uptake profiling of *Streptomyces lividans* batch fermentations

P.J. D’Huys¹, I. Lule¹, K. Bernaerts¹, J. Anné², and J. F. Van Impe¹

¹BioTec – Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
²Laboratory for Bacteriology, Department of Microbiology and Immunology, Katholieke Universiteit Leuven, Leuven, Belgium

Streptomyces are worldwide used for the commercial production of antibiotics (e.g., by CIPAN s.a.) and industrial enzymes (e.g., Danisco-Genencor International). Recently several species of Gram-positive bacteria are being tested as host for the production of heterologous proteins due to their ability to efficiently secrete proteins in the culture medium. Among them *Streptomyces lividans* is considered an interesting host for the secretory production of heterologous proteins [1]. To obtain a good secretion yield of heterologous proteins, the availability of suitable nitrogen sources in the medium is required. Often, casamino acids are added to the medium for this purpose. The amino acids in this nitrogen source not only act as building blocks for the biomass but also play an important role in the biosynthesis of the heterologous protein. The availability of different amino acids and varied cellular preferences for them can have a dramatic effect on the protein production. Ultimately, the goal is to perform metabolic flux analyses to unravel these interactions. In this work, we start with amino acid profiling for both the wild-type and recombinant strain in various batch conditions and the qualitative discussion of these results to get a first insight in the amino acid uptake mechanisms and regarding the influence of heterologous protein overproduction/secretion on these uptake mechanisms.

For this work, batch experiments with *S. lividans* 66 strain TK24 (John Innes Centre, Norwich, UK) and *S. lividans* pl3486 rmTNF-α are performed in a computer controlled 5L benchtop bioreactor (BioFlo 3000, New Brunswick Scientific, USA). Minimal liquid NMMP, containing casamino acids and ammonium as nitrogen sources, is used as medium [2]. Samples collected periodically are evaluated for biomass and extracellular metabolites. Amino acids are measured using the Phenomenex EZ:faast™ amino acid analysis kit developed for GC-MS. Using a Perkin Elmer Autosystem XL-Turbomass Gold GC-MS and norvaline as internal standard, this method is able to analyze the samples for all amino acids present in the casamino acid mixture, except for arginine and cysteine.

An example for the wild-type strain is illustrated in Figure 1. After a lag phase (not shown), exponential growth is initiated during which glucose, ammonium and amino acids are co-metabolized. Clearly, differences in preference and uptake rate for (groups of) amino acids are observed. Glutamate and aspartate (correlated to the pathways of ammonium assimilation) are rapidly consumed, whereas the remaining amino acids, e.g. the branched chain amino acids, are taken up more slowly. Remarkably, the alanine (Ala) concentration first increases, most likely due to D-Ala liberation during cell wall synthesis. Afterwards, however, the total amount of (D-) Ala is rapidly consumed.

Figure 1. Glucose (○), ammonium (●) and amino acid uptake during the exponential growth phase (10-30 hrs) in a batch fermentation (60 hrs) with NMMP medium initially containing 55.5 mM glucose, 30 mM ammonium and 5g/L casamino acids. The profiles of the wild-type and recombinant strains shall be put against each other. Moreover, experiments with high levels of casamino acids are being conducted and will be presented.

Acknowledgements

This research is supported in part by the Research Council of the Katholieke Universiteit Leuven (projects OT/09/25 and EF/05/006 OPTEC Optimization in Engineering), the Belgian Program on Interuniversity Poles of Attraction, initiated by the Belgian Federal Science Policy Office and the Fund for Scientific Research Flanders (FWO-Vlaanderen) (project G.0352.09 and Postdoctoral Fellow K. Bernaerts).

Keywords: amino acid uptake; *Streptomyces lividans*; heterologous protein production

References

ANN-based Software Sensor for Emulsification Activity Estimation in Biosurfactant Production Process by *Candida lipolytica* UCP 0988

C. D. Costa Albuquerque*,1, G. M. Campos-Takaki1 and A.M. Frattini Fileti2

1UNICAP, Centro de Ciências e Tecnologia, Núcleo de Pesquisas em Ciências Ambientais, Rua Nunes Machado, 42, Bloco J, Térreo, Boa Vista, 50050-590, Recife, PE, Brasil
2UNICAMP, Faculdade de Engenharia Química, Departamento de Engenharia de Sistemas Químicos, Cidade Universitária “Zeferino Vaz”, Caixa Postal 6066, 13081-970, Campinas, SP, Brasil.

Artificial neural network (ANN)-based software sensors with one hidden layer were developed to estimate emulsification activity of emulsions water in hexadecane, water-in-corn oil e water-in-canola oil in biosurfactant production process by *Candida lipolytica* UCP 0988. The input variables used were pH and dissolved oxygen. The data sets required to train, validate and test the software sensors were obtained from experiments carried out in a 5L bioreactor, under different temperature and agitation conditions. Corn oil was used as carbon source and natural sea water diluted a 50%, supplemented with urea, ammonium sulphate and potassium dihydrogen phosphate, was used as low cost basal medium. The Levenberg-Marquardt algorithm, in conjunction with Bayesian regularization was used in trainings. The root mean square error (rmse) and the global determination coefficient (Rg²), among others indexes, were used to compare model performances. On-line emulsification activity estimation results are within an acceptable variation of 3% of the experimental values. Global coefficient of determination higher than 0.92 indicated excellent agreement of the neural network model with experimental validation and test values, obtained for emulsification activity.

Keywords: artificial neural network, software sensor, emulsification activity, biosurfactant, bioemulsifier, *Candida lipolytica*.

Antibacterial activity and probiotic properties of Algerian strains of lactic acid bacteria

Farida BENDALI and Djamila SADOUN

Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université A. Mira de Béjaia, Algeria.

During the last 2-3 decades, attempts for improving the human health status, are focusing on ways for modulating the indigenous intestinal flora by live microbial adjuncts, now called “probiotics”. The most typical active components of probiotic products are lactic acid bacteria, including bifidobacteria, lactobacilli and enterococci.

In this study, the probiotic potential of five selected bacteriocinogenic strains of lactic acid bacteria (*Lc. lactis* subsp. *lactis*, *Ec. faecalis* and *Lb. paracasei* subsp. *paracasei*) was investigated. The strains were previously revealed active towards listerial strains and able to produce bacteriocins-like substances. The spectrum of their antibacterial activity was determined, including strains of *Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, and Bacillus cereus* using the spot and the well diffusion methods. They were examined for resistance to pH 1, 2, 3 (in presence of pepsin), pH 8 (in presence of pancreatin), and to bile salts (0.5, 1 and 2%). From the results obtained in *vitro*, only the *Lactobacillus* and the *Enterococcus* strains were able to survive at pH 1 or in the presence of pepsin, while all were unaffected by pH 3, pancreatin and bile salts. Strains exhibited variable antibacterial activity; they inhibit all the Gram positive strains. However only *Lb. paracasei* subsp. *paracasei* inhibit the Gram negative bacteria tested (*Escherichia coli* and *Salmonella typhimurium*). The inhibition diameters obtained are between 8 mm and 12 mm. These five strains were therefore found, in *vitro*, to possess desirable probiotic properties.

Keywords: Lactic acid bacteria, Probiotic; Antibacterial activity; Survival.
Antifungal potential of *Cladosporium cladosporioides* (Fres) De Vries metabolites in reduction of coffee rust (*Hemileia vastatrix* Berk & Br.)

S.M. Chalfoun¹, L.P. de Souza², M.C. Pereira¹, C.J. Pimenta¹ and D.M.S. Botelho¹

¹Agricultural and Livestock Research Institute of Minas Gerais State – Brazil

²Federal University of Lavras, Minas Gerais State – Brazil

Brazil is the world biggest coffee producer, exporter and the second largest consumer. Rust is the most important disease of coffee and chemical processing is the main control strategy, but has disadvantages such as toxicity to farmers, high application cost and risks to environmental, and fungi resistance development. Therefore, there are motivation to search for alternative methods of controlling the disease, based mainly on the use of microorganisms and their metabolites. Research developed shown disease association to coffee fruits and a *Cladosporium* genus is always related with good coffee quality. Complementary studies and wide literature review about the fungus showed that it presents characteristics of GRAS (Generally Regarded as Safe). This fungus was collected and identified as *Cladosporium cladosporioides* (Fres) De Vries. This present research showed that the extract capacity obtained from a selected isolate of *Cladosporium cladosporioides* (Fres) De Vries, after testing extractors from four different extracts (methanol, ethanol, DMSO and ethyl acetate) on *Hemileia vastatrix* Berk & Br. spores germination, obtained from contaminated leaves. It was observed a germination inhibition by ethanol extract in 60%. So it may conclude that metabolites produced by fungus are efficient in important fungi phase development reduction in coffee rust disease. A natural fungicide development based on fungus metabolites is subject of the researches that are in development at this moment and can be alternatives to chemical disease controls.

Assessment of the use of biological material on technological development – a patent approach

Z.D.V.L. Mayerhoff, I. von der Weid, A.B.G. Valladão

Instituto Nacional da Propriedade Industrial, Praça Mauá, 7, Centro – 20083-900 - Rio de Janeiro – Brazil

Microorganisms have been used in a broad range of biotechnological processes for a very long time and their use has intensified in the last decades as a consequence of advances in handling and characterization techniques for microorganisms and their products. The intellectual property rights of a large number of these technologies are protected by patents. The use of the patent system requires the disclosure of the technology to be protected with the purpose of stimulating the development of new technologies, or the improvement of existing ones. Information related to patent applications is made available, among other means, through free online databases from several national or regional patent offices. In the case of patent applications that involve the use of biological material, the deposit of a sample of this material in a culture collection can be required by the patent office so that the technology is also made available as a living organism. The use of biological materials such as microorganisms and cell cultures for developing technologies in health, food, energy, environmental, industrial and agricultural areas was assessed through the Epodoc database. International and European Patent Classification codes related to technological fields such as pharmaceutical preparations, fermentation and waste treatment were identified in this study. Our results showed that the total number of worldwide biotechnology-related patents indexed in the database to describe the manufacture of food and pharmaceutical preparations was about 24,000 and 265,000 documents, respectively. The total number of documents related to waste treatment was about 370,000 and the number of documents describing bioprocesses for the manufacture of organic compounds was approximately 357,000. We also found that approximately 630,000 documents describe microorganisms and processes related to their handling. These results illustrate the importance of microorganisms for technological development in many fields and suggest that the patent system is an important source of information for further advances in the studied areas.

Keywords: microorganisms, patents, technological information
Bacteria exhibiting antimicrobial activities; screening for antibiotics and the
associated genetic studies

Muaz Mutaz Al-Ajlani and Shahida Hasnain
Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan

In the search for new antibiotics, the genus Bacillus is an excellent place to look. Bacillus species produce a large number of antibiotics representing at least 25 different basic chemical structures. Different Bacillus species have been isolated and identified i.e. Bacillus subtilis, B. amyloliquefaciens, B. cereus, B. firmus, B. licheniformis, B. mycoides and Paenibacillus polymyxa. Identified strains showed interesting biological activities e.g. inhibiting the growth of clinical isolates (Klebsilla species), strong antifungal and antialgal activities and high toxicity against Artemia sp., while their TLC and HPLC profile showed an impressive chemical diversity. All the strains were able to produce number of peptides (surfactins, iturins, fengycins, subtilin and subtilosin) in different combinations. Over 50 compounds were isolated and identified. Standard identification data and records in term of measured values for NMR and MS are presented in this work. The approach of total secondary metabolites isolation led to the isolation of new natural bioactive secondary metabolites with various biological activities: heptyl-1-hydroxyquinolin (NEW), indol-2-oxoacetamide (NEW), oxopentyl-acetamide (NEW) and a number of cyclic de-peptides cyclo(His, Pro), cyclo(His, Leu) (NEW) and cyclo(Tyr-Pro) (NEW). Other worth of noting findings and observations included the isolation of bacillamide and macroactins and quinoline derivative (known as typical products from streptomyces) from Bacillus species and finally, the isolation of heptyl-1-hydroxyquinolin (NEW) as a new class of antibiotics. Presence of sboX gene was not correlated with subtilosin production, however, subtilosin and sboX were confirmed in Bacillus amyloliquefaciens for the first time. As a conclusion, this study has not only provided new bioactive compounds but also a comprehensive standard profile of Bacillus secondary metabolites for convenient dereplication. It was also possible to add new metabolites to these records. These bioactive new products are luxuriant materials for further research work to validate proposed medical or biotechnological applications and their physiological and ecological roles.

Keywords: Bacillus species, novel antimicrobial agents, heptyl-1-hydroxyquinolin, sboX gene.

Biocidal potential of essential oils of Piper aduncum, Piper hispidinervum and Syzygium aromaticum on important pathogenic and toxigenic microorganisms important for food.

C. R. Giviezíe1, L. R. Batista2, M. G. Cardoso3, W. C. Ferreira4, C. R. Bottura5, M. C. Andrade6
1Master Science, Food Science Department, Universidade Federal de Lavras, Campus Ufla PO Box 3037, Lavras/MG- Brazil
2Professor, Dept. Food Science, Universidade Federal de Lavras, Campus Ufla PO Box 3037, Lavras/MG- Brazil
3Professor, Chemistry Department, Universidade Federal de Lavras, Campus Ufla PO Box 3037, Lavras/MG- Brazil
4Professor, Forest Engineering Department, Universidade Federal de Goiás, Campus Jataí Jataí / GO - Brazil
5, 6 Student Food Engineering, Food Science Department, Universidade Federal de Lavras, Campus Ufla PO Box 3037, Lavras/MG- Brazil

The biocidal potential of Piper hispidinervum, Piper aduncum and Syzygium aromaticum essential oils obtained from the hydrodistillation were tested against Staphylococcus aureus, Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, Aeromonas hydrophila, Candida albicans, Cladosporium cladosporioides, Penicillium citrinum, Penicillium brevicompactum, Penicillium solitum and Aspergillus flavus. The best results were obtained with Syzygium aromaticum oil, that was able to inhibit all microorganisms tested at a concentration ≤ 125 mg / mL. Piper aduncum and Piper hispidinervum oils not show satisfactory results in comparison to Syzygium aromaticum oil.

Acknowledgements The support FAPEMIG, CNPq e Fundação André Tosello is gratefully acknowledged

Keywords essential oils, foodborne, antimicrobial
Biocompatibility Assessment of PHB, Random and Block copolymer of P(3HB-co-3HV) produced by Paracoccus denitrificans

Suchada Chanprateep1, Sukitaya Veeranondh1, Hiroshi Shimizu2, Suteaki Shioya3, and Yoshio Katakura4

1Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Patumwan, Bangkok 10330

2National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120 THAILAND

3Department of Biosensoric Engineering, Graduate School of Information, Science and Technology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, JAPAN

4Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University 4-22-1, Ikeda-cho, Kumaamoto-city, 860-082 JAPAN

The aims of this study were to evaluate the potential use of biodegradable thermoplastics focusing on polyhydroxyalkanoates, PHAs, produced from microorganisms. Previously, we have successfully developed a metabolic reaction based system for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), in fed-batch culture by Paracoccus denitrificans ATCC 17741. Two types of P(3HB-co-3HV), random-P(3HB-co-3HV) and block-P(3HB-co-3HV), can be produced at arbitrary values of HV content varying from 0 to 90 mol%. In the present contribution, films made of poly[(3-hydroxybutyrate-co-3-hydroxyvalerate)] (PHBV), random-P(3HB-co-3HV) consisting of 5%, 12%, 26%, 53%, 60%, 72% and 80% of HV and block-P(3HB-co-3HV) consisting of 12%, 19%, 41% and 50% of HV, respectively, were prepared and evaluated their biocompatibility in vitro against three types of mammalian cells: L292 mouse fibroblasts, human dermal fibroblast cells and Saos-2 human osteoblast cells. The mechanical integrity of these PHBV and P(3HB-co-3HV) films and the characteristic of film surface were changed in accordance with the content of 3HV in random-P(3HB-co-3HV) and block-P(3HB-co-3HV). The random-P(3HB-co-3HV) possessed smooth surface whereas PHBV and block-P(3HB-co-3HV) possessed the surface rich in crystallites as observed by SEM and SPM analysis. Moreover, the random-P(3HB-co-3HV) possessed mechanical properties significantly different from those of block-P(3HB-co-3HV). All biodegradable films showed excellent biocompatibility for the attachment and proliferation of three types of mammalian cells. The indirect cytotoxicity assay and the production of transforming growth factor (TGF)-beta-1 and interleukin-8 (IL-8) were investigated. In particular, the 2-D LC-MS system was introduced in this study for preliminary investigation based on proteome analysis of abundance cellular proteins in depth aiming at determination of cell-biomaterial-interaction. Altogether, this in vitro study demonstrates biodegradable and biocompatible properties of our produced PHBV and P(3HB-co-3HV) and their feasibility for biomedical applications.

Keywords Biodegradable polymer, Random copolymer, Block copolymer, Biocompatibility, P(3HB-co-3HV)

Bioconversion of wheat straw to value added cattle feed by RCK – I fungal isolate

Ramesh Chander Kubal1, James Gomez2, K.K. Sharma3, Sanjay Kumar4, Bhuvnesh Shrivastava1, Prietii.N.Malik1, Kasivin Jain1, Kalyani Padhee1, Subhash Khara5, H.M. Saini1, Neeta Sehgal3, V.R.B.Sastri4

1Lignocellulosic Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi-110021, India

2School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi -110016, India

3Department of Zoology, University of Delhi, Delhi -110007, India

4Ganesh Scientific Research Foundation, Kirti Nagar, Delhi -110015, India

Microbial conversion of agricultural wastes is an environmentally benign and practical method, which has the potential of increasing nutritional value for production of energy rich cattle feed. Many white rot fungi have been investigated for their capability to degrade lignin, the major recalcitrant polymer in plant cell wall, and eventually to increase the digestibility of the fermented agroresidues in ruminants. Majority of them degrade lignin simultaneously with carbohydrate content or degrade larger amount of carbohydrate with small or negligible degradation of lignin leaving behind the fermented product deficient in energy and nutrition, while some of them have been found capable of degrading lignin selectively.

In the present work a new fungal isolate RCK-1, which has been identified based on Internal transcribing sequence (ITS) as Crinipellis sp., was chosen for converting wheat straw for cattle feed production based on its faster rate of colonization of lignocellulosic substrates and higher rate of production of ligninolytic enzyme. The moistened wheat straw (10g) was inoculated with the fungus and incubated for 15 days at 30°C and 60% relative humidity. Samples were drawn periodically and then analyzed for compositional changes, laccase activity, crude protein content, biomass concentration and in-vitro dry matter digestibility (IVDMD). Bioconversion of wheat straw was optimized and scaled up in stages of 2kg, 5kg, 25 and 50 kg in shallow beds. Similar scale-up in deep bed reactors was carried out in two stages: 150 g in a 7 liter and 60 kg level in 1200-liter bioreactor. The exit CO2 and O2 concentrations from the reactor was monitored in real time.

The maximum SSF efficiency (15.38%) was observed on 9th day with 18.36% degradation of lignin and reduction of cellulose concentration and in-vitro dry matter digestibility (IVDMD). Bioconversion of wheat straw was optimized and scaled up in stages of 2kg, 5kg, 25 and 50 kg in shallow beds. Similar scale-up in deep bed reactors was carried out in two stages: 150 g in a 7 liter and 60 kg level in 1200-liter bioreactor. The exit CO2 and O2 concentrations from the reactor was monitored in real time.

The maximum SSF efficiency (15.38%) was observed on 9th day with 18.36% degradation of lignin and reduction of cellulose and hemichellulose by 10.3 % and 28%, respectively. The fungal fermentation of wheat straw resulted in a feed with improved IVDMD up to 10%, protein up to 37.5% and crude fat up to 65%. Maximum evolution of CO2 on 3rd day of incubation correlated with maximum decrease in O2 level and fungal biomass was interestingly found to increase thereafter till 7th day. Lactic titer was maximum on 5th day of incubation.

The fermented feed was evaluated for its toxicity, palatability and digestibility in a rat model (Holstein strain). Mycotoxin studies on treated feed showed trace amounts of aflatoxin B1, B2, G1 and G2 (< 0.5 μg/kg). The dry matter (DM), of substrate treated with Crinipellis sp. possessed higher digestibility compared to the raw substrate (P<0.01) DM, Organic matter (OM), Crude fiber (CF) and total carbohydrates were found to be 56.18%, 58.99%, 52.01% and 58.01% respectively, for treated feed. The digestibility of ADF (43.13%) and cellulose (45.02%) was better (P<0.01) on T3 diet. The digestibility of NDF (P<0.01) and hemichellulose (P<0.05) on T3 diet was 57.9% and 63.29% respectively, which is significantly higher than control diet. The activity of Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) was comparable on T1 and T2 diets. The Lactate dehydrogenase (LDH) activity was significantly (P<0.01) lower and comparable between rats fed T1 diet and T3 diet. No gross pathological lesions were observed in the vital organs (brain, heart, lung, liver, kidney, spleen, pancreas, stomach, intestine and testis) of rats feed with all diets.

Keywords Solid-State Fermentation, White Rot Fungi, Lignin Degradation, Laccase, IVDMD, Bioreactor, Aflatoxin
Biofouling community of a lubrication oil tank from a supply vessel

Christer Fjeld and Rolf Arnt Olsen

Norwegian University of Life sciences. Department of Chemistry, Biotechnology and Food sciences. P.O. box 5003, N-1432 Ås, Norway

Biofouling of industrial applications is of significant concern regarding economy, human health, environmental considerations and safety. The diversity, succession and community stability of the microorganisms in industrial applications are mainly unknown. There are to our knowledge no published results of the diversity, community stability and succession of such communities in lubrication and hydraulic systems.

The microbial diversity in a sample of flakes of paint from the oil tank of a supply vessel was investigated. The paint samples were covered by a dehydrated biofilm revealed by scanning electron microscopy (SEM) and contained fungi, bacteria, fungal spores and yeasts. However it was not possible to extract DNA directly from the paint sample and culturing with lubrication oil as the sole source of carbon was necessary. The dominating microorganisms of the culture were revealed by cloning and sequencing of the 16S rRNA gene for bacteria and 18S rRNA gene for fungi, and identified by searching the NCBI Blast database. The culturing was performed in a CDC biofilm reactor and we could therefore analyze biofilm, oil phase and water phase. Both bacteria and fungi were found and identified.

Of the bacteria, we identified Variovorax sp, Shewanella sp, Achromobacter sp, Pseudomonas sp, Delftia sp and Acinetobacter spp, of which the two latter species were the most abundant. Of the fungi, we identified Phialocephala sp and Fusarium sp.

The fungi were the visually most abundant organisms on the SEM micrograph of the paint flakes. After 8 weeks biofilm coupons were analyzed by SEM, and fungi were not observed. However, the fungi were present in the liquid-air interface in the CDC biofilm reactor at all times. The results indicate that fungal growth might be repressed by bacteria in a circulating system.

Fungi in oil and fuel storage tanks could be a serious threat to health of workers exposed to bioaerosols, and the fungi could cause extensive degradation of petroleum hydrocarbons, thus reducing the oil’s fuels quality, and biomass might clog filters and nozzles leading to malfunctioning of machinery. Bacteria may be the organisms of greatest concern regarding biofouling in industrial applications due to their ubiquitous nature in all sorts of man made and natural settings.

Denaturing gradient gel electrophoresis (DGGE) and single strand conformation polymorphism (SSCP) were used to screen different clones and to investigate community dynamics and succession in biofilms and planktonic cells. The community profiles derived from SSCP analysis indicate a stable microbial community over time in both the biofilms and in the planktonic population of oil and water phase, but with differences between the two sample matrices.

Keywords: Biofouling, SSCP, DGGE, diversity, community stability, lubrication oil, bacteria, fungi

Biological detoxification of different hemicellulosic hydrolyzates using Issatchenkia occidentalis CCTCC M 206097 yeast

Bruno Guedes Fonseca¹, Rondinete de Oliveira Moutta¹, Flávio Oliveira Ferra³, Emílio Rosa Vieira¹, Andrei Santini Nogueira¹, Zhang Hou-Rui², Silvio Silvério da Silva²,³

¹Universidade de São Paulo/Escola de Engenharia de Lorena – Dept. de Biotecnologia Industrial 12.600-005 Lorena – SP
²The Chinese Academy of Sciences - Phytochemical Department, Guangxi Institute of Botany 541006. P. R. China
³Faculdades Integradas Tereza D’Ávila – Lorena – SP

Lignocellulosic materials represent the largest carbon source and therefore energy on the Earth. These include various agro-industrial residues such as straw, bagasse, bark and chips. The high xylose content in the hemicellulose fraction of these materials has attracted the researchers’ attention for the effective use of this fraction in biocconversion processes. The use of hemicellulose hydrolysates as a means of crops for conversion of xylose is difficult due the presence of compounds that are inhibitors of microbial metabolism, which are originated by the acid hydrolysis of biomass. Among these inhibitors include the aliphatic acids, furans and phenolic compounds. This study evaluates the detoxification of hemicellulose hydrolysates of different biomass plants using Issatchenkia occidentalis CCTCC M 206097 yeast. The hemicellulose hydrolysates of sugarcane bagasse, sugarcane straw, coffee husk and corn fiber were obtained by dilute acid hydrolysis and concentrated under vacuum to obtain a xylose concentration about 50 g/L. The yeasts inocula were obtained by previous cell growth in semi-defined medium (containing glucose as carbon source). Biodegradability experiments were conducted in 125 mL Erlenmeyer flasks containing 50 mL of hydrolysate with initial pH 5.50. All media were supplemented with 5.0 g/L (NH₄)₂SO₄, 1.0 g/L KH₂PO₄, 0.5 g/L MgSO₄·7H₂O, 0.1 g/L CaCl₂, 0.1 g/L NaCl, 0.2 g/L yeast extract, and 2.0 g/L urea and incubated at 200 rpm and 30 °C for 36 h. Xylose and other compounds were quantified by HPLC. It was observed reduction of xylose (2.45%) and acetic acid (42.9%) only when coffee husk and sugarcane straw hydrolyzate, respectively, was detoxified. Varied percentages of inhibitory compounds removal was observed in accordance with their initial concentrations in the different hydrolysates. The highest removal of furfural (88.89%) and 5-hydroxymethylfurfural (54.05%) were observed in corn fiber and sugarcane straw hydrolysates, respectively. The results of this study demonstrate the potential use of Issatchenkia occidentalis CCTCC M 206097 yeast for detoxification of various hemicellulosic hydrolysates, this has demonstrated ability to metabolize furfural, 5-hydroxymethylfurfural and other inhibitory compounds present in hemicellulose hydrolysates.

Keywords: hydrolysate, biodetoxification
Biological polyhydroxybutyrate production from waste glycerol at bench scale

M. Teresa Cesário1, João M. Cavalheiro1, Catarina D. Almeida1,2, C. Grandfils3, and M. Manuela Fonseca1

1 IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
2 Instituto Superior de Ciências da Saúde Egas Moniz, Quinta da Granja, 2829-511 Monte da Cuparica, Portugal.
3 Centre Interfacultaire des Biomatériaux, Université de Liège, 4000 Liège, Belgium.

Polyhydroxyalkanoates (PHAs) are polymers that can be accumulated as intracellular energy and carbon reserve materials by various microbial strains under unbalanced growth conditions. The chemical composition of polyhydroxyalkanoates (PHAs) and thus their properties can vary immensely according to the producing organism and to medium composition. The most common type of PHA is the homopolymer poly(3-hydroxybutyrate); P(3HB); however, copolymers such as poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) can also be produced if adequate precursors are present in the growth medium. This type of copolymers were found to have adequate properties for medical and pharmaceutical applications [1]. Being biodegradable and produced from renewable sources, (PHAs) will advantageously replace many petroleum-derived plastics if they can be obtained at competitive prices from improved bioprocesses. Economical evaluation studies led to the conclusion that almost 48% of the total production costs was ascribed to the raw materials, in which the carbon source for growth and polymer accumulation could account for 70% to 80% of the total cost [2]. The carbon source is therefore a key factor for PHAs industrial production. To reduce the production cost related with the raw materials, the development of cultivation processes with a high productivity based on waste glycerol (GRP), a by-product of the biodiesel industry, is being addressed in our group.

A Cupriavidus necator strain was chosen to produce both P(3HB) and P(3HB-co-4HB) from waste glycerol and from commercial glycerol as growth substrate. For P(3HB-co-4HB) biosynthesis, gamma-butyrolactone (GBL) was used as the precursor. Fed-batch high cell density cultures were developed in a 2 L bench-scale mechanically stirred reactor (STR) and in a 3 L air-lift reactor (ALR) operating at airflows from 1 to 3vvm. Cultures are carried out with control of dissolved oxygen, pH and temperature. In both cases, polymer accumulation was triggered by nitrogen limitation [3]. The cultivation processes are being optimised, in terms of PHA production and productivity. The performance of both bioreactor types will be compared.

The thermal and mechanical properties of the obtained copolymers are determined at the Universities of Liège and Strasbourg. It was verified that, at low percent incorporation of 4HB monomers in the polyester chain, the properties of the polymers differ from those of the homopolymer P(3HB), namely the crystallinity and melting temperatures.

Keywords Polyhydroxyalkanoates; C. necator; P(3HB-co-4HB); high cell density cultures.

Acknowledgements

This work is being financed by the EU Integrated Project BIOPRODUCTION (NMP2-CT-2007-226515). Catarina D. Almeida and João M. Cavalheiro are supported by scholarships from FCT, Portugal (SFRH/BPD/26679/2006 and SFRH/BD/45266/2008).

Biological polyhydroxybutyrate production from waste glycerol at bench scale

M. Teresa Cesário1, João M. Cavalheiro1, Catarina D. Almeida1,2, C. Grandfils3, and M. Manuela Fonseca1

1 IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
2 Instituto Superior de Ciências da Saúde Egas Moniz, Quinta da Granja, 2829-511 Monte da Cuparica, Portugal.
3 Centre Interfacultaire des Biomatériaux, Université de Liège, 4000 Liège, Belgium.

Polyhydroxyalkanoates (PHAs) are polymers that can be accumulated as intracellular energy and carbon reserve materials by various microbial strains under unbalanced growth conditions. The chemical composition of polyhydroxyalkanoates (PHAs) and thus their properties can vary immensely according to the producing organism and to medium composition. The most common type of PHA is the homopolymer poly(3-hydroxybutyrate); P(3HB); however, copolymers such as poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) can also be produced if adequate precursors are present in the growth medium. This type of copolymers were found to have adequate properties for medical and pharmaceutical applications [1]. Being biodegradable and produced from renewable sources, (PHAs) will advantageously replace many petroleum-derived plastics if they can be obtained at competitive prices from improved bioprocesses. Economical evaluation studies led to the conclusion that almost 48% of the total production costs was ascribed to the raw materials, in which the carbon source for growth and polymer accumulation could account for 70% to 80% of the total cost [2]. The carbon source is therefore a key factor for PHAs industrial production. To reduce the production cost related with the raw materials, the development of cultivation processes with a high productivity based on waste glycerol (GRP), a by-product of the biodiesel industry, is being addressed in our group.

A Cupriavidus necator strain was chosen to produce both P(3HB) and P(3HB-co-4HB) from waste glycerol and from commercial glycerol as growth substrate. For P(3HB-co-4HB) biosynthesis, gamma-butyrolactone (GBL) was used as the precursor. Fed-batch high cell density cultures were developed in a 2 L bench-scale mechanically stirred reactor (STR) and in a 3 L air-lift reactor (ALR) operating at airflows from 1 to 3vvm. Cultures are carried out with control of dissolved oxygen, pH and temperature. In both cases, polymer accumulation was triggered by nitrogen limitation [3]. The cultivation processes are being optimised, in terms of PHA production and productivity. The performance of both bioreactor types will be compared.

The thermal and mechanical properties of the obtained copolymers are determined at the Universities of Liège and Strasbourg. It was verified that, at low percent incorporation of 4HB monomers in the polyester chain, the properties of the polymers differ from those of the homopolymer P(3HB), namely the crystallinity and melting temperatures.

Keywords Polyhydroxyalkanoates; C. necator; P(3HB-co-4HB); high cell density cultures.

Acknowledgements

This work is being financed by the EU Integrated Project BIOPRODUCTION (NMP2-CT-2007-226515). Catarina D. Almeida and João M. Cavalheiro are supported by scholarships from FCT, Portugal (SFRH/BPD/26679/2006 and SFRH/BD/45266/2008).
Biosynthesis of the lipids by the yeasts Rhodotorula gracilis

S.M. Shulga, A.F. Tkachenko, N.E. Beyko
Institute for food biotechnology and genomics, Ohyevskogo str., 2a, 04123, Kyiv, Ukraine

Ability of the microorganisms of increased accumulation of the end products, in this case, lipids, is of great importance for their industrial use. Only some microorganisms do have such ability, in the first place yeasts. The yeasts Rhodotorula gracilis are of particular interest because they can develop on the carbohydrate substrate effectively and synthesize a large amount of the lipids (to 70% of dry biomass).

We have analyzed the strain Rhodotorula gracilis 17k obtained as a result of screening. This kind yeast’s lipogenesis depends on cultivation conditions. The Carbon to Nitrogen ratio of the growth medium influences the biosynthesis shift towards lipids or proteins formation. For the carbohydrate nutrition the optimal N/C ratio is 1:40.

To provide directed biosynthesis of the lipids an easy assimilated nitrogen source was used in growth medium. Besides that, K3[HPO4], MgSO4·7H2O and CaCl2 were added to the medium. The yeasts Rhodotorula gracilis 17k were grown during 7 days in the aeration conditions. Being cultivated in laboratory conditions this strain accumulated to 65% of lipids in the biomass. The maximal accumulation 65-70% of dry matter was registered on the 4-th day.

The influence of main elements of the growth medium (trace elements) told upon the growth intensity of the yeasts and speed of the carbon source utilization, what, in its turn, has an effect on the quantity of the accumulated lipids. Other growth parameters such as pH, temperature and aeration, also have a considerable effect on the fractional composition of the synthesized lipids. While regulating the temperature, different ratio of saturated to unsaturated fatty acids can be created.

The lipids (microbial fat) were extracted from yeasts biomass by ether extraction. By physical and chemical properties the educed lipids are close to vegetable oils used for technical purposes in different fields of industry.

The standard processing of oils obtained from agricultural cultures for diesel mixture can be used also for the microbial fat (biofat) and for further use of it to obtain biofuel.

Keywords: lipids, yeasts, biofuel

Changes in the stability and catalysis of fungal enzymes produced in submerged and solid-state fermentation: the case of tannase

J. Renovato-Nuñez1, C. Bergmann2, R. Rodríguez3, G. Gutiérrez-Sánchez3 and C.N. Aguilar2
1 DIA-UADEC. Group of Bioprocesses. School of Chemistry. Universidad Autónoma de Coahuila, Saltillo, 25280, México.
2 CCRC-UGA, Complex Carbohydrate Research Center. The University of Georgia, Athens, GA. 48674, USA
3 CCRC-UGA, Complex Carbohydrate Research Center. The University of Georgia, Athens, GA. 48674, USA

Most industrial enzymes are manufactured using the conventional technique of submerged fermentation (SmF), where fungal cells are suspended in a large volume of water that is stirred and aerated suing mechanical devices. In such systems, chemical composition of the culture medium is nearly spatially homogeneous because the mixing rate is faster than the reaction rate. But there is another alternative technique for enzyme production called solid-state fermentation (SSF), where the fungal cells are grown on the solid surface of porous materials (biodegradable or not).

In this system, a large fraction of the fermentation mash is occupied by interstitial air and the biomass in in contact with a high level of humidity adsorbed to the mash surface or absorbed into the solid particles supporting the fungal cells. Evidently, the culture conditions affect the physiology of the fungal cells changing some properties of the enzymes produced. In this study, the changes of stability and catalysis of the fungal tannase produced in SmF and SSF were evaluated.

The enzymes produced on both culture systems were purified by isoelectric focusing, ionic exchange and gel filtration chromatography. The specific activity was 5.5 times higher on SSF than SmF.

Tannases produced under SmF and SSF had an isoelectric point of 4.6 and 3.3, respectively. The optimal pH values for both enzymes were found at 6.7 and the pH stability of SSF and SmF tannases were at 6 and 5.8, respectively. Optimal temperatures were from 50 ºC for SmF tannase and 60ºC for SSF tannase, and both enzymes showed tolerance to high temperature (until 70ºC). SSF tannase exhibited a major specificity for methyl gallate (7.8x10^-4M) and SmF tannase for tannic acid (4.9x10^-4M). Several metals had a strong inhibitory effect on SSF tannase. Fe2+ and Ca2+ showed inhibition on SmF tannase (63% and 7%, respectively). SDS-PAGE analysis as well as gel localization studies of both SSF and SmF purified tannases revealed a single band with molecular weight of 102 kDa and 105 kDa respectively. Deglycosilation of SSF tannase (reduced) provoked the migration of a second band of 78kDa.

Keywords: Tannase, stability, catalysis, submerged fermentation, solid-state fermentation
Clavulanic Acid Degradation in an Aqueous Two Phase System

C.S. Silvas, M. A. C. D. Barros, C.O. Hokka and M. Barboza

UFSCar, Department of Chemical Engineering, Federal University of São Carlos, Via Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil

Polyethylene glycol (PEG) is a stable molecule with low toxicity available in several molecular weights whose properties allow for their use in biomedical and biotechnological applications. One of the most important characteristics of PEG is the formation of an aqueous two phase system in solution with another polymer or salt. Due to its easy and reliable increase in scale, and the possibility of developing a continuous process of extraction and rapid selective separation, the aqueous two phase system composed of PEG and potassium phosphate has been studied as an alternative for the purification of the antibiotic beta-lactamase inhibitor, clavulanic acid. However, clavulanic acid has no strongly hydrophobic group and presents high degradation rates in basic and acid regions. These factors lead to low-yield extraction and purification processes compared to those of other beta-lactam compounds. The growing interest in the use of this extraction and purification technique has required improvements in the aqueous two phase system for extracting and purifying antibiotics. Aiming to contribute to the studies on clavulanic acid degradation in an aqueous two phase system, this work focused on studying the degradation of clavulanic acid in aqueous two phase systems composed of PEG with molecular masses of 400, 600, 1000, 4000 and 6000, with pH of 5.4, 7.0 and 8.0, at a temperature of 20°C. The solutions containing clavulanic acid were obtained from the pharmaceutical product Clavulin®, imported by GlaxoSmithKline Brasil Ltda, and Streptomyces clavuligerus culture broths. After fermentation, the culture broth was pretreated by ultrafiltration through membranes with 3kDa pore size and the concentration of clavulanic acid, in all the aforementioned conditions, was determined by spectrophotometry. The results indicate that the highest stability of clavulanic acid in the presence of PEG occurs at pH 5.4. They also show that PEG with the lowest molecular mass undergoes the highest degradation rate at the same pH. The degradation rate of clavulanic acid in the bottom phase is approximately between 3 to 20 times higher than in the top phase, i.e., the phase where PEG is located.

Keywords: clavulanic acid, degradation, aqueous two phase system

Cloning and expression of an aspartate aminotransferase from Xanthomonas oryzae pv. oryzae

Han-Chul Kang, Sang-Hong Yoon, and Chang-Mook Lee

Rural Development Administration, National Academy of Agricultural Science, Department of Functional Bio-material, Suwon 441-707, Korea

A gene encoding an aspartate aminotransferase was isolated from Xanthomonas oryzae pv. oryzae. The cloned gene was inserted into a pGEM-Teasy, a cloning vector. The gene was ligated with a pET-21(a) vector containing His6 tag and expressed in E.coli BL21(DE3). Purification of the enzyme with Ni-NTA resin resulted in one-band by analysis using SDS-PAGE. The purified enzyme showed a molecular weight of 43 kDa, as expected. The enzyme was the most active toward L-aspartate as an amino donor, showing that the purified enzyme is one of aspartate aminotransferase exist in X.oryzae pv. oryzae. The aspartate aminotransferase also showed an activity toward L-leucine and L-cysteine, but to a lesser extent. Optimal activity of the enzyme was observed at around pH 7.5. The stability was much higher at alkaline pH rather than acidic pH values. The optimal temperature ranged from 35 to 40°C and the residual activity after heat treatment at 55°C for 20 min was 78% of the initial activity. The enzyme was considerably activated by the presence of manganese ion, showing about 157% of initial activity at 1.0 mM addition.

Keywords: aspartate aminotransferase, Xanthomonas oryzae

387

388
Cultivation of *Salmonella enterica* Typhimurium in bioreactor and development of flagellin purification process

B. H. Oliveira\(^1\), M. R. Silva\(^1\), R. J. Carvalho\(^1\), C. J. M. Braga\(^3\), L. M. Massis\(^3\), L. C. S. Ferreira\(^3\), M. E. Shrogi-Almeida\(^1\) and M. Takagi\(^1\)*.

\(^{1}\)Laboratório de Bioprocessos – Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brasil;
\(^{2}\)Departamento de Engenharia Química, Universidade Federal do Paraná, Curitiba, PR, Brasil;
\(^{3}\)Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo.

Flagellin is the main protein present in bacterial flagellum with some 20,000 sub-units (each 50 kDa). Its role as an adjuvant vaccine has been intensively studied and currently there is evidence to be an immunomodulator in situations of autoimmune diseases. The purpose of this work is to establish a production process and native flagellin purification. Cultivation was carried out in bioreactor. Flagellin was extracted from the cell and the released flagellin to the supernatant was purified by using tangential ultrafiltration in membrane with cut-off 700 kDa and 300 kDa. Flagellin recovery in the concentrated fraction of 700 kDa was 33%, and ~17% of the flagellin was detected in the UF700kDa. Volumetric production obtained in this process was 101.14 mg/l culture that means higher than the traditional method (10 mg/l culture). The results indicate a perspective to establish a production process and flagellin purification process easily to scale-up.

Keywords: Salmonella, flagellin, bioreactor, purification, tangencial ultrafiltração.

Degradation assay of lignocellulosic compounds in combination with polyurethane resin by CECT fungi

Llenares Pinel, F. de Troya Franco, T., Díaz Martin, R. & Jiménez Gómez, P.A.

Environmental pollution by plastic wastes has become a serious issue and polyester polyurethane resins (PUR) had attracted attention because of its biodegradability. There are many reports on the degradation of lignocellulosis wastes and polyester PUR by microorganisms, especially by fungi. Maderon® is a polymer manufacture with 25% powdered almond shell waste and 75% of polyurethane resin (PUR). For the degradation assay of Maderon, four strains of fungi from CECT (*Aspergillus flavus, Trichoderma atroviride, Phanerochaete chrysosporium* and *Penicillium simplicissimum*) were tested. Fungi were grown on minimal broth with 1% (w/v) of residue powder for 72 h. Later, the broth filtered was used to determinate: laccase, Mn-peroxidase, ligninase, aryl alcohol oxidase and cellulase enzymatic activities. Also, the strains were incubated on minimal agar with 1% Maderon plates containing, previously weighed pieces, of residue. Incubation was carrying out at 28º C during 15 days. Then, lost of weight was determined. The plates were incubated with the four strains individually and in multiple mixed cultures. Five replicates were made for each assay.

Results show lower ligninolytic enzymatic activities in CECT strains in relation to strains used on industrial applications for ligninolytic wastes degradation. In the pieces degradation, *P. chrysosporium* produces the principal weight loss (1.5%) in simple culture. Result from multiple mixed culture amount the 3.2% of weight lost. In conclusion, the CECT strains are not effective for residue degradation. Several assays with fungi used on industrial application are indispensable to resolve lignocellulosic and PUR recalcitrant compounds biodegradation.

Keywords: Maderon®, fungi, lignocellulosis, laccase, Mn-peroxidase, ligninase, aryl alcohol oxidase, cellulase.
Detection of PKS genes from a Brazilian sugarcane endophytic Aspergillus sp.

J.D. Rojas1, E. Saenz1, F. Andreelli1, N. Yosida1, J. Marques1, W. Araujo3, M. Kato1 and G. Padilla1

1Laboratory of Genetics of Streptomyces, Institute of Biomedical Sciences, University of São Paulo.
CEP: 05508-900. São Paulo, SP, Brazil.
2Laboratory of Chemistry Natural Products, Chemistry Institute, University of São Paulo.
CEP: 05508-900. São Paulo, SP, Brazil.
3Laboratory of Genetics of Microorganisms, ESALQ-USP, CP 9, Piracicaba, SP, Brazil

It is known that misincorporation of modified amino acids occurs during the overexpression of recombinant proteins under high cell density fermentation in E. coli. Different kinds of stress negatively influence growth and, therefore, protein expression (1). At non-predictable occasions, modified instead of correct amino acids are incorporated (2) into nascent proteins (Fig. 1). The ratio of misincorporated amino acids in therapeutical proteins should be as low as possible. Since all undesired protein by-products need to be considered in clinical studies and require extensive analytical characterization to obtain a biologics license application. Available methods to monitor the misincorporation are either inexact or not sufficient for every protein.

Secondary metabolites are a group of low mass molecules synthesized by microorganisms that do not participate on cell growth neither on the constitution of cell components. In spite of the little knowledge of the role of these secondary metabolites in the biology of their producers, biotechnology and pharmaceutical industries have used them in a number of applications such as antibiotics, immune modifiers, and antitumor agents.

Polyketides are a vast and important class of secondary metabolites that show diversity not only in structures but also in functions and applications. Nowadays, the search for new molecules candidates for turn into new chemistry entities has become a prime necessity. Recently, endophytic microorganisms have called attention and contributed with the production of new compounds.

An Aspergillus sp. endophytic fungus has been isolated from sugarcane leaf and assessed for the presence polyketide compounds by PCR approaches, looking for conserved domains into the polyketide synthase (PKS) genes. Phylogenetic analysis of the ITS 1-5.8-ITS2 region confirmed that this isolate belongs to the order of the Eurotiales with a high genetic identity with fungi of Aspergillus genus. PCR amplicons of the ketosynthase (KS) region of the PKS gene showed similarity with sequences of a putative WA type ketosynthase of Penicillium sp. ZH01 (genebank code ABQ55550.1) and a putative hybrid PKS/NRPS enzyme of Aspergillus flavus NRRL13357 (genebank code EED49862.1), with 94% and 99% identity respectively. C methyltransferase region (Cmet) amplicon showed homology similarity with a sequence of a hypothetical Penicillium chrysogenum polyketide synthase Wisconsin 54-1255 (genebank code CAP91938.1) with 59% of identity. Phylogenetic analysis of KS domains showed that the translated amino acid sequences grouped with the clade II of reduced polyketides, especially in the group of hybrid PKS/NRPS, and in the clade I of non reduced polyketides involved in the synthesis of non-melanin pigments and aflatoxins. The Cmet analysis showed that the amino acid sequence grouped with the clade II of reduced polyketides.

In order to detect polyketide compounds from this isolate, organic extracts were analysed using chromatographic techniques (TLC, HPLC) and nuclear magnetic resonance (NMR), showing the production of a possible statin compound. This extract also demonstrated biological activity against Bacillus subtilis and also against the statin sensitive strains of Candida albicans and Mucor sp.

Keywords: Endophytic, Aspergillus sp., Polyketide synthase (PKS), Ketasynthase (KS), C methyltransferase (Cmet), statins.

E. coli under pressure – stress monitoring in large scale protein production

Michael Biermann and Uwe Horn

Leibniz Institute for Natural Product Research and Infection Biology Hans-Knöll-Institute, Beutenbergstrasse 11a, 07747 Jena, Germany

It is known that misincorporation of modified amino acids occurs during the overexpression of recombinant proteins under high cell density fermentation in E. coli. Different kinds of stress negatively influence growth and, therefore, protein expression (1). At non-predictable occasions, modified instead of correct amino acids are incorporated (2) into nascent proteins (Fig. 1). The ratio of misincorporated amino acids in therapeutical proteins should be as low as possible. Since all undesired protein by-products need to be considered in clinical studies and require extensive analytical characterization to obtain a biologics license application. Available methods to monitor the misincorporation are either inexact or not sufficient for every protein.

Secondary metabolites are a group of low mass molecules synthesized by microorganisms that do not participate on cell growth neither on the constitution of cell components. In spite of the little knowledge of the role of these secondary metabolites in the biology of their producers, biotechnology and pharmaceutical industries have used them in a number of applications such as antibiotics, immune modifiers, and antitumor agents.

Polyketides are a vast and important class of secondary metabolites that show diversity not only in structures but also in functions and applications. Nowadays, the search for new molecules candidates for turn into new chemistry entities has become a prime necessity. Recently, endophytic microorganisms have called attention and contributed with the production of new compounds.

An Aspergillus sp. endophytic fungus has been isolated from sugarcane leaf and assessed for the presence polyketide compounds by PCR approaches, looking for conserved domains into the polyketide synthase (PKS) genes. Phylogenetic analysis of the ITS 1-5.8-ITS2 region confirmed that this isolate belongs to the order of the Eurotiales with a high genetic identity with fungi of Aspergillus genus. PCR amplicons of the ketosynthase (KS) region of the PKS gene showed similarity with sequences of a putative WA type ketosynthase of Penicillium sp. ZH01 (genebank code ABQ55550.1) and a putative hybrid PKS/NRPS enzyme of Aspergillus flavus NRRL13357 (genebank code EED49862.1), with 94% and 99% identity respectively. C methyltransferase region (Cmet) amplicon showed homology similarity with a sequence of a hypothetical Penicillium chrysogenum polyketide synthase Wisconsin 54-1255 (genebank code CAP91938.1) with 59% of identity. Phylogenetic analysis of KS domains showed that the translated amino acid sequences grouped with the clade II of reduced polyketides, especially in the group of hybrid PKS/NRPS, and in the clade I of non reduced polyketides involved in the synthesis of non-melanin pigments and aflatoxins. The Cmet analysis showed that the amino acid sequence grouped with the clade II of reduced polyketides.

In order to detect polyketide compounds from this isolate, organic extracts were analysed using chromatographic techniques (TLC, HPLC) and nuclear magnetic resonance (NMR), showing the production of a possible statin compound. This extract also demonstrated biological activity against Bacillus subtilis and also against the statin sensitive strains of Candida albicans and Mucor sp.

Keywords: Endophytic, Aspergillus sp., Polyketide synthase (PKS), Ketasynthase (KS), C methyltransferase (Cmet), statins.

References
[3] Habib GH. et al. „Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing A beta protofibrils”
Effect of coating materials upon organic acid production by immobilized B. animalis subsp. lactis Bb12, in both batch and continuous cultures

H. Jalili1, H. Razavi1, M. Safari1 and F. Malcata2
1 Department of Food Science, Technology and Engineering, Faculty of Biosystem Engineering Agricultural Campus, University of Tehran, Karaj, Iran
2 Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal

Bifidobacterium animalis subsp. lactis Bb12, following previous immobilization in gellan-xanthan and κ-carageenan-locust bean gum, was used to ferment skim milk-based media in uncontrolled- and controlled-pH chemostat. Lactic, acetic, formic and succinic acids were thus monitored for 24 h and 10 d, during batch and continuous culture, respectively. Gellan-xanthan-entrapped cells produced more formic, succinic and acetic acids than their κ-carageenan-locust bean gum counterparts. Under chemostat culture, the mole ratio of acetic to lactic acid, as well as the rate of production of formic and succinic acids increased gradually after 4 d; the coating materials appeared not to play a significant role upon such changes. The observed variations in organic acid production are relevant because of their effect on the organoleptic features of the final fermented dairy product.

Keywords: Bifidobacterium; Immobilization; Medium

Effect of oxidized cellulose on probiotic bacteria

P. Snevajsova1, J. Vytrasova1, and J. Remesova2
1 Department of Biological and Biochemical Sciences, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
2 Department of Analytical Chemistry, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic

Polysaccharides and oligosaccharides may support growths of human colonic bacteria, some of them has inhibitory effect. Positive and negative effects of inulin, oligofructose and acid form of oxidized cellulose were tested by dilute method on selected probiotic bacteria. These samples were tested in 1, 2 and 3 % concentrations on Bifidobacterium bifidum, Enterococcus faecalis, Lactobacillus lactis and Lactococcus spp. bacteria. Positive effects were achieved with inulin and oligofructose, oxidized cellulose influenced positively mainly in lowest tested concentration. Higher concentrations proved inhibiting effects.

Effect of acid form of oxidized cellulose was tested by dilute method on selected probiotic bacteria - Enterococcus faecalis, Lactococcus lactis and Lactococcus spp. bacteria. Positive effects were achieved with inulin and oligofructose, oxidized cellulose influenced positively mainly in lowest tested concentration. Higher concentrations proved inhibiting effects.

Effect of acid form of oxidized cellulose was tested by dilute method on selected probiotic bacteria - Enterococcus faecalis, Lactococcus lactis and Lactococcus spp - with different values of pH, to simulate an environment of intestinal tract from stomach to colon. Effect of oxidized cellulose was determined with pH 1.4; 5.5; 6; 7 and 7.5 and compared with a blank experiment. No growth was noticed with pH 1.4. The growth of bacteria with other tested pH was lowered by about 1 - 2 levels compared to the blank experiment. The most optimal environment for the growth of microorganisms in the presence of oxidized cellulose was the one with pH 7.

The results indicate that oxidized cellulose could be used (in lower concentrations) for preparation of dietary supplements for body-weight reduction.

Acknowledgement
This study was supported by the Ministry of Education, Youth and Sports of the Czech Republic. Project No. 002162/7502 and by GACR No. 203/08/1536, as well as project No. 2A-1TP1/073.

Keywords: probiotic bacteria, oxidized cellulose, inulin, oligofructose
Effect of pH and Inoculum Percentage on Canthaxanthin Production by *Dietzia maris*

G. Goswami, S. Chaudhuri and D. Dutta
Department of Biotechnology, National Institute of Technology, Durgapur, M. G. Avenue, Durgapur-713209, W.B., India

Dietzia maris was isolated from our laboratory and was grown in Yeast Extract-Peptone-Glucose medium at 37°C and 180 rpm. The pH of the medium was varied between 1 and 14 and inoculum percentage between 0.5% and 10%. Considerable growth and pigmentation was observed at pH between 5 and 12 and at all inoculum percentage, with the maximum yield at pH 5.5 and 2% inoculum. The pigment extract was recovered by solvent extraction method using methanol. The pigment extracts were analyzed by scanning the absorbance with a UV-Vis spectrophotometer and the maximum peak was obtained at 483 nm. The pigment was identified as canthaxanthin by HPLC analysis.

Keywords: Canthaxanthin, pH, Inoculum Percentage

Effects of static magnetic field in *Saccharomyces cerevisiae* cultures under aerobic and anaerobic conditions

W. W. C. Albuquerque, M. Lopes, M. A. Motta, I. Belo
1IBB-Institute for Biotechnology and Bioengineering, centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
2Department of Biophysics and Radiology, Federal University of Pernambuco, Cidade Universitária, 50670-901, Brazil.

Magnetic fields have been studied by many researchers as an agent that provides changes in the metabolism of microorganisms. The effects in biological systems are produced by a relative movement between mobile ions or intracellular free electrons and the magnetic field, which can generate electric fields within a cell. Despite of the interaction mechanism to be yet unclear, is known also that the direct action of magnetism cause changes in the conformational shape of cell proteins, altering its functions.

The purpose of this research was to investigate whether static magnetic field (SMF) could be applied to increasing ethanol yield by *S. cerevisiae* and verifying the biological effects on growth stimulation or inhibition. The influence of aerobic and anaerobic conditions and the ability of the cells to induce their defensive enzymes were also explored.

Batch fermentations of *S. cerevisiae* were conducted for 26 h, in YPD medium, in hyperbaric bioreactor (Parr 4563, Parr Instruments, USA) with 5 NdFeB magnets, with an average flux of 120 mT (measured by a PHYWI Teslameter, USA). The magnets were enclosed into a transparent flat polyethylene case with 4.0 x 3.5 cm and 1.3 cm width. All magnets were disposed with the same polarity, so when closed the face one showed similar north or south poles at each face of the case. As they repelled each one, the magnets maintained the maximal distance between them, in an “X” disposition, with a magnet in the center. Controls were performed in the same manner without magnets. To investigate the effects of gas, aerobic and anaerobic conditions trials were performed under air (1 bar and 5 bar) and nitrogen (1 bar).

An increase of the cell dry weight and specific growth rate, under aerobic conditions (5 bar of total air pressure), of approximately 2-fold was obtained compared with the experiments exposed to nitrogen, for both magnetized and non-magnetized cultures. The cellular growth was not stimulated by the application of SMF. In fact, an improvement of 2-fold in specific growth rate was obtained in the control group, for aerobic and anaerobic conditions.

An increase of approximately 1-fold in biomass yield was obtained in aerobic cultures compared with anaerobic. The biomass yield of exposed group to SMF was similar to non-exposed one under 5 bar of air pressure and in nitrogen cultures. On the other hand, a stimulation of ethanol production was obtained in magnetized cultures relatively to those of the controls, for both aerobic and anaerobic conditions.

Generally, antioxidant enzymes were induced by total air. An increase of the SOD specific activity in magnetized cultures was obtained compared with the control experiments. Also, the SMF exposed cultures reached the highest values of the catalase specific activity. However, SMF exposure led to a decrease in the glutathione reductase activity.

The marker malondialdehyde (MDA) is certainly the most widely used to assess the lipid peroxidation processes. The use of anaerobic conditions resulted in a reduction of MDA levels, for both exposed and nonexposed groups. Generally, the MDA concentration was similar for both magnetized and nonmagnetized cultures. This work shows that magnetic fields can be applied as a controlling factor of *S. cerevisiae* fermentations for ethanol or enzymes production.

Keywords: static magnetic field (SMF), *Saccharomyces cerevisiae*, aerobic and anaerobic conditions, ethanol.
Estimation of Colony Forming Units in 3 minutes for individual cell types in a mixed culture using Methylene Blue Dye Reduction Test

Subir Kumar Nandy and K.V. Venkatesh*
Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai. Mumbai 400 076. INDIA
*Corresponding Author: Prof. K.V. Venkatesh

Determination of cell viability is an important step in designing, operating and controlling fermentation processes. It is more relevant in processes involving mixed cultures, where multiple cell types contribute to the total growth. The motivation for the current study is to develop a methodology to estimate viability counts for the individual cell types in a mixed culture. Further, the methodology should indicate the presence of a contaminant in short time periods since in the agar plate methods used frequently it takes about 24-30 hrs. We present a methodology based on the rate of Methylene blue (MB) reduction to evaluate the total count of viable cells. The standard curve relating the slope of MB reduction and CFU of the individual cells could be used to measure the viability of each cell type in the mixed culture. The slope of MB reduction could also be used to obtain the growth rate of individual cell types in a mixed culture and that of the total cell count. These measurement where achieved in less than 6minutes during the growth of the cells. Evaluating the cell viability of individual cell types in a mixed culture is tedious, difficult and time consuming. The Methylene Blue dye Reduction Test (MBRT) presented here is capable of quickly estimating colony forming units of individual cell types in a mixed culture. The method was used to dynamically determine the presence of a contaminant during fermentation. The protocol developed here can be adapted to applications in processes involving mixed cultures.

Nomenclature:
MBRT: Methylene Blue Dye Reduction Test,
MB : Methylene Blue.

Keywords: Colony forming units (CFU), viability, Methylene blue dye, Dye decoloration, Cell membrane enzymes, Escherichia coli, and Bacillus subtilis.

Ethanol fermentation of Carob pods extract by “Zymomonas mobilis” bacteria

H. Vaheed1, S.A. Shojaosadati2*, and H. Galip1
1 Department of Chemistry, Faculty of Arts and Sciences, Eastern Mediterranean University, Magusa, Mersin 10, Turkey.
2 Biotechnology Group, Department of Chemical Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-145, Tehran, Iran.

Depletion of fossil fuel reservoirs, world environmental problems as well as economical and practical pressures has motivated many researches in the field of production of bioethanol as a renewable and environmental friendly fuel based on fermentation of carbohydrate containing agricultural crops. One of the high carbohydrate containing agricultural crops is “carob pod” which its Latin name is “Ceratonia siliqua”. In spite of high amount of sugars contained in carob pods namely Sucrose, Glucose, and Fructose; only a few research works has been published on ethanol production of this potentially suitable crop by “Saccharomyces cerevisiae”. Zymomonas mobilis is an alternative microorganism to S. cerevisiae which its useable sugars are restricted to Sucrose, Glucose, and Fructose. These are the same sugars as present in carob pods. Z. mobilis is a gram negative bacteria and superior to S. cerevisiae because of; its higher sugar uptake and ethanol yield, its lower biomass production, its higher ethanol tolerance and its amenability to genetic manipulations. Also Z. mobilis cultures grow anaerobically and unlike yeasts do not require the controlled addition of oxygen to maintain viability at high cell concentration. This study was designed not only to evaluate the potential of carob pods extract for ethanol production but also to optimize the carob pods extract fermentation conditions by Placket-Burman and Response Surface Methodology in order to reach the maximum gram ethanol production per gram initial sugar contained in carob pods extract culture media as well as a comparison was made between the fermentation results of acid hydrolyzed and non hydrolyzed carob pods extract. Effects of inoculum amount, initial sugar introduced via carob pods extract, amount of peptone, yeast extract and time on response factor (gram ethanol produced per gram initial sugar) was studied at initial pH 5.17, Temperature 30°C, rpm 80 in shaken-flask. The best condition for maximum response were (as gram per total 50 ml culture media) inoculums bacteria 0.017, sugar 5.78, peptone 0.42, yeast extract 0.42 and time 48 hours; achieving 0.335 gram ethanol produced per gram initial sugar in culture media. Theoretical ethanol yield was 92.4685%. Secondly fermentation of acid hydrolyzed carob pods extract resulted to lower theoretical ethanol yield (88.3289%) and higher fermentation efficiency (78.1166%) in comparison with fermentation of non hydrolyzed form 92.4685% and 72.2907% respectively. The response in hydrolyzed treatment was higher than non hydrolyzed treatment by 3.2162%.

Keywords: Ethanol, Zymomonas mobilis; Carob pod; Fermentation; Response Surface Methodology; Optimization
Evaluation of different microbial expression systems for therapeutic peptide production

Z. Antosova1,2, M. Hladikova2, O. Degtjarik3, K. Richterova1, B. Houskova1, V. Král1,2, M. Mackova1, and J. Ludwig3,4

1) INSTITUTE OF CHEMICAL TECHNOLOGY, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, 166 28 Praha 6, Czech Republic
2 ZENTIVA, K.S., U Kabelovny 130, 102 37 Prague 10, Czech Republic
3 UNIVERSITY OF SOUTH BOHEMIA, Department of Physical Biology, Zámecká 136, 373 33 Nové Hrady, Czech Republic
4 UNIVERSITY OF BONN, ZMB / MolekulareBiologie, Kirschallee 1D, D-53115 Bonn, Germany

Introduction. Haemophilus influenzae b (Hib), an encapsulated Gram-negative cocco-bacillus, is one of the most common agents of meningitis worldwide. The capsular polysaccharide type b consists of repeated units of the polymer of ribosylpentitol phosphate (PRP) and plays an important role in the virulence of this microorganism. Usually, the conjugate vaccine results in high cost product due low yield from the purification and conjugation steps. The improvement of the cultivation condition is one possibility to enhance the polysaccharide production in order to reduce the final cost of this product. Objectives. The Butantan Institute intend to produce, in the near future, the pentavalent vaccine composed by DTP, Hepatite B and Hib (all antigens produced at Institute) by using innovated pharmaceutical market. Biopharmaceuticals include drugs with wide therapeutic application, for certain indications the peptide and proteins drugs, classified as biopharmaceuticals or biodrugs, exhibit an increasing share of the pharmaceutical market. Biopharmaceuticals include drugs with wide therapeutic application, for certain indications they even represent the only effective therapy – for example treatment of cancer, autoimmune diseases, diabetes, anemia, disorders associated with lack or damage of certain proteins and many others. In the past, therapeutic peptides and proteins were isolated from natural sources but then their production has shifted to new and more advantageous biotechnologies such as recombinant DNA techniques which moreover allow engineering of peptides and proteins to have optimal pharmacological properties.

The aim of our work is to prepare and compare several microbial expression systems for production of therapeutic peptides in high-yields, mainly emloying bacteria Escherichia coli. Further step of our effort is to optimize purification condition from microbial culture to get the therapeutic peptide in high purity, and finally stabilize the peptide for its therapeutical use in human body and prepare a convenient peptide drug formulation. The biomass and productivity were 24 g DCW/L and 136 mg PRP/L*h, respectively in the fed-batch with perfusion, ie, two times higher than fed-batch, generating large amount of volume which can be a bottleneck in the further purification process. However the fed-batch with perfusion cultivation reduces considerable the cost of purification from contaminating proteins and peptides. Several methods leading to increased peptide yields in bacteria E. coli have been tested. One method relies on use of fusion partners (i.e. glutathion-S-transferase (GST), maltose binding protein (MBP), etc.) (described in Fig. 1). By including an appropriate protease recognition sequence, the peptide can be separated from the fusion partner by proteolytic fission (i.e. by enterokinase, factor Xa). Another method involves gene polymerization (described in Fig. 2). Here, the gene of interest is expressed in several copies and peptide-polymer is subsequently cleaved into monomers (i.e. by CNBr).

We have developed several expression systems with the aim of yield enhancement of peptide production in Escherichia coli. Approaches based on use of fusion protein and gene polymerization technique have been shown as acceptable methods for production of therapeutic peptides in E. coli. The highest yields were obtained with gene polymerization approach. Currently we focus on stabilization of the therapeutic peptide in human body by use of a suitable biodegradable polymer.

Keywords recombinant peptide; production in bacteria

Fed-batch and fed-batch followed by perfusion cultivation to produce capsular polysaccharide by Haemophilus influenzae type b.

M. R. Silva1; S. M. F. Alban1; J. V. Pinto1; J. Cabrera-Crespo1; J. G. C. Pradella1; T. C. Zangiroli2 and M. Takagi3

1) Laboratório de Bioprocessos – Centro de Biotecnologia – Instituto Butantan – São Paulo; 2) Centro de Ciência em Tecnologia do Biotransl – CTBE – Campinas; 3) Departamento de Engenharia Química (DEQ) – Universidade Federal de São Carlos (UFSCar) – São Carlos.

Introduction. Haemophilus influenzae b (Hib), an encapsulated Gram-negative coccus-bacillus, is one of the most common agents of meningitis worldwide. The capsular polysaccharide type b consists of repeated units of the polymer of ribosylpentitol phosphate (PRP) and plays an important role in the virulence of this microorganism. Usually, the conjugate vaccine results in high cost product due low yield from the purification and conjugation steps. The conjugate vaccine results in high cost product due low yield from the purification and conjugation steps. The improvement of the cultivation condition is one possibility to enhance the polysaccharide production in order to reduce the final cost of this product. Objectives. The Butantan Institute intend to produce, in the near future, the pentavalent vaccine composed by DTP, Hepatite B and Hib (all antigens produced at Institute) by using innovated national technology. The purpose of this work is to increase the capsular polysaccharide produced by Haemophilus influenzae b through fed-batch and fed-batch followed by perfusion. Methods. Strain: Haemophilus influenzae type b GB3291. The fed-batch and the fed-batch followed by perfusion were carried out in bioreactor Bioflo 2000, at 37°C; pH controlled to 7.5 with NaOH 5M and pO2 controlled at 30%. The main parameters were acquired by Labview system and samples were collected at regular time in order to measure the DO/mmol glucose, polysaccharide and metabolites. Results and Discussion. The biomass and productivity were 24 g DCW/L and 136 mg PRP/L*h, respectively in the fed-batch with perfusion, ie, two times higher than fed-batch with 10 g DCW/L and 74 mg PRP/L*h respectively. On the other hand, the polysaccharide production and acetic acid in the bioreactor were almost the same, around 1700 mg PRP/L and 24 g/L of acetic acid. Conclusion. The productivity in the fed-batch with perfusion was double compared with fed-batch, generating large amount of volume which can be a bottleneck in the further purification process. However the fed-batch with perfusion cultivation reduces considerable the cost of polysaccharide production process due high productivity.

Keywords: Haemophilus influenzae b; polysaccharide; fed batch; perfusion

Financial support: FAPESP process nº 2007/50882-2, Fundação Butantan and FUNDAP

Fig. 1: Use of a fusion protein. Fig. 2: Gene polymerization method.

Keywords recombinant peptide; production in bacteria

Acknowledgement This work is supported by grants MPO 2A-2TP1/030 and GACR 205/09/H008.
Fermentation characteristics as criteria for selection of cachaça yeast

E. Souza Oliveira¹, C. Augusto Rosa², M. Antonio Morgano³, and G. Eduardo Serra⁴

¹ DEPARTAMENTO DE ALIMENTOS, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brasil
² DEPARTAMENTO DE MICROBIOLOGIA, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brasil
³ CENTRO DE QUÍMICA DE ALIMENTOS E NUTRIÇÃO, Instituto de Tecnologia de Alimentos, Campinas, São Paulo, Brasil
⁴ DEPARTAMENTO DE TECNOLOGIA DE ALIMENTOS, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, São Paulo, Brasil

The fermentation characteristics of 24 strains of Saccharomyces cerevisiae and one strain of Candida apicola, C. famata, C. guilliermondii, Hanseniospora occidentalis, Pichia subpelliculosa and Schizosaccharomyces pombe were evaluated for the production of cachaça. They were isolated from small cachaça distilleries (27), industrial cachaça distilleries (21), and one sugarcane alcohol distillery. The yeasts showed significant differences in ethanol yield, substrate conversion, efficiency, conversion factors of substrate into ethanol (Yp/s), cells (Yx/s), organic acids (Yac/s) and glycerol (Yg/s), and maximum specific growth rate (μmax). In general the S. cerevisiae strains showed better fermentation potential, with yields between 83 and 91% and μmax between 0.450 and 0.640 h⁻¹, several of them being comparable with the high performance yeast used in the industrial production of ethanol, which was adopted as a reference. The non-Saccharomyces strains showed high efficiency, very low ethanol yield and very high Yac/s and Yg/s values, except Pichia subpelliculosa, which behaved very similar to the S. cerevisiae strains. Hierarchical Cluster Analysis and Principal Component Analysis showed the fermentation yield (or substrate conversion) as being the variable which most contributed to the separation of the strains into different groups.

Keywords: alcoholic fermentation, cachaça, Saccharomyces cerevisiae, yeast

Acknowledgements: We thank Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) for financial support

Fermentation characteristics of Saccharomyces cerevisiae strains to produce banana’s brandy

R. Mendonça Alvarenga¹, C. Maria da Silva², A. Geocze Carrara¹, E. Souza Oliveira¹

¹ DEPARTAMENTO DE ALIMENTOS, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brasil
² LABORATÓRIO DE MICROBIOLOGIA E BIOPROCESSOS, Universidade Federal do Tocantins, Av. NS13 Caixa Postal 114, 77020-210, Palmas, TO, Brasil

Four Saccharomyces cerevisiae yeast strains, as well as the wet, pressed commercial yeast (for baking bread) were evaluated with respect to their fermentation characteristics, production of methanol and higher alcohols viewing the production of distilled spirits from banana. All the strains used were isolated from small “cachaça” distilleries, with the exception of the commercial yeast. The yeasts showed significant differences in the fermentation parameters such as the yield of ethanol and efficiency of conversion total reducing sugars (TRS) to ethanol. The wet, pressed commercial yeast and UNICAMP V1 strain were prominent in presenting the best results for the yield in ethanol and efficiency. There were no significant differences between the wet pressed yeast and the UNICAMP V1 strain with respect to these parameters. The UFMG A1240 strain presented the lowest yield of ethanol (69.16%) being no suitable for production of banana’s brandy. The methanol’s concentration of all strains evaluated did not change significantly (P ≤ 0.05), with except UFMG A1007 strain, which produced significantly higher levels than the others (0.19 mL/100 mL of anhydrous alcohol). The higher alcohols produced varied significantly among the strains and the lowest concentrations were the UFMG A905 and UFMG A1240 strains (30.04 and 48.69 g/100 mL of anhydrous alcohol). The UNICAMP V1 strain produced low levels of higher alcohols (82.26 g/100 mL of anhydrous alcohol) and showed good yield of ethanol (83.07%), making it more suitable for the production of banana’s brandy.

Keywords: yeast, Saccharomyces cerevisiae, banana brandy, alcoholic fermentation.

Acknowledgements: This work was funded by Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG)
From in silico to in vitro: Modelling and production of *Trichoderma reesei* endoglucanase 1 mutants in *Pichia pastoris* for textile biofinishing

Gunseli Bayram Akcapinar1, Ozgur Gul1, Adi Calik1, A. Ozlem Aykut2, Canan Attilgan2 and O. Ugur Sezerman2

1 Biological Sciences and Bioengineering, Fens, Sabanci University, Orhanli, 34956 Istanbul, Turkey
2 Material Science and Engineering, Fens, Sabanci University, Orhanli, 34956 Istanbul, Turkey

Wide range of application of enzymes allowed their use in many textile processes such as biopolishing, biostoning, desizing and bleaching. Among all of the enzymes cellulases are being used increasingly for a variety of industrial purposes and consequently lots of effort has been put into their cloning and expression as well as their study by site-directed mutagenesis [1,3]. Cellulases are the major cellulolytic enzymes that degrade cellulose. Nearly all of the cellulases can work at neutral and acidic pH and wide temperature ranges. Some industrial applications require heat stable enzymes to eliminate side reactions. Cellulases are used in textile biofinishing for the removal of the fuzz on the surface of the fabric in an attempt to reduce pilling of the fabrics but they cause a loss in the tensile strength of fabric [2,7]. During viscose biofinishing process, aggressive cellulase action causes a loss of fabric strength.

The aim of this study is to improve the enzymatic action of a major cellulase, namely endoglucanase 1 (EG1) from *Trichoderma reesei* for viscose biofinishing by the introduction of ten aminoacid long loop mutations at various locations, and by analyzing the impact of the proposed mutations on the protein stability via molecular mechanics (MM) and molecular dynamics (MD) simulations.

Molecular Mechanics (MM) and Molecular dynamics (MD) were performed on EG1. Weak points that cause unfolding of the enzyme were found by MD studies performed at 400-450 and 500 K. Key functional residues were found by MM studies. Moreover, functional, structural and sequence motifs were found by using machine learning methods. The key functional positions were mutated using stability motifs found and the impact of these changes on thermal stability of the enzyme was analyzed using MD studies. Best loop mutation predicted in silico was introduced to endoglucanase 1 via site directed mutagenesis. The loop mutant and the wild type enzymes were both expressed in *Pichia pastoris* and wild type and mutant enzymes were characterized and their activities against soluble and insoluble substrates such as CMC, 4-MUC and their effects on the properties of viscose (such as pilling, bursting strength) were determined. Activity and the thermal stability of the loop mutant was found to be comparable to the wild type. The mutant enzyme was found to be capable of alleviating the problem of fuzz removal from viscose fabric without disrupting the fabric strength.

Keywords cellulase; endoglucanase; modelling; site directed mutagenesis; viscose biofinishing

References

From shake flasks to laboratory bioreactor: Scale-up of a bioemulsifier/biosurfactant production process by *Candida lipolytica UCP 0988*

C. D. Costa Albuquerque1, A.M. Frattini Fileti1 and G. M. Campos-Takaki1

1 UNICAP, Centro de Ciências e Tecnologia, Núcleo de Pesquisas em Ciências Ambientais, Rua Núncio Machado, 42, Bloco J, Téresia, Boa Vista, 50056-590, Recife, PE, Brazil
2 UNICAMP, Faculdade de Engenharia Química, Departamento de Engenharia de Sistemas Químicos, Cidade Universitária “Zeferino Vaz”, Caixa Postal 6066, 13081-970, Campinas, SP, Brazil.

Scale-up of biosurfactant production process by *Candida lipolytica UCP 0988* from the initial 0.1-L shake-flask scale to the 5.0-L lab-scale was successfully carried out. Initially, the biosurfactant production medium was optimized in Erlenmeyer-flask scale. After, the effects of agitation rate and process temperature on the biomass concentration and the emulsification activities for emulsions water-in-hexadecane, water-in-corn oil and water-in-canola oil were studied in lab-scale using design of experiments (DOE) and surface response methodology (RSM). The greater biomass concentration (27.78 g/L) and the greater emulsification activities for emulsions water-in-hexadecane (5.44 UEA), water-in-corn oil (5.92 UEA) and water-in-canola oil (5.8 UEA) in biosurfactant production process were found to be associated with high agitation rates (300 rpm) and low temperature (28ºC). However, high biomass concentration (16.103 g/L) and high emulsification activities for emulsions water-in-hexadecane (5.45 UEA), water-in-corn oil (6.1UEA) and water-in-canola oil (4.624 UEA) in biosurfactant production process were also reached with low agitation rates (150 rpm) and low temperature (28°C). In this last condition, the cell-free filtrate containing the surfactant produced by *Candida lipolytica*, presented surface tension of 33 mN/m.

Keywords scale-up, factorial design, response surface methodology, biosurfactant, bioemulsifier, *Candida lipolytica*.

References

Hydrogen Production from Glycerol using Halophilic Fermentative Bacteria

Anniina Kivistö, Ville Santala and Matti Karp
Department of Chemistry and Bioengineering, Tampere University of Technology, FIN-33720 Tampere, Finland

Halophiles are microorganisms that require high salt concentration in their living environment for growth and survival. Some halophilic algae cope with hypersaline environments by the production and accumulation of organic solutes e.g. glycerol. Glycerol plays an important role in hypersaline environments. Few halophilic fermentative bacteria including *Halanaerobium saccharolyticum* are capable for utilizing glycerol as substrate in their metabolism. Here we present a study on end metabolite production in the glycerol metabolism of *Halanaerobium saccharolyticum* subspecies *saccharolyticum* and *senegalensis* which are halophilic anaerobic bacteria capable for glycerol fermentation and hydrogen production. Studies were conducted as batch experiments and metabolites were analysed as end-point measurements. The main metabolites of glycerol fermentation of both *H. saccharolyticum* strains are H₂, CO₂, and acetate. Optimal conditions for H₂ production were defined. Halophilic glycerol fermentation was compared with glucose fermentation. The highest hydrogen production yield of *H. saccharolyticum* subsp. *saccharolyticum* observed in glycerol metabolism was 0.52 mol/mol and for *H. saccharolyticum* subsp. *senegalensis* 1.13 mol/mol, which are 52 % and 113 %, respectively, of the theoretical maximal hydrogen yield of *Escherichia coli* (1 mol/mol glycerol). Halophilic glycerol metabolism was also compared with the metabolism of known non-halophilic hydrogen producers, *E. coli* and *Clostridium butyricum* that are capable for using glycerol as substrate.

Taken together, we have shown that halophilic bacteria are promising candidates for future bioenergy producers. Their habitat provides excellent selection circumstances in big bioprocess conditions where open system without sterilization possibilities is the only choice. We shall show some data also on thermophilic anaerobic halophiles which provide extra selection possibilities. Discussion on metabolic engineering of the hydrogen producing hosts will be conducted.

Keywords: extremophile, halophile, thermophile, anaerobic bacteria, hydrogen, glycerol, fermentation

Hydrolysis of spruce wood and sugarcane bagasse by cellulases and hemicellulases

Patricia Pavón Orzuco1, Omid Hekmat2, Alejandro Santiago Hernández1, Anna Rosengren 2, Maria Eugenia Hidalgo Lara1, Henrik Stålbrand 2

1 CINVESTAV Department of Biotechnology and Bioengineering, Mexico D.F. Mexico
2 Lund University, Biochemistry Department, Lund Sweden.

The search of renewable energy solutions is a worldwide research topic. Plant biomass is an attractive renewable resource for production of biofuels and materials within the bioeconomy concept. Hydrolysis of cellulose and hemicelluloses can be achieved by enzymes. In this study we have focused on spruce wood and bagasse, two raw materials that vary in composition and global distribution. Spruce wood and bagasse consist mainly of lignin, cellulose and hemicelluloses. Galacto-glucomannan is the major hemicellulose component in spruce wood (1) whereas xylan is the major hemicelluloses in bagasse (2).

Research attempts on improving efficiency of cellulose hydrolysis rely on the knowledge of hydrolysis mechanisms. Hydrolysis studies using realistic substrates are needed since the composition and structure of substrate components may well affect the efficiency of certain enzymes. The synergy between cellulases during the hydrolysis of lignocelluloses has been previously studied (3). These findings show that synergy between cellulases varies depending on the substrate used and the enzymes added. Synergy involving hemicellulases has been less studied although a few studies have been published (4). Many hemicellulases are modular and have carbohydrate binding domains (CBDs) that bind to the substrate. For cellulases, binding during hydrolysis might lead to a decrease in hydrolysis rate due to unproductive enzyme binding (5), but if this may be the case for hemicellulases as well is less known.

Our interest is to get knowledge on the role of mannanase and xylanase in the hydrolysis of real substrates. For this aim natural, spruce chips pretreated spruce and sugar cane bagasse were used as substrates. We have chosen commercial Celluclast 1.5L and Novozyme 188, purified TrMan5A mannanase, XylXIB xylanase and TrCel12A cellulase. We will discuss hydrolysis rate at different loads of cellulases and results of the addition of mannanase in the hydrolysis of spruce and spuce pretreatments. We have also studied the hydrolysis rate declination of TrCel12A during hydrolysis of this complex substrate.

Keywords: mannanase, xylanase, cellulase, cellulose and hemicelluloses hydrolysis, raw material.

Improving bioethanol production by Saccharomyces cerevisiae strains, using agro-industrial by-products

C. Tavares\(^a\), S. Raposo\(^a\), C. Quintas\(^a\), T. Sancho\(^a\), T. Manso\(^b\), B. Rodrigues\(^c\), M.E. Lima-Costa\(^a\)

\(^a\)Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-139 Faro. Portugal
\(^b\)Instituto Superior de Engenharia, Universidade do Algarve, 8005-139 Faro. Portugal
\(^c\)Department of Biotechnology, Engineering College of Lorena, University of São Paulo, Estrada Municipal do Campinho s/n, 12602-810, Lorena/SP, Brazil

Bioethanol is a relevant renewable energy, particularly in transport sector, as it can contribute to reduce the global energy dependence on fossil resources and mitigate CO\(_2\) emissions leading to climate change. Since 1980, ethanol lignocellulosic materials represent an abundant and inexpensive source of sugars which can be microbiologically converted to industrial products. However, hydrolysis of lignocellulosic materials for sugars recovery always goes through the xylose-to-xylitol bioconversion was evaluated. The concentration values evaluated for each toxic compound were based on values usually found in lignocellulosic hydrolysates.

Scaling-up studies are being carried out with the strains that showed higher vigor and higher ethanol productivity. These results may contribute for the economical viability of the bioethanol process from carob extract and it can be a promising alternative in the near future.

References

Inhibitory action of the toxic compounds present in lignocellulosic hydrolysates on xylose-to-xylitol bioconversion by Candida guilliermondii

R. S. Pereira\(^a\), S. I. Mussatto\(^b\), and I. C. Roberto\(^a\)

\(^a\)Department of Biotechnology, Engineering College of Lorena, University of São Paulo, Estrada Municipal do Campinho s/n, 12602-810, Lorena/SP, Brazil
\(^b\)IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.

Lignocellulosic materials represent an abundant and inexpensive source of sugars which can be microbiologically converted to industrial products. However, hydrolysis of lignocellulosic materials for sugars recovery always goes together with the formation of by-products that inhibit the fermentation process. Such by-products include acetic acid, phenolic compounds such as syringaldehyde, ferulic acid, \(\beta\)-hydroxybenzoic acid, and vanillic acid, among others. These toxic compounds can stress fermentative organisms to a point beyond which the efficient utilization of sugars is reduced and product formation decreases. The inhibitory concentration of these compounds varies to each microorganism and the knowledge about the maximum tolerable concentration and how to minimize their effects is of great importance to attain efficient fermentative processes. Regarding the industrial products that can be generated from lignocellulose-derived sugars, xylitol has received much attention, since it presents particular physico-chemical properties, which permit its use either in foods as a sweetener with antiangiogenic property, or in medicines as a sugar substitute for the treatment of diabetes and erythrocytic glucose-6-phosphate dehydrogenase deficiency. In this study, the inhibitory action of acetic acid, ferulic acid and syringaldehyde on metabolism of Candida guilliermondii yeast during the xylose-to-xylitol bioconversion was evaluated. The concentration values evaluated for each toxic compound were based on values usually found in lignocellulosic hydrolysates.

For a good understanding of the individual effect of each toxic compound, the assays were performed in semi-defined medium containing (g/l) xylose (85.0), glucose (15.0), (NH\(_4\))\(_2\)SO\(_4\) (3.0), CaCl\(_2\)\(2\)H\(_2\)O (0.1), KH\(_2\)PO\(_4\) (21.7), K\(_2\)HPO\(_4\) (6.9), and 20% (v/v) rice bran extract, supplemented or not with acetic acid (0.8 to 2.6 g), ferulic acid (0.2 to 0.6 g) or syringaldehyde (0.3 to 0.8 g). The experiments were performed in 250-ml Erlenmeyer flasks containing 100 ml of fermentation medium inoculated with 3 g/l cells. The flasks were incubated at 30 °C, 200 rpm, for 96 h. During the fermentation, samples were withdrawn each 24 h for determination of the xylose, glucose, xylitol, and cells concentration, as well as the pH variations.

The yeast cell growth was affected by all the evaluated acetic acid concentrations, while the xylose consumption and xylitol formation were only affected in the presence of the highest acetic acid concentration (2.6 g/l). In fact, the presence of this acetic acid concentration in the fermentation medium reduced the cell growth, xylose consumption and xylitol production in 30, 13 and 18%, respectively, when compared to the assay without the acid addition. Cell growth was also reduced in the presence of all the evaluated ferulic acid concentrations, being observed a decrease of 30% in the microorganism growth when the fermentation medium was supplemented with the maximum ferulic acid concentration (0.6 g/l). On the other hand, xylose consumption was not affected by the ferulic acid presence in any evaluated concentration, and the xylitol production was only slightly reduced (15%) when in the presence of 0.6 g/l ferulic acid. Syringaldehyde concentrations higher than 0.5 g/l affected the yeast cell growth, being observed a reduction of 30% on biomass formation when the fermentation medium was supplemented with 0.5 or 0.8 g/l of this toxic compound. However, the xylose consumption and xylitol formation were not affected by any of the tested concentrations of this compound.

It was thus concluded that acetic acid, ferulic acid, and syringaldehyde are compounds that may affect the Candida guilliermondii metabolism (mainly the cell growth) during the xylose bioconversion to xylitol, being their toxic effect dependent of the concentration present in the medium. Such results are of interest and reveal that it is not necessary a complete removal of toxic compounds from the fermentation medium to obtain an efficient xylose conversion to xylitol by Candida guilliermondii. Acknowledgements: CAPES, FAPESP and CNPq, Brazil.

Keywords xylose; xylitol; Candida guilliermondii; acetic acid; ferulic acid; syringaldehyde; toxic compounds
Investigating the 3-dimensional structure of family 43 glycoside hydrolase (CtGH43), a cellulase from Clostridium thermocellum structure for possible interactions using molecular docking and other bioinformatics tools

Shadab Ahmed1, Vikas Gupta1, Carlos MGA Fontes2 and Arun Goyal1
1 Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India, 2CISA-Faculdade de Medicina Veterinaria, Rua Prof. Cid Dos Santos, 1300 477, Lisbon, Portugal

The objective of current study was to computationally simulate the molecular recognition process from the predicted 3-D structure of CGH43 using MODELLER 9v4 that showed the expected 5 fold β-propeller core structure that is native to GH-F clan [1,2,3,4]. The aim of the docking study is to predict and rank the structure(s) arising from the association between a given ligand and our target protein (CtGH43). We tried to achieve an optimized conformation for both the protein and ligand and their relative orientation such that the free energy of the overall system is minimized. Initially we tried to find out the possible catalytic or ligand binding site from the predicted 3-D structure of CGH43. The Ramachandran (RC) plot on RAMPAGE server revealed that CGH43 contains no segments of helix. The RC plot analysis also showed that among 301 residues, 267 (89.3%) were in favoured region, 23 (7.7%) were in allowed region and 9 (3.0%) were in outlier region. The secondary structure of CGH43 showed the regularly spaced intra-chain hydrogen bonding. We were able to confirm the absence of α-helices and the presence of parallel beta sheets and loops from the HB plot. The 3-D structure of CGH43 showed a large site volume for only 3 ligand binding sites out of 10 predicted ligand binding sites as analysed using Q-Site-Finder. Further investigations using Thematics (Theoretical Microscopic Titration Curves) showed only two positive clusters having two or more amino acid residues [5]. The results of the molecular docking of CGH43 will be presented at the conference [6].

References

Isolation and Characterization of a Locally Isolated Soil Microbe Capable of Producing Polyhydroxyalkanoate Bioplastic from Renewable Resources

Julian Chin Hock Chye1 and Yahaya M. Normi1
1 School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia

Polyhydroxyalkanoates (PHA) is a type of polyester synthesized by various microorganisms under excess carbon and limiting nutrient conditions. The polymers are stored intracellularly as insoluble granules and is degraded for carbon and energy utilization upon starvation. There are three types of PHA, short-chain-length (SCL), medium-chain-length (MCL) and short-chain-length and medium-chain length (SCL-MCL) PHA. Depending on the monomer composition of PHA, these polymers can exhibit a range of plastic-like properties ranging from stiff and strong plastics to elastic and flexible plastics. Due to this wide range of plastic-like properties of PHA, these polymers have been used for various applications be it in the painting, medical and cosmetic industries. Interestingly, unlike the conventional petroleum-based plastics, PHA is biodegradable thus rendering them to be more environmentally friendly than petroleum-based plastics. Due to both of the plastic-like and biodegradable properties of PHA, this biopolymer has captured worldwide attention as a potential candidate to replace petroleum-based plastics in the near future. Aware of the importance and potential of PHA, our lab has set out to isolate various microbes capable of producing PHA biopolymer. Isolation and screening of potential PHA producers from the local environment was performed by incorporating the lipophilic dye, Nile blue A, into the growth medium. Using this technique, a bacterium, designated JC-1, was successfully isolated from soil sample. This isolate exhibited optimum growth at 37°C. Based on this information, real-time PHA production by JC-1 was established using different mediums and various renewable carbon sources ranging from simple sugars to complex carbon to investigate the extent of JC-1 PHA production capability. When cultivated in Luria-Bertani medium supplemented with 2% (w/v) glucose, JC-1 was able to accumulate 36% wt. of PHA biopolymer. Gas chromatography analysis revealed that the PHA polymer produced is the SCL poly-3-(3-hydroxybutyrate [P(3HB)] homopolymer. Whilst JC-1 gave considerable amount of short P(3HB) homopolymer when cultivated in Luria-Bertani (LB) medium supplemented with 2% (w/v) glucose, the level of P(3HB) production decreased when minimal salt (MS) medium with a C/N ratio of 30 was used. A change in the carbon source from glucose (simple carbon source) to palm oil (complex carbon source) led to interesting results. Cultivation of JC-1 in LB supplemented with 2% (v/v) palm oil not only increased dry cell weight by four fold but significantly enhanced P(3HB) production as well compared to cultivation in LB supplemented with 2% (w/v) glucose. As a result of the enhancement in dry cell weight and P(3HB) production when palm oil is used as the carbon source, P(3HB) bioplastic yield obtained from JC-1 is significantly improved by up to 3.6 fold. Further characterization of P(3HB) production by JC-1 interestingly revealed that JC-1 continued to show a steady increase in P(3HB) production even after 4 days of cultivation in LB supplemented with 2% (v/v) palm oil. Characterization of JC-1 isolate revealed that it is an aerobic, non-motile Gram negative rod bacterium. In addition, test revealed that JC-1 was able to grow on LB agar supplemented with different antibiotics. Biochemical tests and analyses of its 16S rDNA sequence showed high similarity with Burkholderia cepacia. The ability of JC-1 to accumulate PHA with other monomer compositions utilizing other simple and complex carbon sources is currently under study. In addition, isolation of the PHA synthase gene (phcA) responsible in PHA bioplastic polymerization from JC-1 isolate is currently being performed to characterize its in vivo substrate specificity when expressed in other bacterial host cells and for enzyme improvement studies by directed evolution in vitro.

Keywords Polyhydroxyalkanoates; biopolymer; P(3HB) production; renewable carbon sources
Isolation and characterization of cellulase producing bacteria from pruning tree compost and soil

J. Ueda, K. Watanabe, and N. Kurosawa
Department of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan

Cellulose is the major component of plant biomass, which is a renewable and abundant resource with potential for bioconversion to value-added products. Cellulose is a homopolymer of glucose composed of glucose units, linked by β-(1→4)-glycosidic bonds. To make cellulose to economically competitive, efficient enzymatic processes that hydrolyze the cellulosic polysaccharides to fermentable sugars are needed.

Cellulases are divided into three major groups: endoglucanases, cellobiohydrolases (exoglucanases) and β-glucosidases. The endoglucanases cleaves randomly at internal amorphous sites of the cellulose chains, while cellobiohydrolases successively cleave cellulose chains at the ends to release cellobiose, a dimer of glucose. β-glucosidases hydrolyze cellobiose to glucose monomers. Effective hydrolysis of cellulose requires these three kinds of cellulases. Thermophilic cellulases may have advantages in many industrial applications because higher processing temperature can be employed for offering accelerated reaction rates, increased solubility of reactants and reduced contamination. Therefore, a greater understanding of thermostable cellulases could potentially lead to new and useful applications in industry.

In order to obtain novel thermophilic cellulase producing bacteria, we successfully isolated moderately thermophilic bacteria degrading cellulose from pruning tree compost and soil. The sample was suspended in saline, and the supernatant was inoculated into modified Brock’s basal salts (MBS) medium (pH 7.8) supplemented with microcrystalline cellulose as a sole carbon. The culture was incubated at 50°C, and was maintained by continuous sub-cultivation for enrichment of cellulose degrading microorganisms. The enrichment culture was then diluted and spread onto MBS plates supplemented with microcrystalline cellulose, and the plates were incubated at 50°C. Some of the colonies on the plates were purified by single-colony-isolation. The isolates were examined their activities of degrading microcrystalline cellulose and carboxymethylcellulose (CMC). The cellulase activity was defined as the formation of the clear zone around the colonies on the microcrystalline cellulose plate. The carboxymethylcellulase (CMCase) activity was defined as the formation of the pale orange zone around colonies on the CMC plate after Congo-red staining.

A total 38 isolates were purified by single-colony-isolation. Among these isolates, 18 strains showed cellulase activity and 9 strains showed relatively strong CMCase activity. The 16S rDNA sequence analysis indicated that these 27 isolates were classified into four groups in species level. The two of the four groups showed less than 95% similarity with any published 16S rDNA sequence, and were related to the sequences of Paenibacillus spp. This result indicated that isolates of these two groups are novel species of the genus Paenibacillus or novel genus. SCAs and TC22-2b were selected as representative strains of the two groups. The optimal temperature and pH for growth of both SCAs and TC22-2b were around 55°C and 7.8, respectively. Further studies of physiological and chemotaxonomic characterization will be necessary for final decision of taxonomic status of these isolates. Also, biochemical and enzymatic characterization of cellulases from isolates of SCAs and TC22-2b are now in progress.

Keywords: cellulose, cellulase, thermophilic bacteria

Isolation and identification of chitinolytic bacteria from pruning tree compost

M. Kido, K. Watanabe, and N. Kurosawa
Department of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan

Chitin, a linear homopolymer of N-acetyl-D-glucosamine (GluNac), is the second most abundant polysaccharide in the biomass. Biological degradation of chitin is accompanied by endo- and exo-enzymes known as chitinase (EC3.2.1.14) and β-N-acetyl-D-glucosaminidase (EC3.2.1.52). Chitinases are digestive enzymes that break down glycosidic bonds in chitin. Because chitin composes the cell walls of fungi and exoskeletal elements of some animals, chitinases are generally found in organisms that either need to resurface their own chitin or to dissolve and digest the chitin of fungi or animals. Enzymes participating in chitin degradation are produced not only by organisms containing chitin in their body but also by bacteria, upper plants and mammals where chitin is not present on a regular basis. Bacteria produced chitinases play a significant role in maintaining the matter cycle through making chitin usable biologically. Also, bacterial chitinases have a potential to use industrial chitin degradation. In our recent attempt to find chitinolytic bacteria, we successfully isolated moderately thermophilic bacteria degrading colloidal chitin.

Chitinolytic bacteria were isolated from compost of pruning tree from Tochigi Prefecture, Japan. The compost was industrially fermented about 3-4 years, and was 55°C, pH 7.8. The compost was suspended in saline, and the supernatant was inoculated into modified Brock’s basal salts (MBS) medium (pH 7.5) supplemented with chitin powder (2%, w/v), and incubated at 50°C for enrichment of chitin degrading bacteria. In these primary enrichment cultures, the culture was incubated at 50°C, and was maintained by continuous sub-cultivation for enrichment of cellulose degrading microorganisms. The enrichment culture was then diluted and transferred onto MBS-broth plates for isolation of the single-colonies. After one or two days incubation, single colonies were visible in the plates, and were round and white with their diameter varying from 0.2 to 1.2 mm. A total of 77 bacterial isolates were purified by single-colony-isolation. To examine the chitinase activity, the isolates were carried out by spot inoculum of each colony on plates containing MBS medium with 0.5% colloidal chitin (w/v) as a sole carbon and energy source, and incubated at 50°C. The chitin degrading organism formed clear zones surrounded by colonies indicating chitinase activity, and 15 isolates were the most potent chitinolytic bacterial species.

Identification of the investigated chitinolytic strains, nucleotide sequences of 16S rRNA genes were determined, and those isolates were classified into three groups in species level. Out of these, we chose strain TSTC2-10, TSTC-19 and TSTC2-20 as representatives of the thermophilic isolates. Strain TSTC2-19 and TSTC2-20 could be affiliated with Geobacillus stearothermophilus and Pseudomonasdono monas taiwanensis, respectively. On the other hand, the 16S rRNA gene sequence of strain TSTC2-10 showed less than 93% similarity with any published sequences, and was related to the sequences of Paenibacillus spp. This result indicated that strain TSTC2-10 is novel species of the genus Paenibacillus or of novel genus. The optimal temperature and pH of strain TSTC2-10 were 50°C and 8.2, respectively. Enzymatic properties and quantitative measurement of the chitinase activities of these isolates are now in progress.

Keywords: chitin, N-acetyl-D-glucosamine, chitinolytic bacteria, chitinase, thermophilic
Isolation of Feather Degrading *Bacillus* spp. from Poultry Waste that Produce Keratinase in Iran

S. Mousavi¹, M. Salouti¹, R. Shapouri¹, and M. S. Hakhamaneshi²

¹Department of Microbiology, Faculty of Basic and Medical Science, Islamic Azad University Zanjan-branch Iran.

Introduction: Feather constitutes over 90% protein, Feather-degrading bacteria produce keratinase. Keratinases from microorganisms have attracted industrial applications such as in the feed, fertilizer, detergent, leather and pharmaceutical industries. Aim of this study isolation of feather degrading *Bacillus* spp. from Iran.

Material and method: *Bacillus* strains isolated from poultry grown in basal media with feathers as its primary source of carbon, nitrogen, sulfur and energy, that incubate in pH 7.4 and 26°C for 7 days. Isolates identified as *Bacillus* spp. with physiological and biochemical tests and PCR for 16srRNA. Then keratinolytic activite and optimal conditions for the enzyme production was done.

Result: seven strains of *Bacillus* were isolated from poultry waste in Iran. Among those isolates and identified as *Bacillus pumilis*, *B. subtilis*, *B. macerans*, *B. firmus*, *B. larvae*, *B. pisolium*, *B. lentimorbus* that degraded feathers effectively. Among these isolates, *B. subtilis* shown the maximum keratinolytic activity and optimal conditions for the enzyme production were 40°C and pH 5.8.

Discussion: Keratin-degrading microorganisms thrive under different ecological and environmental conditions and are known to have the capacity to solubilize keratinous substrates. Moreover, *Bacillus* strains are thermophile microorganisms and this property can be used in controlled process for efficient and fast degeneration of feathers.

Keywords: keratinase; bacillus; poultry waste

Kinetic and metabolic characterization of a mezcal-mash-isolated yeast growing in sugar cane bagasse hydrolysates for ethanol production.

R. A. González-García¹, O. A. Rojas-Rejón¹, L. P. Rodríguez-Pascual¹ and M. T. Ponce-Noval¹

¹CINVESTAV-IPN, Av. P.J. 2508, 07360 D.F., México
²UPBIS-IPN, Av. Acueducto s/n, 07340 D.F., México.

Current demand on energetics involves the search for environmentally sustainable alternative energy sources, in order to satisfy the needs of industry and population that cannot longer be affordable with fossil fuels. A strategy to reduce the consumption of crude oil and environmental pollution is the use of Bio-fuels. Ethanol can be obtained by the fermentation of sugars, products from starch and cellulolosic biomass. Cellulosic resources (paper, wood, agricultural wastes) are very widespread, abundant and cheaper. In order to use cellulosic compounds as carbon and energy source it must be hydrolyzed before fermentation. This process is carried out by an enzymatic complex called holocellulases (cellulases and xylanases). Oligosaccharides, product of the enzymatic hydrolysis, are then used as carbon source for a wide range of fermentation processes. The aim of this work was to establish growth conditions of a native strain of yeast isolated from mezcal mash in a complex culture media with sugarcane bagasse hydrolysates. In order to identify metabolic end-products during fermentation, compare the ethanol production yield with other microorganisms reported in literature.

The yeast was activated in a complex medium containing (g L⁻¹) 3 malt extract; 5 bactopeptone; 10 total sugars from sugarcane-bagasse-enzymatic hidrolysate. Sugars were obtained by hydrolysis of sugarcane bagasse with cellulases and xylanases of *Cellulomonas flavigena* mutant PR-22. To establish the optimal parameters of growth and ethanol production, four assays were conducted simultaneously in stirred tank bioreactors of 500 mL with an operation volume of 380 mL. The content of total soluble sugars in the sugarcane bagasse hydrolysate was determined by the technique of Dubois. All fermentations were carried out as batch cultures during 72 h. Samples of 1.5 mL were taken every 2 hours to monitor kinetics. The amount of total sugars, reducing sugars, inorganic nitrogen, ethanol, protein and biomass were quantified in each sample. Reducing sugars were measured by DNS technique; inorganic nitrogen was measured by Nessler technique; ethanol concentration was determined by Conway micro diffusion technique; proteins were quantified by Lowry method and biomass was estimated by dry weight.

It was observed that yeast could growth in both aerobic and anaerobic conditions; however the yield Y_x/s for each condition was different (0.345 and 0.25 g·g⁻¹ respectively). Nevertheless biomass production was not completely independent of the culture, at the end of each culture, the ethanol concentration was 7.1 g L⁻¹ for both conditions. Aerobic cultures increased the pH, while anaerobic cultures decreased this variable. Protein concentration in medium remained in the interval of 4 - 5 g L⁻¹. These results gave us a general overview of the metabolism of the yeast. The amount of ethanol and the biomass produced in both aerobic and anaerobic conditions, places the yeast in the group of the facultative aerobic microorganisms, although ethanol production yield obtained was lower than *Saccharomyces cerevisiae*, *Zymomonas mobilis* or *Escherichia coli* recombinants. Complex composition of substrate should be highlighted since not many native microorganisms are able to ferment this kind of sugars (celooligosaccharides). This work is a base for further experiments to describe yeast fermentative mechanism and the optimization in ethanol production. Phylogenetic identification of yeast is a goal to reach in this reasearch.

Keywords: yeast; saccharified; sugar cane bagasse; ethanol
Metabolically engineered *E. coli* gene expression: Efficient conditional gene silencing can be achieved using artificial convergent transcription protected from Rho-dependent termination

Ajinomoto-Genetika Research Institute, Moscow, 113545 Russia

The regulated redistribution of metabolic fluxes into branched pathways is extremely important for microbial biotechnology when biosynthesis of a desired product leads to growth retardation and decreased activity of the producing strain. Switching from the bacterial growth stage to the bioconversion of substrates into products of practical interest could be based on inducible expression of recombinant pathway genes or on conditional silencing of some key metabolic genes.

In the present study, we show that artificially arranged convergent transcription could be efficiently used for the conditional silencing of target genes. PykF is one of two pyruvate kinases in *Escherichia coli* K-12. ΔP,Δ was convergently integrated into the chromosome of the MG1655 strain, downstream of *pykF* and face-to-face with its native promoter. In the presence of *cI*Δ, efficient *pykF*-silencing was achieved when the 5’-terminus of the PL-originated antisense RNA (asRNA), consisting of the *rrnG*-AT sequence, converted elongation complexes of RNA polymerase to a form resistant to Rho-dependent transcription termination.

pykF silencing was detected by the following features: (i) impaired growth of the strain when *pykA* was also disrupted and when using ribose as a non-PTS carbon source; (ii) reduced synthesis of full-sized *pykF*-mRNA detected by reverse-transcription PCR; and (iii) a significant decrease of PykF activity. The advantages of anti-terminated convergent transcription were clearly manifested in strains where the rho_a-terminator was inserted specifically to interrupt asRNA synthesis. The target gene was most likely silenced by transcriptional interference due to collisions between converging RNA polymerases, although the role of cis-asRNA effects could not be excluded. While details of the mechanisms have yet to be determined, anti-terminated convergent transcription is a promising new technique for silencing other target genes.

Keywords: Elongation complex collisions, gene silencing, *rrnG* anti-terminator, transcription interference

Method of Lysine extraction from the culture fluid of producent

S.M. Shulga, G.S. Andriiash, A.I. Chomenko
Institute for food biotechnology and genomics, Osypovskogo str., 2a, 04123, Kyiv, Ukraine

The subject of this inquiry is method of Lysine extraction from the culture fluid of producent (*Brevibacterium sp. 90H*), which includes Lysine extraction from the culture fluid by the centrifugal extractors and its reextraction for further obtaining of crystalline lysine with concentration of 96-98 % of main substance.

Lysine extraction was carried out directly from the untreated culture fluid obtained from fermenters at centrifugal extractors, while reextraction was carried out by gaseous ammonia in the presence of small quantity of water. The culture fluid was acidified by sulfuric acid to the pH 1.8 and the extraction was carried out by dinonylnaphthalene solution in ammonia form at centrifugal extractors “EC-140” (Russia).

For the total lysine extraction culture fluid and extractant were moving in back flow to each other. 5 joined in series extractors were used to carry out the extraction. Culture fluid was introduced in the first extractor, and extractant – in the last one. As a result, maximal saturated lysine extract was obtained from the first extractor, and maximal “delysined” cultural fluid. For the reextraction, lysine containing extract was treated with the gaseous ammonia.

Keywords: lysine, extraction, culture fluid
Microalgae from The Salar de Atacama (Northern Chile), as a potential resource of fatty acids of industrial interest

G. Hayashida S.1,2, L. Espíndola S.1, C. Schneider B.1,3, D. Arias F.1 and P. Díaz P.1
1 Departamento de Química, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile
2 Postgraduate Program of Biological Sciences, Universidad de Antofagasta, Avenida Angamos 0601, Antofagasta, Chile
3 Forest Department, Universidad de Concepción, sede Los Ángeles, Juan Antonio Coloma 0201, Los Ángeles, Chile

Microalgae are identified as an important resource of insaturated fatty acids, phospholipids, glycolipids and carotenoids, which are useful compounds for the alimentary and pharmacological industry.

The aim of this study was to obtain and identify fatty acids from microalgal strains isolated from altiplanic aquatic ecosystems at Salar de Atacama, northern Chile. From a total of seven isolated strains, Dunaliella salina, Chlorella sp. and Oscillatoria sp. were cultured in containers of 20 l under continuous aeration and lighting. The extraction of total lipids from pellet of each microalga were carried out by the Bligh and Dyer method. Lipidic extracts were separated by Thin Layer and Gas Chromatography. From the total lipids, the analysis identified the 36.7%, 50.3% and 23.6% of them in D. salina, Chlorella sp. and Oscillatoria sp., respectively. With regard to the fatty acid composition in the total lipidic extraction, it stands out the 27.68% of stearic acid and 19.12% of oleic acid (C18:1 cis 9Δ) in D. salina, which are values higher than the reported elsewhere1-3. Similarly, 61.24% and 3.05% of stearic acid (C18:0) were obtained from Chlorella sp. and Oscillatoria sp., respectively. Also, palmitoleic acid (C16:1 cis 9Δ) (28.53%) and linoleic acid (C18:2ω6) were detected in Oscillatoria sp., whose values are higher than those in the literature. We compare the fatty acids obtained in this work with data for microalgal strains of the same Genera reported in literature3-5. The results obtained suggest that the fatty acids content and the composition of microalgae are related to the strain and their ecological niche, due to changes in response to environment variables. The microalgal strains used in this work inhabit in extreme ecosystems, with regard to temperature, light and salinity. On another side, fatty acids as C18:0 and C18:1 are recognized as carotenoids promoters, which are important pigments for the irradiance protection.

More studies are necessary to clarify the relationship between the particular high fatty acid content in these microalgae and their role as promoters of metabolites necessary to life in extreme conditions.

This study was supported by a Grant ESO AUI 2006-2008.

Keywords: Microalgae, Gas Chromatography, Fatty acids

Microbial Adaptation to Toxic Organic Solvents – Mechanisms and Biotechnological Applications

H.J. Heipieper1
1 Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany

Many organic solvents also known as potential environmental pollutants such as monoaromatic compounds (e.g. BTEX and phenols), n-alkanols and terpenols are known to be extremely toxic not only to humans, animals and plants but also to microorganisms that are capable to degrade them. Therefore, environments contaminated with high concentrations of such compounds cannot be effectively bioremediated due to the inhibitory effects of the pollutants on the microbiota.

In addition, the toxicity of organic solvents plays a role in the biotechnological production of fine chemicals in whole cell biotransformations. One major problem of successful applications of biotransformations using living bacteria as biocatalysts is the high toxicity of potential substrates and products. Fine chemicals often show a hydrophobicity very close to those of biological membranes. For that reason such substances have toxic effects on the cell membranes and disturb their functioning, lead to growth inhibition or even cell death. These facts limit the economic application for biotechnological syntheses of a broader range of fine chemicals. One possible solution of this problem could be the application of fermentation systems with two phases. Hereby, an organic solvent is added as a second phase which functions as a kind of reservoir for potential substrates and/or products within a biotransformation process. However, applicable solvents are often toxic to potential biocatalysts themselves.

A solution for this problem is the application of so-called solvent-tolerant bacteria, often belonging to the genera Pseudomonas, Rhodococcus and Arthrobacter. These bacteria are able to adapt to supersaturated concentrations of many toxic solvents and environmental pollutants, respectively. In the last two decades, many attempts have been made to elucidate and characterise the cellular mechanisms of these bacteria enabling them to adapt to such hazardous conditions.

The main purpose of the lecture will be to introduce into the physiology and biochemistry of such solvent-tolerant bacteria and their specific adaptive mechanisms. On the other hand, potential applications of these special bacteria in the fields of bioremediation, environmental biotechnology and biocatalysis will be presented.

Keywords: solvent tolerant bacteria; adaptation; two-phase fermentations; fine chemicals; whole cell biotransformations

References

Microalgae from The Salar de Atacama (Northern Chile), as a potential resource of fatty acids of industrial interest

G. Hayashida S.1,2, L. Espíndola S.1, C. Schneider B.1,3, D. Arias F.1 and P. Díaz P.1
1 Departamento de Química, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile
2 Postgraduate Program of Biological Sciences, Universidad de Antofagasta, Avenida Angamos 0601, Antofagasta, Chile
3 Forest Department, Universidad de Concepción, sede Los Ángeles, Juan Antonio Coloma 0201, Los Ángeles, Chile

Microalgae are identified as an important resource of insaturated fatty acids, phospholipids, glycolipids and carotenoids, which are useful compounds for the alimentary and pharmacological industry.

The aim of this study was to obtain and identify fatty acids from microalgal strains isolated from altiplanic aquatic ecosystems at Salar de Atacama, northern Chile. From a total of seven isolated strains, Dunaliella salina, Chlorella sp. and Oscillatoria sp. were cultured in containers of 20 l under continuous aeration and lighting. The extraction of total lipids from pellet of each microalga were carried out by the Bligh and Dyer method. Lipidic extracts were separated by Thin Layer and Gas Chromatography. From the total lipids, the analysis identified the 36.7%, 50.3% and 23.6% of them in D. salina, Chlorella sp. and Oscillatoria sp., respectively. With regard to the fatty acid composition in the total lipidic extraction, it stands out the 27.68% of stearic acid and 19.12% of oleic acid (C18:1 cis 9Δ) in D. salina, which are values higher than the reported elsewhere1-3. Similarly, 61.24% and 3.05% of stearic acid (C18:0) were obtained from Chlorella sp. and Oscillatoria sp., respectively. Also, palmitoleic acid (C16:1 cis 9Δ) (28.53%) and linoleic acid (C18:2ω6) were detected in Oscillatoria sp., whose values are higher than those in the literature. We compare the fatty acids obtained in this work with data for microalgal strains of the same Genera reported in literature3-5. The results obtained suggest that the fatty acids content and the composition of microalgae are related to the strain and their ecological niche, due to changes in response to environment variables. The microalgal strains used in this work inhabit in extreme ecosystems, with regard to temperature, light and salinity. On another side, fatty acids as C18:0 and C18:1 are recognized as carotenoids promoters, which are important pigments for the irradiance protection.

More studies are necessary to clarify the relationship between the particular high fatty acid content in these microalgae and their role as promoters of metabolites necessary to life in extreme conditions.

This study was supported by a Grant ESO AUI 2006-2008.

Keywords: Microalgae; Gas Chromatography, Fatty acids

References:

Microbial Enzymes - An Alternative to Harsh Chemicals in Industry

Sanhita Chowdhury¹, Ashok Ranjan Thakur² and Shaon Ray Chaudhuri¹

¹Department of Biotechnology, West Bengal University of Technology, BF-142, Sector 1, Salt Lake, Calcutta-700064, India
²West Bengal State University (Barasat, North 24 Parganas), Berunanpukuria, P.O. Malikapur, North 24 Parganas, PIN 700126, India

Currently enzymes have attracted the attention of the world due to their wide range of industrial applications in many fields including organic synthesis, clinical analysis, pharmaceuticals, detergents, food production and fermentation. Protease represents one of the largest groups of industrial enzymes and accounts for about 60% total worldwide sale of enzymes. Microorganisms are considered as a good source of enzymes due to their broad biochemical diversity and susceptibility to genetic manipulation. Using the growth condition of *Streptococcus macedonicus*, nine extracellular protease producing bacteria were isolated from different sites of East Calcutta Wetland (ECW), which acts as the world’s largest natural treatment plant for solid and soluble wastes located at the eastern edge of Calcutta. It is an excellent example of integrated resource recovery systems where city sewage is used for fisheries and agriculture for more than 100 years now. In ECW the bioremediation and biodegradation of complex compounds is mainly based on microbial activity, so it is recognized as a source of biotechnologically important bacteria. The early study on biodiversity screening of this area based on culture independent approach revealed the existence of wide variety of microbial population. Based on this background study nine extracellular protease producing bacteria were isolated from various sites of East Calcutta Wetland.

Most of the proteases from the bacterial isolates were found to tolerate a wide range of pH but all of them worked best at moderate range of pH. The thermo tolerant nature of the enzymes from the different strains varied between 4°C to 60°C. Extracellular protease from one of our novel bacterial isolate had shown the capability of enhancing the cleaning efficiency of detergent. It showed compatibility with different types of commercially available detergents and worked on different types of fabrics. Protease from another strain was working efficiently as dehairing enzyme at neutral pH and it is comparable to the conventional method of dehairing. Microbial proteases are used in leather industry for dehairing and bating of hides. The conventional method of leather making resulted in the huge amount of pollution due to chemicals like lime, sodium sulphide, salts, solvents comes from the leather processing. As the protease from our strain works at a neutral pH, it can reduce the use of environmentally hazardous chemicals used in dehairing process. Another novel strain was found to produce another industrially important enzyme amylase and three of the isolates were found to produce the enzyme lipase. Thus the isolated bacterial strains could be exploited for different industrial processes.

Keywords: Extracellular protease; Commercial application

Microbial production of lactate-based polyesters

Ken’ichiro Matsumoto, Miwa Yamada, Fumi Shoai, Takanori Nakai and Seichi Taguchi

Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan

Bio-based plastic has been of interest because they can be an environmentally friendly alternative to petroleum-derived plastics. PLA is one of the most widespread bio-based plastic. Currently lactate-based polyesters were produced via microbial fermentation of lactate and chemical synthesis by ring-opening polymerization. Our group recently constructed a novel lactate-based polyesters producing system with one-step bioprocess (see figure below) using bacterial polyester biosynthetic system [1]. It has been known that many bacteria accumulate high-molecular-weight polyesters, called polyhydroxyalkanoates (PHAs), as intracellular granules. A key enzyme of the PHA biosynthesis is PHA synthase, which polymerizes monomers into polyester. Typically, PHA synthases incorporate 3-hydroxy and 4-hydroxy acids into polymer. However, no enzyme had been reported to be capable of incorporating 2-hydroxyl acids, including lactate. Recently, we obtained a mutated enzyme, which incorporates lactyl unit into polyester chain, through the engineering of PHA synthase [2]. The discovery of the “lactate-polymerizing enzyme” was a breakthrough to construct the bioprocess producing lactate-based polyesters.

We constructed a microbial process producing lactate-based polyesters using *Escherichia coli* as a platform. The cells expressing the lactate-polymerizing enzyme and monomer supplying enzymes produced P(lactate-co-3-hydroxybutyrate) (3HB) copolymers comprised of 6—47 mol% lactate from glucose [3]. In addition, lactyl unit incorporated into polymer was all 8-form (D-lactate) based on enantioselective HPLC analysis. The high optical purity should be an advantage against chemically synthesized polyesters. The new microbial process has a potential to be an environmentally friendly system for lactate-based polyester production.

Keywords: Biosynthesis; Enzymatic polymerization; PLA; polyhydroxyalkanoate synthase

References

Keywords: Biosynthesis; Enzymatic polymerization; PLA; polyhydroxyalkanoate synthase
Microbiological aspects of water retting in kenaf (Hibiscus cannabinus) processing

M. Speri, S. Lampis, and G. Vallini
Department of Biotechnology University of Verona, Strada Le Grazie 15, 37134 Verona, Italy

During the last recent years a renewed interest has occurred in the production of natural plant fibers. This production can be achieved naturally by the so-called “retting” process which relies on the exploitation of specific enzymatic activities that microbial communities associated to the plant biomass are able to exert. Traditionally, two retting methods - namely “dew retting” and “water retting” - have been adopted. Through these treatments, depolymerization of the pectic cement enrusting fibers is carried out by bacterial (mostly in “water retting”) or fungal (especially in “dew retting”) pectinolytic enzymes which bacteria colonizing the epigenous parts of the plant species or soil occurring microorganisms release outside the cells. Nevertheless, the difficulty so far experienced in the control of the retting process has represented the major limitation to an efficient production of high quality fibers. Therefore, this aspect must be taken into account as the key issue for any future expansion of industrial fiber crops. Since microorganisms are the main retting agents, right their trophic, eco-physiological and biochemical properties end to affect the course of the pectinolytic process and, as a consequence, the final quality of the fibers obtained. For this reason, to better understand the microbial retting reactions results of crucial importance. Nowadays, studies on retting of different fiber crops (particularly hemp and flax) lead to assume a dynamic succession of different pectinolytic microbial species during the process. Actually, Bacillus spp. are dominant in the starting phase of the process, while spore-forming anaerobic Clostridium spp. take place with the progressive depletion of oxygen in water tanks. Actually, Bacillus spp. are the main group of bacteria responsible for the traditional water retting, they can however negatively affect the quality of the end-product in long lasting retting cycles, due to their capability to degrade even cellulose that is the main fiber component.

The aim of the present study was either to assess the main factors driving the retting process or to decipher the microbial community responsible for the deppectination of kenaf (Hibiscus cannabinus) fibers in a pilot bioreactor. Kenaf, a plant species belonging to the botanical family of Malvaceae and represents one of the allied fibers of jute. The pilot bioreactor consisted in a 1 m³ tank featured with an outer water jacket for the temperature control, a recirculating pump for the continuous mixing of the retting liquor, and an air insufflation system for the delivery of oxygen into the fermenting liquor. A series of sensors were set in order to check temperature, pH, redox potential, and oxygen concentration in the bioreactor. The reactor was connected to a computer for the continuous monitoring and the control of the process parameters as well as for the storage of data. The diachronic evolution of the retting microbiota was evaluated by two distinct but complementary approaches: i) a culture dependent approach based on the isolation - on selective growth media - of bacteria colonizing the fibers or acclimated in the retting liquor inside the reactor; ii) a culture independent approach consisting in a metagenomic analysis of the retting liquor by PCR-DGGE protocol performed on universal 16S rDNA with Bacillus-specific primers. The culture dependent approach revealed that the facultative anaerobic microflora – including both sporogenous and non-spore-forming species - is mainly responsible for plant tissue maceration. Spore-forming bacteria were prevalently Bacillus spp. that evidenced a good pectinolytic activity through esoepectinase production. On the other hand, non-spore-forming bacteria, chiefly represented by Proteobacteria, evidenced low esoepectinase production along with significant pectin fermentation ability, as well as good tolerance to phenolic toxic compounds generated during plant tissue maceration. Interestingly, culture dependent PCR-DGGE analysis confirmed the results gained through culture dependent protocols. Molecular analyses allowed attributing the isolates to different steps of the retting process. They also revealed the presence of Clostridium spp. in the bioreactor. As a matter of fact, running kenaf retting in the aerated bioreactor pointed out a continuous presence of Bacillus spp. during the whole process and allowed to understand how to control the presence of Clostridium. Moreover, a new trait of the retting process was revealed: the occurrence of Proteobacteria. This investigation represents an innovative approach to the study of wet retting microbiota toto whose components were taxonomically identified and characterized for their roles within the process in a controlled pilot bioreactor.

Microbiological characterization and disposal issues of table olive wastewaters

M. Papadelli¹, and S. Ntougias²
1 Department of Food Technology, Technological Education Institute of Kalamata, Antikalamos, 24 100 Kalamata, Greece
2 Democritus University of Thessce, Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment, Vas. Sofias 12, 67100 Xanthi, Greece

The preparation of edible olives is an important process of the olive agro-industry. In Greece, the processing of Greek-style naturally black olives includes harvesting, washing and placement in brine containing 8-10% v/w salt and often vinegar. Despite the fact that research on table olive quality and fermentation has been extensively performed in the last decades, no information on problems due to the disposal of brine after packaging has been reported. In the present work, the wastewater of table black olives (variety Kalamon) was evaluated in terms of its phytotoxicity as well as its physico-chemical and microbiological properties. Physicochemical analyses and phytotoxicity were performed according to standard methods, while microbiological investigation of the disposed brine was performed by constructing a clone library. This saline wastewater had a low pH of 4.2, high COD (33.4 g l⁻¹) and phenolic content (5.3 g l⁻¹). No germination was occurred in 25 and 50% v/v olive brine, while phytotoxicity was greater than 99% in 10% v/v brine solution. The majority of environmental clones obtained were placed within the α- and β-Proteobacteria, while no lactic acid bacteria were present. Moreover, 16S rRNA gene sequence analysis revealed no threat from any potential pathogen.

Keywords saline wastewater, brine, table olives
Mixture design of agricultural waste substrates for laccase production from white rot fungal

T. Chairin1, C. Khanongnuch1, and S. Lumyong1
1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
2 Department of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand

The objectives of this study were to find out the best substrates for laccase production in solid state fermentation and determined the best model of mixture design of three selected substrates. The method used ten agricultural waste as substrates for laccase production in solid state fermentation from white rot fungal, WR 710-1 collected from Hang Dong district, Chiang Mai province, Thailand. The highest laccase activity (0.688±0.117 U/g substrate) from WR710-1 when grew on orange peel. Laccase activities 0.171±0.028 U/g substrate and 0.160±0.044 U/g substrate were found when WR710-1 grew on corn cob and coffee husk, respectively. Three selected substrates, orange peel, corn cob and coffee husk were mixed in mixture design to determine the model of the mixtures. The best model was

\[Y = 1.129x_1 + 0.164x_2 + 0.356x_3 + 3.741x_1x_3 \]

with Coefficient of Determination (R²) as 0.884. Moreover the maximum activities of laccase (1.974±0.120 U/g substrate) was increased 2.85-fold when fermented in mixed substrates using this experimental model.

Keywords laccase; mixture design; white rot fungi; agricultural waste

Molecular Characterization of \textit{Escherichia coli} (\textit{E. coli}) mercuric reductase (\textit{merA}) gene.

Tanveer A. Shah* and Arif Ali
Department of Biotechnology, Jamia Millia Islamia, New Delhi-110025 India. *Present Address: Jammu and Kashmir Entrepreneurship Development Institute, Srinagar-190001 (J&K) India

Studies related to geographical distribution of \textit{E. coli} carrying mercuric reductase (\textit{merA}) gene were carried out on the Indian subcontinent. Out of 30 \textit{E. coli} isolates, collected from five geographically distinct regions of India, 8 were found to be resistant to the inorganic form (HgCl₂) and only 2 to resistant to both the inorganic and organic forms of mercury. All the 8 strains revealed the presence of a plasmid of 24kb, and transformation of the isolated strains into the mercury-sensitive competent cells of \textit{E. coli} DH5α rendered the transformants resistant to the same concentration of mercury as wild type-strains.

On PCR amplification of mercuric reductase (\textit{merA}) gene, the expected length of PCR products of \textit{merA} genes corresponding to 1695bp was obtained from all the 8 strains when electrophoresed on 1% agarose gel. The PCR products of 2 highly resistant strains were cloned in pGMET-Easy Vector. An analysis of the nucleotide sequence of the \textit{merA} genes of the \textit{E. coli} isolated from 2 highly resistant strains showed remarkable degree of homology, except for a few nucleotide base changes. At restriction level, these \textit{merA} genes showed divergence from each other. These variations were exhibited in terms of restriction sites for different restriction enzymes.
Multigenic family coding for endo-1,4-beta-xylanases in *Penicillium canescens*

I.G. Maisuradze1,2, A.M. Chukin3, E.A. Vavilova4, S.V. Benevolensky1, and M.S. Benevolensky3

1 DEPARTMENT of Microbiology, Moscow Lomonosov State University, Leninskiy Gory, b.1, corp.12, 119992 Moscow, Russia
2 A.N.BAH Institute of Biochemistry RAS, Leninsky prospekt, 33, build. 2, 119071 Moscow, Russia
3 SCIENTIFIC and Manufacturing Enterprise TRIS, Varshavskoe shosse, 125, corp.d2, 113587 Moscow, Russia

There are numerous microorganisms efficiently degrading xylan, a major component of lignocellulose. In particular, filamentous fungi have demonstrated a great capability to secrete a wide range of xylanases. A great number of *Penicillia* are active producers of xylanolytic enzymes and xylanases from these species have many commercial uses in biotechnological applications. Several of them produce multiple isoforms of xylanases. Commonly xylanases belong to glycoside hydrolase families 10 and 11. The filamentous fungus *Penicillium canescens* secretes high level of xylanase, which gets a good potential for biobleaching of cellulose pulp. The complete gene YXML coding for major family 10 endo-1,4-beta-xylanase Yxla (Mr 31 kDa) of this organism was cloned and described earlier.

Four additional *P. canescens* genes, XYLB, XYLIC, XYLID and XYLE, encoding the XylB, XylC, XylD and XylE endo-1,4-beta-xylanases, respectively, have been cloned and sequenced. XYLB encodes a presumed signal peptide of 32 amino acids (aa) and a mature protein of 178 aa. XYLIC - 31 aa signal protein and mature protein of 212 aa. XYLID - 27 aa signal protein and mature protein of 190 aa. XYLE - 35 aa signal protein and mature protein of 325 aa. Sequence alignment and the constructed neighbor-joining tree showed that the *P. canescens* enzymes XylB, XylC and XylD belongs to glycoside hydrolase family 11, XylE belongs to glycoside hydrolase family 10. Coding regions of these genes are interrupted by one intron. All new endoxylanase proteins are closely related to several other xylanases from *Penicillia* and *Aspergilli*.

Several xylanase producing *Penicllium* species contain consensus sequences for CreA and XlnR binding in the promoters of the xylanase encoding genes. The promoters of cloned genes have been sequenced partially and analyzed. The promoter of XYLB gene has a modular structure, with seven putative XlnR binding sites in tandem (XlnR module), and upstream from them, four putative CreA binding sites (CreA module).

All genes have been expressed in a laboratory *P. canescens* strain under control of a strong native promoter, resulting in the construction of corresponding xylanolytic strains. Secreted endoxylanases demonstrate following properties: XylB - an apparent Mr, 19 kDa and an isoelectric point below 6.07, XylC - Mr, 22 kDa and an isoelectric point below 5.8, XylD - Mr, 21 kDa and an isoelectric point below 5.3, XylE - Mr, 36 kDa and an isoelectric point below 5.2. Xylanase activities of these enzymes were maximal at pH 5.0-5.5 and 50-55°C, excepting XylD with temperature optimum 70°C.

Keywords xylanases; *Penicillium canescens*; glycoside hydrolase families; promoters; binding sites

Old Yellow Enzymes: Powerful biocatalysts for the asymmetric hydrogenation of C=C bond

M. Kataoka, F. Kuwabara, N. Urano, S. Kamishikiryo, and S. Shimizu

Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Old Yellow Enzymes (OYEs, enolate reductases) are now powerful and excellent biocatalysts for the asymmetric hydrogenation of the C=C bonds of α,β-unsaturated compounds. We found two novel OYEs (CYE and TYE) catalyzing the asymmetric hydrogenation of C=C bond with different substrate recognition mechanism, and these OYEs were applied to a bioreduction system for the production of double chiral compound.

I. OYE from *Candida macedoniensis* (CYE)

Microorganisms were screened for reducing ketoisophorone (KIP), and *C. macedoniensis* was found to produce (6R)-levodione through the asymmetric hydrogenation of the C=C bond of KIP [M. Kataoka et al., *Biosci. Biotechnol. Biochem.*, 2003, 66, 2651]. The enzyme involved in this reaction was identified as OYE family protein. The *P. canescens* enzymes XylB, XylC and XylD belongs to glycoside hydrolase family 11, XylE belongs to to glycoside hydrolase family 10. Coding regions of these genes are interrupted by one intron. All new endoxylanase proteins are closely related to several other xylanases from *Penicillia* and *Aspergilli*.

The simultaneous sequential conversion of KIP to (4R,6R)-actinol must be performed. However, the main product of the reaction was (4S)-phorenol, suggesting that CYE catalyzes the asymmetric hydrogenation of only KIP, while LVR catalyzes the reduction of both (6R)-levodione and KIP (Fig. 1).

Keywords old yellow enzyme; bioreduction; asymmetric hydrogenation

Figure 1. (4R,6R)-Actinol production from KIP with the combination of OYEs and LVR.

II. OYE from *Torulopsis* sp. (TYE)

Microorganisms were screened again as to the reduction of (4S)-phorenol, and *Torulopsis* sp. was found to produce (4R,6R)-actinol through the asymmetric hydrogenation of (4S)-phorenol. The enzyme involved in this reaction was also identified as OYE family protein, but TYE catalyzes the hydrogenation of both KIP and (4S)-phorenol (Fig. 1).

Using cells of a single *E. coli* transformant coexpressing the TYE, LVR and GDH genes as the catalyst, KIP was almost stoichiometrically and stereospecifically converted to (4R,6R)-actinol through simultaneous sequential conversion.

Keywords old yellow enzyme; bioreduction; asymmetric hydrogenation
Optimization of a fermentation process for butanol production using Particle Swarm Optimization

A. P. Mariano1, C. B. B. Costa1, D. F. Angeli1, F. M. Filho2, D. I. P. Atala1, M. R. Wolf Maciel1, R. Maciel Filho1

1School of Chemical Engineering, University of Campinas (UNICAMP), Campinas-SP P.O. Box 6066, 13083-970, Brazil.
2School of Food Engineering, University of Campinas (UNICAMP), Campinas-SP, Brazil.

Particle swarm optimization (PSO) was evaluated in relation to their capability to optimize an alternative fermentation process for the production of biobutanol. The process consists of three interconnected units, as follows: fermentor, cell retention system (tangential microfiltration) and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth) (Figure 1). The dynamic behaviour of the process is described by a non-linear mathematical model with kinetic parameters determined experimentally, whose complexity make the solution of the optimization problem difficult through conventional deterministic algorithms, thus justifying the use of a heuristic method. Different PSO algorithms (Original, Trelea 1, Trelea 2, Shi-type, Clerc-type) were employed to determine the process inputs that maximizes the productivity of butanol constrained by a desired substrate conversion. According to the analyses of these algorithms, the performance of all PSO types was similar. With 10 iterations, PSO achieved a maximum value of butanol productivity of 9.21 g/l.h (Figure 2). Thus PSO showed to be suitable to optimize the fermentation process for butanol production. The use of PSO in biochemical processes, particularly in the biobutanol fermentation, is a novel approach and sum up the efforts of recent researches in turning the biobutanol industry commercially viable.

Keywords: Bacillus megaterium, Bacillus subtilis, Bacillus cereus, PEG-induced protoplast transformation

Fig. 1. General scheme of the continuous flash fermentation process
Fig. 2. Evolution of the butanol productivity for each iteration

Optimization of a protoplast transformation method for *Bacillus Subtilis*, *Bacillus megaterium*, and *Bacillus Cereus* by a plasmid pHIS1525.SP1525A

A. Mirabdollah, S. Alinezhad, and E. Feuk-Lagerstedt

School of Engineering, University of Borás 501 90 Borás, Sweden

During the past years of gene cloning studies, *Escherichia coli* has always been a foremost host cell for exogenous genes expressions owing to its high level of protein production and excretion. However, problems relating to low level of extracellular production of some proteins specially the accumulation of cloned proteases within the cells have moved the attentions from *E.coli* to bacilli bacteria such as *B. megaterium*, *B. subtilis*, and *B. cereus* due to their secretion ability of many different enzymes. *Bacillus megaterium* is widely used for high-level expression of heterologous proteins with little or no degradation. *Bacillus subtilis* is a naturally competent host cell for uptake of exogenous DNA, resulting in attractive industrial applications. *Bacillus cereus* has sporulation capability which makes it suitable for several industrial uses.

A conventional approach for transferring DNA into protoplasts or intact cells of bacilli bacteria is chemical transformation, using chemicals through chilling and then shock-heating of the suspension of cells to induce reversible permeabilization of the cell membrane to make it possible for the external DNA to enter into the cells. In most cloning experiments, the transformation with plasmid DNA is performed using Polyethylene glycol (PEG)-induced competence cells.

In this study, a PEG-induced protoplast transformation protocol was developed for three different bacilli strains of *Bacillus megaterium* ATCC®14945, *Bacillus subtilis* ATCC®6051, and *Bacillus Cereus* ATCC®14579. In all cases a plasmid pHIS1525.SP1525A, well working vector in *B. megaterium*, was applied. Protoplasts were formed in RHAF medium after treating the cells with lysozyme. Two factors, the incubation time and the lysozyme concentration have been found to play the most important role in effective protoplast formation. These two factors were further optimized in this study to elaborate a chemical transformation procedure which can possibly work for other bacilli strains as well. The optical density (A420) and the number of colony-forming units (CFUs) were determined to find the optimal conditions for each strain. The results indicate that PEG-induced protoplast transformation is a sufficient technique when using a plasmid pHIS1525.SP1525A in Bacillus genus.

Keywords: *Bacillus megaterium*, *Bacillus Subtilis*, *Bacillus Cereus*, PEG-induced protoplast transformation
New transportation fuels are desperately needed to reduce our heavy dependence on fossil fuels and to slow down global climate change. Lignocellulosic biomass is the only low cost, alternative energy source available for sustainable production of large quantities of liquid transportation fuels, through saccharification and then fermentation of the released reducing sugars &/or pretreated biomass. However, the digestibility of lignocellulosic biomass is low owing to its structural features such as lignin content, cellulose crystallinity, hemicellulose acetylation and inaccessible surface area, thus limiting the saccharification of cellulose and making pretreatment steps essential. Further, this is the most expensive lignocellulose processing step. Therefore, a proper pretreatment method is needed to overcome these problems and to achieve higher yields. Among various pretreatment methods investigated (biological, chemical, physical and thermal), at present only those employing chemicals, particularly dilute acid or alkali, offer higher yields and low costs vital to economic success.

In present study a response surface methodology (RSM) was used separately for dilute (sulfuric) acid and alkali (sodium hydroxide) pretreatments of sweet sorghum bagasse, a low cost lignocellulose rich biomass to standardize the pretreatment conditions. The standardization was based on central composite rotatable design (CCRD) involving 4 variables acid/alkali concentration, ratio of solid substrate and liquid solution (w/v), pretreatment temperature and pretreatment time at 5 levels each. Results show that temperature had maximum effect on release of reducing sugars during acid pretreatment, followed by solid to liquid ratio and acid concentrations; however, during alkali pretreatment maximum effect was shown by alkali concentration. Acid pretreatment released 56.18% (w/w) reducing sugars, compared to 1.32% by alkali pretreatment. In conclusion, dilute acid pretreatment of sweet sorghum bagasse is more promising method than dilute alkali pretreatment for further microbial saccharification process, on the basis of released reducing sugars. Optimized conditions for acid pretreatment are: acid concentration- 1.4%, solid to liquid ratio- 1:10.9, temperature- 112 °C and time- 34.4 minutes.

Keywords pretreatment; lignocellulose; central composite rotatable design (CCRD); response surface methodology (RSM)

Optimization of the Continuous Clavulanic Acid Adsorption Process

R. M. R. G. Almeida, M. Barboza, C. O. Hokka

1UFSCar, Department of Chemical Engineering, Federal University of São Carlos, Via Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil
2Department of Chemical Engineering, Federal University of Alagoas, Via BR 104 – North, Km 97, 57072-970, Maceió, AL, Brazil

This paper proposes an optimization of the variables involved in the continuous adsorption process of clavulanic acid (CA) on an ion exchange resin, using a complete factorial design. Six independent variables are involved: initial concentration of CA, residence time of adsorption tank, residence time of desorption tank, solid residence time, and the liquid ratios in the two tanks. The factorial design was made utilizing 65 simulations of the continuous adsorption process obtained by a previously proposed model. The dependent responses, process yield (Y), purification factor (PF) and concentration factor (CF) were successfully optimized using the response surface methodology. A continuous adsorption run was done to validate the factors that maximized the process yield. A comparison of the Y, FC and FP values obtained in the simulated and experimental runs indicated a difference of less than 11%. The response surface methodology proved suitable to optimize the factors involved in the continuous adsorption process of clavulanic acid on the ion-exchange resin.

Keywords: clavulanic acid; continuous adsorption process, response surface methodology.
PCR clone of novel L-asparaginase II gene from *Escherichia coli* (YG 001)

Younes Ghasemi1, Abdollah Ghasemian, Mohammad Bagher Ghoshoon, Mohammad Javad Race, and Samira Maghami

Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 71345-1583, Shiraz, Iran

The interest in L-asparaginase arose of its anticancer activity. Unlike normal cells, malignant cells can slowly synthesize L-asparagine and are dependent on an exogenous supply. In contrast, normal cells are protected from asparagines starvation due to their ability to produce this amino acid. The antineoplastic activity results from depletion of circulating pools of L-asparagine by L-asparaginase. In the present work, the L-asparaginase II (ansB) from *E. coli* YG 001 was cloned and expressed in *E. coli*.

The *E. coli* YG 001 was isolated during a screening program from urine and stool samples arrived to medical laboratory of the Namazi Hospital, Shiraz Iran. Total genomic DNA were isolated and used for PCR amplification of the *ansB* gene. Sequences were amplified using the specific primers, which amplify a ~1000-bp of the structural *ansB* gene. The resulting PCR amplicon was ligated in the *E. coli* expression vector. *E. coli* BL21 (DE3) cells were transformed with the recombinant plasmid to get the expression strain. The asparaginase activity was measured by Nessler’s reaction. The DNA and amino acid sequence of the L-asparaginase II of the *E. coli* YG 001 was recorded in NCBI under the accession number GQ901077. The DNA and amino acid sequence alignments resulting from the BLAST search of *ansB* showed 95-99% identity with the other strains of *E. coli*, whereas significantly lower identity was observed with other bacterial L-asparaginases II (75-80%). The *E. coli* transformants showed high asparaginase activity. The commercial availability of L-asparaginase II has revolutionized the molecular therapy of leukaemia. Thus, the characterization of new recombinant L-asparaginase II and the development of rapid, simple and effective production methods are not only of academic interest but also of practical importance.

Keywords: Gene cloning, L-Asparaginase, *Escherichia coli*

PHA production by mixed culture from a by-product of paper industry

L.S. Serafini1,2, A. Ferreira1, A. Martins1, D. Extugui3, P.C. Lemos2, A.M.R.B. Xavier3

1Universidade de Aveiro, Departamento de Química, P-3810-193 Aveiro, Portugal
2REQUIMTE/CoFIB, Chemistry Department, FCT/Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
3CICECO/Departamento de Química, Universidade de Aveiro, P-3810-193 Aveiro, Portugal

Polyhydroxyalkanoates (PHA) are biodegradable biopolymers, which have been recognized as good candidates for synthetic polymers partial replacement. The greatest drawback for their use, as petrol-based polymers substitutes, is the production cost, which can be four times higher than the chemical synthesis. PHA production by activated sludge is being investigated as a possible technology to decrease production costs, since no sterilization is required and bacteria can adapt quite well to the complex substrate present in low cost feedstocks. The most promising process using mixed microbial cultures (MMC) is based on the alternation of short periods of excess carbon (feast) with long periods of starvation (famine). One critical factor on the development of a competitive process for PHA production with MMC is the selection of organisms with high storage capacity.

Hardwood spent sulphite liquor (HSSL) is a by-product of paper industry that due to its high content in carbohydrates, such as xylose, can be converted by yeasts and bacteria to ethanol. One of the most efficient ethanol producers is the yeast *Pichia stipitis*. However the presence of acetic acid in HSSL is an obstacle to the conversion of xylose into bioethanol, since it inhibits the metabolism of *P. stipitis*. Researchers are looking for processes that remove acetic acid from HSSL and, preferentially, allow for an economic income. MMC can utilize volatile fatty acids (VFAs) like acetic acid for PHA production and were never described to be able to convert carbohydrates under aerobic dynamic feeding conditions (ADF). A sequential process was planned in order to, first the acetic acid is removed from HSSL and PHA are produced and then the effluent of this step, rich in xylose, is supplied to a *P. stipitis* operated in the same room could confirm that the contaminant was *P. stipitis*. Unfortunately due of type of operation of the SBR, it was not possible to quantify the maximum amount of ethanol produced in the SBR, since part of it was stripped by the air stream. The MMC was so efficient in removing the acetic acid from the HSSL that allowed for the survival of *P. stipitis* in all comprised conditions. Consequently the hypothesis of utilization of a dual process for PHA and bioethanol production from HSSL was almost confirmed. The sequential process is under development.

PHA storing bacteria community analysis in the system, selected under the applied operational conditions, was performed by Fluorescence In Situ Hybridization (FISH). If in the beginning of the system the typical genera found in ADF were omnipresent and replaced by bacteria belonging to *Dzazorovia, Thauera* and *Zoogloea* genera.

Keywords PHA; Mixed microbial cultures; HSSL, acetic acid
Physiologic diversity in *Debaryomyces hansenii*

L. C. Duarte, F. Carvalheiro, P. Pereira, and F. M. Girão

Unidade de Bioenergia, LNEGI - Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 22, 1649-038 Lisbon, Portugal

Debaryomyces hansenii is commonly recognized as a halotolerant, food grade (GRAS/QPS) yeast. It is used in the food industry (dairy and meat products) and may have many other potential biotechnological applications. It is also a very effective natural pentose assimilating yeast, and its use in the upgrade of the hemicellulosic sugar stream in a biorefinery framework holds a great promise. It can be used either as the microbial catalyst for the production of polyols such as xylitol and arabinitol, as well as for the production of single cell protein or yeast extract, a key complex supplement for the economical viability of many envisaged microbial based biorefinery processes, such as four Carbon 1,4-di acids (succinic, fumaric, and malic), 3-hydroxypropionic, glutamic, itaconic, and lactic acids. Nevertheless, it is commonly recognized that this taxon groups very diverse strains. Actually, two varieties have been described, var. *hansenii* and var. *fabryi*, distinguishable by genetic methods, maximum growth temperature (higher for var. *fabryi*), and the presence (var. *fabryi*) or not (var. *hansenii*) of the glucose-6-phosphate dehydrogenase enzyme, differences that together with more recent genetic data lead to the proposal of re-establishing the species *D. hansenii* and *D. fabryi*, with apparently no other phenotypic criterion that distinguish them. This diversity can be an interesting source of potential biotechnological relevant traits that should be explored.

In this work, a total of twenty-eight *D. hansenii* strains obtained from several culture collections and laboratory isolates were characterized towards its metabolism of hemicellulosic-derived sugars. The strains were first grown in shake-flask with chemically defined media (YNB w/o aminoacids.) using D-xylose as sole carbon and energy source, at 28ºC in semi-aerobic conditions, previously found to be relevant for the xylitol production process. Cultures were followed regularly for 48 h to evaluate sugar consumption, as well as biomass and metabolite production in order to enable the calculation of the comprehensive kinetic and stoichiometric parameters. Biomass was also recovered for a subsequent characterization of the activity of selected enzymes.

Fermentation profiles varied greatly, but two major groups could be found (A and B). These groups differ mainly in the xylene assimilation, and on the biomass specific growth rate, yield and productivity, far higher in group A, than in B. These groups were further validated by cluster analysis that grouped all previously classified *D. hansenii* var. *fabryi* and var. *hansenii* in different groups, A and B, respectively, which support a correlation between variety and pentose metabolism, probably linked to the differences on the glucose-6-phosphate dehydrogenase enzyme.

A second set of fermentation assays were carried out, now using complex nutrients (peptone, and yeast and malt extract) supplemented medium. It was observed a relief of the constrains of group B strains to xylose metabolism improving fermentation performance, and thus presenting profiles comparable to non-supplemented group A strains. This points to an additional difference related to nutrient requirements within both groups whose specific nature is currently under study.

Overall kinetic and stoichiometric parameters for xylitol production process by these strains are compared and their implications for the development of microbial process for the valorization of the hemicellulosic fraction at industrial scale will be discussed.

Keywords *Debaryomyces hansenii* var. *hansenii*, *Debaryomyces hansenii* var. *fabryi*, xylene, lignocellulosic materials, hemicellulose, biorefinery.

**Authors are grateful to Fundação para a Ciência e a Tecnologia (FCT) for the financial support of this work (project XilitolOT PTDC/AGR-AGB/71792/2006). Dr. Amália Pires Peito (INETI-DTIA, Lisboa, Portugal), Prof. Conceição Loureiro-Dias (ISA-UTL, Lisboa, Portugal), ARS Culture Collection (National Centre for Agricultural Utilization Research, Peoria, IL, USA) and PYCC (Portuguese Yeast Culture Collection, Almada, Portugal) are gratefully acknowledged for supplying yeast strains.*

Physiological characterization of mannitol overproducing strains in carob based medium

Floribela Carvalheiro, Patricia Moniz, Luís C. Duarte, Patricia Moura, M. Paula Esteves, and Francisco M. Girão

Unidade de Bioenergia, LNEGI-Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal

Microbial production of mannitol has become more attractive as some microorganisms can specifically produce mannitol from glucose/fructose mixtures without making sorbitol, a typical by-product of the non-specific reduction that occurs in the industrial chemical based method when using these type of substrates. Heterofermentative lactic acid bacteria (LAB) are among the best microorganisms with the ability to convert fructose into mannitol with high efficiency. Metabolically, under the adequate oxygen availability conditions, glucose can be used as an energy and carbon source and fructose as an electron acceptor, as it can be reduced to mannitol by means of a specific mannitol dehydrogenase enzyme (E.C. 1.1.1.67). Depending on the microorganism, up to two moles of mannitol can be produced from 1 mol of glucose (and 2 moles of fructose), if sugar assimilation is simultaneous. This will also lead to the formation of lactic and acetic acids and/or ethanol as other metabolic products.

In a previous work [1] thirty bacterial strains from *Lactobacillus*, *Leuconostoc* and *Weissella* genus were screened for mannitol production in carob-based syrups. From these, a group of eight strains which included *Leuconostoc citreum* ATCC 49370, *Lc. mesenteroides subsp. cremoris* ATCC19254, *Lc. mesenteroides subsp. dextranicum* ATCC 19255, *Lc. fructosum* NRRL B-23447, *Lc. fructosum* NRRL B-2041, *Lc. lactis* ATCC 19256, *Lactobacillus intermedius* NRRL 3692 and *L. reuteri* DSM 20016 were identified as potential mannitol overproducers.

In this work, a detailed kinetic and physiological characterization of these strains is performed using a carob based culture media, supplemented with the same nutrients as the classical MRS medium in order to evaluate their different metabolic capabilities. Cultures were thoroughly followed for 30 h to evaluate sugars consumption, as well as biomass and metabolic production. Fructose and glucose were always simultaneously consumed but fructose assimilation rate was always higher. The results obtained enable to divide the studied strains mainly into two groups: one for which glucose assimilation rates were always below 0.78 g/l.h (strains ATCC 49370, ATCC 19256 and ATCC 19254) and the other for which it ranges between 1.41-1.89 g/l.h (strains NRRL B-3692, NRRL B-2041, NRRL B-23447 and DSM 20016). These groups also exhibited different mannitol production rates and yields, being higher for the faster glucose assimilating strains. All strains produced mannitol at high yields (> 0.70 g mannitol/g fructose) and volumetric productivities (> 1.31 g/l.h). The best performance was obtained for *Lc. fructosum* NRRL B-2041 with a maximum volumetric productivity of 1.82 g/l.h and a stoichiometric conversion of fructose to mannitol. Fast glucose assimilating strains such as *Lc. fructosum* always have a mannitol to other products ratio above 1. This, together with the exhibited robustness and reproducibility led us to select *Lc. fructosum* NRRL B-2041 for further mannitol process optimization in carob-based media.

Keywords carob, lactic acid bacteria, *Lactobacillus*, *Leuconostoc*, mannitol production.

[1] Moniz, P. et al. Screening and characterization of lactic acid bacteria for the production of mannitol in carob based syrups. This meeting.

This work was supported by AdI, Project ValorAlfa (70/00326). ARS Culture Collection (National Centre for Agricultural Utilization Research, Peoria, IL, USA) and Dr. Isabel Fernandes (INETI-DTIA, Lisboa, Portugal) are gratefully acknowledged for supplying bacterial strains.

Production of xanthan gum by *Xanthomonas campestris* and Optimization its production process

E. Ramtin¹, R. Shapouri¹, M. Rahnema¹

¹Department of Microbiology, Faculty of Basic and Medical Science, Islamic Azad University Zanjan-branch, Iran.

Intruduction: Xanthan gum is a heteropolysaccharide produced by the plant-pathogenic bacterium *Xanthomonas campestris pv. campestris*. Xanthan gum is used in a broad range of industries, such as in foods, toiletries, oil recovery as emulsifier and stabilizers. Aim of this study is production of xanthan gum and optimization its production process.

Materials and methods: *Xanthomonas spp.* were isolated from infected Cabbage leaves. For isolation, microorganisms were grown on YDC agar slant and then inoculated in broth medium that consists of (g/l) glucose 25, KH₂PO₄ 15, K₂HPO₄ 10, MgSO₄.7H₂O 0.2, citrate 3, (NH₄)₂SO₄ 2.6 and FeCl₃.6H₂O 0.00012 and incubated for 48 h at 25-35°C.

After fermentation xanthan gum was recoverd and its concentration was determined. Result: 12 Strains of *Xanthomonas.spp* were isolated. Among these isolates, *X.campestris* raised the cost of the process, generate by-products, as derived from furfural, undesirable in the stage of the fermentation. In this point, the amylolitic residues, exactly not being as abundant as the cellulosic, are much more easily broken due to chemical nature of its glycosides bonds. The form most efficient for hydrolyze the starch is using enzyme. However, using commercial enzyme the process would be financially impracticable. Therefore, to search more simple alternatives to hydrolyze is a promising technology. The processes to obtain microbial enzymes can be controlled obtaining enzymes with desirable characteristics. The enzymes present attractive operational advantages like as high efficiency of conversion, with little formation of secondary metabolic. Glucoamylase is one of the enzymes that participate of hydrolysis of the starch that is the first stage to make available the glucose for the alcoholic fermentation. Glucosamylase can be obtained by solid state fermentation (SSF) which has favorable characteristics, when it is compared to the submerged fermentations. Special prominence must be made to the possibility of use of agro-industrial residues, as source of nutrients in these processes, in its natural form, which confers to the microorganism an environment favorable to the production of the metabolic of interest that, for this reason, is produced with biochemical characteristic more adjusted to the industrial application. In this work it was studied production of bioethanol from the residues malt bagasse and cassava bagasse after these to be hydrolyzed in the process of solid state fermentation by *Rhizopus oryzae* in column bioreactors. In this process it varied composition of the medium in terms of the ratio them residues remaining constant the operational conditions of temperature (34 oC), aeration (1L ar/min) and duration of fermentation (72 hours). It was made, then, dosage of the glucose concentration in solids medium and the samples that had gotten greater glucose availability had been used for the extraction procedure. In this step fermented solid medium was placed in the presence of water for 30 minutes and after vacuum filtration, broth retrieved was used for the alcoholic fermentation. This was conducted by *Saccharomyces cerevisiae* in submerged cultivation, using a shake by 48 hs under controlled conditions (temperature 30 oC, pH 5.6, agitation speed 100 rpm). The liquid medium, obtained by extracting the FES, was increased by yeast extract in various concentrations to assess the effect of this compound in the process. The results showed that solid state fermentation was possible to get a hydrolyzed medium containing 40 g/l of glucose available. This concentration is higher than is necessary to initiate a fermentation which proves that the FES from starch waste is an appropriate procedure for the first treatment of waste. The fermentation was not influenced by the presence of yeast extract a yield and it was reached yield of 93% of glucose conversion in ethanol, which shows the feasibility of obtaining second generation ethanol from amylolitic residue’s glucose broth. However, the kinetic parameters must be detailed process for the scale-up.

Keywords: Xanthan gum, Xanthomonas campestris, fermentation media

Production of ethanol from agroindustrial waste: cassava bagasse and malt bagasse

L. Paisani de Lima, S. Ortiz, and M. Brandão Palma

FURB University of Blumenau, Chemical Engineering Department, ZipCode 89030-000 Blumenau, SC, Brazil

The reserves of the oil, according to forecasts, will be enough approximately to meet the demand of consumption of this fossil fuel per 40 years. Inside of this context the biofuel, as ethanol, favor the environmental sustainability through the reduction in the use of fossil energy for the society. Produced ethanol from extractive components, as the broth of sugar cane, is called ethanold of first generation, or simply ethanol. However, when it is produced from agro-industrial residues, it is called bioethanol or ethanol of second generation. The accumulation of these agro-industrial residues in Brazil reaches volumes in the order of thousand of tons per year and is a cyclical process. The alcoholic fermentation can be made from any substance that has glucose in its constitution because the responsible microorganisms for this process use the metabolic route that converts 1 mol of glucose into 2 moles of ethanol and 2 moles of carbonic gas using glycolysis pathway. Thus, any cellulose or amylolitic residue is possible of use in this process. The challenge in this technology is discover more direct routes for rupture of the residues so that the microorganism has access the glucose more quickly. Cellulosic residues present a great problem in relation to this stage because these contain significant amounts of lignin associated with the cellulose. The lignin is a polymer of difficult degradation and its strong interaction with the cellulose demands drastic hydrolytic treatments that, beyond raising the cost of the process, generate by-products, as derived from furfural, undesirable in the stage of the fermentation. In this point, the amylolitic residues, exactly not being as abundant as the cellulose, are much more easily broken due to chemical nature of its glycosides bonds. The form most efficient for hydrolyze the starch is using enzyme. However, using commercial enzyme the process would be financially impracticable. Therefore, to search more simple alternatives to hydrolyze is a promising technology. The processes to obtain microbial enzymes can be controlled obtaining enzymes with desirable characteristics. The enzymes present attractive operational advantages like as high efficiency of conversion, with little formation of secondary metabolic. Glucoamylase is one of the enzymes that participate of hydrolysis of the starch that is the first stage to make available the glucose for the alcoholic fermentation. Glucosamylase can be obtained by solid state fermentation (SSF) which has favorable characteristics, when it is compared to the submerged fermentations. Special prominence must be made to the possibility of use of agro-industrial residues, as source of nutrients in these processes, in its natural form, which confers to the microorganism an environment favorable to the production of the metabolic of interest that, for this reason, is produced with biochemical characteristic more adjusted to the industrial application. In this work it was studied production of bioethanol from the residues malt bagasse and cassava bagasse after these to be hydrolyzed in the process of solid state fermentation by *Rhizopus oryzae* in column bioreactors. In this process it varied composition of the medium in terms of the ratio them residues remaining constant the operational conditions of temperature (34 oC), aeration (1L ar/min) and duration of fermentation (72 hours). It was made, then, dosage of the glucose concentration in solids medium and the samples that had gotten greater glucose availability had been used for the extraction procedure. In this step fermented solid medium was placed in the presence of water for 30 minutes and after vacuum filtration, broth retrieved was used for the alcoholic fermentation. This was conducted by *Saccharomyces cerevisiae* in submerged cultivation, using a shake by 48 hs under controlled conditions (temperature 30 oC, pH 5.6, agitation speed 100 rpm). The liquid medium, obtained by extracting the FES, was increased by yeast extract in various concentrations to assess the effect of this compound in the process. The results showed that solid state fermentation was possible to get a hydrolyzed medium containing 40 g/l of glucose available. This concentration is higher than is necessary to initiate a fermentation which proves that the FES from starch waste is an appropriate procedure for the first treatment of waste. The fermentation was not influenced by the presence of yeast extract a yield and it was reached yield of 93% of glucose conversion in ethanol, which shows the feasibility of obtaining second generation ethanol from amylolitic residue’s glucose broth. However, the kinetic parameters must be detailed process for the scale-up.

Keywords: ethanol, starch ; agroindustrial waste

Production of xanthan gum by Xanthomonas campestris and Optimization its production process
Purification, immobilization and application of tannase for beverage clarification

Rakesh Kumar1,2, Jitender Sharma1, Sonia Ahlawat1, Mukes Kumar1 and Randhir Singh1

1Department of Biotechnology, Kurukshetra University Kurukshetra, India
2Department of Biotech Engg, Ambala College of Engg and Applied Research, Devsthal Near Mithapur, Ambala Cantt, India.

Tannase was produced under solid state fermentation using Jamun (Syzygium cumini) leaves by Aspergillus ruber. Tap water was used as moistening agent with 1:2 ratio and pH 5.5 and incubated at 30°C. No external carbon and nitrogen source was used for tannase production. Tannase was harvested after 96 hours and purified using ammonium sulfate fractionation and ion-exchange chromatography. The purified tannase was immobilized using gel entrapment method. Immobilized tannase showed more pH stability, more thermal stability and can be recycled. The purified enzyme was used to clarify the haze beer, wine, tea extract and orange juice. Tannase effectively reduces the haze in all the beverages within 4 hours of incubation at room temperature (30°C). The immobilized enzyme is stable even after one year at 4°C and can be further exploited for effective haze removal in the beverage industries.

Relations between methanol methabolism pathway enzymes and β-galactosidase activities during a fed-batch fermentation of Pichia pastoris

A. Maghsoudi and S.A. Shojaosadati

Biotechnology group, Chemical Engineering Department, Faculty of Engineering, Tarbut Modares University, P.O. Box 14115-143, Tehran, Iran.

Pichia pastoris is a widely used yeast species for the production of recombinant proteins. Because the volumetric productivity of a given recombinant production process is generally proportional to the density of biomass generated, the ability to easily grow this organism at ultra-high cell densities using methanol as the sole carbon source is a major advantage. But, probably the most important characteristic of P. pastoris as host microorganism is the existence of a strong and tightly regulated promoter from the alcohol oxidase 1 gene, AOX1. Alcohol oxidase (AOX) is the first enzyme of the methanol assimilation pathway which catalyzes the oxidation of methanol to formaldehyde. Formate dehydrogenase (FDH) is an enzyme involved in dissimilation of excess formaldehyde produced by the AOX, which high activity shows the incapacity for formaldehyde assimilation.

In this study, a recombinant P. pastoris strain (GS115/His+ Mut+) intracellularly producing the enzyme β-galactosidase, was used to investigate the relations between AOX and FDH activities and recombinant protein production during fed-batch fermentations. The P. pastoris fed-batch fermentation process on methanol for attaining high cell-density consists of three distinctive phases; the glycerol batch phase for initial cell growth, the glycerol fed-batch phase for AOX1 derepression and increased cell density, and the induction phase for expression of recombinant proteins. The feeding strategies used in the glycerol and methanol fed-batch phases were based on the assumption of a constant specific growth rate of 0.18 and 0.03, respectively. pH was controlled at 5.0 and the temperature at 28 °C. β-galactosidase activity was assayed by a spectrophotometric stop rate method according to Miller (1972) using ONPG as a substrate. AOX activity was assayed by a continuous spectrophotometric rate method according to Keesey (1987) using ABTS as a substrate. FDH activity was assayed by a continuous spectrophotometric rate method according to Hopper and Knappe (1974) following the consumption of β-NAD as a cofactor. Cell dry weight (CDW) was measured by sampling 5 mL of culture, centrifuging for cell separation and drying the pellet at 70 °C.

Figure 1 shows the acquired results from the experiments. As this figure presents, from an initial value of 0.61 g/L, CDW reached to 26.31, 56.49, and 95.86 g/L at the end of glycerol batch, glycerol fed-batch, and methanol fed-batch phases, respectively. There was an obvious coordination among the activities of AOX, FDH and β-galactosidase. All of these enzymes reach their maximum specific activity approximately 12 hours after methanol fed-batch phase, which is also the beginning of the induction for the production of these enzymes, and then their activity declines gradually. Attaining the maximum specific activity of β-galactosidase after 12 hours of induction suggests that only 12 hours of methanol feeding in methanol fed-batch phase would be enough for obtaining maximum possible enzyme activity per biomass unit and so the amount of biomass at the induction time may play an important role. In other words, biomass may be increased much more in the glycerol fed-batch phase, which may reduce the total fermentation time and achieving higher β-galactosidase activities in shorter time. The simultaneous reduction in specific enzyme activities is due to the toxic effects associated with the accumulation of formaldehyde in culture, which had induced FDH activity, and reduction in the methanol consumption capacity of the cells.

Keywords Pichia pastoris; alcohol oxidase; formate dehydrogenase; β-galactosidase; fed-batch.
Salmonella enterica Typhimurium: Establishment of cultivation condition on shake flask and flagellin purification strategy by using tangencial ultrafiltration.

B. H. Oliveira¹, M. R. Silva¹, R. J. Carvalho¹, C. J. M. Braga¹, L. M. Massis¹, L. C. S. Ferreira³, M. E Shrogio-Almeida² and M. Takagi¹.

¹Laboratório de Bioprocessos – Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brasil; ²Departamento de Engenharia Química, Universidade Federal do Paraná, Curitiba, PR, Brasil; ³Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo.

Flagellin is a main protein present in the bacterial flagellum and its molecular mass is around 51.5 kDa. Its role as an adjuvant vaccine has been intensively studied and currently there is evidence to be an immunomodulator in situations of autoimmune diseases, co-administered with chemotherapy or as radioprotector. This study focuses to establish the native flagellin production process produced by Salmonella Typhimurium in shake flask and flagellin purification strategy by using tangencial ultrafiltration. Some parameters were studied in order to extract the flagellin from the cell and/or release to the culture. Results showed that flagellin can be released to the supernatant depend on the agitation speed and tangencial ultrafiltration can be used as tool to purify this protein.

Keywords: Salmonella, flagellin, homogenizer, tangencial ultrafiltratio

Scale-up of a Solid-State Bioconversion Process for Lovastatin Production in a 1200 Liter Reactor

Sanjay Kumar¹, Nalini Shrivastava¹, Bhaskar Sengupta¹ and James Gomes¹.

¹School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi – 110016, India
²School of Studies in Biochemistry, Jiwaji University, Gwalior – 474011, India
³School of Planning, Architecture and Civil Engineering, Queen’s University Belfast, BT9 5AG, UK

The process for lovastatin production by solid-state biocconversion using an Aspergillus sp. was scaled up from 7 L to 1200 L. It was demonstrated that by maintaining a constant superficial airflow velocity through the bed of solid substrates at these two scales of operation results in similar productivity of lovastatin. The experiments in the 1200 L reactor were carried out according to a central composite design using the airflow rate and substrate composition as variables. The performance in the different experiments was evaluated based on the lovastatin production. From a statistical analysis of the results, it was determined that the desirable operating condition for maximum lovastatin production was 22 cm min⁻¹ superficial airflow velocity and 53% of wheat bran in solid wheat straw substrate. The maximum lovastatin production of 2.14 mg g⁻¹ (dry substrate) was obtained in the 1200 L reactor compared to 2.68 mg g⁻¹ (dry substrate) obtained in the 7 L reactor.

Keywords Scale-up; superficial airflow velocity; solid-state biocconversion; lovastatin production; Aspergillus sp.

Figure 1. Line diagram depicting the material flow and control signal of the 1200 liter vertical solid-state reactor used for scale-up of lovastatin production.

Keywords Scale-up; superficial airflow velocity; solid-state biocconversion; lovastatin production; Aspergillus sp.
Screening and characterization of lactic acid bacteria for the production of mannitol in carob based syrups

Patrícia Moniz, Florbela Carvalheiro, Patrícia Moura, Joana Pereira, Luis C. Duarte, M. Paula Esteves, and Francisco M. Girio

Unidade de Bioenergia, LNEG - Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal

Mannitol, a naturally occurring polyol, is widely used in medicine, and in pharmaceutical, food, and chemical industries. It can be produced by chemical, microbiological or enzymatic processes. The industrial chemical production is based on the hydrogenation of fructose/glucose mixtures at high temperature and pressure using Raney-nickel catalyst yielding a mixture of mannitol and sorbitol, an isomer, which has less interesting properties and hence a significantly lower market price. Moreover, the separation of mannitol and sorbitol is rather difficult. The enzymatic process requires the use of redox co-factors, which renders it unattractive. Because of these problems, mannitol production by the microbial route has become attractive, even at the industrial scale. Heterofermentative lactic acid bacteria (LAB) are among the most efficient for mannitol production, using glucose/fructose mixtures without producing sorbitol which makes unnecessary purified substrates or complex processes for product purification. Carob pulp is a by-product of the carob gum industry with high sugars content namely sucrose (the main sugar), glucose and fructose that can be used as a cheap source to easily obtain sugar-rich syrups.

In this work, a screening program was developed to identify mannitol overproducing LAB in carob based media. First, the sugar extraction from carob pulp kibbles was optimized. The optimal conditions were defined for a liquid-to-solid ratio of 2 kg water/kg kibbles, temperature 50°C for 5 h. In order to hydrolyse sucrose, a subsequent mild dilute acid hydrolysis, using sulphuric or hydrochloric acids was also studied. The hydrolysates contained, on average, 110 g/l fructose and 95 g/l glucose without significant amounts of microbial inhibitors, namely 5-hydroxymethylfurfural that did not exceed 0.6 g/l. The screening conditions were then defined using both Lactobacillus fermentum ATCC 9338 and Weissella confusa DSM 20916 as model microorganisms. The screening was performed in semi-aerobic conditions at 30°C or 37°C, depending on the optimum growth temperature for each strain.

Thirty bacterial strains of the genus Lactobacillus, Leuconostoc and Weissella, obtained from several cultures collections and laboratory isolates were tested. From these, a restricted group of eight strains were identified as potential mannitol overproducers, among which Leuconostoc genus was significantly represented. The most promising strains were Lc. citreum ATCC 49370, Lc. mesenteroides subsp. cremoris ATCC19254, Lc. mesenteroides subsp. dextranicum ATCC 19255, Lc. lactis subsp. cremoris NRRL B-23447, Lc. fructosum NRRL B-2041, Lc. lactis ATCC 19256, L. intermedius NRRL 3692 and L. reuteri DSM 20016.

Keywords: carob, lactic acid bacteria, Lactobacillus, Leuconostoc, mannitol production

This work was supported by AdI, Project ValorAlfa (70/00326). Joana Pereira gratefully acknowledges a grant from AdI.

ARS Culture Collection (National Centre for Agricultural Utilization Research, Peoria, IL, USA) and Dr. Isabel Fernandes (INETI-DTIA, Lisboa, Portugal) are gratefully acknowledged for supplying bacterial strains.

Screening for antibiotics from indigenous Streptomyces, their genetic and mutational analysis

Imran Sajid and Shahida Hasnain

Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan

110 active Streptomyces strains were selected from the soil samples collected from different sites of the province Punjab, Pakistan. The isolated strains were characterized morphologically, biochemically and physiologically, in 16s rRNA gene sequence analysis the strains exhibited genetic similarity with different Streptomyces species e.g. Streptomyces chromofuscus, Streptomyces macrosporeus, Streptomyces matensis, Streptomyces vinacius, Streptomyces griseoincarnatus, Streptomyces malachitofuscus etc. The strains exhibited promising antimicrobial activity against a variety of indicator microorganisms including Staphylococcus aureus, Bacillus subtilis, E. coli, Candida albicans, Macer miehei, Chlorella sorokiniana, Chlorella vulgaris and Scenedesmus subspicatus and cytotoxicity against Artimia salina in biological screening and an impressive metabolic diversity, in chemical screening by TLC and HPLC-MS analysis. In preparative screening the selected isolates were cultivated in a 50 liter lab fermenter and more than 30 compounds were isolated, purified and identified from the culture broths of the six strains by MS and NMR analysis. Almost all the structural classes of the bioactive metabolites were found to be produced by these indigenous Streptomyces including, cyclic thiopeptides (gennihicin and the new val-geninthiocin), macrolides (chalcomycin, Enyycin D), polyether (alborexin), perhydroxy quionones (ochromycinone,) along with actinomycin D, resistomycin and tetracycycin D etc. In mutational studies with one of the strain producing new cyclic thiopeptide (val-genithiocin), mutants with improved production ability were selected. The study reveals that the indigenous Streptomyces flora is a potential source of interesting antimicrobial agents and its continuous exploration may yield novel metabolites which can be helpful to combat the uprising problem of antibiotic resistance among the pathogenic species.

Keywords: Indigenous Streptomyces, Antibiotics Screening, Val-geninthiocin, Mutational Analysis.
Searching for proteins that influence biotransformation of Vitamin D₃ in Rhodococcus erythropolis.

Noriko IMOTO¹, Tomohiro TAMURA¹,²
¹ Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo 060-0808, Japan
² Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology(AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan

Vitamin D₃ (VD₃) is a steroid hormone that plays crucial roles in bone metabolism, immunity, and control of cell proliferation and cell differentiation in mammals. VD₃ is inert and must be activated to exert its biological activity. We have recently identified a new cytochrome P450 named Vdh from the actinomycete Pseudonocardia autotrophica, which is capable of biocconversion of VD₃ into its physiologically active forms of VD₃, 25(OH)VD₃ or 1α,25(OH)₂VD₃. Biotransformation of VD₃ into 25(OH)VD₃ is accomplished with a recombinant strain of the actinomycete Rhodococcus erythropolis coexpressing Vdh and redox-partner proteins, ferredoxin and ferredoxin reductase. To characterize the mode of biotransformation of VD₃ into hydroxylated forms of VD₃ in vivo, we constructed transposon mutant library of the recombinant R. erythropolis and screened mutants with no biocconversion activity of VD₃. For this purpose, we established a high-throughput assay system by using yeast two-hybrid system for detection of 25(OH)VD₃. Over 40,000 mutants were screened and 12 mutants, which showed a little or no biotransformation activities, were isolated. The insertion site of transposable marker in each mutant was analyzed. The sequence analysis of the insertion sites revealed that the transposable marker gene was inserted in genes encoding proteins annotated as an unknown function, membrane protein transcription factor, etc. Functional characterization of each gene is ongoing and the data of ferredoxin deficient mutant will be presented.

Keywords Vitamin D₃, Vdh; Vitamin D₃ hydroxylase; Biotransformation; Two-hybrid assay; Rhodococcus erythropolis

Figure 1. VD₃ biotransformation with recombinant Vdh in vitro.

Separation of catalytically active enzymes through foam fractionation

D. Linke¹ and R.G. Berger¹
¹ Gottfried Wilhelm Leibniz University of Hanover, Institute of Food Chemistry, Callinstraße 5, 30167 Hanover, Germany

Numerous enzymes for the food, pharmaceutical and cosmetic industry are currently isolated by multistep processes, which are generally time-consuming, expensive, and above all, often come along with high losses of enzymatic activity. Foam fractionation, which belongs to the group of adsorptive bubble separation techniques, represents a gentle and inexpensive alternative downstream process for the selective isolation of extracellular enzymes from microbial culture media. The method is based on the adsorption of surface-active compounds to the interface of a gas-liquid dispersion, and it is especially suitable for the enrichment of enzymes from diluted solutions, as they typically occur in biotechnological processes. While gas bubbles rise through a liquid phase which contains the target solute, the most surface-active molecules preferentially adsorb to the interfacial area. The dynamics of the adsorption are affected by a number of operational parameters such as pH value, temperature, and superficial velocity.

Laccases, which currently gain a great deal of attention for bioconversion, beverage processing and baking, were produced in submerged cultures of the edible basidiomycetous fungus Pleurotus sapidus. The secretion of laccases into the culture media was increased significantly by the addition of specific enzyme inducers. After optimisation of the physico-chemical parameters of the foaming process and after addition of the cationic detergent CTAB (cetyltrimethyl ammonium bromide) to the culture supernatant, up to 70% of the total laccase activity was transferred into the foam. Depending on their respective isoelectric points a fractionated transport of five laccase isoenzymes was achieved by variation of the pH, and one isoenzyme was transferred into the foam phase with a recovery of activity of 100%.

The secretion of two lipases/esterases by P. sapidus was induced by supplementing the culture broth with Tween 80, which also served as a foaming agent. After foaming, up to 95% of activity was recovered in the foam; the removal of the mycelium pellets from the culture supernatant prior to foam separation was not necessary. Modifications of the foaming device increased the drainage effect and resulted in superior enzyme recoveries when compared to traditional multistep procedures. Differences in their physicochemical characteristics resulted in differing foaming properties of the two lipases/esterases secreted by P. sapidus. By variation of the pH value and of the addition of detergent, both lipases/esterases were successively and quantitatively transferred into the foam in a two-step fractionation process. On a pilot plant scale, quantitative recoveries of activity were obtained documenting the feasibility of the implementation of foam separation into industrial enzyme purification strategies.

Keywords Pleurotus sapidus; Laccase; Lipase; Esterase; Foam Fractionation; Enzyme Purification; Adsorptive Bubble Separation

Figure 2. A high-throughput assay system by using yeast two-hybrid system for detection of 25(OH)VD₃.
Strains selection on aliphatic substrates: first step for omega-oxidation of C9-C18 fatty acids to obtain biopolymers from waste.

Zapponi M.1, Fattori P.1, Mazzoli R.1, Riva Violetta M.1, Nogarol C.1, Pessione E.1, Cocolin L.2 and Giunta C.1

1Università degli Studi di Torino, Lab. Proteomica e Biochimica dei Microrganismi, DBAU

Biodegradable polymers find application in a number of commercial products, so-called "environmental friendly". To overcome limitations of synthetic polyesters, biodegradable polyesters may be obtained from vegetable oils, a renewable source of fatty acids (FA) representing an interesting substrate thanks to their large availability, low cost, and biodegradability. The limiting step of FA polycondensation is the lack of a second carbonyl or hydroxyl function in a terminal (ω) or subterminal (ω-1) position. Chemical processes capable to produce dicarboxylic or hydroxyl acids starting from FA already exist, nevertheless all these processes have intrinsic drawbacks. As a consequence, new oxidative processes are needed, able to introducing a second chemical function besides the carbonyl group in natural FA.

The purpose of this study is to select microorganisms capable of oxidize FA in ω position and to maximize this reaction minimizing β-oxidation.

We selected two strains able to grow on alkanes (nonane, decane, dodecane, hexadecane and octadecane) as sole carbon source: the ability of metabolize these substrates suggests the presence of an ω-oxidative enzyme system.

The first strain isolated is Acinetobacter radioresistens S13, a Gram negative bacterium able to hydrolyse aromatic compounds (phenol, benzoate) and to grow on surfactants like Tween 40, 60, 80 (Pessione et al. 1997).

The second strain is a Gram positive bacillus, now under identification. It was selected from a freeze-dried obtained from the soil surrounding an activated sludge pilot plant.

For these two strains we also tested the growth on alkanes with supplementation of surfactants to increase substrates bioavailability, and growth and toxicity of several C6-C18 fatty acids.

Experiments are underway to inhibit catalytically, or by gene deletion, β-oxidative enzymes in order to obtain ω-hydroxy and ω-carboxy fatty acid by co-metabolism with a second low-cost carbon source.

Keywords: alkanes; omega-oxidation.

Studies on the specificity of some lipase-catalysed hydrolysis and esterification reactions

Bendikiënė Vida1, Juodka Benediktas1, Kiriliauskaitė Vita1, Bernotienė Genovaitė1, Ikutkienė Rita2

1Department of Biochemistry and Biophysics, Vilnius University, M.K. Čiurlionio str. 21, LT-03101, Vilnius, Lithuania

In the last few years, there has been an increase in the use of naturally derived compounds, such as essential oils, that justifies the increase observed in oils production. Biotransformation of vegetable oils through the use of enzymes as catalysts has been also a matter of intense investigation nowadays.

In this study four enzymes (three commercial lipases: Lipozyme TL100L, Resinase HT, Resinase A2X) and lipase from Enterobacter aerogenes 13 (EAL, JSC Biocentras, Vilnius) were compared for their potential and specificity in hydrolysis reactions of nine different oils (rapeseed oil (RSO), false flax (Camelina sativa) oil (FFO), sunflower oil, olive oil, castor oil, cocoa butter, linseed oil, rice bran oil and Hyssopus officinalis L essential oil). Hyssopus officinalis L plants were collected near Vilnius (Vilnius district, Lithuania). Essential oils from six localities obtained by hydrodistillation were analysed using GC and GC/MS.

The work had the objective to study the effect of temperature and reaction time on the formation of free fatty acids from different oils through lipase-catalyzed oil hydrolysis. Comparison between thin layer chromatography (TLC) supplemented with pixel area scanning technique using total Lab Program version Microimage 4 for the measurement of remaining triglycerides GC and free fatty acids, GC/MS and titrimetric methods was done to determine the optimum process conditions.

It was shown that EAL lipase-catalyzed hydrolysis reactions were the most effective at 30°C, while commercial lipases were more active at 50°C.

The ability of soluble and immobilized lipase from EAL to catalyze transesterification of rapeseed oil (RSO) with methyl and ethyl alcohols and also esterification of different fatty acids with several alcohols was investigated first time. The work had three objectives: 1) to study the effect of temperature, solvents, chain length of fatty acids, reaction time and the quantity of lipase and immobilization on the formation of free fatty acids from two different oils through lipase-catalyzed hydrolysis; 2) to study the effect of temperature, the quantity of water and lipase and method of enzyme immobilization on the formation of fatty acid alkyl esters from RSO through lipase-catalyzed transesterification reactions; 3) to study the effect of different alcohols, the chain length and saturation of the fatty acids and the quantity of the enzyme on the formation of fatty acid alkyl esters from various fatty acids and alcohols through lipase-catalyzed esterification reactions using thin layer chromatography and titrimetric methods.

Keywords: Enterobacter aerogenes lipase; oils; hydrolysis: transesterification; esterification. Acknowledgments: The Lithuanian State Science and Studies Foundation (Contracts No. N-01/2009 and N-10/2009) is gratefully acknowledged for financial support.
Study effect of antimicrobial Chitosan and Cellulase enzyme on against spoilage microorganism in date syrup in HACCP system

Atefeh Mohebi1, Sedigheh Mehrabian2, Shahrzad Nasiri3
1Department of microbiology, Faculty of basic science, Islamic Azad University Zanjan branch
2Department of biology, Faculty of science, Tabriz Isfahan University

Introduction and Object: Date syrup is a highly nutritious food product, rich in calories and many vitamins and minerals that produce composition date tamer and water whit heat and that quality decrees during act of bacterial and fungus microorganisms. The object of this research was to investigate use Chitosan and Cellulase enzyme instead of chemical filtration in industrial method on taste quality and suitable color, stability and quality product and rate growth of microorganism.

Material and Method: The effects of chitosan and Cellulase against food spoilage microorganism in date syrup were investigated with using method of Institute of Standard and Industrial Research of Iran.

Results: HACCP is a food safety inspection system. After that the Critical Control Points (CCP) were knowing in the proceeding of date syrup, single Cellulase showed no effect on microorganism in this CCP, and when chitosan used 2,4,6% concentration, with increasing amount of Chitosan it showed decrees in number of spoilage microorganism. Finally when Chitosan and Cellulase used together showed significance decreasing in rate of growth in microorganisms differences when they used separate.

Conclusion: The high molecular weight of Chitosan, which result in a poor solubility at neutral pH values and high viscosity aqueous solutions, limits its potential uses in the fields of food, health and agriculture, most of these limitations are overcome by Chitosan oligosaccharides obtained by enzymatic hydrolysis of the polymer such as Cellulase.

Keyword: HACCP, Chitosan, Cellulase, Date syrup.

Synthesis of cellulas and xylanases from mutant PR-22 of Cellulomonas flavigena under catabolic repression conditions.

O. A. Rojas-Rejón1, E. Cristiani-Urubina2, A. Martínez-Jiménez2, A. C. Ramos-Valdivia1, H. M. Poggi-Varaldo1 and T. Ponce-Noyola1
1CINVESTAV-IPN, Department of Biotechnology & Bioengineering, Av. IPN 2508, 07360 México D. F.
2IBT-UNAM, Av. Universidad 2001, 62210 Cuernavaca, México
3ENCB-IPN, Plan de Ayala s/n, 46211 D.F., México

Lignocellulosic biomass is the most abundant carbon source on Earth and represents the major source of renewable energy. Sugarcane bagasse is specifically attractive because of its low cost and plentiful supply. The complete saccharification of lignocellulosic biomass for ethanol production can be achieved using cellulas and xylanases. The cost of enzyme production is one of the factors that determine the viability of the bioprocess, thus the design of highly efficient enzymes and finding hyper-producing mutants could reduce these limitations, increasing the economic feasibility. Synthesis and activity of cellulas and xylanases are regulated by induction, repression and inhibition phenomena. Mutant isolation, with a proper screening and selection strategy, is an excellent method to get derepressed strains. The treatment of C. flavigena PN-120 with N-methyl-N´-nitro-N-nitrosoguanidine (NTG; 150 μg·mL⁻¹) and 2-deoxiglucose (2DG; 0.5%) as selection strategy allowed obtaining mutant PR-22, a derepressed hyperproducer strain.

The aim of this work was to analyze the behaviour of carboxymethyl-cellulase (CMCase) and xylanase activities under catabolic repression and inhibition conditions and the improvement achieved in PR-22 strain growing in sugarcane bagasse.

Mutant PR-22 exhibited higher specific enzyme activities than parent strain PN-120 and had an improvement index (IMI) of 32 and 190% in xylanase and CMCase activities respectively. Several concentrations of glucose or cellobiose, as repression and inhibition conditions were added to cultures of C. flavigena PN-120 and PR-22 previously induced with sugarcane bagasse in batch culture. Inhibition index (II) was estimated on basis of activity showed by each strain respect to that showed growing without glucose or cellobiose (controls). Glucose at 10 mM did not repress the enzyme production of mutant PR-22 and this strain showed a slight II of -3% only in xylanase activity. In same conditions, strain PN-120, showed IIs of -9 and -20% on xylanase and CMCase activities. When 20 mM of glucose was added, soluble protein was still produced in both strains while CMCase and xylanase activities had IIs of -28 and -41% for PR-22 and -32 and -49% for PN-120 strain respectively.

Cellobiose experiments had higher IIs in both mutants. However mutant PR-22 was more resistant to cellobiose than its parent strain PN-120. Cellobiose at 20 mM had IIs of -45 and -31 % over xylanase and CMCase activities in PR-22 while in PN-120 these activities had IIs of -41 and -45% respectively. In vitro studies, the enzymatic complex of PR-22 showed more resistance to inhibition than enzymes from PN-120 strain. Saccharification studies of sugarcane bagasse (3 %) with crude enzyme extract from PR-22 yielded at least 10 g·L⁻¹ of reducing sugar equivalents. Mutant PR-22 of C. flavigena has characteristics and behavior of a derepressed mutant since glucose 20 mM did not affect the production and activity of cellulolytic enzymes. C. flavigena wt repressed completely its holocellulosic enzymatic system at 10 mM glucose (Ponce-Noyola & de la Torre, 2001). PR-22 strain is a good candidate to be used for producing cellulas and xylanases in a large-scale bioreactor and its later use in lignocellulosic biomass saccharification.

Keywords Cellulomonas, cellulase, derepressed, hyperproducer
The application of PCR methods and gas chromatography for detection of specific non-pathogenic bacteria of the genus Clostridium

B. Rittich1, A. Španová1, B. Ürgeová1, H. Dubský1, E. Kvasničková2, and Š. Havlíková2

1Brno University of Technology, Faculty of Chemistry, Purkyňova 118, CZ-612 00 Brno, Czech Republic
2MILCOM, Plc. – Dairy Research Institute, Soběslavská 841, CZ-390 01 Tábor, Czech Republic

The aim of this study was to select and investigate non-pathogenic bacterial strains of the genus Clostridium collected in the Dairy Research Institute. The strains were isolated from cheeses with late blowing disorders. First, a set of 44 strains was identified into the genus Clostridium using genus–specific PCR (Rekha et al., 2006). Purified DNA (phenol extraction) was used as DNA matrix. PCRs specific to the species Clostridium butyricum (Nakanishi et al., 2005) and Clostridium tyrobutyricum (Herman et al., 1995) were used for species identification. It was found that 7 and 12 strains belonged to the species C. butyricum or C. tyrobutyricum, respectively. Some strains were not identified into species yet. Strains encoding the H2-evolving hydrogenase (hydA) gene were also identified using PCR (). Specific PCR products were detected in 30 strains (70 %) of the analysed set. Formation of fatty acids (acetic, propionic, and butyric) was studied by gas chromatography in culture supernatants. The molecular parameters (data) received will be used for correlation with hydrogen production.

References

Keywords: Clostridium butyricum; Clostridium tyrobutyricum; PCRs; hydrogenase (hydA); gas chromatography

The production of volatile compounds by yeasts isolated from artisanal brazilian cachaça distilleries

E. Souza Oliveira1, C. Augusto Rosa2, M. Antônio Morgano3, and G. Eduardo Serra4

1 DEPARTAMENTO DE ALIMENTOS, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brasil
2 DEPARTAMENTO DE MICROBIOLOGIA, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brasil
3 CENTRO DE QUÍMICA DE ALIMENTOS E NUTRIÇÃO, Instituto de Tecnologia de Alimentos, Campinas, São Paulo, Brasil
4 DEPARTAMENTO DE TECNOLOGIA DE ALIMENTOS, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, São Paulo, Brasil

Thirty yeast strains were evaluated with respect to their fermentative characteristics for the production of cachaça, twenty-four being Saccharomyces cerevisiae strains and six belonging to the following genera: C. napiformis, Kloeckera, Pichia, and Schizosaccharomyces. They were isolated from small cachaça distilleries (27), industrial cachaça distilleries (2) and one sugarcane alcohol distillery. They were evaluated with respect to the main volatile compounds produced in a synthetic media. The compounds analyzed were acetaldehyde, ethyl acetate, propanol, isobutanol, isoamyl alcohol, acetic acid and glycerol. The Saccharomyces strains showed a limited variation of about 50 % of the average rate, with respect to the rate of production of each volatile compound. The Hierarchical Cluster Analysis and the Principal Component Analysis showed the separation of the strains into several Groups. The rate of acetic acid production was the variable of greatest impact in the differentiation of the strains. The strains of S. pombe formed a distinct group (Group 2), and the strains of C. apicola and H. occidentalis formed a joint group (Group 6) as did Sc13 and Sc4 (Group 4). Group 1 was formed exclusively of S. cerevisiae. The closest non-Saccharomyces strains were C. napiformis and H. occidentalis, with a similarity index of about 0.95. The strain P. subpelliculosa showed general characteristics more similar to those of the S. cerevisiae strains than to the non-Saccharomyces strains.

Key Words: cachaça, yeast, Saccharomyces cerevisiae, volatile compounds, alcoholic fermentation.

Acknowledgements: We thank Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) for financial support.
The specificity of an Enterobacter aerogenes 13 lipase

Bendikienė Vida1, Juodka Benediktas1, Kiriliauskaitė Vita1, Grigiškis Saulius1, Bachmatova Irina3, Marcinkevičienė Liucija3

1Department of Biochemistry and Biophysics, Vilnius University, M.K. Čiurlionio str. 21, LT-03101, Vilnius, Lithuania
2JSC Biocentras, Graičiūno str. 10, LT-02241, Vilnius, Lithuania
3Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Mokslininkų 12, LT-08662, Vilnius

The increasing interest for lipases as one of the best biocatalysts for the catalysis in organic media caused the task to investigate the esterification ability of the lipase. The esterification reaction of oleic and erucic acids with various alcohols catalyzed by selected soluble lipases including Enterobacter aerogenes 13 (EAL, ISC Bioceutics, Vilnius) and Pseudomonas mendocina 3121-1 lipase (Institute of Biochemistry, Vilnius) and Lipoprime 50 T was investigated.

It was shown that lipolytic enzyme produced by EAL was active when catalyzing the esterification reaction of oleic acid with ethanol, ethane 1,2-diol (ethylene glycol), propane 1,2-diol (propylene glycol) and 2-hydroxyethyl ether (diethyleneglycol). EAL preferred to hydrolyze p-nitrophenyl (p-NP) esters of medium chain-length fatty acids (FA). The determination of kinetical parameters of Pseudomonas mendocina 3121-1 lipase for different p-NPR esters in 2-propanol showed that Km app was highest for esters of short chain and lowest for p-nitrophenylecaprylate (p-NPC), i.e. the substrate of moderate chain. So it could be concluded that Ps. mendocina lipase is specific for p-NPR esters of moderate and long chain and the most specific for p-NPC. The highest Vmax app for p-NP-laurate and p-NP-myristate also indicated the most effective hydrolysis of substrates of moderate chain. Vmax app/Km app (calculated ratio) for p-NPR esters of moderate and long chain far exceeded the ratio for p-NP-acetate and p-NP-butyrate.

The esterification reaction of erucic acid with various alcohols (C3-C18:1) was also investigated and it was found that Enterobacter aerogenes 13 lipase showed the highest specificity to long-chain alcohols while Lipoprime 50T was the most active when esterifying short-chain (C3-C6) alcohols and Pseudomonas mendocina 3121-1 lipase catalyzed esterification of medium-chain alcohols most effectively, particularly octanol. Thin layer chromatography (TLC) and titrimetric methods were used to determine the optimum process conditions. Quantitative analysis (%) of reaction products separated by TLC was performed using the micro image 4.0 program supplemented with pixel area scanning technique.

The ability of EAL to catalyze hydrolysis of different oils and also transesterification of rapeseed oil (RSO) with methanol and ethanol was investigated first. The optimum condition for enzymatic hydrolysis of RSO was found to be at 50°C with the highest quantity of enzyme used in non-aqueous media, and at 30°C with the lowest quantity of enzyme in aqueous media. While for enzymatic hydrolysis of false flax (Camelina sativa) oil (FFO) it was found to be at 50°C with the highest quantity of enzyme in both, non-aqueous and aqueous media. FFO hydrolysis also was found to be more effective than RSO hydrolysis for both, native and immobilized enzymes. It was shown that EAL catalyzed reaction is the most effective at room temperature, while Resinase HT and Lipolase are more active at 50°C. The detection of increasing amount of free FA was determined both by titrimetric method and by TLC.

Keywords: Enterobacter aerogenes 13 lipase; specificity; fatty acids; p-NP esters; esterification

The Lithuanian State Science and Studies Foundation (Contracts No. N-01/2009 and N-10/2009) is gratefully acknowledged for financial support.

Towards a consolidate bio-processing for the conversion of agroindustrial wastes into optically pure lactic acid

R. Mazzoli, P. Fattori, C. Giunta, and E. Pessione

DBAU, Dipartimento di Biologia Animale e dell’Uomo, Via Accademia Albertina 13, 10123 Torino, Italy.

The demand of lactic acid (LA) has been considerably increasing recently, owing to the promising applications of its polymer, the polylactic acid or polylactide (PLA), as an environment-friendly alternative to plastics derived from petrochemicals. High biodegradability and biocompatibility of such materials, render them particularly suitable for surgical (e.g. orthopaedic, cardiovascular and sutures) and other medical (dialysis and drug delivery devices) applications. For synthesizing polylactides with adequate physical properties, it is essential to polymerize optically pure LA: the best way to obtain optically pure LA is by microbial fermentation, while chemical synthesis always results in a racemic mixture of LA.

Our present research projects are aimed to set up a consolidate bio-processing(s) for the conversion of agroindustrial (fruit and vegetable wastes, lignocellulosic biomasses, milk whey) wastes into optically pure LA.

Since lactic acid bacteria (LAB) are among the chief sources of lactic acid, LAB strains able to metabolize the most abundant soluble carbohydrates (fructose, xylose, cellulbiose, lactose) present in different agroindustrial wastes were selected from the microbial collection of our laboratory. By acting on the fermentation parameters (e.g. pH, pO2 and acetate supplementation) the enantiopurity of the process could be increased, leading to the production of L-LA mainly.

Unfortunately, natural LAB strains are not able to degrade cellulose. Therefore, a metabolic engineering strategy is now applied to construct a cellulolytic LAB suitable for the bio-conversion of cellulolic biomasses. Two Lactococcus lactis strains have been selected for their ability to catabolize both xylose (the main constituent of hemi cellulose) and cellulbiose (the repeating unit of cellulose) besides glucose. Heterologous expression of the main components of the cellulase (the protein complex responsible for cellulose hydrolysis) of Clostridium cellulovorans in L. lactis is currently underway. The aim is to express a minicellulosome containing the minimum number of components needed for a functional cellulase system.

Keywords: LAB, lactic acid, metabolic engineering, minicellulosome, agroindustrial wastes. consolidate bio-processing.

Keywords: LAB, lactic acid, metabolic engineering, minicellulosome, agroindustrial wastes. consolidate bio-processing.
Use of the branched-chain amino acid biosynthetic pathway for conversion of sugars into higher alcohols

E. Savrasova1, A. Kivero1, R. Shakulov2, E. Gak1 and N. Stoynova1

1Ajinomoto-Genetika Research Institute, Moscow, 113545 Russia
2State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, 113545 Russia

Production of biofuel from renewable sources is now of particular interest due to the limited reserves of traditional energy sources such as fossil fuels, unstable oil prices, and the necessity to limit greenhouse gas emissions and to reduce air and water pollution. Plant biomass is one of the most important renewable energy resources. Important steps have been made to increase biomass utilization for production of hexose and pentose and also to adapt microorganisms for the simultaneous consumption of a variety of carbon sources. Conversion of C5, C6 sugars into liquid energy carriers occurs in two major anaerobic biological processes: ethanol fermentation and a mixed acetone, ethanol and butanol fermentation. Currently, the biosynthesis of higher alcohols (butanol, isobutanol, 2-methyl-1-butanol, etc.) from plant biomass has gained significant attention due to advantages over ethanol with respect to use as motor fuels. In recent years, several research groups have proposed the use of highly effective amino acid biosynthesis pathways as an alternative approach for aerobic production of the higher alcohols as new-generation biofuels (Donaldson G.K. et al., 2007; Liao J.C. et al., 2008, 2009). Here, using E. coli as a model, we evaluate the possibility of using pathways of branched chain amino acid biosynthesis for aerobic sugar conversion into higher alcohols.

To redirect the branched-chain amino acid biosynthesis into production of higher alcohols (particularly isobutanol), we attempted to use the Ehrlich pathway to convert ketoisovalerate, the keto-precursor of valine, into the corresponding aldehyde and subsequently into isobutanol using two enzymes: branched-chain a-keto acid decarboxylase (BCKAD) and alcohol dehydrogenase (ADH). As E. coli has no enzymes for this purpose, the first of these reactions, the following heterologous genes were used for this purpose: the BCKAD-encoding gene kdcA of Lactococcus lactis and the ADH-encoding gene adh2 of Saccharomyces cerevisiae. The gene kdcA-L. la
contained a number of codons rare for E. coli. To ensure a high level of BCKAD expression, the synthesis of a modified kdcA gene with rare codons substitutions was therefore carried out, and the gene adh2 S. ce was cloned in its native form. Both of these genes were cloned in a low copy number vector under control of the lactose operon promoter, thereby generating the artificial expression unit Plac-kdcA-adh2. The resulting plasmid pMW118-kdcA-adh2 was introduced into the valine-producing strain H-81 (VKPM B-8066). Induction of the PkdcA-kdcA-adh2 operon by addition of IPTG into the cultivation medium resulted in a 6-fold decrease of Val accumulation in comparison to the H-81 strain lacking plasmids and, in addition, in poor growth of cells. The plasmid strain accumulated approximately 1.1 g/l of isobutanol under IPTG induction in test tube cultivation in the medium containing 6% of glucose. For the strain H-81 that lacked plasmids, no isobutanol accumulation was detected, indicating the absence of native E. coli enzyme systems of ketoisovalerate degradation via the Ehrlich pathway under aerobic conditions. The plasmid pMW118-kdcA containing only PkdcA without the adh2 gene was introduced into the strain H-81. It is worth noting that the possession of BCKAD alone also resulted in isobutanol accumulation in culture broth (up to 0.34 g/l). This fact indicated that native alcohol dehydrogenases of E. coli were responsible for isobutanol production, but with less efficiency than the Adh2 of S. ce. It is necessary to note that, under tested aerobic cultivation conditions (68 h, 32 °C), a significant portion of isobutanol was experimentally confirmed to evaporate. Measurement of the activity of BCKAD revealed that this enzyme was about 3.6 times more active in relation to ketomethylvalerate when compared to ketoisovalerate; this indicated that it was possible to produce 2-methyl-1-butanol using this enzyme.

Using E. coli as a model, the aerobic synthesis of isobutanol from glucose was achieved by means of the host enzymes in branched-chain amino acid biosynthetic pathways together with heterologous Ehrlich pathway enzyme systems. Considering the recent significant progress in the development of membrane technologies of higher alcohol separation and the promising results of the screening and characterization of alcohol-tolerant species, further engineering of microorganisms for effective conversion of biomass-derived sugars into fuel alcohols can create a basis for implementation of this approach into the production of biotechnological fuels.

Keywords: fusel alcohols; isobutanol; biofuel; branched chain amino acids

Utilization of Organic Wastes from Biodiesel process for Production of Biodegradable Polyhydroxyalkanoates by newly isolated bacteria screened from oil contaminated soils in Thailand

Amtiga Muangwong and Suchada Chanprateep
Dept. of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Patumwan, Bangkok 10330 THAILAND

The aims of this work were to exploit newly isolated bacteria from oil contaminated soils for efficient production of polyhydroxyalkanoate, PHA, from waste glycerol, a by product from the biodiesel industry where the substrate was derived from used cooking oil and rendered animal fat. Soil samples were taken from different environments in Thailand. The consortium of bacteria capable of growing in mineral salts medium containing crude glycerol was enriched. Four axenic cultures were obtained. The conventional method for screening PHA accumulating bacteria by means of Nile blue A staining and Sudan Black-B staining were used as a preliminary screening. The 16S rDNA gene analysis of these bacteria showed that the strain ASC-1 exhibited 94.89% similarity to Acinetobacter baumannii RM4. The strain ASC-2 exhibited 99.18% similarity to Pseudomonas mendocina strain DS0601-FX. The strain ASC-3 exhibited 99.248% similarity of Enterobacter sp. strain BSRA2. The strain ASC-4 exhibited 98.405% similarity of Acinetobacter baumannii. The aims of this work were to exploit newly isolated bacteria from oil contaminated soils for efficient production of polyhydroxyalkanoate, PHA, from waste glycerol, a by product from the biodiesel industry where the substrate was derived from used cooking oil and rendered animal fat. Soil samples were taken from different environments in Thailand. The consortium of bacteria capable of growing in mineral salts medium containing crude glycerol was enriched. Four axenic cultures were obtained. The conventional method for screening PHA accumulating bacteria by means of Nile blue A staining and Sudan Black-B staining were used as a preliminary screening. The 16S rDNA gene analysis of these bacteria showed that the strain ASC-1 exhibited 94.89% similarity to Acinetobacter baumannii RM4. The strain ASC-2 exhibited 99.18% similarity to Pseudomonas mendocina strain DS0601-FX. The strain ASC-3 exhibited 99.248% similarity of Enterobacter sp. strain BSRA2. The strain ASC-4 exhibited 98.405% similarity of Bacillus subtilis strain IAM 12118T. The H NMR results and GC analysis were clearly demonstrated that these isolated bacteria could produce PHA from crude glycerol. The optimization of PHA bioprocess has been in progress.

Keywords: Organic wastes; Biodiesel process; Polyhydroxyalkanoates; Bioprocess
A cheminformatics approach to produce an enriched database of anticycobacterial compounds useful for drug discovery pipeline

S. Sardari, Behrad Shaghaghi, H. Borna

Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, #69 Pasteur Ave., Tehran, 13164, Iran

Tuberculosis (TB), a disease caused by the facultative intracellular bacterium Mycobacterium tuberculosis (mtb), is a global health problem and a leading cause of death among adults in the developing world. In 2006, there were approximately 9 million new cases of TB, resulting in an estimated 1.7 million deaths. Although it is primarily a scourge of the developing world, tuberculosis affects virtually every nation and every ethnicity. Within this epidemiics, the incidence of Multi-Drug Resistant tuberculosis (MDR-TB) appears to be rising with previous estimates being a gross underestimate as revealed in a recent 2008 report. The emergence of MDR Mycobacterium tuberculosis strains, the growing rate of TB incidence, the lethal combination represented by HIV co-infection and the lack of any new antituberculosis agent in the last 40 years, which are based on agents developed in the 60-80s, all indicate an urgent need for the development of novel TB therapies. In particular, new lead structures are required with novel modes of action.

To obtain new chemical entities capable of fighting the causative agent of TB, the sources are natural products and new compound synthesis. The rational on selecting the substances are random screening, traditional medicine, Structure-Activity Relationships (SAR) for synthetic compounds, and computer-aided discovery programs or in silico methods. One of the main components in an in silico application is the design of applicable and new compound library or database which accordingly can help in setting the virtual boundaries for selecting rational design. In this study we describe how such useful database was established.

At first a fragment library, with total of 50 classes, was formed after ontology-based classification of about 2798 non-redundant compounds by Library MCS, 0.6, 2008, obtained from Enhanced NCI using the passpredict for anticycobacterial property. The fragments were subjected to similarity search in Pubchem with a 70% similarity cutoff to include commercially available brand named compounds into the database forming .sdf format compatible for 3D search and library docking. The library of Merck catalogue was searched for a fragment-based pattern similarity to add further set of about 23 to already found non-redundant set of 283 compounds containing the fragments obtained in Enhanced NCI group of compounds. The compounds were filtered for attempted compounds (1117 entries) with positive anticycobacterial bioassay results (166) and they were excluded from library using ChemFinderUltra, 9.0, 2005.

Finally, after removing all duplicate molecules, the resulting database contained about 3037 compounds, including the fragments of anticycobacterially prone substances. This database can be used for synthetic drug development approach as it includes the high indexed commercially available molecules and fragments. There are also applications for template similarity tagging which can be made in the discovery mode for anti-tubercular pre-screening studies.

Keywords in silico method; database; anticycobacterial; compound

A critical view on a theory coupling cell growth and DNA replication initiation through individual-based modelling

A. J. Verbust, A. M. Cappuyts, E. Van Derlinden, K. Bernaerts and J. F. Van Impe

CPM² – Flemish Cluster Predictive Microbiology in Foods – www.cpm2.be

BioTeC – Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium

Introduction and objective

The mechanisms and regulation of DNA replication initiation in bacteria are not yet fully understood (for reviews, see e.g., Haeusser and Levin (2008), and Mott and Berger (2007)). One of the most challenging parts seems to be the coupling of cell growth to DNA replication initiation. For over four decades, the dogma has held that the initiation of replication is triggered at a specific cell size, which is independent of growth rate (Donachie, 1968). More recently, Donachie and Blakely (2005) have proposed a hypothesis incorporating available individual mechanistic knowledge about the initiator protein DnaA linking cell size to DnaA dynamics. In this theory, DNA replication is initiated whenever the ratio DnaA-ATP over DnaA-ADP reaches a critical (or specific) value. In this study, the hypothesis of Donachie and Blakely (2003) is mathematically translated into and tested in an individual-based modelling environment.

Individual-based modelling considers the individual cell as the modelling unit and emergence of population dynamics is investigated via the fundamental unit of bacterial life, an individual cell. Each individual is considered as an independent entity with its own state (e.g., mass, age, ...) and behaviour. Nevertheless, all individuals are of the same type (e.g., bacterium) and have the same potential regarding state and behaviour. As individual microbial behaviour is translated into rules and/or equations, BHM provides a perfect framework to test hypotheses concerning microbial behaviour. Individual and emerging population dynamics can then be validated against experimental data and prior knowledge.

Results

Different aspects of the theory are investigated. To exclude anomalies originating from stochastic events, individual variability is not included in a first phase. A link between the critical ratio and cell mass is proposed. The influence of the growth rate and the critical ratio on both individual and population (mass and DnaA) dynamics is investigated. Under precise conditions, individual and population dynamics display normal behaviour and the bacterial cells accurately double during a generation. Deviation from these precise conditions leads to anomalies (or unrealistic results) in the microbial behaviour, e.g., increase/decrease of cell over generations, and accumulation of DnaA.

Conclusions

Critical appraisal of hypotheses concerning microbial behaviour through individual-based modelling provides insight in individual and emerging population dynamics. Although the theory of Donachie and Blakely (2003) combines previously opposing theories and offers valuable insights, additional mechanisms need to be incorporated to ensure cell size doubling, accurate onset and timely completion of DNA replication initiation.

Acknowledgements

Work supported in part by Projects OT/09/25 and EF/05/006 (OPTIC Optimization in Engineering) of the Research Council of the Katholieke Universiteit Leuven, and by the Belgian Program on Interuniversity Poles of Attraction, initiated by the Belgian Federal Science Policy Office. K. Bernaerts is a Postdoctoral Fellow with the Fund for Scientific Research Flanders (FWO-Vlaanderen). The scientific responsibility is assumed by its authors.

References

Keywords individual-based modelling, DNA replication initiation, predictive modelling
A Lovastatin Production Model Possessing Features for Process Control Applications

Juhi Pahwa1, Sanjay Kumar1, Bhaskar Sengupta2 and James Gomes1

1 School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi – 110016, India
2 School of Planning, Architecture and Civil Engineering, Queen’s University Belfast, BT9 5AG, UK

Lovastatin is produced industrially by a variety of filamentous fungi. It is a potent drug for reducing blood cholesterol and acts by competitively inhibiting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase). The productivity of lovastatin in submerged cultivation is affected by the medium composition, oxygen mass transfer and conditions of reactor operation. The productivity of lovastatin can be significantly improved if an advanced control strategy is implemented. This in turn depends on the development of a model that satisfies the structural properties of nonlinear observability and controllability. In this paper, the development of one such model employing biomass, glucose, lactose, Na-glutamate, lovastatin and dissolved oxygen concentrations as state variables is presented. The process evolution can be directed by varying the nutrient feed rate and airflow rate. The model was derived and its parameters identified from experimental data obtained from batch experiments carried out using Aspergillus sp. in a 15 L bioreactor. The complete systems theory analysis was performed to establish that the model was suitable for online process control applications. As an example, a nonlinear input-output linearizing controller was derived and a stability analysis was performed to demonstrate that the internal variables were bounded.

Keywords: Lovastatin model; submerged fermentation, nonlinear structure; systems analysis; Aspergillus sp.

Figure 1. The state-time profiles biomass, glucose, lactose, Na-glutamate, lovastatin and dissolved oxygen concentrations obtained from a 15 L batch experiment.

Advances in detection of inorganic pollutants

A.L. Molinier 1, B. Allainmat1, C. Escoffier 1, D. Pignon1, S. Rebuffat2, S. Zirah2, P. Cholat 3, D. Meunier 3, and D. Garcia 1

1 Laboratoire de Bioénergétique Cellulaire, Institut de Biologie Environnementale et Biotechnologie, Service de Biologie Végétale et Microbiologie Environnementales UMR 6191 CNRS/CEA/Université Aix-Marseille, CE Cadarache, F-13108 Saint Paul lez Durance France
2 Molecules de communication et adaptation des micro-organismes, FRE 3206 CNRS/Muséum National d’Histoire Naturelle, Paris, France
3 AP2E (Analysers for Process and Environment), 240 rue Louis de Broglie, Ixos Méridiens, Bat A 13290 Aix en Provence France

Early detection of toxicity in air, water and soil is critical to prevent dramatic environmental contamination. Environmental biosensors allow us to assess such a toxicity. Among all these biosensors, recombinant bioluminescent bacteria focused the attention of environmental biotechnologists since these bio-systems have interesting characteristics such as specificity, robustness, autonomy, on-line measurability and high sensibility. Arsenic and mercury constitute an important part of the natural and anthropogenic pollution and their detection is a concern of public health. Bacteria were modified to respond, by emitting luminescence in less than 15 min, to arsenic (resp. <10 μg/l and <0.1 μg/l). Bacteria were also freeze-dried and continue to be active after 6 months of RT storage. Activity from a slide supporting freeze-dried bacteria is detected by an original concept involving high sensitive detector. Thus, we present here an original combination of biological and biophysical technologies assuming the challenge of the “on-field measurements”. This technology can be applied to single measurements or continuous detection for different pollutants.

Keywords: bioluminescence, detection, heavy metals
Aggregation-based in silico study for better understanding of related membrane interfering analogues of Amphotericin B

Soroush Sardari1*, Saeid Mostaan, Parisa Azerang

Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, 369 Pasteur Ave., Tehran, Iran 13164.

There is a general scarcity in effective and nontoxic antibiotics to treat systemic mycotic infections, especially in patients with immunological deficiencies. This is one of the common problems in antifungal chemotherapy. Systemic fungal infections are common side effects in anticancer chemotherapy treatments, which defect the immune system. Amphotericin B (AmB) which is one of the polyene macrolide antibiotics is the currently available and most effective drug for the treatment of a broad range of systemic antifungal infections in humans. One of the advantages of this drug is to prevent the antibiotic resistance in fungal strains. This useful property of AmB makes it more important in medical treatments. The mechanism of action and toxicity of AmB is not yet clearly understood, however it is believed to be through interaction with ergosterol in the cell membrane of fungi as compared to cholesterol in human cell membranes. The higher affinity towards ergosterol as well as aggregation of AmB in the membrane with each other to form a pore are the main information we have of the mechanism of action for this drug.

This study aimed at in silico identification of new analogues for AmB was carried out, and then practical studies on the activity of such molecules were performed. At first, the structure of AmB was considered as a template for a series of computational experiments to reach a molecule which can form aggregations and also interact with membrane components. AmB was fragmented and according to binding energy obtained through in silico dock experiments the best molecules were identified. A similarity search was performed on the optimum molecules from previous step that showing the best binding profile; hence, several molecules could be selected and evaluated for their interaction with the sterols by UV spectroscopic study. Finally, an in vitro antifungal assay was performed on these molecules. The result of the evaluations was finding several compounds that their antifungal effect had not been reported before and proposed new mechanism of action possibly involve in binding membrane components such as ergosterol.

In this paper, we applied a new strategy to find new analogues of a structurally complex molecule such as AmB. These molecules were able to behave in a similar manner and possibly the studied functions pattern is responsible for their efficiency. Among the found molecules were a well-known antibiotic, which proposes new protocols tracing the mechanism and for interpreting the observed activity, while allowing such molecules be handled better for possible interactions in clinical settings.

Keywords: aggregation, self-dock, Amphotericin B, interaction energy, ergosterol, cholesterol

Assessment of imazalil activity on the growth of *Penicillium expansum* and production of patulin in potato-glucose-agar medium

F. M. Valle–Algarra1, Eva M. Mateo2, F. Mateo3, J. V. Gimeno–Adelantado1, M. Jiménez2

1Departamento de Química Analítica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain

2Departamento de Microbiología y Ecología, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain

3Instituto de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universidad Politécnica de Valencia, Camino de Vera 14, 46022, Valencia, Spain

There is a general scarcity in effective and nontoxic antibiotics to treat systemic mycotic infections, especially in patients with immunological deficiencies. This is one of the common problems in antifungal chemotherapy. Systemic fungal infections are common side effects in anticancer chemotherapy treatments, which defect the immune system. Amphotericin B (AmB) which is one of the polyene macrolide antibiotics is the currently available and most effective drug for the treatment of a broad range of systemic antifungal infections in humans. One of the advantages of this drug is to prevent the antibiotic resistance in fungal strains. This useful property of AmB makes it more important in medical treatments. The mechanism of action and toxicity of AmB is not yet clearly understood, however it is believed to be through interaction with ergosterol in the cell membrane of fungi as compared to cholesterol in human cell membranes. The higher affinity towards ergosterol as well as aggregation of AmB in the membrane with each other to form a pore are the main information we have of the mechanism of action for this drug.

This study aimed at in silico identification of new analogues for AmB was carried out, and then practical studies on the activity of such molecules were performed. At first, the structure of AmB was considered as a template for a series of computational experiments to reach a molecule which can form aggregations and also interact with membrane components. AmB was fragmented and according to binding energy obtained through in silico dock experiments the best molecules were identified. A similarity search was performed on the optimum molecules from previous step that showing the best binding profile; hence, several molecules could be selected and evaluated for their interaction with the sterols by UV spectroscopic study. Finally, an in vitro antifungal assay was performed on these molecules. The result of the evaluations was finding several compounds that their antifungal effect had not been reported before and proposed new mechanism of action possibly involve in binding membrane components such as ergosterol.

In this paper, we applied a new strategy to find new analogues of a structurally complex molecule such as AmB. These molecules were able to behave in a similar manner and possibly the studied functions pattern is responsible for their efficiency. Among the found molecules were a well-known antibiotic, which proposes new protocols tracing the mechanism and for interpreting the observed activity, while allowing such molecules be handled better for possible interactions in clinical settings.

Keywords: aggregation, self-dock, Amphotericin B, interaction energy, ergosterol, cholesterol
Assessment of physiological heterogeneity of a population in multi-species microbial community by fluorescence techniques

S. Rezaeenejad and V. Ivanov

School of Civil and Environmental Engineering, Nanyang Technological University, Blk N1, 50 Nanyang Avenue, Singapore 637978

Individual microorganisms differ from each other in terms of physiological properties in population as well as multi-species community. The physiological differences of individual cells in a bacterial population are mainly due to progression through the cell cycle, differentiation of life cycle, and interaction of cell with inhomogenous microenvironment. Therefore, the viable fraction of microbial community exploited in biotechnological process of wastewater treatment as well is heterogeneous in terms of physiological states. The determination of physiological states of individual cells of population within a microbial community may help to improve biotechnological process. Fluorescence techniques are proper methods for determination of physiological states of individual microbial cells in a population.

Escherichia coli DSMZ 1539 and Pseudomonas veronii DSMZ 11331 were two strains used in this research. Plasmids of pEGPlucTet and pIBA28 were electroporated into E. coli and P. veronii cells, respectively using standard molecular biology methods. LIVE/DEAD viability kit (SYTO 9/PI) was used for determination of membrane integrity (viability) of cells. Membrane potential and respiratory activity of cells were evaluated by bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC4(3)) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) fluorescence probes, respectively. The cell viability in population introduced into microbial community was measured by combination of green fluorescence protein (GFP)-PI or GFP-CTC in GFP-labeled E. coli culture. GFP-tagged bacterial cells under all growth conditions produce fluorescence, which does not indicate physiological status of the cells. Therefore, fluorescence probes such as PI and CTC were used to determine the viability and respiratory activity of cells in population introduced into microbial community. The self-aggregated cells of P. veronii were grown in batch culture as well as in continuous culture in sequencing batch reactor (SBR), which was designed for formation of aerobic granules. The fluorescence based techniques such as flow cytometry (FCM) and confocal laser scanning microscope (CLSM) have been used in single-cell analysis. The flow cytometry analysis of E. coli and GFP-tagged E. coli stained by fluorescent probes showed the existence of various subpopulations during different phases of growth and starvation. The fraction of CTC-reducing cells (CTC cell subpopulation) was 90% and 83% in the exponential and stationary phases of batch culture, respectively. The fraction of depolarized cells, which was stained by DiBAC4(3), was 5% and 25% in the exponential and stationary phases, respectively. In the samples taken from exponential and stationary phases of batch culture, 14% and 50% of respiratory active (CTC) cells, respectively lost their ability to reduce CTC during 10 h starvation. However, the effect of 10 h starvation was insignificant on the membrane potential assessed by DiBAC4(3) probe. SYTO 9/PI dual staining in E. coli population was compared with GFP-PI combination in GFP-tagged E. coli cell viability analyses by FCM. Two different cell subpopulations of “live” and “dead” cells were detected in both populations of E. coli and GFP-tagged E. coli in the stationary growth phase and in the phase of starvation. However, the subpopulations of “dead” and “live” cells in GFP-tagged E. coli population were more distinct in comparison to those in E. coli population stained by SYTO 9 and PI. The data for respiratory activity of cells in the GFP-tagged E. coli population stained by CTC were consistent with those from the E. coli population.

The spatial pattern of growth and respiratory activities within the cellular aggregate (granule) of P. veronii stained by CTC was analyzed by CLSM. It demonstrated the presence of three distinct layers: (1) the outer layer of cells with low respiratory and, probably, growth activities on the depth of 10 µm from the edge of the aggregate; (2) the intermediate layer of cells with the highest respiratory, and probably, growth activities between 10 to 20 µm from the edge of the cellular aggregate; (3) cells with the lowest respiratory and growth activities in the core of cellular aggregate. The capability of GFP gene as marker for tracking and visualizing cells introduced into community allows the GFP-tagged P. veronii to be specifically monitored during granules formation in SBR by CLSM. The single-cell approaches and techniques discussed in this paper for analyses of physiological heterogeneity of bacterial populations and aggregates used in environmental biotechnology could be helpful in optimization of the process.

Keywords: Single-cell analysis, physiological heterogeneity, flow cytometry, fluorescence probes, Escherichia coli, green fluorescence protein, aerobic granule, Pseudomonas veronii

Bacterial growth as a nonlocal coherent phenomenon

M. Molski

Department of Theoretical Chemistry, Faculty of Chemistry Adam Mickiewicz University of Poznan, ul. Grunwaldzka 6, PL 60-780 Poznan, Poland

On the basis of the first- [1] and second-order [2,3] Gompertzian kinetics it has been proved that the growth of the bacterial colony belongs to the class of quasi-quantum nonlocal coherent phenomena. The notion quasi-quantum refers to the possibility of application of the quantum language and formalism in description of macroscopic biological systems, e.g. organism, tumor, bacterial colony. The approach proposed reveals that the formation of the specific growth patterns during bacterial growth is a result of the nonlocal long-range cooperation between the microlevel - the individual cell and the macrolevel - the system of cells as a whole. Such nonlocal cooperative self-organization and intricate communication capabilities are observed during collective production of extracellular “wetting” fluid for movement on hard surfaces, long-range chemical signaling, e.g., quorum sensing, chemotactic signaling and collective activation and deactivation of genes. Those processes utilize the long-range communication and cooperation between microorganisms resulting in spatially coherent growth of the colony. An extension of the approach proposed to include von Bertalanfly model, which provides a much accurate bacterial growth curve than the Gompertz function is also presented.

Keywords: bacterial growth, pattern formation, Zwietering-Gompertz curve; quasi-quantum phenomena; coherence; nonlocality

Bacterial liquid-like envelopes detected by dynamic atomic force microscopy: false capsules/EPS.

A. Mendoza-Vilas, L. Labajo-Broncano, J. Perera-Nunez, and M.L. Gonzalez-Martín
Department of Applied Physics, University of Extremadura, Avda Elvas s/n, 06071 Badajoz, Spain

Motivation. Bacterial capsules are considered virulence factors, contributing to their attachment and evasion from host defenses and protecting them from desiccation. For example, pneumonia-causing bacteria Strepotoccus pneumoniae has non-capsulated and capsulated strains. Those lacking a capsule are easily destroyed by the host and do not cause disease, whereas the capsulated ones resist phagocytosis.[1] Capsules have been found both in gram-positive and gram-negative bacteria, and even in some fungi such as Cryptococcus neoformans.[2] Composed of highly hydrated polysaccharides, they exhibit an extremely delicate physical nature, which make them very sensible to dehydration in SEM/TEM. In the case of very thin (nm-range) capsules, they might be elusive to staining methods and optical microscopy.

Antecedents. Atomic Force Microscopy (AFM) has proved to be capable of visualizing the surface of liquids. In exploiting this capability, several works have reported successful observation of bacterial capsules/EPS in the form of tiny amounts of liquid-like extracellular substance, using ambient AFM.[3-6]

Objectives. To go deeper into this issue, three Staphylococcus epidermidis strains have been scrutinized for the possible presence of capsules using AFM. Some authors have suggested all staphylococci to be encapsulated.[7-8]

Conclusions achieved. Extensive imaging and X-ray Photoelectron Spectroscopy (XPS) chemical analysis have shown the liquid-like structures to be produced as result of an interaction of water with the ions present in the buffer used (Kpi). Such ultrasmall liquid volumes should however evaporate almost instantaneously under ambient conditions. We suggest Deliquescence as the basic chemical property responsible for the creation and stability of such ultrasmall liquid volumes surrounding the microorganisms. Deliquescence is a phenomenon by which certain substances absorb water from the environment and dissolve into them. This is in contrast with hygroscopicity, in which water is only adsorbed. For our buffer, one of its two components, KJHP04, is a very deliquescent substance (unlike to other, KH2PO4, which is not). This also explains the results of others with solutions of CaCl2 (one of the most deliquescent salts known) or HEPES (with a highly deliquescent piperazine moiety). This non-biological origin explains the high similarity of our results with others using other (both gram-positive and gram-negative) bacteria and buffers, and the high similarity of our own results with very different strains.

Characterisation of initial degradation stage of Scots pine (Pinus sylvestris L.) sapwood after attack by brown-rot fungus Coniophora puteana
Ilze Irbe1, Ingeborga Andersone1, Bruno Andersons1, Guna Noldt2, and Nina Kurnosova1
1Latvian State Institute of Wood Chemistry, Dzerbenes str. 27, LV-1006 Riga, Latvia
2Division of Wood Biology, Department of Wood Science, Hamburg University, Leuschnerstrasse 91, D-21031 Hamburg, Germany

Despite the long-term studies, the mechanisms of wood biodegradation by brown-rot fungi are yet not fully understood. The dynamics of biodegradation from early to late degradation stages as well as the critical stage in the degradation period, which causes irreversible consequences in the wood structure, are unclear. In our study, the investigation of early degradation period (10 days) of Scots pine (Pinus sylvestris L.) sapwood by the brown-rot fungus Coniophora puteana (Schum. - Fr.) Karst. (BAM Ebw 15) was based on detection of changes in the wood chemical composition, ultrastructure, and generation of reactive oxygen species (ROS).

Light microscopy observations confirmed extensive spreading of the fungal hyphae in wood tracheid lumina and rays already after ten exposure days. Scanning UV microspectrophotometry (UMSP) analyses of lignin distribution in wood cells revealed that the linkages of lignin and polysaccharides were disrupted already in the early period of fungal attack. Increase in lignin absorption A380 value from 0.24 (control) to 0.44 in decayed wood was attributed to its oxidative modification, which proceeded in the presence of ROS formed in Fenton reaction. The wood weight loss in the initial degradation period was 2%, while cellulose and lignin losses were 8.5% and 2.9% respectively. Lignin methoxyl groups decreased from 15.1% (control) to 14.2% in decayed wood. Fourier Transform Infrared Spectroscopy (FTIR) analyses showed a moderate loss in the hemicelluloses content. Changes were observed in the band at 1730 cm-1 that is mainly due to the acetyl groups of glucomannan. Electron paramagnetic resonance (EPR) spectra confirmed the generation of ROS such as hydroxyl radicals HO· in the very early wood degradation period, DMPO-OH signal intensity was 10.1 relative units after 10 wood degradation days. Our results showed that irreversible changes in wood structure started immediately after wood colonisation by fungal hyphae. The understanding of biochemical mechanisms of wood biodegradation by brown-rot fungi is important in the development of novel wood protection methods.

Keywords brown-rot; Scots pine; early degradation; wood structure

References
Color measurements as a reliable method for estimating chlorophyll degradation to phaeopigments

P. Sanmartín, N. Aira, B. Silva and B. Prieto

Chlorophyll degradation is usually used as a symptom of stress conditions due to environmental pollution. The ratio between absorbances at 435 nm/415 nm is taken as an index of chlorophyll degradation: a decrease in this ratio indicates the degradation of chlorophyll to phaeopigments. We set up this study in order to investigate whether color measurements could be used as an indicator of environmental pollution instead of traditional methods of analysis which require sampling. CIELAB color parameters (L*, a*, b*, C* and h), the chlorophyll a content and the phaeophytination index (OD435 nm/OD 415 nm) of two biofilm-forming cyanobacteria on stone: *Nostoc* sp. PCC 9104 and *Nostoc* sp. PCC 9025, were analysed. Our results indicate that color measurement could replace the traditional methods (such as the determination of chlorophyll degradation) as an indicator of environmental pollution, since correlations between values of OD 435 nm / DO 415 nm and four of the five CIELAB color parameters are as close as correlations between the ratio DO 435 nm / DO 415 nm and chlorophyll a concentrations (Table 1).

Keywords chlorophyll, nondestructive methods, CIELAB color measurements, ratio of the phaeophytination index.

<table>
<thead>
<tr>
<th>Table 1.</th>
<th>Spearman correlation matrix between OD-435 nm/OD-415 nm (Phaeophytination index) and other factors, such as Chl a (Chlorophyll a concentration) and values of CIELAB color parameters (L*, a*, b*, C* and h).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nostoc sp. PCC 9104</td>
<td>Chl a</td>
</tr>
<tr>
<td>OD435/OD415</td>
<td>0.31**</td>
</tr>
<tr>
<td>Nostoc sp. PCC 9025</td>
<td>Chl a</td>
</tr>
<tr>
<td>OD435/OD415</td>
<td>0.47**</td>
</tr>
</tbody>
</table>

Notes: Chl a = 1.41; *P* < 0.01

Comparison of several methods for DNA isolation from *Aspergillus flavus* and DNA quantification on nanodrop and conventional spectrophotometer

B. Šarkanj1, Z. Bošnjak2, K. Habschied1, and D. Pavlinić3
1 Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
2 Institute of Public Health for Osijek-Baranya County, Osijek, Croatia
3 DNA Laboratory, School of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia

Literature data describe different available methods and commercial tests for fungal genomic DNA isolation, with various DNA yields and quality. Tests are usually designed for general DNA isolation, with different procedures for different types of cells, while the methodology is often applicable only to specific species, and does not give good results if used for specific filamentous fungal species. The aim of the study was to determine an optimal method for isolation of DNA from *Aspergillus flavus* (NRRL 3251) with best integrity, purity and quantity, to be used for PCR analysis. Five different methods with some modifications were compared. All modifications were made to adjust desired growth conditions in liquid medium (GMS) and expected amount of mycelium for analysis (0.1 – 1 g of wet matter). After incubation, mycelium was stored at -20°C until DNA isolation. Examined methods were: Pure PCR template preparation kit (Roche), Rapid mini-preparation of fungal DNA for PCR (Liu et al., *J Clin Microbiol* 38, 2000: 471), the CTAB method, Isolation of genomic DNA for insects (Qiagen) and Method for microbial DNA extraction from soil for PCR amplification (Yeates et al., *Biol Proced Online* 1, 1998: 40). Following isolation, DNA was stored at -20°C before further analysis. DNA quantification and purity estimation were performed by NanoDrop ND 1000 spectrophotometer and the results were compared to Perkin Elmer Precisely Lambda 25 UV/VIS spectrophotometer. DNA integrity and quantity were determined by gel-electrophoresis. Despite claimed as suitable for fungal DNA isolation, a few of the methods did not give satisfactory results, ranging from great amounts of impure DNA with high integrity to small amounts of pure DNA with low integrity. DNA concentrations varied from 22.58 ± 2.04 ng/µL to 5507.07 ± 45.96 ng/µL with A260/280 from 1.1 to 2.2 using nanodrop or 1749.00 ± 160.58 ng/µL to 14870.00 ± 112.38 ng/µL with A260/280 from 0.80 to 2.27 using conventional spectrophotometer. Optimal results for further PCR amplification were obtained with modified Yeates et al. method, which gave 5480.13 ± 52.45 ng/µL DNA of very good integrity but low purity (A260/280 = 1.17).

Keywords: Fungal genomic DNA isolation, DNA quantification, DNA integrity, *Aspergillus flavus*
Design of predictive models for deoxynivalenol accumulation in barley grain cultures of *Fusarium culmorum* under different conditions

F. Mateo1, A. Medina2, Eva M. Mateo2, F. M. Valle–Algarra2, R. Gadea1, M. Jiménez2

1Instituto de la Tecnologías de la Información y de la Comunicaciones Avanzadas (ITACA), Universidad Politécnica de Valencia. Camino de Vera,14, 46022, Valencia, Spain
2Departamento de Microbiología y Ecología, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain

Deoxynivalenol (DON) is a trichothecene mycotoxin produced by various species of *Fusarium* such as *F. culmorum* and *F. graminearum* that contaminate cereal crops worldwide. DON induces inhibition of protein synthesis in cells and affects emetic response, growth, immune function and reproduction and limits for it have been set up by the European Commission in cereals, refined commodities and feedstuffs.

Predictive models can be helpful to forecast the level that mycotoxins can reach in food and feed and beverages. A study was made to find out the possibility of using artificial neural networks encompassing both multilayer perceptrons (MLP-NN) and radial-basis function networks (RBFN) to predict the accumulation of DON in barley seeds contaminated with a strain of *F. culmorum* isolated from Spanish barley. The input (predictor) variables to the models were incubation temperature (20–28ºC), aw (0.94–0.98), size of the plug of used to inoculate seeds (7-15 mm diameter) and time; the output was the concentration of DON determined by gas chromatography. MLP-NNs with one and two hidden layers were trained using three different algorithms and two approaches within each algorithm (without and with hold-out validation). In any case, the input data in the subsets used for training and validation were chosen in a random way in every run. So it was the initialization of the weights. The general criterium adopted for design optimization was the value of the mean-square error (MSE) for the test subset but other error parameters such as the root mean square error, the standard error of prediction, as well as R^2 values were also computed.

For design of RBFN, which have only one hidden layer, treatment was simpler. Only the spread parameter was changed to find out the optimum value, which was the unity. Then, this value was applied for training networks. No validation procedure is needed and the performance for correct prediction was based on the lowest MSE for the test data set.

It was found that the training algorithm and the validation procedure influenced the performance of the predictive model. Within the MLP-NNs, the lowest MSE for test was accomplished by a single layer perceptron with 8 nodes in the hidden layer training without hold-out validation with the RP algorithm. The more complex MLP having two hidden layers did not provide lower MSE values. For a given architecture and a given training algorithm the MSE values were higher when hold-out validation was accomplished. RBFN proved useful and reached lower MSE than MLP-NN to predict DON accumulation but a higher number of hidden nodes (85) was needed. The MSE decreased smoothly with the number of hidden nodes following a hyperbolic-like function.

From the study it was concluded that accurate prediction of DON accumulation in barley seeds by *F. culmorum* is possible using MLP-NN or RBF networks. The contribution here shown is part of a wider task to apply these models to mycotoxin forecasting in a variety of food commodities. Therefore, more research work on this topic is needed to encompass more fungal strains and other mycotoxins.

Keywords predictive models; barley; *Fusarium culmorum*

Acknowledgements: the authors wish to thank financial support from FEDER and Spanish Government “Ministerio de Ciencia e Innovación” (Project AGL2007-66416-C05-01/ALI and two research grants).

Determination of cell cycle parameters by flow cytometry in bacteria: practical considerations

F. Molina1, M. A. Sánchez-Romero1, A. Jiménez-Sánchez1, and M. Mota2

1Genética. Departamento de Bioquímica, Molecular Biology and Genética, Universitat de l’Esplugues, Avda. Elviss s/n, 08071 Badalona, Spain
2Departamento de Matemáticas, Universitat de l’Esplugues, Avda. Elviss s/n, 08071 Badalona, Spain

The cell cycle of slowly growing bacteria consists of three phases that resemble the eukaryotic cell cycle: the pre-initiation, replication and post-replication periods, termed B, C and D, respectively. However, bacteria are also capable of very rapid growth, whereas the replication period remains long and hence the B period disappears and a round of replication is triggered before the previous one is finished. Several frequently used methods yield an incomplete analysis of these overlapping cell cycles in fast growing bacteria. However, flow cytometry allows measuring DNA distributions in unperturbed exponential cultures, which can be used to determine the B, C and D periods either directly or considering cell-to-cell variability by computer simulations. In the present work we have compared the accuracy of the cell cycle parameters estimation in different cultures. Whereas, for a given DNA per cell content, the accuracy of the C period determination is independent of the cell cycle, the precision of the D period estimation is inversely correlated with the number of replication forks per chromosome. We have also considered different models to take into account the cell-to-cell variations within each culture; i.e., variability in generation times, cell cycle parameters and the number of cells in each subpopulation. Our results might allow to improve the analysis of flow cytometric DNA histograms just modifying the data transformation routine (as summarized in the figure).

Keywords Bacterial cell cycle; Flow cytometry; Multifork replication; Computer simulation
Differences in stationary phase cells of *Saccharomyces cerevisiae* var. *bayanus* grown in aerobic and hypoxic bath cultures assessed by electric particle analysis, light diffraction and flow cytometry

X. Portell1, M. Gınovart2, R. Carbó3, and J. Vives-Regó1

1 Department of Agri-Food Engineering and Biotechnology, Technical University of Catalonia, Edifici D4, 08860 CastelldeLls (Barcelona), Spain
2 Department of Applied Mathematics III, Technical University of Catalonia, Edifici D4, 08860 CastelldeLls (Barcelona), Spain
3 Departamento de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain

Saccharomyces cerevisiae is a yeast of widely recognized biotechnological interest and is also used as a model to understand the cell cycle progression of eukaryotic cells. In an asynchronously growing *S. cerevisiae* population, individual cells differ in their position (or phase) within the cell division cycle, their genealogical age and their size. All these variables drive the cell size distribution. Because of the tight coupling between cell growth and division, the study of cell size distributions of yeast populations at steady state, or under perturbed conditions, can reveal a wealth of information on the cell cycle regulatory mechanisms and adaptation to the environment. From different principles, electric particle analysis and light diffraction are two current techniques that permit the obtaining of cell size distributions. In the field of microbiology, electric particle analysis is more usual, whereas light diffraction is used in most abiotic particles. Another current technique used to measure individual parameters, to identify subpopulations and to count microorganisms is flow cytometry. By this technique, the incident light scattered from one cell is collected in two different angles, in a narrow forward angle (Forward Scatter, FS) and in a proximally right angle (Side Scatter, SS) from the light beam. FS is a complex parameter as this function varies not only with cell size but also with cell shape, refractive index and intracellular dielectric structure. SS is also an intricate parameter. This signal is thought to indicate variations in cell surface or internal structure, usually referred to as “cellular granularity.” In this contribution, we report cell population analyses of *S. cerevisiae* in stationary phase grown in aerobic and hypoxic bath cultures by three experimental techniques: electric particle analysis, laser diffraction and flow cytometry.

The medium used in aerobic conditions contains: 10 g l⁻¹ glucose, 5 g l⁻¹ yeast extract and 3 g l⁻¹ casein peptone, and pH was initially adjusted to 3.5 with orthophosphoric acid. To ensure hypoxic condition the medium was supplemented with 0.5 g l⁻¹ sodium thioglycollate and 0.001 g l⁻¹ resazurine. Both media were autoclaved for 15 min at 121°C. The inocula, prepared and cultured in the same medium growing in aerobic and hypoxic conditions, respectively, were inoculated in 1000 ml flasks with 500 ml of the fresh medium and incubated at 27°C, using magnetic shaking (150 r.p.m) for approximately 60 hours. Along this time, and after the steady state was confirmed, samples were removed to be analysed using an electronic particle analyser, a laser diffraction particle size analyzer and a flow cytometer.

Multitiser data shows that the cells under hypoxic conditions are greater (means from 4.93 to 5.23 μm) with size distributions moving to the left along the stationary phase, whereas cells grown aerobically are smaller (means from 4.46 to 4.67 μm) and with more stable size distributions. Although cell size distributions obtained by light diffraction show a different shape (slightly positively skewed with no left tail), the use of laser diffraction confirms that the cell sizes in aerobic conditions are smaller (means from 4.50 to 4.66 μm) than cells grown in hypoxic medium (means from 4.98 to 5.00 μm). However, with this method we observe that the stationary phase is not stable in aerobically grown cells, and there is a greater variability in cell size distributions from the twenty-hour sample to sixty-hour sample. Basic shape of FS distributions shows a similarly basic shape in both growth conditions, centered in a range of relative intensities between 3500-3700 with a long right tail. In addition, cells grown in hypoxic conditions show a subset with relative frequencies between 4500 and 6000, whereas in aerobic conditions there is a higher proportion of cells with relative intensities between 6000 and 10000. This is consistent with the existence of two subpopulations, not observed in previous techniques. The two subpopulations show more differences in aerobic conditions than in hypoxia. Moreover, the subpopulations in aerobic conditions join at the advanced stationary phase. Similarly, SS distributions in both experiments are essentially the same: a triangular distribution slightly positively skewed and centered at relative intensities between 4000-4200. However, in this measure one can also observe a subpopulation of yeast cells with relative intensities between 6000 and 10000 in aerobic conditions but not in hypoxic conditions. Therefore, it is shown that in the stationary phase of culture in hypoxic conditions the population is more homogeneous than under the aerobic cultivation.

Dissecting Gene Expression in Micro-Colonies of *Aspergillus niger*

Charissa de Bekker, Jerre van Veluw, Arman Vinck, L. Ad Wiebenga, and Han A.B. Wösten

Microbiology and Klyver Centre for Genomics of Industrial Fermentations, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

The filamentous fungus *Aspergillus niger* forms centimeter scale macro-colonies on solid media, whereas (sub)millimeter micro-colonies are formed in a liquid shaken culture. These colonies secrete large amounts of proteins to degrade polymers in the medium into compounds that can be taken up to serve as nutrients. Previously, it has been shown that macro-colonies of *A. niger* that had been grown on solid medium are heterogenic with respect to gene expression and protein secretion. Here, we assessed whether heterogeneity can also be found between and within micro-colonies of a liquid shaken culture of *A. niger*.

Micro-colonies of *A. niger* strains expressing GFP from the promoter of the glucoamylase gene *glaA* and the ferulic acid esterase gene *faeA* were sorted on basis of their diameter and fluorescence of the reporter protein using the Complex Object Parametric Analyzer and Sorter (COPAS). Fluorescence intensity of the reporter correlated with the diameter of the micro-colonies. Both the distribution of fluorescence intensity and the micro-colony diameter were not normally distributed in the culture. 25% of the culture consisted out of smaller micro-colonies while 75% consisted out of larger micro-colonies. 27% and 73% of the micro-colonies of the strain expressing GFP from the *faeA* promoter were poorly and highly fluorescent, respectively. This implies that heterogeneity in this strain depends on the volume of the micro-colony only. In contrast, the lowly fluorescent micro-colonies of the strain expressing GFP from the *glaA* promoter comprised about 79% of the culture. This indicates that heterogeneity in *glaA* expression is not only determined by volume of the micro-colony but also by an unknown other factor.

To assess heterogeneity within a 750-800 μm wide micro-colony, central and peripheral parts of the mycelium were isolated by laser microdissection and pressure catapulting (LMPC). QPCR showed that *glaA* and the *faeA* were similarly expressed in the selected zones when related to transcript levels of the actin gene or 18S rDNA. However, RNA content per hypha was about 50 times higher at the periphery than in the centre of the micro-colony.

Here, COPAS and LMPC were used for the first time to assess expression of genes in a microbial system. Our results show that there is heterogeneity in gene expression between micro-colonies within a liquid shaken culture. Moreover, it is shown that zones within a 750-800 μm wide micro-colony are heterogenic with respect to gene expression. In fact, peripheral hyphae were shown to have about 50 times more RNA than hyphae in the centre. Our data imply that protein production can be improved in industrial fermentations by increasing the amount of RNA in the centre of micro-colonies.

Keywords: heterogeneity, *Aspergillus niger*, COPAS, LMPC, towards single cell analysis

This research was supported by the IOP Genomics program of the Dutch Ministry of Economics Affairs and by the Dutch Technology Foundation STW, Applied Science division of NWO and the Technology Program of the Ministry of Economics Affairs.
DTAF: An Efficient Probe to Study Cyanobacterial-Plant Interaction Using Confocal Laser Scanning Microscopy (CLSM)

M. Ahmed1,2, L. J. Stal2, and S. Hasnain1

1 Department of Microbiology and Molecular Genetics, Quaid-e-Azam Campus, University of the Punjab, Lahore-54590, Pakistan
2 Department of Marine Microbiology, Center for Eustrine and Marine Ecology (CEME), Netherlands Institute for Ecology (NIOO-KNAW), Yerseke 4401 NT, The Netherlands.

Different microscopic techniques have been utilized to study cyanobacterial associations with plant roots but confocal laser scanning microscopy (CLSM) is the least used due to unavailability of suitable fluorescent dye. Commonly used lectins have problems with their binding ability with root cells and their visualizations with CLSM. DTAF (5-(4,6-dichlorotriazinyl) aminofluorescein) is a fluorescent dye that has been widely used in staining various biological samples for fluorescent microscopy. It reacts with polysaccharides and peptides at ordinary conditions. The possible application and efficiency of DTAF for CLSM studies was examined in various aspects of cyanobacterial-plant interactions. Seedling of Pisum sativum, Vigna radiata and Triticum aestivum were co-cultivated and stained with DTAF as fluorochrome. Extracellular and intracellular interactions of cyanobacteria and plant roots surface was observed by CLSM. Results were compared with staining by other commonly used lectins. DTAF served as a good alternative for the visualization of cyanobacteria-plant associations. The presence of DTAF did not interfere with the observation of the plant cells and the cyanobacteria, and efficiency of DTAF for CLSM studies was examined in various aspects of cyanobacterial-plant interactions. Seedling of Pisum sativum, Vigna radiata and Triticum aestivum were co-cultivated and stained with DTAF as fluorochrome. Extracellular and intracellular interactions of cyanobacteria and plant roots surface was observed by CLSM. Results were compared with staining by other commonly used lectins. DTAF worked efficiently with all three plants used and with filamentous and unicellular cyanobacterial strains. Cyanobacterial presence was not only clearly observed on root surface but also inside the root tissue and epidermal cells. Easy protocol and absence of tissue processing make DTAF a useful probe for studies of cyanobacterial associations with plant roots by CLSM.

Key words: CLSM; Cyanobacteria; cyanobacteria-plant associations; DTAF; 5-(4,6-dichlorotriazinyl) aminofluorescein; fluorescent dye

Ethanol biosensor based on rhodium dioxide and alcohol dehydrogenase

V. Polan and K. Vytras

Department of Analytical Chemistry, University of Pardubice, Studeniska 573, Pardubice 532 10, Czech Republic

During the last two decades, one can observe an increasing interest in applications of disposable biosensors, particularly those based on screen-printed carbon electrodes (SPCEs) [1]. In electrochemical biosensors, advantages of the enzyme specificity for recognition of particular target molecules are combined with the direct transduction of the reaction rate into a current [2]. Resulting biosensors are effective and selective for the substrate detection [3-4]. With the biosensors preparation, an enzyme immobilization belongs to the most important operations. An inconvenient manner of the enzyme entrapment can cause its denaturing, indirect inactivation, or its washing out from an electrode body. The choice of the enzyme immobilization method depends on the enzyme characteristics, on the type of transducer, and on the conditions at which the biosensors work, and finally on the physical characteristics of the analyte.

In this contribution, SPCEs containing RhO2 as the modifier [5,6] were used. Different methods of immobilization were tested, including entrapment in Nafion, cross-linking with glutaraldehyde, immobilization with cellulose acetate, and electropolymerization using pyrrole or m-phenylenediamine. Finally, the ethanol biosensor was prepared using alcohol dehydrogenase (together with cofactor NAD+ and trehalose). Concerning its quality in terms of the retaining the enzyme activity, response time, sensitivity and dynamic range of concentrations, the immobilization of enzyme via electropolymerization using m-phenylenediamine seemed the best. Resulting biosensors have been tested in model samples of ethanol. In such applications, biosensors showed a linear response in the range of 15 – 120 g L-1 ethanol with a detection limit of 3.3 g L-1 (evaluated as 3 /g305) and a response time of 19 s.

Acknowledgement

This work was supported from the Ministry of Education, Youth and Sport of the Czech Republic (projects MSM0021627502 and LC06035) and the Czech Science Foundation (project 203/08/1536).

Keywords alcohol dehydrogenase, amperometric biosensor, screen-printed carbon electrode, rhodium dioxide, ethanol

References

Flow cytometry for analysis and sorting of large particles, sized from 20-1,500 microns (e.g. Aspergillus, Daphnia, Aquatic Larvae, Pollen).

R.Bongaarts¹, J.Thompson² and R.Pulak²
¹ Union Biometrica Cipalstraat 3 Geel, Belgium
² Union Biometrica, 84 Otober Hill Road, Holliston, USA

Introduction:
Many objects are too large and too fragile for conventional flow cytometry. Manual microscopic manipulation of large objects is tedious, subjective, and limits the size and scope of experiments. Likewise, conventional flow cytometers are limited by the size of the objects that can be analyzed, thereby limiting their use in several applications.

Instrumentation
Instruments (COPAS®) are now available to automate the analysis and sorting of large (20-1,500 micron) particles in a continuously flowing stream at a rate of 10-100 objects/second. Using object size, optical density, and intensity of fluorescent markers as sorting criteria, selected objects in this size range, can be dispensed in multi-well plates for further analysis. A gentle pneumatic sorting mechanism located after the flow cell avoids harming or changing sensitive objects, thereby making the instrument suitable for live biological materials or sensitive chemistries. Multiple fluorescence excitation and emission wavelengths are available. Today, automation, increased sensitivity, and quantitative measurements enable larger / faster screens of many large particle applications. Applications include: Zooplankton determination, Daphnia toxicity test, Marine larve counting and dispensing, Pollen analysis and sorting for Radiocarbon dating, Aspargillus analysis and several large cell (cluster) applications. The COPAS instruments allow using three PMTs at the same time. In add ition, Profiles can be generated for each individual object, showing the localization of fluorescence in the object.

Keywords Large Particle Flow Cytometry, Analysis and Sorting, Fluorescence

Generation of computational metabolic models of three strains of Escherichia coli and growth comparisons in the presence or absence of oxygen

D. J. Baumler¹, R. G. Peplinski², J. D. Glasner², J. L. Reed³, and N. T. Perna³,⁴
¹BACTER Institute, ²Genome Center of Wisconsin, ³Department of Chemical and Biological Engineering, and ⁴Department of Genetics, University of Wisconsin-Madison, 53706, Madison, USA

Within the genus Escherichia, only one strain, E. coli K-12 MG1655, has had a genome-scale metabolic computational model constructed. While this single model has proven useful for guiding the bioengineering of strains for increased production of desired end-products, we sought to explore how constructing additional metabolic models of E. coli could potentially enhance these efforts. In this work, the metabolic model for E. coli K-12 MG1655 was updated to account for 1,322 ORFs, 91% of which are based on experimentally validated function, and includes a new pathway for phenylacetate metabolism. New genome-scale metabolic models were constructed for two pathogens, enterohemorrhagic E. coli O157:H7 strain EDL933 (1,328 ORFs) and the uropathogenic E. coli strain CFT073 (1,264 ORFs). When compared to the E. coli K-12 model, the metabolic networks for E. coli O157:H7 EDL933 and E. coli CFT073 contained 57 and 29 lineage-specific ORFs, respectively. All three E. coli models were used to simulate growth in different conditions and the results were compared to experimental data for utilization of 76 carbon sources in conditions with or without oxygen, revealing different metabolic capabilities for each strain. Both in silico predictions and experimental results for growth during batch fermentations in minimal media with 0.2% (w/v) glucose reveal that both pathogens attain maximum biomass (g/L) faster and in greater amounts than E. coli K12 MG1655. Our findings suggest that quantitative models of different strains of E. coli can accurately predict strain-specific phenotypes and offers bioengineers a larger suite of metabolic capabilities with which to work with for designing new industrial E. coli strains.
Location sites of nucleic acid intercalators in yeast cells: computer-aided fluorescence microscopy study

Evgeny Puchkov1 and Millicent McCarren2

1 Scryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, 142290, Pushchino, Russia
2 University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, United States

The aim of this study was to test if the live yeast cells of *Saccharomyces cerevisiae* can be used as a model for locating intracellular sites/targets of the nucleic acid intercalators. To this end, intracellular distributions of the anticancer drug doxorubicin (DR) along with 4',6-diamidino-2-phenylindole (DAPI), and ethidium bromide (E) were investigated using fluorescence microscopy combined with computer image analysis (ImageJ software, NIH, USA).

Yeast cell culture was found to be heterogeneous in stainability by DAPI, DR and E. Presence of the drugs in some cells could be revealed only after special processing of the images by increasing brightness/contrast by ImageJ. Most likely, this stainability pattern was a consequence of the difference in the cell wall/plasma membrane permeability for the drugs. Drug export permease Sge1 could play a role in reducing permeation of the drugs.

Upon permeation of DAPI into the cells, structures having two fluorescence colors, blue and yellow, could be visible. The increased blue color fluorescence of DAPI is known to be due to the intercalation into nucleic acids. Yellow fluorescence of DAPI was shown to be caused by the interaction with polyphosphates. Three sites of DAPI location could be revealed in the live yeast cells: DNA in the nuclei and in the mitochondria, that fluoresce blue, and the polyphosphate complexes (if present), that fluoresce yellow. Polyphosphate complexes are known to be located in vacuoles.

Two sites of DR location were found in the live yeast cells: the nuclei and the area corresponding to mitochondria. In contrast to DAPI, which stained mitochondria as clearly separated “units”, DR fluorescence in this area, in most cells, was even or diffuse. However, in some cells, when permeation of the drug seemed to be restricted, the pattern of the mitochondria staining was similar to that of DAPI. Using pseudospectral analysis with the RGB-Split option of ImageJ, it was shown that the DR fluorescence spectrum in the nuclei was shifted to the red as compared to the fluorescence in the area of mitochondria. It was suggested that, along with nucleic acids, DR had affinity and was bind to some other macromolecules or macromolecular complexes that resulted in its fluorescence quantum yield increase with changes of the spectral features.

There were three visible potential sites of E location in the live yeast cells: DNA in the nuclei and the mitochondria, and some diffuse matter. The latter had higher fluorescence intensity in the cells that seemed to be “highly permeable” for the dye.

It was revealed by ImageJ analysis that spectral features of E in the nuclear and in the mitochondrial regions were the same. In the binding sites of the “diffuse matter” of the “highly permeable cells”, a small “blue shift” of E fluorescence spectrum was detected.

Upon addition of DR or E along with or before DAPI, the red component of their fluorescence in the nuclei was less as compared to that if DR or E were added alone. Taking into account that DAPI fluorescence in the red region is close to zero, this could be interpreted as competition of the drugs for the same sites of interaction/intercalation in nucleic acids. At the same conditions, there was not significant decrease of DAPI fluorescence in blue region. This is an indication of no fluorescence resonance energy transfer (FRET) from DAPI to DR or E. The FRET might have been expected in the case that donor (DAPI) and acceptor (DR/E) molecules were in close proximity (less than 10nm). Therefore, location sites of DAPI and DR/E in nucleic acids in these experimental conditions are at distances higher than 10 nm.

CONCLUSIONS

1. The live yeast cells of *S. cerevisiae* can be used as a model for locating intracellular sites/targets of the fluorescing nucleic acid intercalators by fluorescence microscopy combined with computer image analysis.

2. In live yeast cells, the intercalators may interact with the nucleic acids in the nuclei and in the mitochondria. Also, there are some other macromolecules and/or macromolecular complexes which can bind the drugs, too. For DAPI, this complex is known to contain polyphosphates. The chemical composition of sites of DR and EB binding other than nucleic acids is not known as yet.
Metabolic reconstruction of Synechococcus elongatus, towards a minimal photoautotrophic cell

Carmen M. González-Domechen1,2, Ľajos Puchała 4, Vitor A. P. Martins dos Santos3, Juli Peretó1, Andrés Moya2, Luis Delaye1,2

1ICBEBE, UVEG (Spain)
2Facultad de Ciencias, UNAM (Mexico)
3Facultad de Farmacia, UGR (Spain)
4Synthetic and Systems Biology Group, EEL (Germany)

The cyanobacterium Synechococcus sp. strain PCC 7942 (previously known as Anacystis nidulans R2) is an unicellular, obligate photoautotroph requiring only inorganic nutrients and light for growth. It represents a model organism for studies of photosynthesis, prokaryotic circadian rhythms, cell division, carbon-concentrating mechanisms, and adaptive responses to a variety of stresses. So, and once its genome has completely been sequenced, a grand challenge related to this cyanobacterium is the computational prediction of highly complex cellular processes, from that available genomic and molecular information. Towards the end above mentioned, we manually checked the available genomic annotation of the strain and set-up, a preliminary Synechococcus PCC 7942-specific PathoLogic database containing the predicted metabolic pathways. This initial metabolic network is being refined relying on the biochemical literature directly from PubMed, and from information derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Enzyme Database (BRENDA) and Transport Classification System (TCDB). The connections between a particular enzymatic activity and a gene were more reliable if that association was based on the experimental data on PCC 7942, that is, if we could find a journal article testing it. Simultaneously, we are testing for stoichiometric coherence of the reconstructed metabolic network using Flux Balance Analysis (FBA) enabled with ToBiN (Toolbox for Biochemical Networks). Once the genome-scale constraint-based metabolic model is finished, we will use ToBiN software to analyze key features of the metabolism such as growth yield, resource distribution, network robustness, gene essentiality, and to predict a minimal photoautotrophic cell.

Keywords Cyanobacterium; Flux Balance Analysis; Metabolic reconstruction

Noncyanobacteria induced by ethidium bromide in yeast plasma membrane

Ezzatollah Keyhani
Laboratory for Life Sciences, Saadat Abade, Sarve Shanghi 58, 19797 Tehran, Iran

Cell membranes have the ability to bend and curve, thus providing clathrin-coated pits and plasmalemma caveolae, and facilitating many cell functions such as receptor-mediated endocytosis. On the other hand all intracellular membranes are also highly deformable, producing cargo vesicles destined to organelles and plasma membrane. Generation of membrane curvature is currently believed to involve the penetration of amphipathic helix into the cytosolic face of the membrane bilayer, producing an asymmetry between the two leaflets of membrane and generating bending and curvature towards the cytosol. This research studies the morphological effects of ethidium bromide on the yeast Candida utilis. It showed that ethidium bromide induced bending and curvature at the yeast plasma membrane.

Yeast cells Candida utilis were grown in synthetic medium with 100 µg copper per liter and 1.5% ethanol as substrate. The effects of ethidium bromide were studied by growing C. utilis yeast cells in the same medium supplemented with various concentrations of ethidium bromide. After 16 h of culture the cells were harvested, washed twice in distilled water, and treated for thin section and freeze-fracture studies. Thin section: Pellets of yeast cells were fixed in 5% potassium permanganate at room temperature (~ 20-25°C). The cells were then centrifuged and washed twice in double distilled water. The pellet was cut in 5-6 small portions (2-3 mm). They were dehydrated in graded concentrations of ethanol and embedded in Epon according to published procedure. Thin sections were cut with a Porter-Blum ultramicrotome equipped with a diamond knife and stained with lead citrate. Freeze-fracture: The yeast cells were freeze-fractured either without cryoprotectant or after incubation in 30% glycerol for 5-30 min. A suspension of yeast cells (approximately 3 µl) was transferred to a side of a gold apposed specimen holder and rapidly quenched in liquid Freon 22 (chlorodifluoromethane) cooled to its freezing point by liquid nitrogen. Freeze-fracture was done by standard techniques. Replicas were cleaned in Chlorox (sodium hypochlorite), washed in distilled water and mounted on 400-mesh grids. The freeze-fracture specimens and thin sections were examined in a Philips EM 300 electron microscope, calibrated by a carbon grating replica, at an accelerating voltage of 80 kV with a 30-µm objective aperture.

Thin section studies showed the formation of negative curvature in ethidium bromide-treated cells, with depressions that were cup-shaped structures 75-110 nm-deep. Freeze-fracture studies showed both protoplastic face (PF) and exoplastic face (EF) of plasma membrane. Intramembrane particles were abundant at the PF surface but their numbers were comparatively reduced at the EF surface. The surface of untreated yeast cells exhibited numerous linear depressions at the PF face, which were surrrelevated at the EF face. These depressions or surrrelevations corresponded to grooves that were 220 to 450 nm-long and 70 nm-wide. The plasma membrane of ethidium bromide-treated cells showed on the one hand a number of grooves whose morphology were similar to the control, on the other hand numerous depressions in the PF face, some circular, but most polymorph. The dimensions and morphology of these depressions (negative curvature), termed “nanocups”, were better illustrated at the EF surface than at the PF surface. The nanocups were always associated with a groove and were usually circular, although sometimes oval, with diameters of 200 to 300 nm. Occasionally two or three nanocups with associated groove fused together and formed larger, usually polymorph structures whose dimensions were between 500 and 600 nm.

Our studies showed that small molecules such as ethidium bromide can provide insight into bending and nanocurvatures of the yeast cell C. utilis plasma membrane. In erythrocytes there is a large group of compounds that cause plasma membrane deformations. Some of these compounds such as uncoupler, barbiturate, bilirubin and salicylate produced crenation of the red cell membrane, while other compounds such as chlorpromazine, colchicin and vinblastine are cup-formers or produced invaginations. Cup formers were all amphipatic cations. Ethidium bromide is an amphipathic molecule that upon its interaction with groove domain produced negative deformation of the yeast plasma membrane. Deformation of yeast C. utilis plasma membrane was also observed with another drug, doxorubicin. Our observations taken together with those of other authors allowed us to stipulate that, besides mechanical deformation, there are two other mechanisms producing alterations of the plasma membrane, one chemical and the other biological. Finally, even though membrane curvatures were abundantly visible, the generation of vesicles and tubules was not observed, thus suggesting that the ethidium bromide-induced plasma membrane deformations were not involved in intracellular trafficking.

Keywords yeast; bending and curvature; ethidium bromide; plasma membrane; thin section; freeze-fracture; nanocups
Natural product mining by nanoliter-scale cultivation of single actinomycetes spores in a microfluidic system

E. Zang¹, K. Martin¹, M. Kielpinski², T. Henkel² and M. Roth¹
¹Leibniz-Institute for Natural Product Research and Infection Biology, - Hans-Knöll-Institute -, Jena, Germany
²Institute of Photonic Technology, Jena, Germany

During last decades the pharmaceutical industry faced serious problems developing new antibiotics. Mainly target-oriented screening strategies were applied, which did not provide the expected outcome. Moreover, the hardly predictable possibility of quickly developing resistances against newly introduced antimicrobial drugs raised doubts about their profitability. Since the need for new antibiotic substances or even substance classes is undeniable, new strategies for efficient hit generation are required. Microfluidic platforms allow high-throughput screening with whole-cell-assays – a promising approach postulated by leading experts.

We present our current progress in establishing a pressure-driven microfluidic system which provides the required unit operations for systematic discovery of biologically active compounds from soil organisms in a closed assay according to the following scheme (Fig. 1): Initially, growth medium compartments containing one spore each statistically are generated within the carrier fluid tetradecane (1) by microinjection (2). In a subsequent incubation loop (3), the organisms are given several days to germinate and eventually produce antimicrobial substances. The presence of antibiotics in the compartments is checked by addition of a fluorescing reporter strain (4) followed by a detection + sorting (5). Positive compartments are visually detected and are sorted out (6) for large-scale cultivation and strain analyses.

Fig. 1: Overview of microfluidic assay for discovery of novel antibiotics from actinomycetes

As a preliminary result, we show that compartmented nanoliter-scale cultivation of actinomycetes within 72 hours is feasible – even though a prototype glass chip with poor oxygen transfer properties was used. Microfluidic chips which are currently in development will be manufactured from polymeric materials with improved oxygen transfer properties. Further steps to establish a robust assay are pointed out.

References

Keywords: Microfluidic system, antibiotics, actinomycetes, secondary metabolites, natural products

Neutron activation analysis for applied microbiology

M.V. Frontasyeva¹, S.S. Pavlov¹, L. Mosulishvili², T. Kalabegishvili², E.Kirkesali² and N. Tsibakhashvili²
¹Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
²E. Andronikashvili Institute of Physics, Tbilisi 0179, Georgia

The results of collaborative studies carried out in the field of applying instrumental neutron activation analysis (INAA) at FLNP JINR, Dubna, RF, in microbiology jointly with the scientists from Georgia are presented. They include medical biotechnology, and environmental biotechnology. In the biomedical experiments a blue-green alga Spirulina platensis biomass has been used as a matrix for the development of pharmaceutical substances containing such vitally important trace elements as selenium, chromium and iodine. The feasibility of target-oriented introduction of these elements into Spirulina platensis biocomplexes retaining its protein composition and natural beneficial properties has been proved. The adsorption of such toxic metal as mercury by Spirulina platensis biomass in dynamics of growth has been studied also. INAA has been successfully applied to investigate the biotechnology of toxic Cr(VI) transformation into less toxic Cr(III) complexes by Cr(VI)-reducer bacteria isolated from polluted basalts in Georgia. This method was used to track accumulation of chromium in the bacterial cells. To monitor and identify Cr(III) complexes in these bacteria, electron spin resonance(ESR) spectrometry was employed. For the first time, the elemental composition of Cr(VI)-reducer bacteria has been studied using epithermal NAA.

Keywords: Spirulina platensis, neutron activation analysis, microelements, Cr(VI), Cr(III)
Probabilistic modelling of the growth of spoilage bacteria on chilled food products

P.R. Shorten, A.B. Pleasants, and T.K. Soboleva

AgResearch Limited, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand

The management of food quality throughout a supply chain depends on the control of the size of microbial populations that cause food spoilage. However, variability and uncertainty in the different components of the supply chain impact on the growth and assessment of these microbial populations. There may be variability and uncertainty in the microbial strain, environment, and initial microbial population levels along with a multitude of other factors. The distinction between variability and uncertainty is not always clear and further confusion arises because the terms probability and uncertainty are used interchangeably in many contexts outside microbiology and both are described by probability distributions. Process variability describes the inherent variability of the system, and is generally independent of the observer. Process uncertainty due to imperfect knowledge describes the level of uncertainty an observer has about the state of the system and includes actual errors of measurement and sampling error. The process variance and uncertainty can be incorporated into a mathematical model of a growth process to predict the probability that the system is in a given state in the future. This forms the basis for quantitative risk assessment. Risk assessment for food spoilage relies on probabilistic models of microbial growth to predict the likelihood that microbial populations will not exceed predefined spoilage levels. The estimation of process variance and the characterisation of process uncertainty are therefore crucial for effective microbial risk assessment. In this paper we investigate the estimation and use of process variability and uncertainty in the context of microbial risk assessment.

Many methods have been employed for introducing variability into predictive microbiology models. Usually the approach has been to assume that deviations around a deterministic model satisfy a specified probability distribution that is based on available evidence or plausible biological mechanisms. Process variability can be also captured by incorporating stochastic components into a deterministic mathematical model of microbial growth. In this paper we consider a stochastic microbial growth model where the parameters are subjected to time and system dependent random perturbations instead of being randomly selected from a chosen multivariate probability density. Such random processes are important in a number of physical systems that affect microbial risk assessment.

Estimation techniques such as maximum likelihood, Markov chain Monte Carlo, the method of moments and Bayesian estimation are employed to characterise the level of variability and uncertainty in predictive microbiological models. The estimated variability and uncertainty in the model can then be used to perform microbiological risk assessment using Monte Carlo simulation, which entails generating a sequence of potential scenarios. The variance in the process can be partitioned into relevant variance components using nonlinear mixed-effects regression techniques, which is important in the application of predictive models to risk management in industrial processes. The size of the variance component for some factor in an industrial process (temperature, pH, etc.) gives a measure of the expected reduction in variability if control of this factor was to improve. Variance partitioning is therefore a useful tool for the allocation of resources to risk management in industry and provides estimates of gains that can be made through different degrees of control.

The microbial population measurements on food products that are used to calibrate predictive microbiological models are subject to a detection limit. When such data is analysed it is common practice to consider non-detected measurements equal to either the detection limit or zero. In some cases these measurements are completely ignored. However, such approaches yield biased estimates of the population parameters. In this paper we highlight a maximum likelihood estimation procedure for determining the mean and variance of a microbial population from population measurement data that are subject to a detection limit. Because fluctuations in the microbial population size are typical in industrial processes we also outline statistical tests for detecting such changes when measurements are subject to a detection limit, which is critical for process control.

The use of the model is illustrated by fitting the model to data on the growth of common meat, vegetable and dairy spoilage microbes such as Lactobacillus delbrueckii, Erwinia carotovora and Bacillus cereus over temperatures spanning the growth range of these organisms. These modelling methods have been incorporated into the software package FoodSSTM and we highlight its application to the New Zealand meat export industry where the shelf-life of meat products is an important factor in the decision to proceed with the six week shipment of meat to Europe.

Keywords Predictive microbiology; Risk assessment

Quantifying the heterogeneous response of E. coli at temperatures close to the maximum growth temperature

E. Van Derlinden and J. F. Van Impe

CPMF – Flemisch Cluster Predictive Modeling in Foods - www.cpmf2.be
BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium

Introduction and objectives

Close to the maximum growth temperature, growth of E. coli K12 is disturbed (Van Derlinden et al. 2008). The irregular curves at 45 and 46°C were explained by the co-existence of two subpopulations: a resistant population and a sensitive population. In Van Derlinden et al. (2009), this hypothesis was analyzed via a heterogeneous model which includes (i) a growth model for the resistant population, and (ii) a combination of a growth and an inactivation model for the sensitive subpopulation. In this work, the behavior of E. coli at temperatures between 45 and 46°C is studied in more detail. Focus is on the characterization of the subpopulations, i.e., (i) a rate constant or dependent on temperature, and (ii) how do the subpopulations’ dynamics change as a function of time and temperature. The behavior of the two subpopulations is analyzed via the subpopulation type model.

Results

At all temperatures between 45 and 46°C, the total population follows a sequence of growth, inactivation and re-growth, which can be explained by the two subpopulations (for illustration, see Figure 1). The first growth phase and inactivation phase reflect the presence of the sensitive subpopulation (nS). Hereafter, the population’s dynamics is dominated by the growth of the resistant subpopulation (nR).

All curves are fitted with the heterogeneous model to identify the subpopulations’ dynamics and to quantify the fraction of resistant cells (nR) as a function of temperature (see Figure 1). Obtained d-values vary as a function of temperature. Additional experiments and further data analysis are required to determine the structure of the relation between d and temperature. In general, the growth rate of the sensitive subpopulation is approximately constant with temperature, in contrast to the growth rate of the resistant subpopulation, which decreases with increasing temperature. Also, μmax,s-values are significantly higher than μmax,R-values.

Conclusion

Prior experiments revealed that at 45°C, a sensitive and a resistant subpopulation exist. In this study, additional experiments are performed. Via description with a subpopulation type model, it was identified that the initial ratio of resistant cells in the overall population changes with temperature in the studied temperature range (i.e., 45-46°C).

Keywords E. coli; temperature; adaptation; heterogeneous population; predictive modeling

Acknowledgements

This research is supported in part by KULeuven-BOF Projects OT/09/25 and EF/05/006 OPTEC Optimization in Engineering, and by the Belgian Program on Interuniversity Poles of Attraction, initiated by the Belgian Federal Science Policy Office.

References

Selectivity-refined in silico analogue finding method for new antifungal molecules based on amphotericin B molecular features

M. Ferdosiyan, S. Sardari

1Department of Biochemistry, Islamic Azad University, Science and Research Branch, Tehran, Iran
2Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, 399 Pasteur Ave., Tehran, 13164, Iran

The action of immunosuppressant drugs, cancer chemotherapy agents and medical conditions such as AIDS can cause the immune reduction that led to an increased prevalence of opportunistic infections such as fungal infections. There are two kinds of fungal infections, systemic and superficial. Many drugs have been approved as systemic antifungal. A major group of these drugs are polyene antibiotics. Polyene antibiotics are produced by several different species of Streptomyces which have lactone ring (20-24 carbons). The ring contains a series of conjugated double bonds (n=3-8) which often have a glycoside residue. The polyene antibiotics connect to the cell membrane and interfere with the permeability and transport functions. These antibiotics have the advantage of making low drug resistance in fungal strains. Amphotericin B, one of the polyene antibiotics that are produced by Streptomyces nodosus, is a potent antifungal agent which has been used for over thirty years to treat serious systemic fungal infections by binding to sterols such as ergosterol in fungal cells forms a pore in the membrane and create a transmembrane ion-channel. Since all eukaryotic cells contain sterols, using amphotericin B can cause toxicity in mammalian cells, that is the most serious unwanted side effect of this drug.

In this study, we have attempted to find new antifungal compounds based on the structure and function of amphotericin B, using in silico methods. First of all, amphotericin B was set as a query molecule for the similarity search that was performed in Enhanced NCI database, Pubchem, ChemIDplus and ChemBank-Welcome by Tanimoto Index between 70-99 %. The small molecules having less complexity than amphotericin B were selected (about 20,000 molecules). Quantitative structure-activity relationship (QSAR) studies, search connections between molecular structure and physicochemical properties of compounds resulted in polyene antibiotics which form pores in the membrane. About 60 polyene molecules were found from literatures and their physicochemical properties such as (logP, H-bond acceptor, H-bond donor, rotatable bond count, topological polar surface area, etc) were stored as a datafile. The mentioned molecules helped us to form a scoring system to screen selected compounds extracted from similarity search technique. Docking of the selected compounds, as ligands, were performed with ergosterol and cholesterol, as receptors, using Hex (version 5.1, 2008). Default parameters were selected to obtain the best binding energy. A datafile of the dock obtained results and physicochemical properties of selected compounds were prepared. Using this, we selected compounds which have: 1) the best interaction energy with ergosterol in comparison to cholesterol, and 2) the physicochemical properties and molecular descriptors similar to polyene antibiotics. A target list was narrowed down. Ultimately antifungal activity of the inhaled molecules was examined on Candida albicans, Saccharomyces cerevisiae and Aspergillus niger. Several compounds demonstrated to have good antifungal activity. We applied the new method to find new bioactive compounds that have antifungal effect on membrane.

Keywords amphotericin B, similarity search, physicochemical property, interaction energy

Sensitivity analysis of Campylobacter spp. in poultry based meat preparations

P. Busschaert1, 2, A.H Geeraerd3, M. Uyttendaele4 and J.F. Van Impe1, 2

1CPMF2 – Flemish Cluster Predictive Microbiology in Foods – www.cpmf2.be
2BitoTeC – Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
3MédiUS – Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems (BIOSYST), Katholieke Universiteit Leuven, Leuven, Belgium (anneleen.geeraerd@kuleuven.be)
4Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Ghent University, Ghent, Belgium

Introduction

In quantitative microbiological risk assessment, the risk of illness associated with a certain pathogen/food type combination is estimated using predictive growth and inactivation models, models for cross-contamination, dose-response models, etc. Parameter values (or preferably their distributions) that represent the real food chain as accurately as possible are estimated to arrive at a realistic outcome. Not only the risk obtained as such from the risk assessment is useful, the created model also offers a way to infer which parameters have the greatest influence on the final risk, and hence, which strategies might be best to reduce the risk for consumers. Sensitivity analysis methods (see, e.g., Frey & Patil (2002) for a review) offer an estimation of the sensitivity of the output of a model (here, the risk of illness) in relation to the input parameters.

Material and methods

In this research, it is investigated which parameters are of major importance in risk of illness caused by Campylobacter spp. in poultry based meat preparations. To this purpose, sensitivity analysis is applied to the risk assessment published by Uyttendaele et al. (2006) with some minor modifications. Using maximum likelihood estimation for censored data (Busschaert et al., 2009), a distribution is estimated for the initial concentration of Campylobacter spp. This concentration is applied as the rate parameter of a Poisson distribution to estimate the number of cells in a single serving of 100 g. Because of the generally low concentrations, the majority of initial contaminations will contain zero cells per serving, and pose as a consequence zero risk. Therefore, the summed risk of 5103 servings given a set of parameters is considered as well. Due to the characteristics of Campylobacter, no growth is considered, and it is assumed that cooking the food product properly eliminates all cells; however, it is included in the model that undercooking might occur in a number of cases, as well as cross-contamination from the raw product to the cooked product. Because of the considerable uncertainty about the dose-response model, three different models are applied in order to assess the influence of this uncertainty on the outcome of the risk assessment. A Monte Carlo simulation with 5103 iterations is implemented. For a preliminary exploration, scatter plots, Pearson correlation coefficients and Spearman rank order correlations are investigated. Analysis of variance and Fourier Amplitude Sensitivity Test (FAST) is subsequently applied to rank the importance of parameters.

Results

Application of different methods of sensitivity analysis to this model consistently indicate that the final risk is determined in the first place by the initial concentration of Campylobacter spp. in poultry meat. The obtained result also depends to a great extent on the choice of the dose-response model; hence, further research to decrease uncertainty about the dose-response model would improve estimates of risk. The prevalence of undercooking has a significant influence on the final risk; however, it is merely a minor influence compared to the latter parameters. Moreover, the influence of prevalence of cross-contamination is not significant. This indicates that – for this particular case study – increasing the awareness of consumers of the risks posed by undercooking and cross-contamination would only have a limited effect on reducing listeriosis cases if compared to the initial contamination.

Acknowledgements

This research is supported in part by KULeuven-BOF Projects OT/09/25 and EF/05/006 OPTEC Optimization in Engineering, by the Belgian Program on Interuniversity Poles of Attraction, initiated by the Belgian Federal Science Policy Office, and by the Fund for Scientific Research – Flanders (FWO-Vlaanderen, project G.0424.09N).

Keywords quantitative microbiological risk assessment, sensitivity analysis, Campylobacter, poultry
Single Live-Bacterial Cell Assay of Promoter Activity and Regulation: Escherichia coli gcl promoter

Jun Teramoto1, Yoko Yamanishi1, El-Shimy H. Magdy1, Akiko Hasegawa1, Masahiro Nakajima1, Fumihiro Arai2, Toshio Fukuda3 and Akira Ishihama1,*

1Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 2Tohoku University, Department of Bioengineering and Robotics, Sendai, and 3Nagoya University, Department of Micro-Nano Systems, Nagoya, Japan
* Corresponding author: aishiham@hosei.ac.jp

In the early stage of molecular biology, bacteria such as the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis have been used as model organisms relying on the belief that bacterial cells are homogenous in populations. Recently, however, we realized that bacterial population is heterogeneous, each cell playing a different role for population survival. Previously we indicated that laboratory cultures of E. coli contain various cell types, each differing in cell shape, physical properties such as buoyant density, and molecular composition (1,2). Such variation in cell populations may be arisen from the fluctuation in the cell age, during transition from exponential growth to stationary phase, or from the differentiation into various cell fates under stressful conditions. These findings altogether raised a criticism over the established concept of the regulation of E. coli gene expression because the data of experiments so far performed represent the average of a number of cells with different patterns of the genome expression. Our effort has since been focused on the development of experimental systems to analyze the promoter activity and the genome regulation within a single bacterial cell.

For solving these questions, we constructed various types of the cell chip for immobilization of portions of cell culture. We have analyzed the strength and regulation of the promoter of E. coli gcl gene encoding glyoxylate carboligase using developed the cell chip. The gcl gene is organized as the first gene in a large operon for reutilization of allantoin, an intermediate metabolite of purine degradation, and is under the control of transcription factor AllR. Previously we identified that antagonistic effectors, allantoin and glyoxylate, are involved in regulation of the gcl promoter (3). Thus this is a good model system to examine the single live-bacterial cell assay to measure the promoter activity and regulation. For this purpose, we have constructed a two-fluorescent reporter plasmid for assay of the gcl promoter strength (4). After immobilization of portion of E. coli culture within the newly constructed cell chips, we followed the GFP intensity in the presence and absence of glyoxylate for prolonged time period. In parallel, we also analyzed the promoter regulation in random cultures using FACS flow cytometry, and measured the fluctuation level of promoter strength among a single population in random culture. Here, we report the real-time single-cell assay and the fluctuation level of the promoter strength within a single and same culture.

Keywords: single cell; cell chip; promoter assay; gcl promoter, Escherichia coli

The MiST2 database: a genomics resource on microbial signal transduction

Luke E. Ulrich1,2, and Igor B. Zhulin2,3
1 Agile Genomics LLC, Mount Pleasant, South Carolina 29466 USA
2 Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996 USA
3 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge 37886 USA

Signal transduction systems regulate the majority of cellular activities including the metabolism, development, host-recognition, biofilm production, and so on. Thus, knowledge of the proteins and interactions that comprise these communication networks is an essential component to furthering biological discovery. The MiST2 database identifies and catalogs the repertoire of signal transduction proteins in microbial genomes. These are identified by searching protein sequences for specific domain profiles that implicate a protein in signal transduction. Compared to the previous version of the database, MiST2 contains a host of new features and improvements including the following: draft genomes; extracytoplasmic function (ECF) sigma factor protein identification; enhanced classification of signaling proteins; novel, high-quality domain models for identifying histidine kinases and response regulators; neighboring two-component genes; gene cart; better search capabilities; enhanced taxonomy browser; advanced genome browser; and a modern, biologist-friendly web interface. MiST2 currently contains 966 complete and 69 draft bacterial and archaeal genomes, which collectively contain nearly 230,000 signal transduction proteins. The majority (65%) of these are one-component systems, followed by two-component proteins (25%), chemotaxis (6%), and finally ECF factors (3%). MiST2 is updated monthly and is freely available for academic research at http://mistdb.com.

Keywords database; signal transduction; gene regulation

Theoretical design study for new β-lactamase inhibitors

Ana C. Granato 1; Marlei Barboza 1; Milan Trsic 1
1 Departamento de Engenharia Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luiz km 235, 13565-905 Sao Carlos, SP, Brazil.

Clavulanic acid (CA, Figure) is produced by Streptomyces clavuligerus and was reported for the first time by Brown and coworkers. CA is a β-lactam compound that consists of a β-lactam ring condensed to an oxazolidin ring, it has a basic clavam structure and a 2R, 5R characteristic stereochemistry, which is essential for biological activity. CA is a strong inhibitor of β-lactamase enzymes produced by penicillins/cephalosporin-resistant bacteria. CA inhibits most class A β-lactamases, has low activity against class C cephalosporinases and is inactive against class B Zn2+ metalloenzymes.

There are also two other β-lactamase inhibitors in clinical use: Tazobactam (T, Figure) and Sulbactam (S, Figure), which are of synthetic origin. Both are structurally similar, Tazobactam has a triazol group substituent on the five membered ring, while on Sulbactam there is a β-methyl group.

The combination of CA and amoxicillin is the most successful example of a formulation containing a β-lactamase inhibitor and a broad spectrum β-lactam antibiotic. This formulation is available in Europe as Augentin® (DSM Anti Infectives – Delft, Holland) and in Brazil as Clavulin® (Smith-Kline-Beecham Laboratory – Rio de Janeiro). In addition there are other formulations such as Timentin, which combines CA and ticarcillin. Tazobactam and Sulbactam also can be found in a commercial formulation available as Utayn (ampicillin/sulbactam) and Zovyn (piperacillin/tazobactam), respectively.

The main purpose of this study is to evaluate the molecular and electronic properties of various proposed β-lactamase inhibitors which structure search pains was based on the structures of Clavulanic Acid, Tazobactam and Sulbactam, the β-lactamase inhibitors in clinical use. The modified structures were optimized by a Quantum Chemical ab initio method to calculate the chemical and molecular properties of the compounds, by applying hierarchical methodology for the geometry optimization. Further, various indicators of interest were evaluated with the ab initio HF method implemented with Pople's basis set 6-31G (d,p), the calculations were performed with the GAUSSIAN 03 program. The properties evaluated were the energies of frontier molecular orbitals (εHOMO and εLUMO), the GAP HOMO-LUMO, molecular hardness (η) and hyperpolarizability (β).

The Quantum Chemical properties calculated indicate that some of the proposed structures analyzed may potentially improve the biological activity. These structures may be interesting synthetic alternatives to test as β-lactamase inhibitors.

Keywords β-lactamase inhibitor, structural modification, frontier molecular orbital, GAP, molecular hardness, hyperpolarizability.
Two-dimensional toxicological screening by massive parallel microcultivation in nanoliter fluid segment sequences

Anette Funfak1, Jialan Cao1 and J. Michael Köhler1

1Techn. Univ. Ilmenau, Inst. f. Micro and Nanotechnologies, Dept. of Phys. Chem. and Microreaction Technol., Weimarer Str. 32, D-98693 Ilmenau, Germany

The technique of micro segmented flow [1-3] was applied for the determination of high-resolved two-dimensional dose-response relations for microorganisms. Therefore, cell suspensions were automatically aliquoted in about 400 to 500 single cultivation volumes of 0.5 μL volume separated by a water-immiscible inert liquid. Two-dimensional concentration spaces of effectors were realized by stepwise varied dosing in two injection channels by the application of PC-controlled syringe pumps. The quality control of fluid segments was realized by automated optical size and distance measurements. The addressing of the single points in the concentration space was checked by application of non-toxic dyes and microphotometric measurements of the single fluid segments. Micro flow-through photometers and a micro flow-through fluorometer were applied for the determination of cell density, endogeneous autofluorescence and pH.

E. coli, Saccharomyces cerevisiae and Chlorella vulgaris were chosen as model organisms for the microtoxicological studies. Their growth behaviour and physiological activity were monitored [4] by micro-turbidometric measurements (cell density) and by fluorescence measurements. The effects of dinitrophenol, dichlorophenol, gold nanoparticles and silver nanoparticles and combinations of them were investigated.

Unraveling hyphal heterogeneity in Aspergillus niger by genome-wide expression analysis of single hyphae

Charissa de Bekker, Arman Vinck, Han A.B. Wösten

Microbiology and Khyver Centre for Genomics of Industrial Fermentations, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Mycelial fungi use the hyphae growing at their apices to colonize a substrate. These hyphae secrete enzymes that convert complex polymers into small molecules that can be taken up by the fungus to serve as nutrients. Previously it has been shown that proteins are only secreted by the limited number of growing hyphae within the mycelium. Over and above this, not every growing hypha secretes a particular protein. For instance, glucoamylase is secreted by growing hyphae at the periphery of a colony of Aspergillus niger but not by the growing hyphae in the central zone. This zonal heterogeneity can be explained by the availability of carbon source and, to a similar extent, by medium independent mechanisms. Subsequently, using GFP as a reporter, it has been shown that exploring hyphae at the periphery of A. niger are also heterogenic with respect to enzyme secretion; some hyphae strongly express the glucoamylase gene glaA, while others express this gene lowly. This was a surprising finding considering the fact that all hyphae were exposed to the same nutritional conditions. Apparently, a vegetative mycelium is more complex than generally assumed.

To establish whether hyphae differentiate into for instance secreting and non-secreting hyphae or whether several secretory types co-exist we want to perform a genome-wide expression analysis of hyphae highly and lowly expressing glaA. To this end, RNA will be extracted and amplified from both types of hyphae. We have set up protocols to collect the different hyphae by laser dissection using P.A.L.M. and to isolate RNA from 1-100 hyphae. QPCR has shown that we are able to extract RNA from even a single hypha. We have now started to amplify RNA to obtain sufficient amounts for hybridizations of whole genome arrays. Analyzing these arrays will help us unravel the mechanism behind hyphal heterogeneity.

Keywords: single cell analysis, heterogeneity, Aspergillus niger

This research is supported by the Dutch Technology Foundation STW, applied science division of NWO and the Technology Program of the Ministry of Economic Affairs.

References:
Validation of serological test for diagnosing *Helicobacter pylori* infection in dyspeptic *H. pylori* culture positive children in Georgia

NNalli Ninalishvili; Neli Chakvetadze; Merab Siharulidze; Marina Chubinidze; Lile Malania; Nato Abazashvili; Paata Imnadze

National Center for Disease Control and Public Health, 9 M. Aautiani str. Tbilisi, 0177, Georgia.

Background: Serological tests for diagnosing *Helicobacter pylori* (*H. pylori*) infection are commonly employed but they vary in different population and require local validation. A pilot study conducted in Georgia in 2003 showed high prevalence (72%) of *H. pylori* in adult population ≥18, measured by a validated, point-of-care 13 C-urea breath test (Meretec Corporation, Lafayette, CO, USA). The study was aimed to determine sensitivity and specificity of ELISA test in dyspeptic subjects with positive microbiological culture results for *H. pylori*.

Methods: 132 dyspeptic previously untreated subjects aged 3-17 were selected randomly from a population survey. *H. pylori* was isolated from feces by bacteriological gold standard method. Blood samples were analyzed using Emory University (USA) experimental laboratory enzyme-linked immunosorbent assay (ELISA). Validity of the serological test was calculated with 95% CI.

Results: Of 132 subjects 41 (31.1%) were *H. pylori* microbiological culture positives. ELISA positive rate was 57.6%. A few subjects (8.3%) showed indeterminate results. The sensitivity and specificity of laboratory ELISA were 87.8.4% and 56% respectively. PPV composed 46.7% and NPV - 89.5%. Accuracy of the test was determined as 65.9%.

Conclusion: ELISA test results showed high sensitivity for *H. pylori* in children. As for specificity, on one hand, indeterminate results may impaired the study results in general and specificity of the test, in particular that should be considered in clinical appraisal, on the other hand. ELISA test results may be related to the geographical variations of the circulated *H. pylori* strains that itself requires further study and perhaps the development of ELISA test-kit using native strains.

Viscosity assessment in yeast vacuoles by Brownian motion of polyphosphate complexes

Evgeny Puchkov

Scyabin Institute of Biochemistry and Physiology of Microorganisms, RAS, 142290, Pushchino, Russia

In the vacuoles of the cells of the yeast Saccharomyces cerevisiae, at some cultivation conditions, optically dense vividly moving particles of approx. 0.5/g41m size may appear. For their movement they were called “dancing bodies”. “Dancing bodies” were shown to be insoluble polyphosphate complexes (IPC). How and why they are moving is not known, although it was suggested to be Brownian motion. If it is proven to be Brownian motion, it must obey the Einstein-Smoluchowski equation, which for two-dimentional movement is the following:

\[
<s^2> = 4\eta/3\mu T \frac{t}{D},
\]

where \(s^2 \) = the average of the square of displacement; \(\eta \) = the Boltzmann constant; \(T \) = the thermodynamic temperature; \(t \) = the elapsed time; \(\eta \) = the viscosity; \(D \) = the diameter of the particle.

A peculiar feature of the “dancing bodies” is that, upon staining of the cells by 4',6-diamidino-2-phenylindole (DAPI), a fluorescent dye for nucleic acids, they have a bright yellow fluorescent color (\(\lambda_{	ext{max}} = 526\text{nm} \) while nuclei and mitochondria fluoresce blue (\(\lambda_{	ext{max}} = 456\text{nm} \)). That makes IPC convenient to observe and to study by fluorescence microscopy.

The aim of this work was to quantitatively characterize by fluorescence microscopy the IPC movement in the vacuoles of the *S. cerevisiae* cells and to evaluate the viscosity in the vacuoles using the obtained data.

Along with the *S. cerevisiae* cells, fluoresceinisothiocyanate (FITC)-labeled latex microspheres of 2.1µm and 3.1µm diameter in water were also used in this study as a model system. Locations and displacements of the IPC and of the microspheres were determined on fluorescence microscopy images obtained by series of 8 shots at 0.43sec intervals by a Sony DSC-V3 digital camera. The images were analysed in retrospect using ImageJ, a computer image analysis software (National Institute of Health, USA).

The records of the IPC locations in the cells have shown that their movements were random/chaotic. So, the IPC “dancing” was Brownian motion indeed. Because the IPC movements were in the 3-D space, their fluorescence intensities changed or even vanished as they went out of the objective lense focal plane. This posed a problem in measurement of their 2-D displacements. On FITC-labeled latex microspheres a criterion for measuring the 2-D displacements of the fluorescing particles was developed. According to it, only the displacements for the particles, whose fluorescence intensities in a series deviated from the maximal no more than 15%, could be used for viscosity assessment by equation (1). Also, on microspheres, a method of the particle size determination by its fluorescence profile measurements was developed.

For four yeast cells, the sizes and the average displacements of their IPC were determined using methodology developed on latex microspheres. The viscosity values in the vacuoles of the four cells, as assessed using these data and the equation (1), was found to be of (in cP): 2.16 ± 0.60; 2.52 ± 0.63; 3.32 ± 0.9; 11.3 ± 1.7. The first three viscosity values correspond to the viscosities of the 30 - 40% glycerol solutions. The viscosity value of 11.3 ± 1.7 cP could be an overestimation caused by the restrictions of the IPC movements due to the peculiarities of the vacuole structure and volume in this particular cell. This conclusion was supported by the comparative analysis of the Brownian motion trajectories in the cells.

CONCLUSIONS

1. A new approach has been developed for assessing the intracellular Brownian movement characteristics and for the size determination of the fluorescing particles using fluorescence microscopy combined with computer image analysis.

2. Evaluation of the viscosity in the vacuoles of the *S. cerevisiae* cells using the developed methodology for IPC gave the values corresponding to the viscosities of the 30 - 40% glycerol solutions.

Keywords yeast; Brownian motion; vacuolar viscosity; polyphosphate; fluorescence microscopy; computer image analysis
Activity of Fluoroquinolones on *Staphylococcus aureus* and *S. saprophyticus* strains: Post-antibiotic Effect (PAE)

G. M. Campos-Takaki

Núcleo de Pesquisas em Ciências Ambientais, Universidade Católica de Pernambuco
Rua do Príncipe, 526 - 50050-900 Recife, PE, Brasil. galu_takaki@yahoo.com.br

Gram-positive cocci are important causes of infection both in the community and in the hospital, with repercussions on mortality and increased economic costs. The treatment of these infections is made difficult by the increasing emergence of multi-resistant organisms, primarily among Gram-positive cocci, such as methicillin-resistant. The activity *in vitro* of pefloxacin, ofloxacin, ciprofloxacin and norfloxacin against twenty eight clinical strains of *Staphylococcus aureus* and five strains of *S. saprophyticus*, respectively. The minimum inhibitory concentration (MIC) and postantibiotic effect (PAE) of pefloxacin, ofloxacin, norfloxacin and ciprofloxacin were evaluated in vitro against all strains of *S. aureus* and *S. saprophyticus*. All strains of *S. aureus* tested were susceptible to fluoroquinolones (42.85% to 64.28%), against norfloxacin and ofloxacin, respectively. The major resistance was observed to ciprofloxacin (32.14%), followed to norfloxacin (28.57%), ofloxacin (21.42%), and pefloxacin (17.87%). However, the strains of *S. saprophyticus* showed susceptibility to ciprofloxacin (60.00%), and similar results to norfloxacin, ofloxacin, and pefloxacin (40.00%). And was observed major the resistance to norfloxacin (40.00%), and similar results to pefloxacin and ciprofloxacin (20.00%), and no resistance to ofloxacin. The minimum inhibitory concentrations (MIC) was evaluated and indicated those strains are sensitive to fluoroquinolones (0.125 to 1.0 mg/L).

The bactericidal effect of fluoroquinolones was observed 0.25 to 2.0 mg/L for all strains of *S. aureus* and *S. saprophyticus*. The exposition to fluoroquinolones showed a great reduction of the maximum velocity (μMax-1) of growth of the bacteria, in special to ofloxacin and ciprofloxacin, after 2h of contact with the antibiotics. The PAE was studied in 6 strains by exposure of bacteria to pefloxacin, norfloxacin, ofloxacin and ciprofloxacin at 8 times minimum inhibitory concentration (MIC) for 2 h. Regrowth was determined by measuring the viable counts after drug removal by a 103 dilution procedure. PAEs increased as a function of concentration and exposure time. The mean duration of PAEs varied between 1.7 and 2.1h, showing the following order: ofloxacin>pefloxacin>ciprofloxacin>norfloxacin. These results are encouraging since fluoroquinolones have a possible role in the clinical treatment of *S. aureus* and *S. saprophyticus* infections, and the strong PAE caused by quinolones may contribute to the *in vivo* efficacy of these drugs. Those results explained the mechanisms of resistance of the antibiotics against *Staphylococcus* strains.

Key words: Fluoroquinolones, *Staphylococcus aureus*, *S. saprophyticus*, Effect Post-antibiotic.

Supported by CNPq, CAPES and FACEPE.

An efficient molecular typing assay for *Alternaria* spp. isolates

A. Lança1*, I. Almeida2, H. M. Martins3, F. Bernardo1, M. Guerra1, J. Inácio3 and M. L. Martins4

1 CIISA, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
2 Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologia, Campo Grande 376, 1749-024 Lisboa, Portugal
3 Laboratório Nacional de Investigação Veterinária, Instituto Nacional de Recursos Biológicos, I.P., Estrada de Benfica 701, 1549-011 Lisboa, Portugal
4 Laboratório de Micologia, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 96, 1349-008 Lisboa, Portugal

Fungi are ubiquitous in the environment and are frequently isolated from household dust, soil, and decaying vegetable matter, including food and feed. Likewise, on animal mycological diagnosis, it is often observed that the detection of the relevant pathogens is disturbed by the faster development of many saprophytic contaminant fungi, such as *Cladosporium* and *Aspergillus* species, among others.

In previous studies, more than 1500 skin scrapings and hair samples obtained from dogs, cats and seals with skin lesions, were subjected to dermatophytes culture-dependent diagnosis. Concomitantly, the biological samples were also examined for the presence of saprophytic fungi. It is noteworthy that more than two thirds of the samples revealed the presence of known saprophytic contaminant fungi, being the *Alternaria* genus one of the most often found.

The genus *Alternaria* includes nearly 100 species of dematiaceous hyphomycetes that occur worldwide in a variety of habitats. Characteristics of the genus included the production of chains of dark-coloured multicelled conidia with longitudinal and transverse septa and a beak or tapering apical cells. Within the genus *Alternaria*, species are defined primarily upon conidium characteristics, among other sometimes ambiguous micromorphological features, leading to some confusion surrounding the conventional taxonomy of these fungi and definition of clear species and groups inside the genus.

We have been investigating molecular-based approaches for the fast and effective typing and identification of *Alternaria* spp. isolates. In this work we optimized a PCR typing assay for these fungi using 13 isolates from dogs, 13 isolates from cats and 9 isolates from seals. The assay is based on the amplification of polymorphic regions of genomic DNA using the microsatellite primer (GACA). This technique provides a fast, reliable and reproducible measure of genetic relatedness among closely related taxa and is especially useful as a first approach to species delineation in studies that involve large numbers of strains. Usually, conspecific strains display DNA banding patterns (fingerprints) with high overall similarity and give rise to well-defined clusters in dendrograms based on numerical analysis. Further taxonomic decisions on species boundaries must be normally based on selected gene sequencing of representative strains from each cluster of the microsatellite-PCR dendrogram.

Keywords: *Alternaria*, molecular typing.

Supported by CNPq, CAPES and FACEPE.
Anatomopathological and mycological findings in two wild seagulls (Larus sp) infected with Aspergillus fumigatus

Martins, H.M.1, Carvalho, P.1, Mendonça, P.1 and Monteiro, M.1
1INRB, I.P. Laboratório Nacional de Investigação Veterinária, Estrada de Benfica, 701-1549-011, Lisboa, Portugal

Brooder pneumonia, “asper” mycosis or mycotic pneumonia, is a respiratory tract infection caused by fungi of the genus Aspergillus. Aspergillus fumigatus is the primary responsible for infections in wild birds with a compromised immune system. Predisposing factors such as migratory stress, malnutrition and primary infectious disease may play a role in the onset of the disease. In winter 2008, two seagulls (Larus spp) were found dead showing lesions of granulomatous pneumonia and thickening of the air sacs mainly due to the presence of grey coalescing plaques. Tissue samples were collected for histopathological and mycological analysis. Histopathological lesions were suggestive of severe pulmonary aspergillosis. Isolates of A. fumigatus were identified by cultural, morphological and microscopic characterization. This is the first reference of an Aspergillosis associated mortality in seagulls inhabitants of the Portugal coast.

Keywords: Aspergillosis, Aspergillus fumigatus, Seagull (Larus spp).

Anti-herpes simplex virus activity of a medicinal plant

J. Nikomtat1,2, Y. Tragoolpua3, and A. K. Angeletti1
1Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68583-0900, USA
2Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, 50200, THAILAND
3Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, THAILAND

A Thai medicinal plant, Drymaria diandra, extracted with dichloromethane (DD) and methanol (DM) was used to investigate the presence of antiviral activity against herpes simplex virus type 1 (HSV-1) in Green Monkey Kidney (GMK) or Vero cells. Cytotoxicity tests performed by the MTT assay revealed that CD50 values of the DD and DM extracts were 90±2 and 631±32 μg/ml, respectively. In all experiments, non-toxic concentrations of the plant extracts were used to test the inhibitory effect on various steps of HSV-1 life cycle. By plaque reduction assay, HSV-1 replication was inhibited by the DD and DM extracts with the 50% effective dose (ED50) of 21±4 and 47±13 μg/ml, respectively. The DM extract inhibited HSV-1 attachment and penetration, and protein synthesis, better than the DD extract. Slot blot hybridization revealed an inhibition of about 30% of HSV-1 DNA replication by the DD extract, whereas the DM extract showed about 60% inhibition. Western blots with anti-HSV-1 polyclonal antibody showed that both DD and DM extracts had an inhibitory effect on many HSV-1 proteins, particularly those at 45-47 kDa molecular weight. The HSV-1 UL41-encoded virion host shutoff (vhs) protein, is responsible for massive degradation of mRNAs shortly after infection. However, Northern blot analysis showed that vhs RNase activity was only modestly affected by the plant extracts. Interestingly, after infected cells were treated with either DD or DM extract, real-time PCR of reverse-transcribed HSV-1 DNA polymerase (UL30) transcripts demonstrated a dramatic reduction in the pol transcript to about 1-2% of the control. UL30 and its processivity subunit UL42 are both required for HSV-1 replication. Western blot analysis showed that the DM extract, but not the DD extract, had an inhibitory effect on the UL42 protein. In infected cells, the HSV-1 ICP0 activates transcription of many viral and cellular genes, and is essential for reactivation of latency and viral replication. In contrast, Western blot analysis showed that the DM extract, but not the DD extract, had inhibitory effect on the ICP0 protein. Our results demonstrate that the D. diandra extracts have specific inhibitory effects on multiple steps in HSV life cycle, most dramatically upon replication. Our recent findings suggest that a number of alkaloid and flavonoid compounds may be involved. We believe these molecules represent a new class of anti-HSV drugs.

Keywords herpes simplex virus; anti-viral; plant
Antibiotics processed by Supercritical Fluids: antibacterial activity assessment

L. Pinheiro1, A. Bettencourt1, A. Matos1, K. Bettencourt1, H. A. Matos1, M. A. Rodrigues2, L. Padrela2, J. Monteiro1, A. J. Almeida3, M. Castro4, and A. Duarte2

1MedUL – Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
2Department of Chemical and Biological Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
3Faculty of Medicine, Orthopaedic Department, University of Lisbon, Av. Prof. Gama Pinto, 1600-083 Lisbon, Portugal

The design of pharmaceutical preparations in micro- and nanoparticulate forms has emerged as an innovative strategy to control and modify the release of drug formulations, offering an effective way to increase its bioavailability, efficacy and specificity. Methodologies based on Supercritical Fluids (SCF) features advantages in terms of experimental versatility, environment protection and peculiar processing conditions. An example of improved drug characteristics through SCF expertise can be offered by sustained and controlled release of antibiotics entrapped in polymeric micro- and nanoparticles of various formulations.

Although some authors have reported the processing of antibiotics by supercritical fluids, the impact of supercritical conditions on the bioactivity of antibiotics has not been addressed yet. In this work, we report the antibacterial activity of antibiotics processed using potentially harsh supercritical fluid conditions. The antibiotics were exposed to Supercritical Carbon Dioxide (SC-CO2) at 40°C covering two pressure values (80 and 120 bar) at several exposure times (4h, 24h, 48h). Three antibiotics were also processed into nanoparticles by intense atomization using Supercritical Enhanced Atomization (SEA). The influence of different preparation parameters (supercritical fluid, pressure, temperature, exposure time) on antibiotics integrity and microbiological stability was carried out. The antibiotics evaluated in plain form were nalidixic acid, cefaclor, cefazidime, ceftriaxone, tobramycin, streptomycin, erythromycin, tigecycline, vancomycin and minocycline. The antibiotics processed into nanoparticle form were tobramycin, vancomycin and minocycline. The antibacterial activity was performed by the Mueller-Hinton agar diffusion method against a collection of reference antibiotic-susceptible isolates Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29243 and resistant clinical isolates. These isolates are nosocomial strains, identified from different Portuguese hospitals and producing multiresistant mechanisms, namely: Klebsiella pneumoniae producing CTX-M-15 beta lactamase; Pseudomonas aeruginosa producing a metallo beta lactamase IMP-5; Escherichia coli with a class 1 integron carrying the βlCTX-M-9 gene; Acinetobacter baumannii, the European clone II, producing an oxacillinase OXA-40 and meticillin resistant Staphylococcus aureus (MRSA).

The results have evidenced the preservation of the antimicrobial characteristics for all studied antibiotics, a crucial property for further technological development and clinical application, which could attest the use of the supercritical methodology to process the mentioned nanoparticles.

Keywords: multidrug resistance; supercritical fluids; nanoparticles.

Antimicrobial activity of *Thymus vulgaris*, *Matricaria chamomilla*, *Croton lechleri*, *Caléndula officinalis* L., *Julliana adstringens* Schl. against periodontopathogens microorganisms

A. Rodríguez García1; L.J. Galán Wong1; K. Árrevalo Nino1

1Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Monterrey, Nuevo León, México

Periodontal disease is a chronic inflammatory disease of the periodontium that leads to erosion of the attachment apparatus and supporting bone for teeth and is one of the most frequently occurring infectious diseases in humans. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans (formerly Actinobacillus actinomycetemcomitans), are the principal microorganisms implicated in the process.

Due to the increased drug resistance and the secondary effects of some antibiotics and mouthwashes like chlorhexidine, used in the treatment of periodontitis, justify the use of natural sources like the plant extracts as other alternative of dental treatment.

Aqueous extracts from various plants are used in Mexican traditional medicine on some microorganisms associated with different infections.

The antimicrobial properties of *Thymus vulgaris* (Tomillo), *Matricaria chamomilla* (Manzanilla), *Croton lechleri* (Sangre de Drago), *Caléndula officinalis* L. (Caléndula), *Julliana adstringens* Schl (Cuachalalate) were evaluated in vitro against *Porphyromonas gingivalis* ATCC 33277 and *Aggregatibacter actinomycetemcomitans* ATCC 43718.

Minimum inhibitory concentrations (MIC) is the lowest concentration of extracts to inhibit the growth of microorganisms. Minimum bactericidal concentrations (MBC) is the lowest concentration of a drug that results in more than 99.9% killing of the bacteria being tested. MIC for each extract was determined by the microdilution method with dilutions ranging from 0.4% to 50%. Minimal Bactericide Concentration (MBC) was determined by agar diffusion and evaluated by absence of microorganisms on plate agar after incubation for 24h at 37°C. Our results showed that *Julliana adstringens* Schl exhibited strong bactericidal activity against *P. gingivalis* and *A. actinomycetemcomitans* at a concentration of 37 mg/ml followed by *Thymus vulgaris* at a concentration of 62.5 mg/ml. *Matricaria chamomilla* and *Caléndula officinalis* L. need higher concentrations (250 mg/ml.)

The five extracts inhibited the growth of bacteria at concentrations ranging from 37 mg/ml to 250 mg/ml.

Keywords: *Thymus vulgaris*, *Matricaria chamomilla*, *Croton lechleri*, *Caléndula officinalis* L., *Julliana adstringens* Schl., antimicrobial activity.
Assessment of mutagenic and carcinogenic of PTFE (Ames test)

Sheida Eslami Pirharati1, Sedighe Mehrabian2, Mahdi Rahnama1
1Department of microbiology, Faculty of basic and medical science, Islamic Azad University Zanjan branch
2Department of biology, Faculty of science, Tarbiat Moalem University

Introduction and objectives: The high quality and sanity of ingredients as well as what we use daily are very important. The necessity of analysis the polytetrafluoroethylene composition, led us to start this research. The present study, therefore, aims to evaluate mutagenicity and carcinogenicity effect of the compositions.

Material and Methods: The method is based on Ames test applying Salmonella typhimurium strains TA100, TA98 which received directly from Professor Ames. In the first stage, these strains for property purity of mutation were confirmed. Then, polytetrafluoroethylene compositions have been added separately to minimal agar medium contain fresh overnight culture (TA100, TA98) and compared to positive control (index of mutagen sodium azide and bacteria) and negative control (index of distilled water and bacteria). In the other stage rat liver tissues microsomes produced under sterile condition had been added separately to minimal agar medium with polytetrafluoroethylene compositions and it was measured the effect of the carcinogen material and bacteria status affected by reverse mutation and histidin produced.

Results: There was a specific mutation in the histidine synthesis gene that made these strains (TA100, TA98) become an external source of histidine for theirs growth. These strains upon exposure to an external mutagen undergo a reverse mutation in theirs mutated histidine synthesis operon and these strains then can grow in a histidine free medium. In this research considering to colony numbers and comparison with negative control index containing several colonies produced by spontaneous mutation approved materials mutagenicity and compared.

Conclusion: This critical case makes us have more care and control on the mechanism of polytetrafluoroethylene compositions production and use.

Key word: PTFE, Ames test, TA100, TA98

Beneficial effects of HIV peptidase inhibitors on Fonsecaea pedrosoi: promising compounds to arrest key fungal biological processes and virulence

A. L. S. Sant'1, L. F. Kneipp2, S. Rozental2, C. S. Alviano3 and V. F. Palmeira1,4
1 Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Centro de Ciências da Saúde (CCS), Bloco E-subsolo, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Iba do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
2 Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, RJ, Brazil
3 Laboratório de Biologia Celular de Fungos, Instituto de Biosciências Carlos Chagas Filho (IBCCF), CCS, UFRJ, RJ, Brazil
4 Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, IMPPG, CCS, UFRJ, RJ, Brazil

Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Chromoblastomycosis is a chronic, suppurrative and progressive mycosis of the skin and subcutaneous tissues. Chromoblastomycosis lesions are recalcitrant and extremely difficult to eradicate. Chemotherapy, surgical excision and/or cryosurgery have been used throughout the years, but an effective treatment for chromoblastomycosis has not yet been established. Current therapy for chromoblastomycosis is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the fact that endemic countries and regions are economically poor. Consequently, the search for new anti-F. pedrosoi targets and anti-F. pedrosoi strategies is a critical task. In this sense, proteolytic enzymes are considered potential molecules for development of new antifungal agents. Peptidases participate in several physiological and pathological processes in different cell types. In pathogenic fungi, this class of hydrolytic enzymes directly acts in different steps of the microorganism-host interplay, being considered as virulence factor. Considering all these facts together, we have conducted a study to investigate the direct effect of four different human immunodeficiency virus (HIV) peptidase inhibitors (PIs) (indinavir, saquinavir, ritonavir and nelfinavir), commonly used in highly active anti-retroviral therapy (HAART), on the F. pedrosoi conidial secreted aspartyl peptidase activity, growth ability, ultrastructure and interaction of this human pathogen with distinct animal cell lineages in vitro. The possible synergistic effect between PI and antifungal compounds was also available. All the HIV-PIs impaired the acidic conidial-derived peptidase activity in a dose-dependent fashion, in which nelfinavir produced the best inhibitory effect. F. pedrosoi growth was also significantly reduced upon exposure to HIV-PIs, especially nelfinavir and saquinavir. HIV-PIs treatment caused profound changes in the conidial ultrastructure as shown by transmission electron microscopy, including invaginations in the cytoplasmic membrane and withdrawal of the cytoplasmic membrane from within the cell wall, disorder and detachment of the cell wall, enlargement of fungi cytoplasmic vacuoles, and abnormal cell division. The synergistic action on growth ability between nelfinavir and amphotericin B, when both were used at sub-inhibitory concentrations, was also observed. HIV-PIs reduced the adhesion and endocytic indexes during the interaction between conidia and epithelial cells (CHO), fibroblasts or macrophages, in a cell type-dependent manner. Moreover, HIV-PIs interfered with the conidia into mycelia transformation when in contact with CHO and with the susceptibility killing by macrophage cells. Overall, by providing the first evidence that HIV-PIs directly affects F. pedrosoi development and virulence, these data add new insights on the wide-spectrum efficacy of HIV-PIs, further arguing for the potential chemotherapeutic targets for aspartyl-type peptidase produced by this human fungal pathogen.

Financial Support: CNPq, FAPERJ, CAPES and FUJB
Keywords Fonsecaea pedrosoi; chromoblastomycosis; secreted aspartic peptidase; HIV aspartyl peptidase inhibitors
Capsular Types of *Haemophilus influenzae* Isolated from CSF of Children with Meningitis and Pneumonia, in Iran

Naheed Mojgani*, Mohammad Rahbar, Morteza Taqizadeh, Mehdi Parveen Ashtiani* and Mona Mohammadzadeh

*Biotechnology Dept, Razi Vaccine & Serum Research Institute and Microbiology Dept, Milad Hospital, Tehran, IR Iran

The *Haemophilus influenzae* (Hi) isolates were isolated from CSF of children with meningitis and pneumonia like symptoms admitted to Tehran hospitals. The capsule genes of Hi were analyzed and compared with serologic capsule typing. The isolates were tested for their X and V factor requirement, catalase test, Quellung reaction, and biotyped, serotyped by slide agglutination serotyping (SAST). Based on these tests, seventy five invasive Hi species were isolated and identified from 102 serum and CSF samples of children below 5 years of age. The Hi isolates were then evaluated using PCR capsule typing using primers specific for the types a-f cap genes and bexA genes. Discrepancies were found between SAST and PCR capsule typing and three of the samples appearing negative by cultural reactions were tested positive by PCR. Moreover, 14 isolates appearing encapsulated by SAST were NTHi by PCR, 7 NTHi by SAST were encapsulated by PCR, 5 encapsulated by SAST were a different capsule type by PCR and 2 encapsulated by SAST were capsule-deficient Hib variants (Hib-minus). Overall, the results of SAST and PCR capsule typing for twenty eight of (37%) isolates were not in accordance. The sensitivity, specificity, and accuracy index of PCR capsule typing was 100%, 90.2% and 97% respectively. In conclusion, the study showed PCR capsule typing to be more accurate, rapid and sensitive for diagnosis of Hi from clinical samples.

Keywords: *H. influenzae*, encapsulated, nontypeable, serotyping, capsule typing.

Chemical and pharmacological study of Brazilian marine *Streptomyces*.

Ana C. Granato¹; Luis H. Romano¹; Regiane P. Ratti¹; Jaína H.L. Oliveira¹; Isara L.C. Hernandez¹; Raquel C. Montenegro¹; Marlei Barbosa¹; Cristina P. Soma¹; Milan Trsic³; Carlos O. Hokka¹

¹Grupo de Bioquímica, Departamento de Engenharia Química, Universidade Federal de São Carlos, CP 13565-905, São Carlos-SP, Brazil
²Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, CP 13565-905, São Carlos-SP, Brazil
³Laboratório de Oncologia Experimental e Instituto de Ciências do Mar, Universidade Federal do Ceará, CP 60438-270, Fortaleza - CE, Brazil
⁴Grupo de Química Quântica, Instituto de Química de São Carlos, Universidade de São Paulo, CP 13569-970, São Carlos-SP, Brazil

Natural Products Chemistry has resulted in the discovery of hitherto unknown organic compounds; many of them have been used in pigments, insecticides, drugs, etc. Studies of plants and terrestrial microorganisms have been shown to be extremely important as they generate many economically important organic compounds. For example, 25% of the anticancer drugs in clinical use and approximately 25% of semi-synthetic drugs are derived from natural products. The main goal of this work was to present the chemical and pharmacological study of the marine microorganisms *Streptomyces acrymicini* and *Streptomyces cebimarensis* collected in São Sebastião, north coast of São Paulo state, Brazil. The growth broth was centrifuged to eliminate the cells and the “cell free” solution was extracted with ethyl acetate and butanol, obtaining three crude extracts for each microorganism. The organic extracts obtained were tested in cytotoxic and antitumor bioassays using SF-295 (Central Nervous System) and HCT-8 (Colon) strains (using the MTT method), and also antibacterial and antifungal tests. The crude extracts were separated/purified using biomimetic chromatographic techniques with the aim of isolating the bioactive secondary metabolites responsible for the antitumor, cytotoxic, antibacterial and antifungal activities as shown in schemes 1 and 2.

From the bioassay guided chromatographic separation were obtained, up to the present moment, six bioactive compounds with structures that are currently being determined by 1-D and 2-D NMR spectroscopy and mass spectrometry.

Keywords marine *Streptomyces*, chromatography, cytotoxic activity, antitumor activity, antibacterial activity, antifungal activity.
Colicin E1 production is associated with bacteriocin multiproducer strains in uropathogenic Escherichia coli

David Šmajs¹, Lenka Micenková¹, Jan Šmarda¹, Martin Vrba¹, Alena Ševětiková¹, Zuzana Vališová³, and Vladana Woznicová³

¹Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic
²Department of Clinical Microbiology, Faculty Hospital Brno, Jihlavská 20, 625 00 Brno, Czech Republic
³Department of Medical Microbiology, Faculty of Medicine, Masaryk University, Pekařská 53, 636 91 Brno, Czech Republic

The incidence of 29 bacteriocin types were tested in a group of 377 E. coli strains isolated from urinary tract infections (UTI) and in 413 control strains isolated from feces of patients without bacterial gut infection. Sixteen and 20 individual bacteriocin types were found in the UTI and control strains, respectively. The spectrum and frequency of individual bacteriocin types in the UTI strains was very similar to the control strains, probably reflecting the origin of UTI strains in the human gut. In the group of E. coli UTI strains, 159 bacteriocin producing strains (42.2%) were identified being not significantly different from 199 bacteriocin producers in the control group (48.2%). Producers with 3 and more identified bacteriocin types were more frequent in the UTI group (25.8% compared to 16.1% in control, p = 0.005). In the UTI strains, there is a marked increase of strains producing colicin E1 when compared to control (14.3% and 6.8%, respectively, p = 0.002). Moreover, this tendency is associated with multiproducers. In triple producers and multiproducers, this association was very strong (p < 0.0001). Producer strains with the combination of bacteriocins Ia, E1 and mV were more frequent in the UTI group than in the control group (7.6% and 1.5%, respectively, p = 0.004). In addition, decreased frequency of colicin Ib producers in the UTI group of strains (3.1% and 7.5%, respectively, p = 0.02) was found. Despite similarities in the spectra and in frequencies of individual bacteriocin types in both groups, there is a tendency in the UTI strains to possess additional genetic determinants and to synthesize colicin E1.

Keywords: bacteriocin; colicin; microcin; uropathogenic E. coli strain

Comparative Study on the Sensitivity of Daptomycin Against Vancomycin by MRSA from Hospital

M. M. Antunes¹*, A. A. Antunes¹; J. F. Barros³; A. V. Belfa³ and L. R. B. Mello³

¹Laboratório Central de Saúde Pública de Pernambuco – LACEN - PE, Recife – Brazil
²Doutorado em Ciências Biológicas – Universidade Federal de Pernambuco - UFPE - Recife – Brazil
³Hospital Agamenom Magalhães - HAM – PE, Recife – Brazil , Rua Júlio Fernando Vieira, S/N, Boa Vista, CEP: 50050-200, Recife – PE, Brazil.

The dilemma of empirical treatment of infections caused by gram-positive has become more frequent. The delay in appropriate antibiotic therapy may increase the length of stay in hospital patients with MRSA septicemia. Turn strains of MRSA have become progressively less sensitive over the years. High MICs reduce the effectiveness of vancomycin in MRSA infections. MICs are also considered high predictors of mortality in the treatment with vancomycin. The daptomycin, a natural cyclic lipopeptide, with rapid bactericidal activity against Gram-positive pathogens, is an alternative treatment for complicated infections such as septicaemia and endocarditis caused by MRSA. The aim of this study is to evaluate the sensitivity of daptomycin compared with vancomycin in samples of MRSA (Staphylococcus aureus methicillin-resistant) isolated in hospital. A total of 76 clinical samples of MRSA were studied and analyzed from patients in a public hospital in Recife, Brazil, between 2008 and 2009. Samples were obtained from blood, urine and secretion surgery. For the identification test was used conventional and automated methods. The susceptibility profile was carried out by E test, with ribbons of vancomycin and daptomycin, gradients preformed, pre-defined and stable, that have a constant and optimum level of calcium, unto Mueller Hinton Agar standard, according to methodology recommended the CLSI. All strains of MRSA were susceptible to vancomycin, and detected a significant increase of MIC curve, but within the cutoff interpretive sensitivity set by CLSI. In relation to daptomycin, all the samples also showed sensitivity, with much lower MICs, ranging between 0.32 and 0.64 mg/mL. According to obtained results can be concluded that daptomycin showed significant improvements when compared to vancomycin, such as increased in vitro potency represented by lower MICs, and rapid bactericidal activity. Recent studies of pharmacokinetics and pharmacodynamics (PK/PD) demonstrate that daptomycin offers better coverage compared to vancomycin for the treatment of systemic infections caused by MRSA. To test the sensitivity of daptomycin should be considered the characteristics of the drug as the high molecular weight and the dependence of free calcium ions in physiological conditions.

Keywords: MRSA, Vancomycin, Daptomycin.
Conjugation of Haemophilus Influenzae type b capsular polysaccharide and tetanus toxoid using DMT-MM as activating agent

G. Cappio Barazzone, and M. Massako Tanizaki
INSTITUTO BUTANTAN, Biotechnology Center, Av Vital Brasil, 1500, São Paulo, Brasil

Haemophilus Influenzae serotype b (Hib) is a capsulated bacterium that causes invasive infections, which the most frequent is meningitis. The capsular polysaccharide (PS) is the main factor of virulence, and as consequence, the main antigen for vaccines. However, PS are T-cell-independent antigens and their covalent linkage to a protein carrier converts them in a T-cell-dependent antigen making it efficient to induce protection in young children. The objective of this work is to develop a conjugation process between capsular polysaccharide of H. influenzae type b (polyribosyl ribitol phosphate - PRP) and tetanus toxoid (TT) with a desired conjugation yield and suitable to scale-up. For this purpose we developed a method which the reaction sequence was summarized in Fig.1, employing DMT-MM (4-[4,6-dimethoxy-1,3,5-triazin-2-yl]-4-methylmorpholinium chloride) as activating agent in the last reactional step.

The pattern of acquiring antibiotic resistance genes (ABRG) among microbial flora in experimental animals is strengthened by the intensive overuse of antibiotics (AB’s). A survey of antibiotic resistance bacteria was carried out to characterize the antibiotic resistance in experimental animal litter (EAL). One hundred and twenty isolates from objective of this work is to develop a conjugation process between capsular polysaccharide of H. influenzae type b (polyribosyl ribitol phosphate - PRP) and tetanus toxoid (TT) with a desired conjugation yield and suitable to scale-up. For this purpose we developed a method which the reaction sequence was summarized in Fig.1, employing DMT-MM (4-[4,6-dimethoxy-1,3,5-triazin-2-yl]-4-methylmorpholinium chloride) as activating agent in the last reactional step.

The first reaction is the oxidation of native polysaccharide (PRP) with generation of the reactive aldehydes groups (PRP-Oxi). The reaction mixture was prepared mixing PRP (10mg/mL), NaIO₄ (10mM) in phosphate buffer 10mM pH 7 in the dark for 30 minutes and the reaction was stopped adding glycerol (10eq). PRP oxidation resulted in polysaccharide of lower size and the oxidation condition was established in order to result a PRP with molar mass about 50kDa and about 5 moles of aldehyde per mol of PRP. The second step is the reaction of aldehyde group with adipic acid dihydrazide (ADH) followed by reduction with NaBH₄. The PRP-Oxi (6 mg/mL) was mixed with adipic acid dihydrazide (10 eq) in phosphate buffer 10mM, pH 7 for 3 hours. The reaction condition was established to obtain the maximum of the aldehydes groups reacted with adipic acid dihydrazide. In the last step, the reaction between PRP-ADH and tetanus toxoid, the carboxyl groups of the protein must be activated to promote the reaction with polysaccharide. A soluble carbodiimide EDAC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride) is usually used for this purpose. In this work we have tested DMT-MM as activating reagent. The main advantage of DMT-MM on EDAC is that it is less susceptible to hydrolysis than EDAC. Besides, EDAC can generate undesired side groups by the structural rearrangement of the O-acylurea group into more stable N-acylurea. The reaction of carboxyl groups with DMT-MM occurs by a S_NAr mechanism forming a triazinyl ester and this active ester can react with nucleophiles like amine groups.

Comparison of the conjugation process using EDAC and DMT-MM as activating reagent showed a clear advantage to DMT-MM which resulted in a reaction yield twice higher than that obtained with EDAC. The final product PRP-TT conjugate is purified by gel filtration chromatography in Sephacryl S-400 or Phenyl-Sepharose chromatography. The advantage of the use of Phenyl Sepharose is the recovery of the free PRP.

*1st and 2nd author have equal credits

*We would like to thank FEMS for supporting us to attend BioMicroWorld 2009, Lisbon, Portugal, through FEMS meeting attendance grant.
Degradation of Sgs1 in response to rapamycin treatment in yeast

Saccharomyces cerevisiae

R. Marrakchi1, C. Chouchan1, and D. Ramotar2
1Higher Institute of Environmental Science and technology, Technopôle of Borj-Cedria, PB-1003, Hammam-Lif 2050 Tunisia
2University of Montreal, Maisonneuve-Rosemont Hospital, Research Center, 5415 de l'Assomption, Montreal, Quebec, Canada

In yeast Saccharomyces cerevisiae, rapamycin an immunosuppressant inhibits the TOR (Target of Rapamycin) complex, homologous of mTOR in mammalian cells. It triggers events that mimic the effect of nutrient starvation including inhibition of ribosome biogenesis, protein translation and inducing autophagy and G0 entry. TOR proteins integrate signals from growth factors nutrients, stress and cellular energy levels to control cell growth. Rd1 is a cis/trans prolyl isomerase that required signalling responses to the immunosuppressant rapamycin and mutants devoid of Rd1 display striking resistance to the drug.

Preliminary data revealed that this effect was blocked by removing the helicase Sgs1. Then our objective was to investigate what is the link between Rd1 and Sgs1. Sgs1 is a nuclear DNA helicase of the RecQ family involved in genome integrity maintenance. RecQ family is conserved from bacteria to humans; Sgs1 is a homolog of human BLM and WRN proteins implicated in Bloom and Werner syndromes. Deletion of SGS1 leads to diverse phenotypes including sensitivity to genotoxic agents, hyper-recombination, chromosome missegregation, and meiotic defects. Mutations in the SGS1 gene lead to defects similar to those seen in human cells from the RecQ family disorders.

Sgs1 mutant is sensitive to rapamycin. Significantly, deletion of Sgs1 in the Rd1 mutant causes the mutant to no longer show resistance to rapamycin. Reintroduction of Sgs1 will restore to the rd1 mutant resistance to rapamycin. The sensitivity to Rapamycin remains at the same level even if Sgs1 is over expressed in the wild type strain and Rd1 mutant. Sgs1 may belongs to the pathway that signals stress caused by rapamycin.

Rapamycin treatment induces rapid degradation of Sgs1 and this degradation is dependent on Rd1 function. It has recently been demonstrated that Rd1 is required to isomerize the C-terminal domain of RNA polymerase II and caused its release from the chromatin for degradation. Based on this observation, Rd1 could most probably alter the structure of Sgs1 then it gets degraded in response to rapamycin.

Sgs1 accumulates in Rd1 mutant after rapamycin treatment as detected by immunofluorescent analysis. This finding reveals a lower level resistance to rapamycin treatment in parent strain and accumulation in Rd1 mutant. These observations support that Rd1 is necessary to degrade Sgs1 in the cell, but mechanisms of this degradation are not yet known.

Keywords: yeast; Sgs1; Rd1; rapamycin

Determination of mode of action for novel synthetic antifungal agents using reversal assay method

M. Mabouhi1,2, S. Sardari1, V. Khalaj1, M. Mehravar1,3
1Drug Design and Biosinformatics Unit, 2Fungal Biotechnology Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, #69 Pasteur Ave., Tehran, 13164, Iran
3Department of Biology, Shahed University, Tehran, Iran

A narrow range of proteins or metabolic pathways are targeted by the current available antifungal drugs and many fungi have gained complete resistance to the action of these drugs. Hence, the identification of new targets is of great importance. Many of antimicrobial agents have been discovered through a massive screening of natural or chemical libraries. However, the current interest of the pharmaceutical industry is understanding the mode of action of new antimicrobial compounds.

A classical method of identifying the mode of action is reversal assay, which has been used in the present study. The basis of this process is to reverse biological activity of a drug by adding metabolic intermediates or final product of a given pathway. Here, we have used two synthetic antifungal compounds, A and B which are not structurally similar to current antifungal drugs. Synthetic medium RPMI 1640 enriched by 2% glucose and Saccharomyces cerevisiae BY 4743 as a test microorganism was used for reversal assay. Fluorouracil, glufosinate and benodanil were used as positive controls in assessing the reversal effect of nucleic acids, amino acids and TCA cycle intermediates, respectively. Reversal assays was performed in 96-well flat-bottomed microplates. Reversing concentration of each nucleotide, amino acid or TCA cycle intermediates was determined through preparation of twofold serial dilutions across the concentration range (0-200 μg/ml) of each compound in the above medium containing the minimum inhibitory concentration of either compound A or B. In this study, reversal assay showed to be effective in identifying the inhibition sites and hence leading us to the mechanism of action. Our synthetic agents had effect on inhibition of nucleic acid pathway (compound A) and aliphatic amino acid synthesis and to a lesser extent on TCA cycle (compound B). Further study to identify the main target of each compound is underway.

Keywords: antifungal; reversal assay; synthetic compound; mode of action

Key words: antifungal; reversal assay; synthetic compound; mode of action
Development of Antibacterial Preparations Containing Fermented Products from Some Thai Herbs

P. Leelapornpisid1, C. Chaiyasut1, S. Panjaisri2 and H. Viernstein3

1 Faculty of Pharmacy, Chiang Mai University, 50200, Thailand
2 Faculty of Associated Medicine, Chiang Mai University, 50200, Thailand
3 Institute of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna

Fermented plant products are widely used in all part of Thailand. The products have been utilized in many application such as agricultural and environmental sciences, household products, food supplements and cosmetics. The objective of this research was to study antibacterial activities of crude extracts and of fermented products from some Thai herbs such as Kaempferia parviflora, Garcinia mangostana and Morinda citrifolia Linn., which were to be developed as effective topical and antimicrobial preparations. The crude extracts were obtained by maceration of the dried herb powder with 95% ethanol, then evaporated to a concentrated crude extract. The fermented products were obtained by fermentation of dried plant, honey and water with Lactobacillus acidophilus for 4 months. They were filtrated though a 0.45 μm membrane filter and characterized for pH, density and appearance before further study. The fermented herb juices and crude extracts were then tested for antimicrobial activity to determine the MIC values against Staphylococcus aureus ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Streptococcus β group-A, Escherichia coli ATCC 25922 and Candida albicans ATCC 90028. It was found that the MIC value were 0.126-1.0250 gm/ml for fermented products from each plant and were 0.0125-0.0500 g/ml for their crude extracts. Selected topical preparations in the form of cream and gel containing each crude extract and each fermented product from Kaempferia parviflora and Garcinia mangostana in the concentration of 4 times of its MIC value were prepared and characterized in terms of appearance, pH and viscosity. Antibacterial activity as well as product stability under various tested conditions were also evaluated. The results showed that both creams containing the crude extract and fermented product from Kaempferia parviflora were the most stable and revealed effectiveness against S. aureus and Ps. aeruginosa, to an extent comparable to a gentamycin cream. Furthermore, they exhibited no skin irritation according to patch tests in 10 volunteers. None of the gel preparations were stable under some tested conditions but all showed good antibacterial activity after stability testing. It was concluded that fermented products and crude extracts from Kaempferia parviflora can be prepared as effective topical antibacterial cream and should be further investigated for clinical use.

Keywords: Fermented products, Thai herbs, antimicrobial activity, topical preparations

Effect of plants used in Mexican traditional medicine on Candida albicans biofilm formation

A. Rodríguez García1; I. Teixeira Alves Peixoto3; J. de Cássia Orlando Sardi2; I. J. Galán Wong1; K. Arévalo Niño1; J. F. Höfling2; R. Gonçalves Bruno2; C. Pierce3; J. L. López Ribot2

1Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.
2Microbiology, Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, UNICAMP, Sao Paulo, Brazil.
3Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, Texas, USA.

Mexico has a great wealth of medicinal plants and it has been popular tradition to use these plants for scientific investigation, many of which deal with the antimicrobial properties of the plant extracts and their potential as a clinically relevant antimicrobial therapy. Recently there has been an unacceptably high increase in antifungal drug resistance, particularly in Candida albicans. C. albicans is an opportunistic pathogenic fungus and is the most frequent causative agent of candidiasis. Candidiasis is an increasing health threat to immune compromised individuals and infections are commonly associated with the formation of biofilms on the surfaces of biological and inert surfaces. Due to the increased drug resistance and lack of effective antifungals for the treatment of Candida infections, screening plant extracts for antimicrobial activity is a potential means of identifying new antifungal agents. The objective of these experiments is to determine if plant extracts from Thymus vulgaris, Croton lechleri, and Julliana adstringens Schl. are effective in the prevention and treatment of Candida albicans biofilm formation. Different parts of these plants were collected and extracted with solvents to obtain aqueous and organic extracts. These extracts were tested in vitro for their antifungal activity against C. albicans using a 96-well microtiter plate model of C. albicans biofilm formation and inhibition. This model is coupled with a colorimetric XTT-reduction assay in which metabolically active sessile cells reduce a tetrazolium salt to a water-soluble orange formazan compound, which can be quantified using a microtiter-plate reader. Our results showed that J. adstringens Schl. exhibited strong antifungal activities against C. albicans biofilm formation inhibiting biofilm formation by 88.25% at a concentration of 62.5 μg/mL, while T. vulgaris and C. lechleri had low activity against the formation of C. albicans biofilms. None of the plant extracts had inhibitory effects on preformed C. albicans biofilms.

Keywords: Thymus vulgaris, Croton lechleri, Julliana adstringens Schl., Candida albicans, antimicrobial activity, biofilm.
Effects of endocannabinoids and 3-dezaadenozone on the growth of free-living amoebas and their phagocytosis activity

R. Dey1,2, S. Trjakov-Jodenne,1,2, A. Athamena1,2, P. Pernin1,3, and J. Bodenne1,2
1 Université de Lyon, Lyon, F-69003, France
2 CNRS, UMR 5123, laboratoire de Physiologie Intégrative Cellulaire et Moléculaire, Villeurbanne, F-69622, Université Lyon 1, France.
3 Faculté de Pharmacie-ISPB, Lyon, F-69373, Universitely Lyon 1, France.

Free-living amoebas of the Acanthamoeba and Naegleria genus are responsible of severe brain infections of increasing prevalence, especially in immunocompromised patients. In addition to numerous side effects such as seizures, nausea and vomiting, granulomatous amoebe encephalitis is usually fatal to the patient for whom no efficient therapeutic treatment is available. It has been shown that cannabinoids such as Δ9-tetrahydrocannabinol (THC) inhibit the growth of the pathogenic amoeba Naegleria fowleri in vitro. However, in vivo this cannabinoid also has immunosuppressive activities and it was shown to exacerbate brain infection by amoeba in animal models. At the opposite to THC, some endocannabinoids (N-acyl ethanolamines and 2-O-acyl glycerol) display an immunostimulatory effect, including stimulation of macrophages and microglial chemotaxis. The putative effects of endocannabinoids on free-living amoebas is not known. We thus tested different N-acyl ethanolamines and 2-O-acyl glycerol on the growth of free-living amoebas (Acanthamoeba castellanii, Willaertia magna and Hartmannella vermiformis) and their phagocytosis activity. The results show that N-acyl ethanolamine and 2-O-acyl glycerol (including N-arachidonoyl ethanolamine [anandamide] and 2-O-arachidonyl glycerol) strongly inhibit in a dose-dependent manner the growth of free-living amoebas. Phagocytosis activity was also reduced upon endocannabinoid treatment. Similar observations were made when using 2-arachidonoyl glycerol ether, a non-hydrolysable structural analog to 2-O-arachidonyl glycerol, showing that 2-O-arachidonyl glycerol per se rather than a catechol product explains these effects.

We then tested 3-dezaadenozone, a known inhibitor of the phosphatidylethanolamine (PE) methylation pathway for biosynthesis of phosphatidylcholine (PC), the major phospholipids in protozoa. The impetus that phospholipid synthesis is a critical event in cell growth. We found that inhibition of the phosphatidylethanolamine methylation pathway by 3-dezaadenozone induces growth arrest in all amoebic genus and that Willaertia magna, that displays a high PC/PE ratio when compared to other amoebaic genus, is particularly affected.

Keywords: Anandamide, 2-arachidonyl glycerol

Ethnomedicinal survey of medicinal plant species used as remedy for HAV/HBV/HCV by the ethnic groups of Bangladesh

M. A. Haque Mollik1, M. Rohimul Faroque1, M. Sarwar Shudique1, A. Ibna Hassan2, M. Shahin Khan3, M. Ikhtiar Zahid4
1Department of Epidemiology, Biostatistics, Community Nutrition and Noncommunicable Diseases, Peoples Integrated Alliance, Pallabi [Mirpur], Dhaka-1216, Bangladesh
2Department of Botany, Government Azizul Haque College, Bogra-5800, Bangladesh
3Department of Health and Nutrition, Bioscience Life Care, Dhaka-1000, Bangladesh
4Department of Biotechnology and Genetic Engineering, North South University, Dhaka-1229, Bangladesh

Hepatitis A, Hepatitis B, and Hepatitis C are viruses (HAV/HBV/HCV), which causes HAV/HBV/HCV infections. HAV/HBV/HCV is one of the world’s most common infectious diseases. Infection can lead to severe liver disease, which may last throughout a patient's life. Around twenty five percent of carriers will develop serious liver disorders, including chronic hepatitis, liver cirrhosis, and primary liver cancer. More than one million deaths per year are recorded due to HAV/HBV/HCV infections. HAV/HBV/HCV is the most common disease in Bangladesh. For the reason that a multicultural and ritual country Bangladesh is an alluvial plain land breaks the scenario by not only topographical but also human habitations. There are as many as forty two different ethnic groups living in Bangladesh. Each ethnic group has their own customs & traditions, religion, language, and culture. For cure of ailments, they rely on their own ethnic group healers who are experts in the knowledge and use of the medicinal plant species. There is little information on the medicinal plant species used by the ethnic groups of Bangladesh. The objective of this present study was to conduct an ethnomedicinal survey amongst the ethnic groups' healers of the Khasia, Tripura, Tanchangya, Manipuri, Chakma, and Garo ethnic groups to collect information on the medicinal plant species used to treat of HAV/HBV/HCV. In-depth information regarding medicinal plants type, preparation of medicine, ailments for which they are used, dosage, and side-effects if any, were obtained from the ethnic groups' healers. Medicinal plant samples were collected and identified at the Bangladesh National Herbarium. Information on forty nine medicinal plant species was obtained, which were used by the ethnic groups' healers to treat of HAV/HBV/HCV. The forty nine medicinal plant species are grown and consumed as summer, rainy, autumn, and winter seasons because there are six seasons in Bangladesh, distributed in forty eight genera and thirty seven families. The family Lamiaceae contained the highest number of medicinal plants (four species) followed by Rutaceae (three species), and Zingiberaceae (three species). Five families (Rubiaceae, Asteraceae, Acanthaceae, Anacardiaceae, and Lauraceae) had two medicinal plant species each. The remaining twenty nine medicinal plant species were distributed in twenty nine families. These medicinal plant species (with parts used given in parenthesis) included Aristolochia indica (seed, root), Centella asiatica (whole plant), Carica papaya (seed, fruit), Cuscuta reflexa (whole plant), Achyranthes aspera (root, seed), Aegle marmelos (leaf, seed, fruit), Scoparia dulcis (whole plant), Ipomoea mauritiana (tuber root), Lescia aspera (root, flower), Kalamhoe pinnata (whole plant), Eclipta alba (whole plant), Ficus racemosa (leaf, fruit), Citrus aurocarica (fruit, seed, leaf), Lantana spinosa (tuber root), Stephania japonica (whole plant), Mikania cordata (whole plant), Ocimum sanctum (whole plant), Azadirachta indica (whole plant), Curcuma longa (tuber root), Lepikogathis hyalina (whole plant), Andrographis paniculata (whole plant), Phyllanthus niruri (whole plant), Tamandua indica (leaf, seed, fruit), Zingiber officinale (tuber root), Acorus calamus (tuber root), Vitex negundo (whole plant), Punica granatum (leaf, fruit), Cinnamomum veram (bark), Randia dimorphura (whole plant), Morinda angustifolia (whole plant), Spondias dulcis (fruit, leaf), Terminalia arjuna (bark, fruit), Mentha spicata (whole plant), Swintonia floribunda (fruit), Plantago major (seed), Svertia chirata (whole plant), Cinnamomum tamala (leaf), Nymphaea nouchali (whole plant), Dilienia indica (fruit, seed), Hyptis suaveolens (whole plant), Dacus carota (tuber root), Aloe barbadensis (whole plant), Feronia elephantum (fruit, seed), Cocos nucifera (fruit, root), Saccharum officinarum (stem juice), Elettaria cardamomum (fruit), Syzygium cumini (fruit, seed), Momordica charantia (fruit, seed, root), and Rosa damascena (root, flower). Since the ethnic groups of Bangladesh mostly does not have access to primary medical facilities, the above medicinal plant species can form the base treatment for viral diseases without resorting to costly urban visits or allopathic practitioners. A number of these medicinal plant species are becoming highly endangered. These medicinal plant species can form a useful source for scientific studies and isolation of active constituents to treat of HAV/HBV/HCV.

Keywords: Khasia, Tripura, Tanchangya, Manipuri, Chakma, and Garo ethnic groups, HAV/HBV/HCV.
Functional analysis of the widely conserved cytoplasmic domain of Spa24 in the T3SS assembly

Christian Aimé Kayath1+, Latefa Biskri1+, Abdelmoughit Kaoukab-Raji1+, Abderrahman Hachani1+, Anne Botteaux1@, and Abdelmounaïm Allaoui1@*

1Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Bruxelles, Belgium.
2Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Netherlands.
+ Both authors are equal contributors
§: supported by a fellowship from FRIA
@: Co-last authors

Type III secretion systems (T3SSs) are central virulence factors of many Gram-negative bacteria. Their overall morphology is consisting of a cytoplasmic region, an inner- and outer-membrane section and an extracellular needle. In this study, we investigate the role in Ipas secretion of Spa24, Spa9 and Spa29, three predicted inner membrane proteins, widely conserved among all T3SS. We generated individual non-polar spa24, spa9 and spa29 mutants and studied their phenotypic aspects in vitro. Mutants lacking either of these proteins were unable to secrete Ipas proteins and to invade HeLa cells. Electron microscopy analysis revealed that the three mutants exhibit needleless secretons. Considering the existence of protein–protein interfaces, we investigated potential interactions through GST pull-down experiments. Spa24 interacts with Spa9 and Spa29, and these interactions are conserved among all T3SS orthologs. Furthermore, we demonstrate by genetic and functional analyses that six specific residues of Spa24CD, conserved among Spa24 T3S orthologous, are crucial for Ipas secretion and interaction with some identified partners. We lastly showed that Spa9 interacts directly with both Spa40C and MxiAC and that Spa29 interacts separately with MxiAC and MxiN. Taking together, our data suggest that Spa24 plays a crucial role as a crossroad inside the bacterium as a critical component for substrate specificity switching.

Genotypic variability in the sequence encoding SpaP and mut II of cariogenic Streptococcus mutans strains in saliva samples intra and inter family members

K. Gomez-García1,2, K. Arévalo-Nilo3, H. Villarreal-de la Rosa1, E.I. de la Rosa-Moreno3, M. A. de la Garza-Ramos4

1 Laboratorio de Biología Molecular, Facultad de odontología, Universidad Autónoma de Nuevo León, Dr. Eduardo Aguirre Pequeño y Silao S/N Col. Mirtas Centro, C.P. 64900, México. 2 Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N San Nicolás de los Garza, C.P. 66450, México. 3 Amplibio Monterrey S.A. de C.V., Rio de la Plata No. 309, 4° Piso, Col. del Valle, San Pedro Garza García, CP 66220, México.

Streptococcus mutans, the major etiological agent of dental caries in humans, possesses a variety of virulence traits that enable it to establish in oral cavity and initiate disease. Among them, the proteins antigen I/II, B, Pac, SpaP and bacteriocins (mutacins) may be associated to S. mutants pathogenicity and be critical for oral colonization. In the present study, the variability of genes encoding spaP and mutacin type II (mut II) in mothers and offspring of ten families (and among families) of San Nicolás de los Garza, N.L., México was evaluated by qPCR, using the reference strain ATCC 700611 of S. mutans as positive control. Presence of these genes was studied and compared within each family and inter families. Samples were collected from saliva, plated onto mitis-salivarius agar and were incubated for 48 hours. DNA was then isolated by a High Pure PCR template preparation kit. The results showed at least 2 to 4 variants in the sequences encoding for spaP and (mut II) genes; such variations were observed intra and inter families. The DMF (decayed, missing, filled teeth) index among mothers and offspring was 12.7 and 2.7 respectively.

Keywords S. mutans; genotypic variability; mutacin; spaP; caries.
Heterologous expression of hydrophobins RodA and RodB from *Aspergillus fumigatus* in host *Pichia Pastoris*

M.H. Pedersen\(^1\), I. Borodina\(^1\), J.C. Frisvad\(^1\) and I. Søndergaard\(^1\)

\(^1\)Center for Microbial Biotechnology, DTU Systems Biology, Technical University of Denmark, Soltofts plads 221-223, DK-2800 Lyngby, Denmark.

Introduction: Hydrophobins are small amphipatic proteins present on the spore surface of filamentous fungi. They most likely play an important role in the attachment of spores to a solid phase. The pathogenic fungus *Aspergillus fumigatus* expresses the hydrophobins RodA and RodB on the surface of its conidia and these may be of importance to the pathogenesis of the fungus. Although heterologous expression of hydrophobins has proven to be a challenge by past investigators, we made it the aim of this project to produce pure hydrophobins in sufficient quantities for further characterisation and investigation using the expression host *Pichia pastoris*.

Methods and materials: The genes encoding hydrophobins RodA and RodB were amplified by RT-PCR with gene-specific primers from the total RNA isolated from the spores of *A. fumigatus* (AF296 strain). The resulting cDNA was cloned into TOPO vectors using TOPO TA Cloning (Invitrogen), and the inserts were sequenced. The genes were further amplified by PCR to generate overhangs with specific restriction sites and cloned into expression vectors pPICZ\(\alpha\)A and pPICZB while adding a 6xHis-tag to the C-terminal of both hydrophobins. The pPICZ\(\alpha\)A vector expresses proteins with the signal sequence of alpha-mating factor from *Saccharomyces cerevisiae* known to work well for protein secretion from *P. pastoris* and the pPICZB plasmids had proteins cloned with their native signal sequences. The plasmids were linearized, transformed into *P. pastoris* strain X33 and transformants were selected by zeocin resistance. The presence of the RodA and RodB genes in the transformants was confirmed by colony PCR. The expression of RodA and RodB genes was induced by growing cells in culture flasks for three days in buffered complex methanol medium as protein production was dependent on the methanol-induced AOX1 promoter. The protein production was analyzed by SDS-PAGE, coomassie and silver-stained, as well as western blotting using a detection antibody (Penta-His HRP conjugate, Quagen). Recombinant RodA and RodB were purified using His-select Nickel Affinity gel (Sigma-Aldrich, Saint Louis, MO, USA).

Results: *P. pastoris* cultures expressing hydrophobins resulted in increased foaming, which was attributed to the presence of secreted hydrophobins. Protein bands of expected size were detected in both the fermentation broth and the foam by SDS-PAGE and western blotting. Optimization of the purification of hydrophobins and functional investigations are being carried out at the moment.

Conclusion: Hydrophobins RodA and RodB from *Aspergillus fumigatus* were successfully expressed and secreted by yeast host *Pichia pastoris*.

Keywords: *Aspergillus fumigatus*, *Pichia pastoris*, recombinant protein; hydrophobin; RodA; RodB, fungal spore.
Implantable polymers, as used for biomedical applications, inherently have to be sterile. Most implants however—particularly biomatrices as being developed in recent years for scaffold and tissue engineering—are heat sensitive. Therefore, the use of hazardous (radio-) chemicals is – due to the lack of alternative methods – still state-of-the-art for sterilisation processes. Furthermore, the aforementioned treatments often lead to the formation of persistent radicals that have been proven to cause allergic reactions, inflammations or even hemolysis when applied to human tissue [1]. Also, the use of chemical agents bears immediate dangers for natural resources and staff handling these chemicals [2] resulting in organisational and safety-related issues – especially with REACH regulations.

High-pressure CO2 treatment is a low-temperature technique that is already in use for pasteurisation of various liquid food products [3]. Using ANOVA and statistical modeling, it has been shown, that vegetative microorganisms adherent to solid surfaces can be inactivated using supercritical CO2 [4]. It exhibits mild treatment parameters, thus protecting sensitive tissues; it speeds up reactions and mass transport due to the lack of phase interfaces. The CO2 pressure (process in adjoining figure) ranged from 50 to 100 bars and temperature was set to 25, 38 and 65 °C, investigating liquid, gaseous and supercritical state. Recent research has clearly shown that even pathogenic vegetative bacteria (C. albicans, S. aureus) can successfully be inactivated. The addition of small amounts (<= 1% w/w) of ozone finally assured inactivation of persistent spores (B. stearothermophilus, B. subtilis) of up to 10^6 cfu/ml. Production of ozone and elimination after treatment takes places on-site; furthermore, CO2 can be recycled. Thus, the innovative sterilisation is virtually a zero-emission process unlike most conventional methods. It requires neither handling of hazardous chemicals nor quarantine storage of treated implants.

Typical implantable fabrics comprise of e.g. meshes and yarns made of biodegradable and non-biodegradable polymers. We investigated that the new treatment slightly decreased molecular weight and results in a reduced melting point of PP (polypropylene) and PLA (polylactic acid). PVDF (polyvinylidene difluoride) remains unchanged. Sensitivity surface measurement techniques- XPS, AFM, FTIR and contact angle show only minor oxidation and slight surface energy increase of polymers due to morphological and chemical effects. Further research found good biocompatibility of the treated fabrics by applying cell-toxicity (LAU) test as well as adhesion test of L929 mouse fibroblast—observing enhanced growth on the treated surfaces. Positive results indicate that the eco-friendly treatment is a genuine alternative to conventional processes and could lead to further applications within the fields of medicine, drug processing and biotechnology.

Keywords: nosocomial infection, supercritical fluid, biopolymer, CO2, pressure

Identification of Staphylococcus aureus isolates from bovine mastitis samples related to human epidemic clone USA300 in backyard farms from México.

J.J. Valdez-Alarcón1, J.L. Solorio-Rivera2, G. Villegas-Rivera3, G. Morales-Romero1, E. Granados-Beltrán1, F.R. García-Rodríguez1, D. Angel-Andrés1, J.A. Bustos-Martínez2, A. Hamdan-Partida3, V.M. Biaizabal-Aguirre2, M. Cajero-Iturri2 and A. Bravo-Patillo1

1 Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo. Km 9.5 carretera Morelia-Zinapécuaro s/n, 58093, Tarímbaro, Michoacán, México.
2 Facultad de Medicina Veterinaria, Universidad Michoacana de San Nicolás de Hidalgo. Km 9.5 carretera Morelia-Zinapécuaro s/n, 58093, Tarímbaro, Michoacán, México.
3 Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Campus Xochimilco. Calzada del Huesso 1000, 04940, D.F. México.

Staphylococcus aureus is a versatile pathogen that causes diverse pathologies in humans and animals. Community-acquired (CA) strains cause infections in skin, upper respiratory tract, digestive tract (associated to alimentary intoxications) and toxic shock syndrome. Hospital-acquired (HA) strains cause pneumonia, endocarditis, osteomyelitis and sepsis, as well as quargrical-associated infections. Different S. aureus strains has been described as pathogens of skin infections in mammals, quirurgical lesions in dogs and horses, and bovine mastitis. Strains sharing particular genetic backgrounds (Sequence Types and Clonal Complexes), as determined by Multilocus Sequence Typing (MLST), are describe for isolates of each of the pathologies described above. Clonal Complexes (CC) have been related to CA infections (CC8, CC30), HA infections (CC5, CC8) or bovine mastitis (CC97) among others. It is particularly interesting the recent widespread of the successful strain USA300 causing CA and HA infections in the USA. USA300 strain belongs to CC8 and has the Sequence Type (ST). In this work we describe the isolation of USA300-related (ST8-related) isolates from bovine mastitis samples in two localities in the state of Michoacán, México. Backyard dairy milk farms are the most common production systems in this state and the most important economic activity for families with low incomes. Subclinical bovine mastitis is one of the most common health problems in these dairy herds. Molecular characterization of S. aureus isolates from bovine mastitis samples was done by MLST, mackrosrestrinction analysis by pulse field gel electrophoresis (PFGE), polymorphism of proteina encoding gene (spa) and sequence of the 16S-23s ribosomal RNA gene spacer.

Bovine mastitis epidemiology. Nine farms were selected in Cotzio and Téjaro localities from the State of Michoacán. From 113 animals in lactation period 56 (49.6%) presented some degree of mastitis determined by the California Mastitis Test. From the total of quarter samples analyzed in positive antigen point for subclinical mastitis, while only 2.0% presented signs of clinical mastitis. Twenty one S. aureus isolates were obtained in Staphylococcus-110 agar and were positive to hemolisis and coagulase test. Identity of the isolates was confirmed by sequencing of the variable 3 region of the ribosomal RNA gene.

Molecular caracterization of S. aureus isolates. Twelve of the isolates were analyzed by MLST. Seven of them were ST97, two of them showed new alleles but were related to CC97. An new reference strain (ATCC27543), isolate from bovine mastitis, showed also ST8. When analyzed by means of PFGE, the electrophoretic patterns were grouped by determining the Dice similarity coefficient. A similarity dendogram was constructed using an UPGMA algorithm from GeneDirectory application (Syngene). The dendogram showed that PFGE was able by itself to group isolates in ST97- and ST8-related branches. Size polymorphism analysis of spa gene in a larger collection of S. aureus isolates from the same region revealed the presence of at least seven different alleles. Six of these alleles were present in our isolates, but there was no evident correlation between ST or PFGE with the spa allele. Four isolates of the ST97, three isolates of the ST8 and the reference strain that also showed ST8, were used for analysis of the sequence of 16S-23S rRNA spacer. A region of approximately 80 bp was identified that is present exclusively either ST97 or ST8 isolates. Comparison of these sequences with rDNA databases revealed that our isolates of the ST8 and the reference strain shared homology with the sequence form the strain USA300-FPR375 a successful epidemic clone related to CA infections in the USA that is also methicillin-resistant. Two of our isolates showing ST8 were also resistant to low levels (2-4 μg/ml) of methicillin.

Concluding remarks. Bovine mastitis isolates bearing the ST8 have been also reported in Japan and The Netherlands. Since USA300 is a successful epidemic clone with an ST8 genetic background, it is needed to develop rapid identification methods for the precise detection of ST8-related isolates to strenght epidemiological surveillanc.
In vitro evaluation of biopolymers as delivery system of plant extracts on cultures of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans

A. Rodríguez García1, L. Galán Wong2, K. Arévalo Nino2

1Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Monterrey, Nuevo León, México.
2Departamento de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.

Periodontal disease is an infectious and inflammatory process that affects the periodontum including the gingival, gingival attachment, periodontal ligament, cementum and supporting alveolar bone, and is the major cause of tooth loss in adults.

Therapy includes oral hygiene education, instrumentation for removal of calculus (scaling) and chemotherapy. A number of antibiotics administered systemically have been evaluated for periodontal therapy, such as tetracyclines, clindamycin, and metronidazole. These drugs have adverse effects like kidney and liver disorders, colitis, etc. As more antibiotics are employed, the development of resistance is an increased probability.

At recent years, the use of natural sources like plant extracts are enjoying great popularity. In Mexico, Thymus vulgaris, Croton lechleri and Julliana adstringens Schl. have been used to treating different infections.

The aim of this work was to use biotechnology in the development of a local delivery system for the treatment of periodontal disease evaluating antimicrobial properties of two natural polymers (Chitosan and Pullulan) added with aqueous extracts of T. vulgaris, C. lechleri and J. adstringens Schl. against Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, the most frequent causative agents of periodontitis.

Chitosan and Pullulan are polysaccharide biopolymers that combine a unique set of versatile physicochemical and biological characteristics which allow for a wide range of applications, including biodegradability, biocompatibility, and nontoxicity.

Different parts of these plants were collected and extracted with solvents to obtain aqueous and organic extracts. The extracts were added to biopolymers in concentrations of about 10% to T. vulgaris, 11% J. adstringens Schl. and 20% C. lechleri. The polymers were used at 1% Chitosan and 10% Pullulan.

Values of the MIC were determined by a broth microdilution assay. Briefly, serial twofold dilutions of the antimicrobial agent were prepared in the appropriate culture medium in sterile 96-well round-bottom polystyrene microtiter plates. MBC were evaluated by broth disk test using disks of the polymers added with the three plant extracts.

The Pullulan biopolymers added with T. vulgaris showed zones of growth inhibition about 9mm of diameter, while J. adstringens Schl. showed 7mm for A. actinomycetemcomitans. Pullulan with T. vulgaris and C. lechleri had 6mm for P. gingivalis.

The Chitosan biopolymers with C. lechleri showed inhibition zones of 6mm for A. actinomycetemcomitans and 4.5mm on P. gingivalis.

The biopolymers without extracts have inhibitory effects on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans cultures.

Our findings suggest on the use of Chitosan and Pullulan showed synergic activity with Thymus vulgaris, Croton lechleri and Julliana adstringens Schl. extracts for antimicrobial inhibition of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and have potential application as drug delivery systems.

Keywords: Thymus vulgaris, Croton lechleri, Julliana adstringens Schl., Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, antimicrobial activity, Chitosan, Pullulan.

In vitro tests of antimicrobial activity of plants used in Mexican traditional medicine

I. Taipe Alves Peixoto1; A. Rodríguez García2; L. J. Galán Wong2; Arévalo Niño, K.; M. De la Garza Ramos3

1Microbiology, Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, UNICAMP.
2Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Monterrey, Nuevo León, México.
3Departamento de Biotecnología, Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.

Periodontal disease is an infectious and inflammatory process that affects the periodontum including the gingival, loss in adults.

In recent years fungal infections have been increasing due to a growing number of immunosuppressed and medically compromised patients. Candida is one of the most-common isolate in nosocomial bloodstream infections in the USA.

Therapy includes oral hygiene education, instrumentation for removal of calculus (scaling) and chemotherapy. A number of antibiotics administered systemically have been evaluated for periodontal therapy, such as tetracyclines, clindamycin, and metronidazole. These drugs have adverse effects like kidney and liver disorders, colitis, etc. As more antibiotics are employed, the development of resistance is an increased probability.

Chitosan and Pullulan are polysaccharide biopolymers that combine a unique set of versatile physicochemical and biological characteristics which allow for a wide range of applications, including biodegradability, biocompatibility, and nontoxicity.

Different parts of these plants were collected and extracted with solvents to obtain aqueous and organic extracts. The extracts were added to biopolymers in concentrations of about 10% to T. vulgaris, 11% J. adstringens Schl. and 20% C. lechleri. The polymers were used at 1% Chitosan and 10% Pullulan.

Values of the MIC were determined by a broth microdilution assay. Briefly, serial twofold dilutions of the antimicrobial agent were prepared in the appropriate culture medium in sterile 96-well round-bottom polystyrene microtiter plates. MBC were evaluated by broth disk test using disks of the polymers added with the three plant extracts.

The Pullulan biopolymers added with T. vulgaris showed zones of growth inhibition about 9mm of diameter, while J. adstringens Schl. showed 7mm for A. actinomycetemcomitans. Pullulan with T. vulgaris and C. lechleri had 6mm for P. gingivalis.

The Chitosan biopolymers with C. lechleri showed inhibition zones of 6mm for A. actinomycetemcomitans and 4.5mm on P. gingivalis.

The biopolymers without extracts have inhibitory effects on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans cultures.

Our findings suggest on the use of Chitosan and Pullulan showed synergic activity with Thymus vulgaris, Croton lechleri and Julliana adstringens Schl. extracts for antimicrobial inhibition of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and have potential application as drug delivery systems.

Keywords: Thymus vulgaris Croton lechleri Julliana adstringens Schl., Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, antimicrobial activity, Chitosan, Pullulan.
In vitro tests of polymers with extracts from plants used in Mexican traditional medicine on Candida albicans biofilm formation

J. de Cásia Orlandi Sardi1; I. Teixeira Alves Peixoto1; J. F. Hütting1; R. Bruno Gonçalves1; J. L. López Ribot2; C. Pierce3; A. Rodríguez García4; L. J. Galán Wong5; K. Árèvolo Nño6

1Microbiology, Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, UNICAMP, Sao Paulo, Brazil.
2Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, Texas, USA.
3Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.

The increase of fungal resistance to classical drugs, the treatment costs, and the fact that most available antifungal drugs have only fungistatic activity, justify the need for new strategies that make use of natural products and biotechnology. The aim is to find new effective antifungal agents from Thomas vulgaris, Croton lechleri and Julliana adstringens Schl. against Candida albicans using these extracts in Qitosan and Pullulan polymers. Different parts of these plants were collected and extracted with solvents to obtain aqueous and organic extracts. These extracts were added to biopolymers in concentrations about 10% to T. vulgaris, 11% J. adstringens Schl. and 20% C. lechleri. The polymers were in 1% Qitosan and 10% Pullulan. These polymers with extracts were tested in vitro for their antifungal activity against C. albicans biofilm formation. C. albicans is an opportunistic pathogenic fungus and is the most frequent causative agent of candidiasis. Candidiasis is an increasing health threat to immune compromised individuals and infections are commonly associated with the formation of biofilms, which are defined as complex microbial communities attached to a surface and encased in an exopolysmeric matrix. Within this niche, C. albicans has intrinsic resistance to commonly used antifungal drugs. This study makes use of a 96-well microtitre plate model of C. albicans biofilm formation to test the susceptibility of biofilms to the plant extracts. This model is coupled with a colorimetric XTT-reduction assay in which metabolically active sessile cells reduce a tetrazolium salt to water-soluble orange formazan compounds, and the intensity this product can be determined using a microtitre-plate reader.

Our results revealed that the Pullulan biopolymers of J. adstringens Schl. inhibited biofilm formation about 100%, while T. vulgaris showed low activity (2.5% biofilm inhibition), and C. lechleri inhibited biofilm formation about 52.5%. The Qitosan biopolymers showed activity with T. vulgaris and C. lechleri, with 51.5% and 44% biofilm inhibition, respectively. However, there was low activity using J. adstringens Qitosan biopolymer. Our finding showed that J. adstringens biopolymer exhibited strong antifungal activities in C. albicans biofilm inhibition in Pullulan, while T. vulgaris and C. lechleri exhibited inhibitory effects in Qitosan biopolymers. The biopolymers did not have any inhibitory effects on preformed C. albicans biofilms.

Key words: Thomas vulgaris, Croton lechleri, Julliana adstringens Schl., Candida albicans, antimicrobial activity, biofilm, Qitosan, Pullulan.

Indigenous medicinal plants popularly used for cure of bacterial diseases in Kishoreganj district of Bangladesh

M. A. Haque Mollik, M. Rohimul Faruque, A. B. M. Abul Hossain, Romeo McField, Khadiza Akter

Department of Epidemiology, Biostatistics, Community Nutrition and Noncommunicable Diseases, Peoples Integrated Alliance, Palluli [Mirpur], Dhaka-1216, Bangladesh.

Indigenous medicinal plants are widely used worldwide to address a variety of human health problems. Alternative medicinal practitioners form an important component of the primary health care system of Bangladesh. Alternative medicinal practitioners generally possess considerably expertise on use of indigenous medicinal plants used to treat various human health ailments. The ailments treated can range from minor ailments like coughs and colds to difficult to treat diseases like cancer. Since the alternative medicinal practitioners in various regions of Bangladesh differ in the choice of indigenous medicinal plants, the present paper deals with ethnobotanical study on indigenous medicinal plants used for several common bacterial human health ailments like scabies, skin allergies, tuberculosis, pneumonia, tetanus, typhoid fever, scorpion bite, diarrhoea, leucoderma, diphtheria, syphilis, wounds, meningitis, leprosy, asthma, gonorrhea, dysentery, etc. by the alternative medicinal practitioners in Kishoreganj district of Bangladesh. This area was selected because Kishoreganj is a district of Dhaka division and it located in north-eastern region of Bangladesh.

It has thirteen upazila and total population of three million. Both Meghna and Brahmaputra rivers have contributed to its trade. Alternative medicinal practitioners have a huge diversity of indigenous medicinal plants at their disposal to treat various human health ailments. The interview was conducted with the help of a semi-structured questionnaire and the guided field-walk method, where the informant pointed out indigenous medicinal plants and described their uses. Indigenous medicinal plant specimens were collected and identified at the Bangladesh National Herbarium. Fieldwork was carried out over one year, from June 2008 to July 2009. During that time we interviewed forty eight alternative medicinal practitioners in thirty nine villages. In the current study, it was reported that sixty indigenous medicinal plant species belonging to sixty two genera and forty four families were commonly used to treat various common bacterial human health ailments. The various indigenous medicinal plants [with family name given in parenthesis] included Abrus precatorius [Leguminaceae], Abutilon indicum [Malvaceae], Cinnamomum tamala [Lauraceae], Cynodon dactylon [Graminaceae], Wissadula parapetilosa [Malvaceae], Myrica fragrans [Myrtaceae], Phoenix sylvestris [Arecaceae], Linnun utilisitstum [Linaceae], Nigella sativa [Ranunculaceae], Mikania scandens [Compositae], Dillenia indica [Dilleniaceae], Vitex negundo [Verbenaceae], Olea europea [Oleaceae], Vitex vinifera [Vitaceae], Azadirachta indica [Meliaceae], Acorus calamus [Acoraceae], Hemidesmus indicus [Amaranthaceae], Terminalia arjuna [Combretaceae], Morus alba [Moraceae], Camellia sinensis [Theaceae], Terminalia bellerica [Combretaceae], Andrographis paniculata [Acanthaceae], Swertia chirata [Gentianaceae], Citrus auratus [Rutaceae], and Aegle marmelos [Meliaceae].

Keywords: Kishoreganj district, Meghna and Brahmaputra rivers, Alternative medicinal practitioners.
Influence of culture conditions on hydrogen peroxide production by
Lactobacillus jensenii

A. S. Cosgrove Pohren, and S. M. Holt
Western Illinois University, Department of Biological Sciences, Macomb, IL., 61455-9707, USA.

Lactobacillus is known to be the dominant bacterial genus harbored within the reproductive tract of healthy women and has been shown to protect women from vaginal infections through a variety of mechanisms. One mechanism that Lactobacillus uses involves the production of antimicrobial chemicals such as hydrogen peroxide to kill or inhibit pathogenic microorganisms. In spite of the health and ecological significance, little is known about how Lactobacillus makes hydrogen peroxide and the optimum conditions for its production. The purpose of this study was to determine how hydrogen peroxide production by Lactobacillus jensenii is influenced by in-vitro environmental factors such as glucose concentration, pH, and temperature, or by growth stage. Lactobacillus jensenii is a predominant species isolated from the human vagina. Hydrogen peroxide production from Lactobacillus jensenii was lowest at the highest glucose concentration (1% w/v) tested. This datum supports the hypothesis by Barnard and Stinson (1999) that an organism will conserve energy (reduce synthesis of antimicrobial chemicals) when carbohydrates are abundant. It is when carbohydrates are abundant that competition is less important. At 0% glucose, hydrogen peroxide production was higher than at the 1% glucose concentration, indicating that hydrogen peroxide may be effective against competition when carbon is limited. The highest rates of hydrogen peroxide production were observed at mid-range levels of glucose. It is possible that these levels of glucose supported a slower growth rate due to limited carbon availability, making the need to suppress competition crucial. In general, hydrogen peroxide production was higher for Lactobacillus jensenii at neutral pH and lower at acidic pH levels. The higher production of hydrogen peroxide at neutral pH may be an antibacterial response to competition from other microorganisms which occurs during an infection such as bacterial vaginosis. Bacterial vaginosis often results in an increased vaginal pH. The lower hydrogen peroxide production observed at acidic pH levels may represent a mechanism Lactobacillus uses to conserve energy, because the acidic environment itself would inhibit the growth of pathogenic organisms. A significantly lower rate of production occurred at 30°C, the lowest temperature tested, than at all other temperatures. The peak rates of production occurred at the two highest temperatures tested (40°C and 45°C), indicating that increased temperature enhances the production of H₂O₂ in Lactobacillus jensenii. The relationship of hydrogen peroxide production and growth of Lactobacillus jensenii was reported two different ways. When calculated as hydrogen peroxide/minute, it was observed that high cell numbers resulted in high hydrogen peroxide production. When calculated as hydrogen peroxide/minute/OD unit, production correlated with growth stage rather than cell numbers. Lactobacillus jensenii produced higher hydrogen peroxide during early log growth when nutrients are in excess and when cells are focused on primary metabolism. In conclusion, this research indicates that many factors influence hydrogen peroxide production by Lactobacillus jensenii.

Keywords Lactobacillus; hydrogen peroxide

Influence of patients' care with invasive devices on the risk of health care-associated infections

Diana Platace1, Ilze Klava1, Lilija Antonevica1, Aigars Reinis2, Valentina Kuznecova2, Juta Kroica2, Inga Millere1

1 Faculty of Nursing, Riga Stradins University, Dzirciema str. 16, 1007 Riga, Latvia
2 Department of Microbiology, Riga Stradins University, Dzirciema str. 16, 1007 Riga, Latvia

The risk of health care-associated infection are associated with being in the intensive care unit (ICU), undergoing surgery, and invasive procedures. Although not all catheter-associated urinary tract infections and bloodstream infections can be prevented, it is believed that a large number could be avoided by the proper management of patients' care with invasive devices. The purpose of the study was to investigate the influence of patients' care with invasive devices (urinary catheters and peripheral venous catheters) on the risk of health care-associated infections. Quantitative and qualitative research methods such as questionnaire, clinically structured empirical research and microbiological tests was used in the ICUs and in the surgical units of multi-profile Hospitals of Latvia. By means of microbiological investigation the contamination level of the ICUs and surgical units was determined: a) using a Count-Tact applicator and a culture medium specially selected for this method, b) using the swab method for the microbial contamination of the equipment and nurses' hands, and c) using the catheter sedimentation method for the microbial contamination of the invasive devices. In total 166 microbiological samples and 45 observation objects was analysed. Results suggested that a common problem in ICUs and in surgical units is the lack of unified nursing protocols on performing invasive procedures. There was excessive workoad of nurses working in ICUs and in surgical units. Results showed disregard for basic principles of hand hygiene and aseptic mistakes during patients care with invasive devices. Microbiological investigations showed a high level of bio-contamination on the nurses' hands during invasive procedures and medium to high levels of bio-contamination were discovered on patient's changed bed sheets as well as in nurses' hair and their workwear. Mentioned factors influence the patients care with invasive devices and induce risk for HAIs.

Keywords invasive device, health care-associated infection
Inhibition of Endothelial Interleukin-8 Production and Neutrophil Transmigration by Staphylococcus aureus Beta-Hemolysin

Tajima A1, Iwase T1, Sato F2, Shinji H1, Mizunoe Y1
1Department of Bacteriology, Jikei University School of Medicine, Tokyo, Japan
2Division of infectious disease and control, Jikei University School of Medicine, Tokyo, Japan

Neutrophils play a crucial role in the host response to infection with Staphylococcus aureus, which is a major human pathogen capable of causing life-threatening disease. Interleukin-8 (IL-8) is a potent chemoattractant and activator of neutrophils. We previously reported that S. aureus secretes a factor that suppresses IL-8 production by human endothelial cells. Here we isolated an inhibitor of IL-8 production from the supernatant and identified it as staphylococcal beta-hemolysin. Beta-hemolysin reduced IL-8 production without cytotoxicity to endothelial cells. Pretreatment with beta-hemolysin decreased the expression of both IL-8 mRNA and protein induced by tumor necrosis factor alpha (TNF-alpha). Migration of neutrophils across TNF-alpha-activated endothelium was also inhibited by beta-hemolysin. In contrast, beta-hemolysin had no effect on intercellular adhesive molecule 1 expression in activated endothelial cells. These results showed that beta-hemolysin produced by S. aureus interferes with inflammatory signaling in endothelial cells and may help S. aureus evade the host immune response.

Keywords: Staphylococcus aureus; IL-8; endothelial cell

Invasive infection by Trichosporon mucoides following circovirus infection in a parrot

Martins, H.; Carvalho, P.; Mendonça P.; Fagulha, T.; Henriques, A.M. and Monteiro, M
1INRB, I.P. Laboratório Nacional de Investigação Veterinária, Estrada de Benfica, 701-1549-011, Lisboa, Portugal

Cryptococcus neoformans, Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatitidis, Pneumocystis carinii, Aspergillus spp, Candida spp, and other less common fungi have been identified as causative agents of mycotic pneumonia in animals. These agents are often found in immunocompromised hosts, but can cause disease in healthy individuals as well. Pulmonary tissues and secretions constitute an excellent environment for the growth and development of these organisms. The soil is their primary source, being the main reservoir of those agents, which can be acquired by inhalation or skin abrasion.

Trichosporon is a natural inhabitant of the soil but can, occasionally, be found as a component of the normal skin mycobiota of animals. It is also found as a saprophytic coloniser of some mucosae like the throat and lower gastrointestinal tract. Although uncommon, Trichosporon has been recently recognised as an opportunistic pathogen that can elicit a potentially fatal systemic infection in immunocompromised hosts. Several cases of disseminated T. mucoides infection have been reported recently but in Portugal no necropsy data or report are available.

As far as we know, this report describes the first fatal case of disseminated trichosporosis caused by T. mucoides in a 6 months old immunocompromised parrot. The animal also revealed to hold an infection due to Circovirus. Avian circovirus infections can cause different clinical manifestations but in all cases a lymphoid depletion is observed, associated to an immunosuppression that favours the appearance of opportunistic secondary infections. Histopathological lesions were suggestive of severe pulmonary infection with intense hyphae proliferation which accumulated in the parabronchi with simultaneous invasion of the blood vessels. T. mucoides was grown on Sabouraud agar with chloramphenicol (BD Diagnostics-254091) and the identification of this fungal species was done both by morphological characterization and biochemical tests (ID 32 C - Biomerieux 32 200). Circovirus was detected by PCR and the amplified fragment was confirmed by sequencing. The parrot tested negative for avian influenza by RT-PCR and for Pacheco’s disease virus by PCR.

Keywords: Systemic Mycotic infection, Trichosporon mucoides, parrot, circovirus
Investigation of *in-vitro* and *in-vivo* Beta-Lactamase Inhibition by Beta-Lactamase-Inhibitor-Protein Based Peptides

N. Budeyri1, E. Ozkirimli Olmez2, B. Sariyar Akbulut1

1Marmara University, Department of Bioengineering, Istanbul, Turkey.
2Bogazici University, Department of Chemical Engineering, Istanbul, Turkey.

Beta-lactamase is an important drug target in combating the increasing problem of beta-lactam antibiotic resistance. To overcome beta-lactamase mediated antibiotic resistance towards beta lactam antibiotics, inhibitors such as clavulanic acid, sulbactam and tazobactam are commonly used in conjunction with various beta-lactam antibiotics. *Streptomyces clavuligerus* beta-lactamase-inhibitor-protein (BLIP) has been shown to be a potent inhibitor of class A beta-lactamases including the *Escherichia coli* TEM-1 beta-lactamase. Therefore, beta-lactamase inhibition by BLIP is an interesting research field for peptide based inhibitor development. In the current study, *E. coli* K12 strain harboring the pUC18 plasmid that carries the gene of RTEM-1 beta-lactamase, was used for periplasmic beta-lactamase production. To investigate *in-vitro* and *in-vivo* TEM-1 beta-lactamase inhibition, BLIP based peptides of different lengths were tested. *In-vitro* beta lactamase inhibition was observed by both peptides at a concentration of 400 μM. This interaction was verified by affinity SDS-page. Based on the fact that biotinylated peptides can readily be transported into gram (-) bacteria such as *E. coli*, *in-vivo* beta-lactamase inhibition was also investigated by the same BLIP derived peptides with N-terminal biotinylation.

Keywords: antibiotic resistance, BLIP, peptide inhibitor, beta lactamase inhibition

Isolation and Identification of ATP-secreting bacteria from mice and humans

Tadayuki Iwase1,4, Hitomi Shinji1, Akiko Tajima1, Fumihiko Sato1, Taku Tamura1, Minoru Yoneda1, and Yoshimitsu Mizuno1

1Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashii Minato-Ku, Tokyo, 105-8461 Japan
2Division of Infectious Disease and Control, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashii Minato-Ku, Tokyo, 105-8461 Japan
3Central Clinical Laboratory, Jikei University Hospital, 3-25-8 Nishi-shinbashii Minato-Ku, Tokyo, 105-8461 Japan
4Department of Integrated Biosciences, University of Tokyo, Kashiwanoha 5-1-5 Kashiwa, Chiba, 277-8562 Japan

In a recent report, ATP was shown to cause colitis in mice via Th17-cell differentiation (Atarashi K, et al. Nature 2008). Although it was suggested that ATP was secreted by commensal bacteria in the murine intestine, the ATP-secreting bacteria have not been isolated and identified. In the present study, we have isolated and identified the ATP-secreting bacteria from mice and humans. In humans, assessment of the relationships between the ATP-secreting bacteria and colitis will facilitate the understanding of various aspects of human colitis, including the pathology, development of treatment avenues, prophylaxis, and prognosis. Since ATP is essential for the organisms, the extracellular secretion of ATP may indicate unknown symbiotic relationships with some pathogen or commensal in the microbial flora of the gut.

Keywords keyword; ATP-secreting bacteria, colitis, commensal, pathogen, microbial flora.
Isolation and screening of soil microorganisms for membrane-active antimicrobial metabolites

M. Mehravar1,2, S. Sardari1, M. Maboubi1,2, P. Owlia1
1Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Pasteur Institute of Iran, 869 Pasteur Ave., Tehran, 13164, Iran
2Department of Microbiology, Shahed University, Tehran, Iran

Resistance of microorganisms to antibiotics has become a major problem in the treatment of infectious disease. Many of the surviving microbial pathogens are resistant to common antibiotics, and there is an ongoing search for new anti-infective agents. Many traditional antibiotics are produced naturally by soil microorganisms for the purpose of competing microbial species in their biologically diverse environment. Moreover, microorganisms are constantly changing, and adapting to new situations. In addition, over the past 30 years a number of new infections have been discovered. With the continuation of this process, it is important to continue to find anti-infective agents with fewer side effects, shorter lengths of treatment and in particular, drugs with new and less resistant targets to antimicrobial activity. Although antibiotics have various modes of action to inhibit or stop the growth of microorganisms, like inhibition of cell wall formation, protein, nucleic and ribonucleic acid synthesis etc. membrane as a new and potential target is noteworthy for antibiotics action because of less tendency to develop resistance.

In this study soil samples were collected from desert and farming zones of Iran. 3 selective media were used for cultivation of soil dilutions to grow bacterial, fungal, and actinomycete colonies on agar surface. A total number of 75 species consist of 36 bacteria, 28 fungi and 11actinomycetes were isolated from the soil samples. In the primary screening that was performed to evaluate antimicrobial activity, isolated microorganisms were analyzed using the overlay agar technique in terms of their general inhibition effects to indicator strains E. coli, C. albicans, and S. cervisae. It has been found that 23 isolates including 4 bacteria, 13 fungi and 6 actinomycete, were effective against test microorganisms. In the secondary screening to determine membrane-active metabolites producing microorganisms, isolates which had an inhibitory effect against test microorganisms, were analyzed for membrane activity using a Rapid Chromatic Detection method by use of a Biomimetic Polymer Sensor in conjunction with phospholipid as a membrane model. Based on color and fluorescence changes that are easily identified by the naked eye and fluorescent microscope, 3 species consist of 1 fungus and 2 actinomycete had membrane-activity effect and were stored for the sake of further study and identification.

Keywords microorganism; soil; antimicrobial activity; membrane; Persian Gulf

Isolation, identification and antimicrobial activity of an Aneurinibacillus strain from bat cave of tropical rain forests in Thailand

Mi-Hak Park, Hee Kuk Park, Wonyong Kim
Department of Microbiology & Research Institute for Translational System Biomics, Chung-Ang University College of Medicine, Seoul 156-756, South Korea

A gram positive spore forming strain was isolated, in the course of the routine screening of bacteria for industrial purposes, from the bat cave of tropical rain forests in Southern Thailand. Colony morphology, biochemical tests and chemotaxonomic investigations revealed that this strain had the characteristics of the family Paenibacillaceae. Comparative 16S rRNA gene sequence analysis showed that the organism was the most closely related to Aneurinibacillus migulanus with 98% similarity. This strain was inhibited by strains of Bacillus anthracis, methicillin resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE). These findings suggest that this bacterial strain might have a potential as an antimicrobial agent, especially against superbacteria.

Keywords Aneurinibacillus migulanus; antimicrobial agent; superbacteria
Lactic acid bacteria from the vagina of healthy Turkish women: identification, hydrogen peroxide production

Merih K vanç, Demet Yazıcıoğlu, Emine Dinçer,
Anadolu University, Science of faculty, Department of Biology, Eskisehir, TURKEY

Lactic acid bacteria are ubiquitous in nature and in humans they play a very significant role in the general health maintenance of the host.

Lactic acid production is considered to be the major protection mechanism of lactobacilli against vaginal infections due to genital pathogens. Some species of Lactobacillus are also hydrogen peroxide (H$_2$O$_2$) producers.

The present study was conducted to identify the species of lactic acid bacteria isolated from vaginal fluids of reproductive-age women and to characterize the H$_2$O$_2$-producing an healthy Turkish women.

Identification of lactic acid bacteria have previously been based on culture-dependent methods and ribotyping. Ribotyping was performed with the RiboPrinter Microbial Characterization System (Qualicon Inc., Wilmington, DE) and the standard EcoRI DNA preparation kit, as described in the manufacturer's operations and analytical guides.

We identified Lactobacillus paracasei spp. paracasei, L. brevis, L. delbrueckii subsp. delbrueckii, L. plantarum, Lactococcus lactis, Leuconostoc mesenteroides, and as the most frequent species. In this healthy Turkish women had H$_2$O$_2$-producing vaginal lactobacilli.

Keywords: Lactic acid bacteria, Vagina, H$_2$O$_2$.

Methicillin-resistant Staphylococcus aureus (MRSA) in Brazil: Classification of SCCmeC and virulence factors

M. L. Ribeiro de Souza da Cunha1, M. V. Pimenta Rodrigues1,2, C. Sena Martins de Souza1, N. B. Teixeira1, and C. M. Castelo Branco Fortaleza2

1UNESP, Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University, Julio de Mesquita Filho, Botucatu, SP, Brazil.

2UNESP, Department of Tropical Diseases and Diagnostic Imaging, Botucatu Medical School, São Paulo State University, Julio de Mesquita Filho, Botucatu, SP, Brazil.

Staphylococcus aureus strains are responsible for a wide variety of clinical manifestations, which generally depend on the numerous virulence factors produced by each strain. These factors include adhesion molecules, biofilm formation, and the production of enterotoxins, exfoliative toxins and leukocidins. The objective of the present study was to detect methicillin-resistant S. aureus (MRSA) in clinical and/or surveillance cultures obtained from patients seen at a teaching hospital, and to associate the findings with the prevalence of resistance and virulence factors.

A total of 424 S. aureus strains were isolated and identified in surveillance cultures, burn swabs, blood cultures, secretions and other clinical specimens obtained from 123 patients hospitalized at Hospital Estadual Bauru (HEB), Faculdade de Medicina de Botucatu (FMB), UNESP, Brazil. Next, the resistance profile of these strains was determined by the agar disk diffusion technique using the following antibiotics: oxacillin (1 μg), cefoxitin (30 μg), gentamicin (10 μg), erythromycin (15 μg), and vancomycin (30 μg). Genotyping of these strains was only performed for the first positive sample of each patient (blood culture or other clinical material, if available). According to these criteria, the genotypic resistance and virulence profiles of 212 S. aureus strains were analyzed. PCR for detection of the mecA gene was used for genotypic analysis of resistance and positive strains were submitted to subtyping of the staphylococcal cassette chromosome (SCCmeC) by multiplex PCR. For genotypic analysis of virulence factors, PCR was used for the detection of the following genes: enterotoxins A, B and C (sea, seb and sec-1), toxic shock syndrome toxin (tst), Panton-Valentine leukocidin (LukPV), alpha (hla) and delta hemolysins (hld), exfoliative toxins A, B and D (eta, etb and etd), and biofilm formation (icaA and icaD). Investigation of the mecA gene revealed 134 (63.2%) MRSA strains. Characterization of SCCmeC in these strains showed the presence of SCCmeC type III or variations of type III in 104 (77.6%) strains, SCCmeC type I or IA in 23 (17.2%), SCCmeC type IV in 4 (3.5%), and SCCmeC type II in 3 (2.2%). Analysis of the virulence profile showed no significant difference in the presence of genes encoding biofilm production (icaA and/or icaD), delta hemolysin (hld), alpha hemolysin (hla), or enterotoxin in A (sea) or B (seb) between MRSA and MSSA. However, the enterotoxin C gene (sec-1) was more frequent in MRSA strains (42.5% versus 20.5% in MSSA). The importance of these pathogens is related to the combination of virulence mediated by their toxins, their invasive character and resistance to antibiotics. Thus, determination of these factors permits the establishment of the resistance and virulence profile of these circulating pathogens and, consequently, to maximize measures for the control, treatment and prevention of these microorganisms.

Keywords: Staphylococcus aureus, MRSA, SCCmeC, Antimicrobial Agents, Biofilm, Toxins, Hemolysins, Virulence Factors.
Microorganisms of the peloid: *Pseudomonas sp.* and *Arthrobacter sp.* as probable producers of prostaglandins

Svetlana V. Isay, Elena M. Katrich and Natalia G. Busarova
Pacific institute of bioorganic chemistry of Far East branch of the Russian academy of sciences, Vladivostok, 690022, Avenue The 100-letiya of Vladivostok, 159, Russia

It is shown, that *Pseudomonas sp.* and *Arthrobacter sp.*, found in the peloid of health resort Garden-town (near Vladivostok), synthesize de novo from 10 up to 14 fatty acids, respectively, as methyl esters and only the small part is presented by free fatty acids.

It is shown also both *Pseudomonas sp.* and *Arthrobacter sp.* produce the same type of prostaglandins also as a methyl ester, methyl ester of prostaglandin of group E.

Keywords fatty acids, peloid, prostaglandins

New antibacterial molecules produced by endophytic *Paenibacillus polymyxa*

N. F. Gonzaga Serrano1, C. O. Hokka2, C. Paiva de Sousa1, and J. D. Dubreuil3

1Universidade Federal de Sao Carlos (UFSCar)- Depto. de Morfologia e Pathologia, Rod. Washington Luis, Km 235, 13.565-905 Sao Carlos, SP, Brazil
2UFSCar-Deppto. de Engenharia Quimica
3Université de Montréal, Faculté de médecine vétérinaire, 3200 rue Sicotte, 32S 7C6, Saint-Hyacinthe, Quèbec, Canada

Endophytic bacteria can produce complex natural products and as such are recognized as a source of new antibacterial agents with potentially significant impact on treatment of infections. A strain of Gram-positive aerobic endophytic microorganism was isolated from the leaves of *Prunus* spp., a Brazilian tropical savannah tree. The 16S RNA analysis indicated that the isolate was *Paenibacillus polymyxa*. This isolate, designated *P. polymyxa* RNC-D, was evaluated for its antimicrobial activity against important pathogenic bacteria. For production of soluble activity, the microorganism was cultivated in ISP2 broth at 28°C with agitation. When stationary phase was attained (48-120h) maximum antimicrobial activity was observed in the cell-free supernatant. Quantitative evaluation of the crude soluble activity was done using a well diffusion assay in which two-fold serial dilutions of the extract were tested against *Escherichia coli* ATCC 25922 and *Staphylococcus aureus* ATCC 25923 as test strains. The stability of the antimicrobial activity was evaluated. A 10-fold crude extract concentrate was obtained using a speed-vac and then tested for enzymatic, thermal and pH susceptibility. The bioactivity was resistant to proteases (pronase, pepsin, trypsin, protease K) but was sensitive to lipase. It was resistant to thermal treatment up to 121°C for 15 min, could be frozen (minus 80°C) and was stable at pH varying from 2.0 to 9.0.

Filtration on a Ultrafree (Millipore) membrane with cut-off of 2,000Da showed that the antimicrobial activity was of low molecular weight as it was found in the filtrate only. Using anionic chromatography on a Mono-Q column coupled to an Akta purifier system (GE Healthcare) we could resolve peaks showing variable activity. From these peaks, using Mass spectroscopy, we could conclude that some represented compound already known to be produced by *P. polymyxa*, like polymixin E and F04 peptide. Nevertheless, two peaks corresponded to new molecules with antimicrobial activity that can represent new therapeutic tools. One of these substances is a tripeptide (Glu-Cys-Gly) and is active against *E. coli*. The other molecule is lipidic in nature and is active against *S. aureus*. The chemical nature of both newly identify antimicrobial molecules explain the chemical stability observed in the well diffusion assay.

Keywords Antimicrobial activity, endophytic bacteria, biochemical characterization, purification, *Paenibacillus polymyxa*.
Phylogeny of human and environmental isolates belonging to Tissierella group.

C. Alauzet1, A. Louniewski1, F. Morin1, H. Marchandin2, and E. Jumas-Bilak1.
1Bacteriology Laboratory, Nancy-University, EA4369, Vandoeuvre-les-Nancy, France
2Université Montpellier 1, EA3755-DIBOP, Montpellier, France

Bacteria belonging to the Tissierella group, which includes the genera Tissierella, Tepidimicrobium, Soehngenia and Sporanaerobacter, are anaerobic gram-positive bacilli currently classified along with anaerobic gram-positive cocci in the undefined family designated as incertae sedis XI, in the phylum Firmicutes. So, their phylogeny remains unclear. These bacilli were described from environmental sources such as activated sludge and hot springs. Tissierella praeacuta has been also reported as an opportunistic human pathogen. We used a polyphasic approach in order to clarify the phylogeny and the taxonomy of the Tissierella group as well as to describe the diversity of its members. The 16S rDNA based phylogeny was reconstructed on 453 sequences. Electron microscopy, multi-locus sequencing (tpi, recA and spo0A genes) and determination of the genomic skeleton by pulse-field gel electrophoresis were performed on 27 clinical isolates and reference strains. We confirmed the phylogenetic placement of the Tissierella group in the phylum Firmicutes as well as their gram-positive cell wall structure, in spite of their negative reaction to gram stain. In the phylogenetic tree, the incertae sedis families XI, XII and XIII, the family Peptostreptococcaceae sensu stricto and several members of the family Clostridiaceae were gathered in a robust clade that branched at the same depth than previously defined classes in Firmicutes. Therefore, we proposed to affiliate the clade to Peptostreptococcaceae classis nov. within the Firmicutes phylum. Associated to the presence of other genera in the undefined family designated as incertae sedis XI, the phylum Firmicutes is revised.

Keywords: Tissierella, phylogeny, environment, opportunistic pathogens

Pneumococcal whole-cell vaccine: optimization of pneumococcal cell growth using fed-batch cultivation

Laboratório de Bioprocessos and ²Laboratório de Biotecnologia Molecular, Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, 05503-900 São Paulo SP, Brazil

The current vaccines against Streptococcus pneumoniae are composed of capsular polysaccharides from serotypes which are prevalent in USA and Europe. The free polysaccharide vaccines are effective only in adults and conjugate vaccines are effective in children, but their high cost has not allowed their inclusion in mass campaigns in developing countries. Besides, there are cases of serotype replacement reported in the countries that have already included conjugate vaccines in the schedule for children vaccination. In order to solve these problems, Malley et al. developed a pneumococcal whole-cell vaccine, which is based on an uncapsulated strain of S. pneumoniae and therefore it is a serotype-independent vaccine. Moreover, its production process is simpler and more inexpensive than the other pneumococcal vaccines, since it is unnecessary to purify the antigens which are present in the vaccine. S. pneumoniae is a fastidious anaerobe aerotolerant microorganism; its metabolism is restricted to substrate level phosphorylation and its main product is lactic acid, which imposes strong constraints to the biomass yield due to both: unfavorable energy balance and end-product inhibition of growth. The present work aimed to increase the pneumococcal cell growth using different fed-batch conditions and to define the economically most advantageous feeding medium.

Strains Rx1AT and Rx1AI possessed a high cell growth during the fed-batch cultivations and both strains are unencapsulated strains with an insertion/duplication mutation in the lytA, the gene of the major pneumococcal autolysin. Two batch media were used containing either 5 or 20 g/L enzymatically hydrolyzed soybean meal (EHS). The other components of batch media were 20 g/L yeast extract (YE), 0.01 g/L cholesterol, 0.1 mL/L thiglycolic acid, 0.625 g/L glutamine, 5 mg/L MgSO4, 0.8 mg/L ZnSO4, 0.36 g/L MgSO4, 200 mg/L kanamycin. Frozen stock culture (10mg) was used to inoculate 500 mL of the medium and incubated at 36°C and 3% CO2 for 11 h. This pre-culture was inoculated into bioreactors to obtain an initial OD of 0.1. Batch and fed-batch cultures were carried out in 10L-bioreactors (BioFlo2000, New Brunswick, USA) at 36°C, 150 rpm, 0.5 L/min N2 and 0.1 bar, with pH control at 7.0 by addition of 5M NaOH. Polypropylene glycol was used as an antifoam agent. The fed-batch conditions were simulated using the software AnaBio 1.2 with the Levenspiel’s end-product (lactate) inhibition model. Three feeding media were tested, each one presenting concentrated amounts of EHS, YE and glucose, and all other components at the same concentration than the batch medium: 1) 20 g/L EHS, 80 g/L YE and 80 g/L glucose; 2) 20 g/L EHS, 80 g/L YE and 90 g/L glucose; 3) 200 g/L EHS, 200 g/L YE and 200 g/L glucose. The cell growth was measured by OD at 600nm (Hitachi U1800 spectrophotometer). After centrifugation of culture broth samples at 20,000 g and 4°C for 10 min, glucose, lactate and acetate were determined in the supernatant using high-performance liquid chromatography (HPLC, Shimadzu using an Anamix HPX 87H column (100 x 7.8 mm, BioRad), at 60°C and 5 mM H2SO4 solution was used as mobile phase with a flow rate of 0.6 mL/min. For preparation of the whole-cell vaccine, the harvesting should be performed before the stationary phase, thus it should be done at OD–5.0 using the 5 g/L EHS medium and at OD–6.5 using 20 g/L EHS medium in batch cultures. After adjusting the Levenspiel’s model to the batch data, different fed-batch conditions were simulated and the promising ones were tested: a) batch phase with 5 g/L EHS medium followed by feeding medium “a” at 0.4 L/h; b) the same as “a”, but feeding medium “1” at 0.5 L/h, the OD of harvesting; c) batch phase with 20 g/L EHS medium followed by feeding medium “2” at 0.2 L/h; d) the same as “c”, but feeding medium “3” at 0.72 L/h. The OD of harvesting increased in all tested fed-batch conditions, reaching 9.0 for condition “a”, 9.5 for “b”, 10.0 for “c” and 11.5 for “d”. The present work applied simple tools of modeling and simulation to define fed-batch conditions and to achieve an important increase in pneumococcal biomass yield: from 2.25 g/L dry cell weight in batch to 4.27 g/L in fed-batch using the 5 g/L EHS medium, and from 2.92 g/L in batch to 5.17 g/L using 20 g/L EHS medium, i.e., the biomass production was almost two fold higher in fed-batch than in simple batch cultivation. Further studies should evaluate the impact of fed-batch production on the immunogenicity of the vaccine.

Keywords: Streptococcus pneumoniae; fed-batch cultivation

Support: PATH and FAPESP

Keywords: Streptococcus pneumoniae; fed-batch cultivation
Polyphasic characterization of *Aspergillus fumigatus* strains causing infection in parrots and dolphins

A. Lança1, I. Almeida2, H. M. Martins3, F. Bernardo1, M. Guerra1, J. Inácio3 and M. L. Martins4

1CIISA, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
2Faculdade de Medicina Veterinária, Universidade Luís de Joaninhos de Tecnologia, Campo Grande 376, 1749-024 Lisboa, Portugal
3Laboratório Nacional de Investigação Veterinária, Instituto Nacional de Recursos Biológicos, I.P., Estrada de Benfica 701, 1549-011 Lisboa, Portugal
4Laboratório de Micologia, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 96, 1349-008 Lisboa, Portugal

Aspergillus fumigatus is a common and ubiquitous mould and an opportunistic pathogenic fungus, being its spores an important component of the normal airborne microflora. Epidemiological data emphasize that *A. fumigatus* can infect most animals, including humans, especially when the individuals are immunocompromised. The first case of human allergic bronchopulmonary disease due to this fungus was described in the mid-twentieth century, in London, and the first invasive and fatal infection in an immunocompromised patient was also described a few years later. Immune dysfunction allows the germination of inhaled spores and the growth of mycelia in animal and human lungs, causing an invasive condition known as aspergilloma.

The aim of this work was to characterize several *Aspergillus fumigatus* strains isolated from eleven ornamental birds (parrots - *Amazona aestiva*) and six dolphins (*Delphinus delphis*) presenting culture-confirmed infection by this fungus. All dolphins presented also clinical signs of respiratory diseases which were refractory to antimicrobial treatment. A polyphasic approach was followed for the characterization of isolates, including the use of conventional phenotypic tests and molecular typing tools.

For strain isolation, swabs were taken from air sacs/lungs during necropsies of parrots and from nasal/pulmonary exudates of dolphins and transported immediately to the laboratory. Cultures were grown on two conventional media, Sabouraud Agar containing Gentamycin and Chloramphenicol and Cooke Rose Bengal Agar, incubated for five days at 25 °C as well as at 37 °C. Suspected *Aspergillus* spp. colonies were purified and identified based on their respective macro and micromorphological features. Additionally, all strains were typed by a PCR-based assay involving the amplification of polymorphic regions of extracted genomic DNA using the microsatellite primer (GACA)₅.

In Portugal there are few published reports describing the morbidity and mortality of the infection caused by *Aspergillus* spp. in animals. The present study documents the occurrence of natural and fatal infections in the respiratory tract of parrots and dolphins due to *A. fumigatus* and the preliminary characterization of these agents.

Keywords: *Aspergillus fumigatus*, Parrots, Dolphins, Polyphasic strain characterization

Propolis from Azores: antimicrobial and antioxidant properties

M. Guimarães1, J. Paula2, C. Aguiar2,3, A. Cunha2,4, M. J. Carvalho1, L. Carvalho1, and A. M. Ferreira1

1 Centro de Química, Universidade de Trás-os-Montes e Alto Douro, Vila Real
2 Departamento de Biologia, Universidade do Minho, Campus de Gualtar 4710-057 Braga
3 CITAB - Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas, Universidade do Minho, Campus de Gualtar 4710-057 Braga
4 CDMA - Centro de Biologia Molecular e Ambiental, Universidade do Minho, Campus de Gualtar 4710-057 Braga

Propolis, or bee glue, is a natural mixture processed by honeybees (*Apis mellifera*) from substances exuded by plants: lipophilic materials on leaves and leaf buds, resins, mucilages, gums and lattices. Apart from plant exudates, compounds derived from bee’s metabolism and others introduced during propolis elaboration can be identified in this mixture. Bees use propolis in the construction and repair of their hives, to block holes and cracks, and to embalm the carcasses of the invaders preventing their decomposition inside the hive.

Characteristicly, propolis is a hard and brittle material when cold but soft, pliable, and very sticky when warm. It possesses a pleasant aromatic smell and varies in color, from yellow-green to dark brown, depending on its source and age.

The composition of the propolis sample determines its chemical composition, which varies according to geographical origin. In spite of possible differences in composition, most propolis samples have similarities in their overall chemical nature. Raw propolis is composed of 50% resin (composed mainly of flavonoids and related phenolic acids), 30% wax, 10% essential oils, 5% pollen and 5% of various organic components.

Propolis has been extensively employed in folk medicine since ancient times and is currently a popular alternative medicine in various regions of the world. It has been reported to possess several biological activities, such as antibacterial, antifungal, antiviral, antiprotease, anti-inflammatory, local-anesthetic, immunostimulating, cytostatic, hepatoprotective, antioxidant, antitumor and, more recently, allelopathic properties.

Current applications of propolis include preparations for cold syndrome as well as dermatological preparations useful in wound healing, treatment of burns, acne, herpes simplex and genitalis, and neurodermatitis. In addition, propolis is used in mouthwashes and toothpastes to prevent caries and treat gingivitis and stomatitis. Propolis can also be useful in cosmetics and as a constituent of health foods.

Little information is available concerning Portuguese propolis. In this study, we investigated the in vitro antioxidant and antimicrobial activities of two different samples (4 and 5) of Portuguese propolis from Angra do Heroísmo (Azores). The samples were collected as crude materials and extracted with ethanol. The total ethanolic extracts were further fractionated with a-hexane and chloroform. Extracts and fractions thus obtained were tested for total polyphenol and flavonoid contents by Folin–Cooateau and aluminum chloride colorimetric methods respectively.

The free-radical scavenging properties of antioxidants and their general benefits to human health are well documented but there is also a demand for the development of more effective antioxidants of natural origin. The in vitro antioxidant activity of propolis samples was evaluated with the ABTS assay. This activity was higher for sample 4 in all tested fractions and total ethanol extract, where it reached its maximum value. No significant differences were detected among samples or fractions, with the exception of hexane fraction from sample 4 which showed minimum values. Differentfly, flavonoid content was higher in sample 5, particularly in total ethanol extract. These results suggest that other should be responsible for the antioxidant activity.

Antimicrobial properties were screened by a disk diffusion assay against selected Gram-positive/Gram negative bacteria as well as yeasts indicator strains. In general, propolis fractions showed greater anti-yeast activity than total ethanolic extracts. Comparing both samples, it was observed that sample 4 (fractions and EE) displayed higher antimicrobial activity, either against the yeasts *Saccharomyces cerevisiae* and *Candida albicans* or against the bacteria *Bacillus subtilis*. No activity was detected against the Gram negative bacteria *Escherichia coli*. The greater bioactivity was observed for the hexane fraction of sample 4. These results suggest that antimicrobial effects are not related with total polyphenols content but with low flavonoid content.

Keywords: propolis; Azores; antioxidant properties; antimicrobial activity
Proteinic extracts from *Sporothrix schenckii* cell wall a novel serological strategy by sporotrichosis

M. C. Condori Bustamante, L. Maciel Oliveira, L. Machado Brites, A. Baptista-Neto, M. Barbosa, and C. O. Hokka

1Department of Biology, University of Guanajuato. Noria Alta S/N, Col. Noria Alta, Guanajuato, 36000, Mexico.

2Department of Medical Investigations. University of Guanajuato. 20 de Enero 252. Col. Obregón, León, Guanajuato 37320, México.

3Department of Infectious and Molecular Pathogenesis, Centro CINVESTAV-IPN. Av. IPN 2508, Col. San Pedro Zacatenco, México, D.F. 07360, México.

Sporotrichosis is an opportunist fungal infection that has become a global clinical importance in recent times due to the problems of HIV, cancer, diabetes and immunosuppression. This infection is caused by the dimorphic fungus *S. schenckii*. This disease is characterized by clinical lesion in the skin, whereas in the immunocompromised patient may spread systemically causing death. In clinical practice the diagnosis of *sporotrichosis* is complicated and in most cases the medical staff underdiagnosis the disease. Its diagnosis is based on the cultivation of the infected tissue biopsies. The serological methods used today in many false positives and negatives. The purpose of this study was to establish strategies through cellular, biochemical and immunologic methods to diagnose *sporotrichosis*. By sulfo-NHS-LC Biotin was to mark the achievement of cell wall proteins of *S. schenckii*. The labeled proteins were used for the design of a ligand like assay. By incubating these proteins with epithelial tissue, it was observed that at least five proteins had affinity for this tissue (Mr > 190, 180, 115, 90 and 80 kDa). Those proteins were used as antigens and immunization protocols classic rabbit immune serum was obtained with a 1:2500 title which reacts with the proteins of *S. schenckii* showed that the affinity for the epithelium. Western blot and indirect immunofluorescence assays showed that the serum immune present reaction toward proteinic extracts and different morphological stages of clinical isolated strains of *S. schenckii*. Also for these tests showed that the immune serum generated no cross-reactivity with metabolic fractions of other non-pathogenic and pathogenic fungi. In sum, these results indicate that the immune serum could be useful for detecting *S. schenckii* in biological samples, but more experiments will be conducted to assess the biological effectiveness and employment as strategies basic in immunotherapy and diagnosis for this disease. DAIP -UG Grant No. 2008 to MSL.

Keywords Sporotrichosis; serological diagnosis

Purification of Cephamycin C from fermentation broth

M. C. Condori Bustamante, L. Maciel Oliveira, L. Machado Brites, A. Baptista-Neto, M. Barbosa, and C. O. Hokka

Department of Chemical Engineering, Federal University of São Carlos, Washington Luiz, km 215, 13565-905, São Carlos, Brazil

Cephamycin C (CepC) is an important β-lactam compound, belonging to the class of cephalosporins. As a β-lactam antibiotic, it affects the peptidoglycan’s synthesis in prokaryotes, affecting the cell wall integrity. CepC is produced by the bacteria *Streptomyces clavuligerus* and *Nocardia lactamurans* in submerged fermentations, and it has to be isolated from the fermentation broth using appropriate downstream techniques, in order to obtain the antibiotic at an adequate purity. In this work, it was investigated the purification of CepC applying the processes of ultrafiltration, nonspecific adsorption and ion-exchange chromatography. All assays utilized microfiltrated culture broth from batch fermentations of *S. clavuligerus*. CepC was determined by bioassay, using the bacterium *Escherichia coli* ESS, and by HPLC. In the ultrafiltration studies, nine experiments were conducted to evaluate the influence of temperature (10, 15 and 20°C) and pressure (0,75, 1,00 and 1,25 Kgf.cm⁻²). After ultrafiltration, the broth was clarified at an agitated tank by the adsorption of contaminants in the resin Amberlite XAD-4 (relation 3:1, broth:resin). The ion-exchange chromatography was carried out in a column packed with the resin Q Sepharose XL, 20°C, and the elution was made with NaCl solutions. Breakthrough curves with this ion-exchange resin were obtained to determine the best flow rate for the broth feed (2,5; 5 and 7,5 mL.h⁻¹). Ultrafiltration experiments showed that flow rates of permeate, in all the cases, fell with filtration time. This fact indicated that the cake formation on the membrane increased the system resistance (membrane+cake). The average value of Rm was of 1.25x10¹⁴±9.23x10¹³. CepC concentration was practically the same in the permeate and concentrate fraction and the initial broth. In relation to contaminants, highest values were obtained in the concentrate fraction. RMN-1H analysis of the ultrafiltered broth and after treatment with the resin XAD-4 showed that the spectrum of the latter was cleaner than the one of the former. From this results, it’s possible to conclude that part of the contaminants were adsorbed by the resin, and, therefore, their hydrogen signals weren’t detected in the other spectrum. In the ion-exchange chromatography, a elution with NaCl solutions was able to separate two different fractions with antibacterial activity, detected by bioassay. The first peak was eluted passing 0,1% NaCl solution through the column, and the second was eluted with a solution of 0,5% NaCl. Only the fractions from the first peak could be detected by the HPLC method utilized. These results showed that ultrafiltration and adsorption with XAD-4 resin were able to clarify the broth, eliminating contaminants, and the ion-chromatography with QXL resin and gradient elution with NaCl solutions could separate different fractions from the broth.

Keywords: cephamycin C; purification; ultrafiltration; ion-exchange chromatography; non-specific adsorption
Agaricus blazei is popularly known as cogumelo do sol in Brazil. It is widely used today as an edible mushroom and as a natural therapy in the form of a medicinal extract against a variety of diseases like diabetes, atherosclerosis, hepatitis, hypercholesterolemia, heart disease and others. Edible mushrooms contain many bioactive compounds, such as terpenoids, steroids, phenols, proteins and polysaccharides. More recently nucleotides, nucleosides and nucleobases have also been isolated from several mushrooms, as for example, *Ganoderma lucidum* and *Lentinus edodes*. Several of them are present at relatively high concentrations, raising the suggestion that their functions go beyond the simple role of metabolic intermediates. In mammals this group of compounds is involved in the regulation and modulation of various physiological processes mediated by purinergic receptors, so that they could be responsible for some of the physiologic effects normally attributed to edible mushrooms. With respect to its nucleotide, nucleoside and nucleobase contents *Agaricus blazei* has not yet been investigated. Identification of this class of compounds in *Agaricus blazei*, however, could be useful to the attempts of explaining the physiologic and pharmacologic effects of this species. Taking this into account the present work had two main purposes: (1) to identify and quantify the nucleotides, nucleosides and nucleobases of *Agaricus blazei* hydroalcoholic extracts; (2) to test the extract for a possible purinergic action due to the presence of those compounds. Identification and quantification were done by means of high-performance liquid chromatography (HPLC). Samples of the fruiting bodies (basidiocarps) of *Agaricus blazei* were extracted with ethanol 70% and the extracts were freeze-dried and dissolved in water for analysis. The HPLC system (Shimadzu, Japan) consisted of a SCL-10AVP system controller, two model LC10ADVP pumps, a model CTO-10AVP column oven and a model SPD-10AVP UV-VIS detector. A reversed-phase C18 HRC-ODS column (5 μm; 150x6 mm ID, Shimadzu, Japan) protected with a GRHC-ODS precolumn (5 μm; 10x4 mm ID, Shimadzu, Japan) was used with a gradient from reversed-phase 0.044 mol/L phosphate buffer solution, pH 6.0, to 0.044 mol/L phosphate buffer solution plus methanol (1.1), pH 7.0, at 0.8 mL/min. The identification of the peaks of the investigated compounds was carried out by comparison of their retention times with those obtained injecting standards in the same conditions, as well as by spiking the *Agaricus blazei* samples with stock standard solutions. At least nine compounds could be identified and quantified. The nucleotides were UMP (0.68±0.01 nmol/mg extract) and AMP (0.94±0.24 nmol/mg). The nucleosides were guanosine (2.96±0.02 nmol/mg), adenosine (14.40±0.18 nmol/mg), caffeine (2.00±0.13 nmol/mg) and uridine (10.82±0.24 nmol/mg). And, finally, the nucleobases were uracil (1.39±0.02 nmol/mg), hypoxanthine (0.72±0.04 nmol/mg) and xanthine (2.36±0.09 nmol/mg). For testing the purinergic activity of the *Agaricus blazei* extracts, the isolated perfused rat liver was used, a system that has been shown to respond in a characteristic way to purinergic agents. The once-through perfusion system was used and the perfusion fluid was the Krebs/Henseleit-bicarbonate buffer (pH 7.4), saturated with a mixture of oxygen and carbon dioxide (95:5%) and equilibrated to 37°C. Extracts were infused at concentrations up to 400 μg/liter, corresponding to total concentrations of nucleotides and nucleosides of up to 15 μM. The extract produced transient increases in the portal and arterial perfusion pressure. In livers from fed rats, with a high glycogen content, the extract increased the glycolysogenic glucose release in a transitory manner. It also caused a transient increase in lactate production and a relatively stable increment in oxygen uptake. In livers from fasted rats perfused with lactate (2 mM) as the gluconeogenic precursor the extract caused a transient decrease in oxygen uptake followed by stimulation and a transient decrease in glycogen synthesis. These and other effects have been reported to occur in the perfused rat liver upon adenosine and AMP infusion, for example. It has also been reported that these effects are, partly at least, Ca2+-sensitive and dependent on cationic transport from the Kupffer and endothelial cells. In order to test this possibility for the *Agaricus blazei* extract, experiments were done in which Ca2− was omitted from the perfusion fluid. Under these conditions most effects were nearly abolished or at least substantially reduced. The effects were also sensitive to two different inhibitors of cationic transport, namely indomethacin and bromophenacyl bromide. The effects were also sensitive to suramin, a known antagonist to purinergic receptors. The results obtained in the present work allow to conclude (1) that nucleotides, nucleosides and nucleobases are important components of the fruiting bodies of *Agaricus blazei* and (2) that extracts containing these compounds are in fact able to exert many effects that are characteristic of the purinergic action in the liver. The effects of the extract will probably be more complex that those of each isolated substance due to the possibility of synergism, a phenomenon that can always be expected from complex mixtures.
Quantitative evaluation of lactobacilli and Clostridium difficile in faeces of patients with antibiotic associated diarrhoea and antibiotic resistance of isolated strains

E. Sepp1, S. Kiljala1,2, J. St强奸tova1, I. Smidt1, M. Rätsep2,1, L. Jaaninen1, P. Naaber1,2,3
1Dept Microbiology, University of Tartu, Ravila 19, 50411 Tartu, Estonia
2United Laboratories, Tartu University Hospitals, Paeasea 1A, 50406 Tartu, Estonia
3Dept Medical Microbiology, Stavanger University Hospital, 4068 Stavanger, Norway

Background. C. difficile is the most frequently recognized agent of antibiotic associated diarrhoea in hospitalised patients. The C. difficile infections can vary from asymptomatic colonization to severe colitis. Some previous studies have shown protective role of intestinal lactobacilli against C. difficile colonization/infection. During recent years some new emerging hypervirulent ribotypes which are highly resistant to newer fluoroquinolones have been recognized in several countries.

The aims of our study were (1) to evaluate quantitative counts of C. difficile in infected patients; (2) to correlate counts of intestinal lactobacilli and the presence of free C. difficile toxin in faeces with the counts of C. difficile and (3) to detect antibiotic sensitivity and ribotype of isolated C. difficile strains.

Methods. Faecal samples (n=34) were collected from antibiotic associated diarrhoea patients from Estonian hospitals during 2008. Samples were analyzed for C. difficile toxins, quantitative counts of C. difficile and lactobacilli (colony forming units per gram, log CFU/g). Isolated strains of C. difficile were ribotyped by PCR and antimicrobial susceptibility was tested by E-tests (minimal inhibitory concentration, MIC).

Results. From 34 investigated samples 21 were toxin and/or C. difficile culture positive. Altogether 20 C. difficile strains were isolated. Counts of C. difficile varied between 5.3 and 7.9 log CFU/g in infected patients (median 7.0). There was trend of higher C. difficile counts in patients with positive direct toxin test compared with negative ones (medians 7.3 vs 6 log CFU/g), however this was not statistically significant (p=0.076). Lactobacilli were detectable in 8 samples out of 34 with counts 0-4.58 log CFU/g (median 0). There was no difference between presence or counts of lactobacilli in C. difficile infected or non-infected patients. The MIC values (mg/L) of C. difficile strains were following: metronidazole 0.032-1 (median 0.064), vancomycin 0.25-1 (0.5), erythromycin 0.125-256 (0.38), clindamycin 0.25-256 (1.5), moxifloxacin 0.25-32 (0.5), levofloxacin 1-32 (2). Six strains resistant to fluoroquinolones belonged to ribotypes 017; 012; 095; 046; 012; and 001. No hypervirulent ribotypes (027, 078) were detected.

Conclusions. Despite of high resistance to fluoroquinolones of some C. difficile strains, no hypervirulent ribotypes were found. Metronidazole and vancomycin MICs were usually low, thus these antibiotic could be used for treatment of C. difficile infection. There was trend of higher C. difficile counts in toxic positive samples.

Keywords C. difficile, hypervirulent ribotypes, antibiotic resistance, intestinal lactobacilli

Recombinant protein of Entamoeba histolytica expressed by E. coli is recognized by antibodies from patients with invasive amebiasis

Dinora Pérez,1, R. Rangel,1 A. Rojo,1 G. Mendoza,2 Barrientos1, A. Rojo3, G. Mendoza4, B. González1, J. Viader1, E. Tamez6, L. Galán1, K. Arevalo1, M. S. Flores1
1Instituto de Biotecnología, Facultad de Ciencias Biológicas UANL San Nicolás de los Garza N.L., México.
2Dept Medical Microbiology, Stavanger University Hospitals, 4068 Stavanger, Norway
3UAM Cuajimalpa, 4Facultad de Medicina UNAM, Mexico.
5MD Anderson Houston Texas, United States
6United Laboratories, Tartu University Hospitals, Puusepa 1A, 50406 Tartu, Estonia

Background. Amebiasis is the second cause of deaths due to parasites worldwide. The commercial immunotests for diagnosis this disease don’t have enough accuracy because antibodies directed against the amoebas that circulate among endemic zones populations, another one is the high enzymatic E. histolytica content, which causes degradation of the amoebic extracts. Enzyme inhibitors are used worldwide to diminish the activity of the amoebic proteases. When proteins degrade, they also lose their antigenicity; therefore these extracts are not good enough to be used as a diagnostic test base. Our group succeeded in preserving the antigenic molecules without using enzymatic inhibitors. These molecules can be recognized by the antibodies of patients with invasive amebiasis. We will use the recombinant BPM at implementation of a diagnostic quick test.

Methods. Faecal samples (n=34) were collected from patients with invasive amebiasis in Estonia and Mexico during 2008. Samples were analyzed for C. difficile toxins, quantitative counts of C. difficile and E. histolytica. We sequenced E. histolytica DNA from several patients with invasive amebiasis using PCR and determined the ribotype. A recombinant protein was produced using the terminal amino sequence of the amoebic protease inhibitor “BPM”.

Results. In Estonia and Mexico a total of 34 faecal samples were analyzed for C. difficile toxins, quantitative counts of C. difficile and E. histolytica. Positive E. histolytica DNA was detected in 26 samples. E. histolytica DNA was found in 20 faecal samples from Estonia and 6 samples from Mexico. The recombinant BPM is recognized only by antibodies during the implementation of a diagnostic quick test.

Conclusions. Despite of high resistance to fluoroquinolones of some C. difficile strains, no hypervirulent ribotypes were found. Metronidazole and vancomycin MICs were usually low, thus these antibiotic could be used for treatment of C. difficile infection. There was trend of higher C. difficile counts in toxic positive samples.

Keywords C. difficile, hypervirulent ribotypes, antibiotic resistance, intestinal lactobacilli

Grants: PAICYT CN1575-07 SEP CONACYT 50310 Clave 25617
Rheological Characterisation and Effect of Abiotic Factors on the Antimicrobial Efficacy of Chitosan-Based Hydrogels Containing Alpha-Hydroxy Acids

Marques Ribeiro H.M.; Silva I.; Isaac V. B.; Marto J.; Chiari B.; Raposo S.L.; Silva A.N.; Duarte A.
Faculdade de Farmácia da Universidade de Lisboa, Av. Prof Gama Pinto, 1649-003 LISBOA, PORTUGAL

The objective of this study was to investigate the rheological properties and antibacterial efficacy of chitosan/alpha-hydroxy acids (lactic acid and glycolic acid) and cellulose polymers, both in hydrogels, in order to produce a formulation with improved activity against Propionibacterium acnes and Staphylococcus aureus, which can potentially be used in the treatment of acne.

The rheological characterisation of the hydrogels was examined using continuous shear and viscoelastic creep. The antibacterial activities of formulations were performed by the well diffusion and broth microdilution.

The hydrogels formulated with only chitosan showed pseudoplastic behaviour while the chitosan hydrogels with cellulose polymers presented viscoelastic properties. The antibacterial activity was proportional to AHA and chitosan concentration. It was enhanced at low pH values and with high molecular weight chitosan and did not change with the incorporation of two cellulose polymers. The antibacterial mechanism of chitosan has currently been hypothesized as being related to surface interference.

The results show that chitosan-based hydrogels containing AHA and cellulose polymers are viscoelastic, indicating good applicability onto the skin, and they present bacterial activity under various experimental conditions.

Screening and evaluation of human intestinal lactobacilli for the development of novel gastrointestinal probiotics

1Department of Microbiology, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
2Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge F79, S-14186 Stockholm, Sweden

Lactobacilli have been used as probiotics in food products and dietary supplements for decades. Today, there is increasing interest in developing novel genetically engineered probiotics, e.g. the application of lactobacilli as vehicles for delivery of both active and passive immunity.

The aim of this study was to screen intestinal lactobacilli strains for their beneficial properties to select those that could be used for development of novel genetically engineered probiotics.

Methods. Ninety-three human intestinal Lactobacillus isolates were subjected to screening procedures. They were identified using an API 50 CH L kit and ITS-PCR analysis, examined for auto-aggregation, tolerance of low pH, bile and pancreatin content, antibiotic susceptibility, and haemolytic activity. Six potential probiotic strains were selected and examined for safety in a mouse model.

Results. The investigated lactobacilli strains belonged to 11 species of all three fermentation types (44 obligately homofermentative, 28 facultatively heterofermentative and 21 obligately heterofermentative strains). Fifty-nine percent of the examined lactobacilli showed the ability to auto-aggregate, 97% tolerated a high concentration of bile (2% w/v), 50% survived for 4 h at pH 3.0, and all strains were unaffected by a high concentration of pancreatin (0.5% w/v). One Lactobacillus buchneri strain resistant to tetracycline was excluded from further studies. None of the tested strains caused the lysis of human erythrocytes. Five of 6 strains caused no translocation in animal model, and were considered safe.

Conclusions. The present study identified several strains that have properties required for a potential probiotic strain. In the next phase of the characterization, human trials are necessary to study their survivability in human gut and confirm their safety in humans. Our results can be applied for further studies to design a genetically engineered probiotic product.

Keywords: Lactobacillus; Probiotics; Acid tolerance; Bile tolerance; Antibiotic susceptibility; Haemolytic activity; Safety
Screening of antimicrobial activity of several extracts of *Cistus ladanifer* and *Arbutus unedo*

S. Ferreira, J. Santos, A. Duarte, A. P. Duarte, J.A. Queirou, F. Domingues

1. Unidade de Matérias Têxteis e Papeléiros, Universidade da Beira Interior, Avda Marquês D’Avila e Bolama, 6200-001 Covilhã, Portugal
2. Centro de Investigação em Ciências da Saúde, da Beira Interior, Avda Infante Henrique, 6200-560 Covilhã, Portugal

Plants contain numerous biologically active compounds, many of which have antimicrobial properties and can be seen as sources of agents to combat microbial diseases. The increase in the number of infections in the population and of infectious agents resistance to antibiotics, has enhanced interest in plant extracts or plant-derived compounds, which may represent an alternative to current antimicrobial agents and provide valuable sources of new medicinal agents. For this reason, natural products are being screened for potential use in the therapy of bacterial and fungal infections. To contribute to these studies, we investigated the in vitro antimicrobial activity of different crude extracts obtained from *Cistus ladanifer* and *Arbutus unedo*. C. ladanifer, known as rock-rose is a natural aromatic plant of the Iberian Peninsula. All the *Cistus* species are frequently used in traditional medicine for their antimicrobial, antinumor, antiviral and anti-inflammatory properties. A. unedo, known as strawberry tree, belongs to the Ericaceae family and is native from the Mediterranean plant. The leaves of *Arbutus unedo* L. are diuretic, urinoletic, antiseptic, antidiatrheal, astringent, depository, against blennorrhagia and as an antithrombopetose. The ethanol, methanol and acetone/water extracts of *Cistus ladanifer* and *Arbutus unedo* L. were extracted using different extraction methods and their antimicrobial activity was investigated against reference strains including three Gram-positive (*Bacillus cereus, Enterococcus faecalis* and *Staphylococcus aureus*), four Gram-negative (*Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa* and *Salmonella typhimurium*) and three yeasts (two strains of *Candida albicans* and one of *Candida tropicalis*) and against clinical isolates of *Helicobacter pylori* and methicillin-resistant *Staphylococcus aureus*. The various extracts were tested using the standard M2 and M44 disc diffusion method of the National Committee for Clinical Laboratory Standards (NCCLS), followed by the agar dilution method that was used to determine the minimum inhibitory concentration to the strains presenting susceptibility to various extracts of *C. ladanifer* and *A. unedo*. All the extracts inhibited more than one microorganism, presenting antimicrobial activity against Gram-positive bacteria, *Klebsiella pneumoniae, Candida tropicalis* and *Helicobacter pylori*. All the different extracts from the tested plants showed inhibitory effects against most tested microorganisms, including a significant in vitro effect against *H. pylori*. These inhibitory effects could be considered relevant to the development of new agents for inclusion in the treatment or prevention of infections by the tested strains as *H. pylori*.

Keywords Antimicrobial activity; *Cistus ladanifer*; *Arbutus unedo*

Sensitivity of microorganisms on silver nanoparticles.

Kędziora, G. Bugla-Płoskońska, W. Stępień, J. Kowalczyk, M. Janiordzi, W. Doroszkiewicz

1. Institute of Genetics and Microbiology, University of Wroclaw
2. Institute of Low Temperature and Structure Research, Polish Academy of Science in Wroclaw
3. Institute of Materials Science and Applied Mechanics, Wroclaw University of Technology

Recently we have seen great progress in nanotechnology and their integration with biology. Among the most promising nanomaterials with antibacterial properties are metallic nanoparticles, which show increased chemical and biological activity due to their surface volume ratios. Silver has been known for a long time as a strong antimicrobial agent. We synthesized different silver silica spheres by sol-gel (the final product is a powder) and marked their antimicrobial activity (directly as powder and indirect as of textiles surface) [1, 2]. The following bacteria strains were tested: *Staphylococcus aureus* ATCC 6538, *Escherichia coli* ATCC 11229 and *Klebsiella pneumoniae* ATCC 4352. We tested also fungus strains: *Candida albicans* ATCC 10231. As opportunistic pathogens, *Klebsiella spp.* primarily attack immunocompromised individuals. The high rate of nosocomial *Klebsiella* colonization appears to be associated with the use of antibiotics rather than with factors connected with delivery of care in the hospital. The virulent strains of *E. coli* cause gastroenteritidis, urinary tract infections and neonatal meningitides. Clinical diseases associated with *S. aureus* are pyodermas, folliculitis, osteomyelitis, pneumonia, arthritis, bacteremia, septicemia and the scaled skin syndrome. The application of the silver-based compounds used in catheters, trauchestomes, dressings and medical clothes may be helpful in prevention of the infections caused by these bacteria. As precursor of silver were used ions diamminesilver (I) ([Ag(NH)_3]) or silver nitrate (AgNO_3). Process synthesis of silver/silica nanocomposites was two-step procedure: first we impregnated silica spheres into silver solution and next reduced silver ions to metals nanoparticles (as shown in graph). Nanoparticles were characterized by electron microscope (TEM/SEM), X-ray diffraction (XRD), spectra UV-VIS. Antibacterial and antifungal effect was determined by MIC and MBC/MFC values according to reference methods CLSI (NCCLS) [3, 4] and/or determined inhibited zone according to standard ISO/DIS 20645:2002 [5]. Microorganismms shown high sensitivity on silver nanoparticles, both powder and surface textiles. *Staphylococcus aureus* ATCC 6538, *Escherichia coli* ATCC 11229 and *Klebsiella pneumoniae* ATCC 4352 indicate similar sensitivity to silver included in polymer paste.

This work was supported by the Ministry of Science and Higher Education (Grant 4210/PB/BIgM/09). Graph 1. Silver (20 nm) on the silica surface (TEM)

Keywords; sol-gel, nanotechnology, nanoparticles, silver, silica, microorganisms

References

Serotype Distribution of *Chlamydia trachomatis* Isolated from clinical urogenital samples in North-Eastern Croatia

Z. Boljak1, S. Diljan1, D. Pavlinić1, B. Vuković1, M. Perić1, N. Ružman1, I. Roksandić Križan1, J. Burazin3

1Department of microbiology, Institute of Public Health for the Osijek-Baranya County, Croatia
2DNA Laboratory, School of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
3Department of school medicine, Institute of Public Health for the Osijek-Baranya County, Croatia

The fast molecular diagnostics of *Chlamydia trachomatis* infections and adequate therapy of the infected individuals are the crucial step in the *C. trachomatis* spread control. Due to the chronic and “silent” infection and variable antigenic structure of the *C. trachomatis* we supplemented Direct Immune Fluorescence with the molecular method RT-PCR. The aim of the present study has been to reveal the most prevalent serotype of the *C. trachomatis* detected in urine and gynaecological samples and to monitor the infection and the therapy efficiency. The determined serotype distribution has been compared with the *C. trachomatis* distribution pattern in other regions of the World. COBAS TaqMan CT test is an in vitro nucleic acid amplification test which utilizes real time PCR technology. The test has been developed to confirm analogous detection of all 15 *C. trachomatis* serotypes. Subsequently all the positive samples have been analysed directly by sequencing of the amplified omp1 fragments using Applied Biosystems 3130 Genetic Analyser. Genotyping and sequence mutation analysis have been performed using ABI SEQUENCE software and compared with the determined sequences of all known *C. trachomatis* serotypes.

The preliminary study determined serotype E (in agreement with Sweden and Taiwan data) as the dominant one, followed by F, K, G, D, B, J and Ia (differs Sweden and Taiwan data). Further investigation and data analysis are in progress.

Keywords: urogenital infections, *C. trachomatis* diagnostics, serotypes, sequencing

Simple and efficient method of *E. coli* disruption for recombinant pneumococcal surface protein A production

R. Jr. Carvalho1, J. Cabrera-Crespo1, M. M. Tanizaki2, A. J. G. Cruz3, R. C. Giordano3 and V. M. Gonçalves1

1Laboratório de Bioprocessos and 2Laboratório de Vacinas Conjugadas, Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, 05503-900 São Paulo SP, Brazil
3Laboratório de Desenvolvimento e Automação de Bioprocessos (LaDiBio), Depto. Eng. Quimica, USFScar, Rodovia Washington Luís (SP-310) Km 235, 13565-905 São Carlos SP, Brazil

Streptococcus pneumoniae is a pathogenic bacterium responsible for million deaths of children, elderly and immune compromised people worldwide. New conjugated vaccines are being developed using as carriers pneumococcal surface proteins, which are more conserved than pneumococcal polysaccharides and would offer a broader coverage. The pneumococcal surface protein A (PspA) was chosen for the development of a new vaccine as it has been demonstrated to be one of the most important virulence factors of *S. pneumoniae*. A recombinant fragment of PspA from clade 3 (rPspA3) was produced in high cell density culture of *E. coli* as intracellular soluble protein and the first step for its recovery is the cell disruption. Mechanical cell disruption is a general method of choice and at small-scale French press is normally used, while at bench and large-scale equipment as continuous high-pressure homogenizer or bead mill is required. A controversy exists in the literature about the mechanism of cell disruption by high-pressure homogenization and several studies have demonstrated correlations between physical parameters and cell disruption, but no simple protocol for cell disruption is available. In the present work, the cell disruption was addressed for the development of an industrial production process of rPspA3. *E. coli* BL21(DE3) harboring pET37b+/rfPsP3A was grown in 5-L bioreactor using high cell density medium (HCD) with glucose or glycerol as carbon source. Fed-batch cultures were carried out with exponential feeding of the carbon source in order achieve high cell density. The induction was performed with 0.5mM IPTG + 20g/L lactose. The cells were centrifuged at 17,969 g for 30 min at 4°C and stored at -20°C. For disruption, 100g cell wet weight was resuspended with 1.0 L 25mM Tris pH 8.0 + 0.1% Triton X-100 + 0.01M phenylmethylsulfonyl fluoride (protease inhibitor). The cells were disrupted in a continuous high pressure homogenizer (APV Gaulin 60) at 600MPa and flow rate of 1L/min. The cell suspension reservoir was jacketed, a tube and shell heat-exchanger was placed immediately after the homogenizer outlet and a circulating cooling solution at 4°C was employed in order to keep the temperature under 20°C. The cell suspension was continuously recirculated in closed loop through the homogenizer for 10 min and samples were taken for viable count on LB/agar (CUF/mL) and determination of optical density at 600nm (OD). For protein and rPspA3 quantification, 2.0 mL of sample was centrifuged at 20,817 g for 1.0 h at 4°C and the supernatant was used. The total protein content was determined by Lowry and rPspA3 was quantified by densitometry of SDS-PAGE bands (densitometer GS-800 and software Quantity One 4.6.3, BioRad). The efficiency was calculated as a percentage of the OD obtained after solubilization of cells with 0.1M NaOH.

After 6 min for cells produced with glucose as carbon source and 7 min for cells produced with glycerol as carbon source, the OD stabilized and the disruption efficiency was calculated as 96.7% and 92.7%, respectively. However, the viable count of homogenate from glycerol culture reached a plateau only after 9 min. The presence of the detergent Triton X-100 in the lysis buffer together with the freeze/thaw process was responsible for the rPspA3 release to the supernatant before the homogenization: 1.8 mg/mL rPspA3 from cells produced with glucose and 1.0 mg/mL from cells produced with glycerol. At the end of homogenization, it was obtained 97.5% reduction in OD (from 22 to 0.55) for the homogenate from glycerol culture and 94.4% in OD (from 10 to 1.52) for the homogenate from glucose culture, and 4-log reduction in viable count for cells from both cultures: from 9.8x10⁵ to 10⁰ CFU/mL for glycerol and from 4x10⁴ to 9x10⁴ CFU/mL for glucose. The results indicated glycerol could be acting as cryoprotector and avoiding cell lysis during freeze/thaw process. There was no differences in total protein content (~11 mg/mL) and in target protein (~3.75 mg/mL) released from cells produced using glycerol or glucose after 6-7 min homogenization.

In conclusion, a simple and straightforward method for *E. coli* disruption was established for intracellular rPspA3 recovery: it consisted of 10 minutes of continuous flow through a high-pressure homogenizer in a closed loop system, without any interruption for lowering the temperature, since it was kept under 20°C using a refrigerated reservoir in the inlet and a heat-exchanger in the outlet of the equipment. High-pressure homogenizer is much simpler to use than French press and has the advantage of being easy to scale-up, because nowadays there are small and large scale equipments that allow to process volumes from hundred milliliters up to hundred liters.

Financial support: FAPESP.

Keywords: recombinant pneumococcal surface protein A; cell disruption of *E. coli*
Stempholactoside, new Stemphol derivative isolated from tropical endophytic fungus *Gaeumannomyces amomi* BCC4066

Juanjiun Jumpathong 1, Mun Ali Abdalla 2, Hartmut Laatsch 3, and Saisamorn Lumyong 4

1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 52000 Thailand
2 Institut für Organische und Biomolekular Chemie der Georg-August University Göttingen, Tammannstraße 2 D-37077 Göttingen, Germany

We have investigated a group of novel strains which were identified as potential producers of polyketides, using PCR based gene mining. The aim of this work was to study the diversity of reducing type I polyketide synthase and isolate polyketide molecules. Cultures grown to investigate the production of these important natural products were also investigated for other metabolites. We first studied the diversity of reducing type I polyketide synthase in these species using a molecular and bioinformatics approach. All strains were cultivated in preferable medium and column chromatography used for separation. Structure elucidation was analyzed by spectroscopic method. The ethyl acetate extract of the cultures of *Gaeumannomyces amomi* BCC4066, an endophytic fungus found in healthy parts of ginger or Thai name: Kha-pa (*Alpinia malaccensis*) have been isolated by fractionation. A new stemphol derivative named stempholactoside (1), together with three known metabolites, indole-3-carboxylic acid (2), stemphol (3) and kojic acid (4) have been elucidated. The structure of 1 was established by spectroscopic methods, including 2D-NMR experiments (COSY, HMQC, and HMBC), and GC/MS. Stemphol displayed significant growth inhibitory activity against the brine shrimp (*Artemia salina*) at a concentration of 10 μg/ml.

Keywords: polyketide synthase, new stemphol, natural product, ascomycete fungi

Streptococcus intermedius trigger quorum-sensing genes in *Porphyromonas gingivalis*

M. A. De la Garza-Ramos 1, A. Alcázar-Pizaña 2, Mariano Garza-Enriquez 2, Raúl Caffesse 2, V. Aguirre-Arzola 1, L. J. Galán-Wong 2, and B. Pereyra-Alférez 1

Quorum sensing is a genetic regulation in response to cell density that can regulates various functions in bacteria. Among them we can find various cell functions associated with secondary metabolism, biofilm formation and virulence gene expression. This phenomenon was discovered in the marine bacteria *Vibrio fischeri* and *Vibrio harveyi* who produce autoinducers, and when their concentration reaches a threshold level in environment, they bind to a response regulator protein and induce expression of luciferase gene cluster. Today, we can recognized two kind of quorum-sensing systems in *V. harveyi*; one utilizes an acylhomoserine lactone as the signal and other uses a luxS gene homologue that might be implicated in not only in a quorum-sensing system but also in stress gene regulation. In this study, we report the regulation of gene expression in *Porphyromonas gingivalis* as response to different cell concentration of *Streptococcus intermedius*, another natural oral habitant. Both bacteria were incubated at next ratios: 1:1, 1:10 and 10:1 of *P. gingivalis*: *S. intermedius*. The genetic expression of the locus PG0520, PG0538 and PG1280 was evaluated with qPCR. Values were compared with those obtained with cultures of *P. gingivalis* pure and the 1:1 *P. gingivalis*: *S. intermedius* relationship. Genetic regulation was clear when *P. gingivalis*: *S. intermedius* had a ratio of 1:10, here the locus PG0538 was down regulated while PG1280 was up regulated. However, when the ratio was of 10:1 *P. gingivalis*: *S. intermedius* relationship, the real value remains unchanged. It is well known that in the oral cavity live many microorganism and their cell concentrations and cell ratio are in constant fluctuation. Early reports have been suggested that *S. intermedius* are associated with periodontitis too. In this sense, we addressed our strategy to search how *P. gingivalis* could to response to the presence of another oral microorganism. Our results showed that the quorum sensing system could to regulate genetic systems as response to another microorganism.

Key words: Porphyromonas gingivalis, Streptococcus intermedius, quorum sensing, qPCR
Structural Conservation of *Helicobacter hepaticus* Catalase and Potential Contributions to Autoimmunity

Essam J. Alyamani, 1, Mohammed Khiyami, 1, James G. Fox, 1, and James Versalovic 2

1 National Biotechnology Research Center, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.
2 Massachusetts Institute of Technology (MIT), Cambridge (MIT), USA.

Background: *Helicobacter hepaticus* colonizes the mouse intestine and has been associated with hepatic inflammation and neoplasia in susceptible mouse strains. In this study, we characterized the catalase of an enterohelical *Helicobacter* for the first time. *H. hepaticus* catalase is a highly conserved enzyme that may be important for bacterial survival in the mammalian intestine. Methods: Recombinant *H. hepaticus* catalase was expressed in *E. coli* to study the enzymology in vitro. The *H. hepaticus* catalase sequence was compared with diverse bacterial and mammalian catalases. To study autoreactive immune responses to *H. hepaticus* and endogenous murine catalases during the course of *H. hepaticus* infection, two groups of mice (*H. hepaticus*-infected and uninfected C57/B6 IL-10-deficient mice) were evaluated by immunoblotting with recombinant antigens. To correlate the mouse model data to human disease, sera from patients with primary sclerosing cholangitis (PSC) were assessed. Results: *H. hepaticus* catalase contains a highly conserved heme-ligand domain and conserved surface-predicted motifs that are shared with mammalian catalases. Mice experimentally infected with *H. hepaticus* (n=8) demonstrated humoral immune responses to murine and *H. hepaticus* catalases. None of the uninfected mice demonstrated antibody responses to either catalase. Human patients with primary sclerosing cholangitis (PSC) demonstrated antibodies to human and *H. hepaticus* catalase, indicating that human immune responses may also recognize endogenous human catalase as a consequence of chronic inflammation. Control human sera lacked reactivity to catalase. Conclusions: Catalases are highly conserved enzymes in bacteria and mammals, highlighting their potential roles in microbial:host interactions. The cross-reactive immune responses to mammalian catalases suggest the potential role of *H. hepaticus* catalase to contribute to autoreactive immune responses in the hepatobiliary and gastrointestinal tracts. Finally, vaccination strategies may benefit from the application of conserved and divergent microbial antigens to broad-spectrum immunoprotection.

Study of the influence of ethylene oxide sterilization variables on *Bacillus subtilis* inactivation

G. Mendes, T. Brandão, C. Silva

CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal

Introduction

Nowadays, ethylene oxide (EO) is a dominant sterilization agent used in medical device industry due to its effectiveness and compatibility with most materials, together with the technical and technological advances that allow overlapping difficulties associated to this agent.

Aim

This work intends to study the influence of the process variables, e.g., temperature (T), ethylene oxide (EO) concentration and relative humidity (RH), on *Bacillus subtilis* inactivation, aiming to provide a predictive model of integrating lethality.

Material and Methods

Experiments were carried out in an EO sterilizer with controlled temperature, EO concentration and humidity. The sporidical activity of a specific EO sterilization cycle was assessed by recover and enumeration of bacterial viable spores from *B. subtilis* biological indicators.

Results

Results showed that temperature and EO concentration were the most significant factors affecting the inactivation kinetics of *Bacillus subtilis*. Mathematical relations describing the influence of the referred process variables on microbial inactivation kinetics were successfully developed and achieved the final inactivation kinetic model:

\[
\log \left(\frac{N}{N_0} \right) = -7.5 \exp \left[- \left(1.42 \times 10^{-4} T - 4.96 \times 10^{-3} \right) - 5.54 \times 10^{-8} T - 1.25 \times 10^{-6} [\text{EO}] \right] \times \\
\times \left(1.63 \times 10^2 - 1.06 \times 10^3 \ln[\text{EO}] + (-1.25 \times 10^2 + 8.23 \times 10^3 - 1) \right) + 1 \right]
\]

where \(N \) is the microbial load at a particular process time \(t \) (the index 0 is related to initial microbial load).

Conclusion

An inactivation model that described the process kinetics only in terms of the relevant process variables (temperature and EO concentration) was achieved. The predictive ability of this integrated model was assessed, and its adequacy in predicting *B. subtilis* inactivation was verified.

The results of this work are certainly a contribution for an efficient control, design and optimization of the EO sterilization process.

Keywords Modelling, *Bacillus subtilis*, ethylene oxide, sterilization
Synergistic Antimicrobial Activity Among Hydroalcoholic Extract of Leaves of Trees in the Brazilian Territory Common

Cristiane Karina Malvezzi1, Jacqueline Stella Barbosa de Souza1, José Eduardo de Freitas1, Silvio Silvério da Silva1.
1-Faculdades Integradas Teresa D’Ávila–FATEA, Av. Peixoto de Castro, 539 Vila Celeste, Lorena, SP, Brazil.
2-Escola de Engenharia de Lorena, Universidade de São Paulo, Estrada Municipal do Campinho, s/nº, Lorena, SP, Brazil.

The use of medicinal plants in the world, and especially in South America, contributes significantly to primary health care. Many plants are used in Brazil in the form of crude extracts, infusions or plasters to treat common infections without any scientific evidence of efficacy. This study aimed to evaluate the antimicrobial activity of hydroalcoholic extract from leaves of Eugenia uniflora, Punica granatum and association between the extracts against Staphylococcus aureus (ATCC25923). The antibacterial activities of extracts were determined by macrodilution techniques in BHI broth. The minimum inhibitory concentration (MIC90) was determined by measuring the optical density in the spectrophotometer (540 nm) and was defined as the lowest concentration of crude extract that produced a 90% reduction in visible growth compared with control (non inoculated broth). All concentrations of extracts and association of extracts from the leaves of the plants tested showed some inhibition of bacterial growth. However, only the combination of the extracts was obtained MIC90. The greatest inhibition obtained by the extract of the leaves of plants Eugenia uniflora and Punica granatum on the growth of Staphylococcus aureus was 88% and 74%, respectively. The MIC90 for the combination of extracts of two plant species was 0.5 mg/mL. Inhibitory activity on bacterial growth of the association of the hydroalcoholic extract from leaves of Punica granatum with Eugenia uniflora was higher when compared with the inhibition of bacterial growth promoted by extracts alone, indicating a bacteriostatic synergistic effect between these two extracts. Acknowledgments: FAPESP

Keywords: Medical plants; antimicrobial activity; sinergism

Syzygium aromaticum (clove) extract reduce virulence factors mediated by QS in Gram negative bacteria

Llinares, F., Pozuelo, MJ., Casado, S., de Blas, C., Pinilla, JA., García de los Ríos, J. and Jiménez Gómez, PA.
Sección de Microbiología. Facultad de Farmacia. Universidad CEU San Pablo
Campus Montepéñice. 28668 Boadilla del Monte. Madrid

The emergence of antibiotic resistance strengthens the need for novel therapeutic drugs. It has been suggested that the inhibition of Quorum-Sensing (QS) offers an alternative to antibiotic mediated bactericidal or bacteriostatic approach and reduces the risk for development of resistance. QS is an important process regulated by molecules named autoinducers (AI) involved in bacterial survival, biofilm formation, motility, swarming and secondary metabolite production. In Gram-negative organisms. N-acyl-homoserine lactones (AHL) are the most common group of AI molecules.

The antimicrobial effects of herbs and spices have been documented and used in herbal medicine in many countries but their ability to inhibit QS as poorly studied. Eighteen methanolic extracts from herbs and spices was tested to determinate their ability to inhibit QS in Chromobacterium violaceum, Salmonella Typhimurium and Pseudomonas aeruginosa PAO-1.

Only Syzygium aromaticum (clove) extract reduced AHL and violacein production from C. violaceum, Salmonella invasivity, and alginate synthesis and swarming motility in PAO-1. Eugenol is the mayor constituent of clove extract (75-90%). However, eugenol do not exhibit anti-QS activity. The identification of anti-QS phytoconstituents from “clove” is needed to assess the mechanism of action against these Gram-negative bacteria.

Keywords: Quorum-sensing, Gram-negative, clove
The use of real-time PCR assays for the detection, identification and drug susceptibility patterns of *Mycobacterium* in sputum and blood specimens in HIV positive patients

Veldman Chrisna, Kock Marleen M, Rossouw Theresa, Vally Shahed and Ehlers Martha M

1Department of Medical Microbiology, University of Pretoria/NHLS, South Africa
2Department of Family Medicine, University of Pretoria

Rapid detection of *Mycobacterium* spp are essential, since patients are often infected with *Mycobacterium* spp other than *M tuberculosis*. Bacteriological culture is considered the diagnostic gold standard to identify *Mycobacterium tuberculosis* but results are only available between 4 to 8 weeks. The diagnosis of MDR and XDR-TB takes an additional 2 to 3 weeks. Molecular assays, such as real-time PCR and GenoType® MTBDR plus have proven to be rapid and accurate to identify *Mycobacterium* spp. *Mycobacterium tuberculosis* drug resistant strains are mainly due to mutations in genes encoding drug target or drug converting enzymes. The katG and inhA are the most frequently associated with isoniazid resistance. Mutations, in Rif resistant strains, confined to a short 81 bp DNA region encodes for the β-subunit of the RNA polymerase. More than 83% of the Rif-resistant isolates are also resistant to INH. The introduction of rapid molecular testing for all acid-fast bacilli positive cases for routine diagnostics has the potential to aid in the rapid commencement of treatment to prevent the spread of MDR-TB.

A total of 60 human immunodeficiency virus (HIV) positive patients, older than 18 years of age, attending the antiretroviral (ARV) clinic at Tshwane District Hospital, clinically presenting with TB symptoms and who had given informed consent were randomly selected over a six month period (October 2008 to March 2009) and recruited for this study. Both blood and sputum specimens were collected and transported to the Diagnostic Division at the Department of Medical Microbiology, University of Pretoria. Routine analysis such as sputum microscopy and culture were performed. The remainder of the specimens was transported to the Research Division at the Department of Medical Microbiology, University of Pretoria where real-time PCR assays were performed to detect *Mycobacterium* spp as well as determine the prevalence of INH and Rif resistant genes.

The real-time PCR assay identified 28% (17/60) *M tuberculosis* (Tm = 55-57ºC preliminary), 2% (1/60) *M kansasi* (Tm = 59-62ºC preliminary) and 70% (42/60) of the isolates *Mycobacterium* spp negative. No *M avium* were detected. The 17 *M tuberculosis* positive specimens were further used to detect INH and Rif resistance genes. All 17 specimens had either no mutation or one or more mutations at the specific gene targets (rpoB, rpoC2, katG and inhA).

The conventional methods used to detect *M tuberculosis* and determine the resistance patterns are prolonged and laborious methods when compared to real-time PCR. The PCR amplification process can be completed in 2 to 4 hours after obtaining the processed clinical specimen with an additional 2 to 24 hours for the detection of mycobacteria resulting in quicker diagnosis compared to the 4 to 8 weeks when cultured. Molecular assays are potentially the most sensitive method for the identification and detection of drug resistance strains and are theoretically able to provide a same-day diagnosis from clinical samples. This will ensure that patients can go home with the correct treatment and will not be lost to the system.

Variation in IL-8 release and ICAM-1 expression by different human lung airway epithelia induced by *Burkholderia cepacia* complex (Bcc)

Seshu Kumar Kaza, Siobhán McClean and Máire Callaghan

Centre for Microbial Host Interactions, Department of Applied Science, Institute of Technology Tallaght - Dublin, Dublin 24, Ireland.

Burkholderia cepacia complex (Bcc) is a group of Gram negative pulmonary pathogens associated with life-threatening infections in patients with cystic fibrosis (CF). The airway epithelium plays a crucial role in the initiation and modulation of inflammatory responses to these pathogens. Interleukin (IL)-8 is a potent chemoattractant for neutrophils and the expression of intercellular adhesion molecule-1 (ICAM-1) on the epithelium promotes the adhesion and migration of leukocytes to the site of infection. The aims of this study were to investigate the release of the IL-8 protein in response to Bcc infection, the impact of IL-8 on Bcc growth and intracellular survival and the expression of ICAM-1 on human lung epithelial cells and its modulation to the effect of rhIL-8, LPS, or Bcc infection.

Four epithelial cell lines were used in the study; A549 cells, a human alveolar epithelial cell line; Calu-3 cells, a sub-bronchial epithelial cell line, 16HBE14o- cells and CFBE41o- cells, which are CFTR+ and CFTR- bronchial epithelial cell lines respectively. Two *B. multivorans* and two *B. cenocepacia* strains all induced a significant IL-8 response by 12 hrs and further increased at 24 hrs in all cell lines. Furthermore, the levels of IL-8 from Calu-3 and A549 cells were approximately three times that from 16HBE14o- or CFBE41o- cells. In two of the cell lines examined (16HBE14o- and CFBE41o-) *B. cenocepacia J2315*, an epidemic strain induced greater levels of IL-8 (P < 0.01) compared to other Bcc strains tested. The CFTR+ and CFTR- cells secreted similar levels of IL-8 indicating a CFTR independent induction of IL-8. However, the CFTR- cells did secrete constitutive levels of IL-8 greater than that of CFTR+ cells.

At low concentrations of rhIL-8 (< 10 ng/ml) growth of *B. multivorans* and *B. cenocepacia LMG13010* was enhanced whereas at 10 ng/ml, growth of both strains was significantly reduced. In contrast growth of both environmental Bcc strains remained unchanged in the presence of rhIL-8. rhIL-8 also significantly increased the intracellular survival of both J2315 and LMG13010 in 16HBE14o- and CFBE41o- cell lines at 10 ng/ml. Although LMG13010 is more invasive in epithelial cultures, the intracellular growth of J2315 is greater than LMG13010. Furthermore, bacterial cells survive to a greater extent within the CFTR- cells than the CFTR+ cells. ICAM-1 expression varies across different epithelial cell types with 16HBE14o- cells having the highest expression followed by Calu-3 and A549 cells and 16HBE14o- cells expressing the least. LPS induces a temporary up-regulation of ICAM-1 expression by 16HBE14o- cells. In contrast, both *B. cenocepacia J2315* and *B. multivorans LMG13010* down regulate ICAM-1 in both 16HBE14o- and CFBE41o- cell lines. These bacterial strains were found to secrete significant levels of proteases which may play a role in the degradation of ICAM-1 molecules on the epithelial surface.

These studies demonstrate that the type of epithelial cells encountered by Bcc determines the nature and extent of the proinflammatory responses triggered. Selective and specific modulation of these responses may prevent the rapid and often fatal clinical decline associated with Bcc infection.

Keywords: Interleukin-8, intercellular adhesion molecule-1, cystic fibrosis transmembrane conductance regulator (CFTR), *Burkholderia cepacia* complex, proteases, human lung epithelial cells.
A novel method for Direct Cloning of large size gene or gene clusters from genomic DNA by Red/ET recombineering

Younging Zhang1, Jun Fu1, Shengbiao Hu2, Xiaoying Bian1, Rolf Mueller1, Francis Stewart2

1Gene Bridges, Building C2,3, Saarland University, 66123 Saarbruecken, Germany
2Department of Genomics, Biotech, Technology University of Dresden, Tattnberg 47-51, 01307 Dresden, Germany
3Institute of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany

Conventional procedure to study and explore the large size gene clusters gene is time consuming and labour intensive because of library construction and screening. Recently developed Red/ET recombination or Recombineering is an ideal DNA technology to engineer and modify large size DNA molecules with no size limit and no site limit. Based on Recombineering technology, a straightforward strategy was developed to clone these gene or gene clusters from the linear genomic DNA without construction of genomic library and screening. This new DNA cloning technology, named Direct Cloning, allows cloning of up to 60kb DNA fragment from genomic DNA in one step and in two days.

Keywords: Red/ET recombineering; Direct Cloning; bacterial genome; silent PKS/NRPS gene cluster

A comparison between growth and adherence capacity in vitro: a preliminary evidence for pneumococci to exhibit virulence properties best at their mid- and late-log phases of growth

M.N. Desa1, S.D. Sekaran2 and J. Vadivelu2

1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50003 Kuala Lumpur, Malaysia

Introduction: Adherence was the first stage of pneumococcal infection. The mechanisms involved are multifactorial but pneumococcal growth capacity may also have a role as the ability to proliferate shall determine the persistent of pneumococcal cells at the infected sites. We have measured the adherence capacity of four clinically important pneumococcal isolates at their different growth phases at 1- and 3-h exposure periods to human lung epithelial cell line (A549). But as growth rate should relate to the number of available pneumococcal cells to adhere, we have also measured the replication capacity of the isolates during the 1- and 3-h incubation times. The results were compared with the isolate’s adherence patterns for any potential correlation. Materials and Methods: Four genetically different clinical isolates of serotypes 1, 7F, 19F and 23F were studied. The former two were from invasive sites and penicillin-susceptible while the later two from respiratory sites with decreased susceptibility to penicillin. Adherence capacity of the isolates at their early-, mid- and late-log phases at 1- and 3-h exposure times to A549 cells in cell culture media (RPMI + 2% FBS) had been described (Desa et al., Asian J Cell Biol, 3: 61-66, 2008). In similar experiments, pneumococcal cell pellets harvested earlier at early-, mid- and late-log phases were suspended in cell culture media and standardized at OD600 of 0.08-0.15 (~1 x 10^8 cfu/ml). Pneumococcal cells were then incubated at 1- and 3-h in RPMI + 2% FBS at 3% CO2, and growths were monitored by OD600. Growth increments from three independent experiments were determined and averaged with Kruskal-Wallis test for statistical analysis. Results: The adherence capacity varied among the four isolates (P < 0.050) except that at mid-log phase of pneumococcal growth at 3-h exposure time (P = 0.206). Nevertheless, each isolate showed a higher adherence ability at 3-h as compared to 1-h and frequently, at both exposure times, a higher adherence was observed at mid- and late-log phases of pneumococcal growth. In similar experiments with pneumococcal cells alone in cell culture media, increases of OD600 values were observed at both post-incubation periods mainly at early- and mid-log phases. Overall, pneumococcal growth rate at 3-h incubation period was frequently twice as that at 1-h, and that at the early-log phase was frequently higher than that at the other growth phases at both post-incubation times. This indicates that the isolates were able to replicate in the cell culture media and the rate increased at a longer incubation period with the highest rate at the early-log phase. On the other hand, the adherence capacity of the isolates at their early-log phase was frequently the least. This could suggest that, although the isolates were actively replicating at this stage to provide more pneumococcal cells to adhere, they would not be in the optimum state to display their adherence ability. At mid-log phase, the replication event was generally low while that at late-log phase was barely observed except for isolate serotype 7F, which showed quite an obvious OD600 increment at both post-incubation times but at a level lower than that at the early- and mid-log phases of the isolates. In comparing to the adherence capacity at the mid- and late-log phases of the isolates, a higher adherence capacity was generally observed although the pneumococcal replication was shown to be lower at these growth stages. Discussion: These findings preliminary indicate that the adherence ability of the isolates was better at mid- and late-log phases of the isolates as compared to that at the early-log phase. For the later stage, although the number of pneumococcal cells could be higher due to the higher replication rate but not all were possibly fit enough to adhere to the A549 cells.

Keywords: pneumococci; adherence; growth phases
A novel respiratory complex in *Desulfovibrio vulgaris* Hildenborough

Sofia S. Venceslau and Inês A.C. Pereira

Instituto de Tecnologia Química e Biológica/UNL, Av. da República, EAN, 2780-157 Oeiras, Portugal.

Membrane proteins are essential in vital cellular processes of all organisms including the respiratory mechanism, and they represent ca. 30% of the genomic information.

A new class of bacterial membrane oxidoreductases was found, and was named MFI (for Molybdopterin, FeS and Integral membrane subunit), and then sub grouped in MFIc for the class with four subunits, and in MFIcc for the group with a bigger complex with six subunits. The MFIcc class was already reported in the anoxygenic phototrophic bacterium *Chloroflexus aurantiacus* [1] and the aerobic non-phototrophic bacterium *Rhodothermus marinus* [2] and was suggested to be an alternative complex III. The operon for the smaller MFIc complex is present in the genomes of a small group within the Deltaproteobacteria, all sulfate-reducing bacteria (SRB). This work describes the first example of a membrane bound complex from the MFIc group in *Desulfovibrio vulgaris* Hildenborough. The complex is composed by three periplasmic subunits (a multiheme protein anchored to the membrane, an FeS protein and a protein that is annotated as a molybdopterin oxidoreductase like subunit) and one integral membrane protein.

Several membrane complexes have been isolated from the SRB in the last years, but there are still some points of the energy metabolism to be established, namely in the donors and receptors of the electron transfer flow across the membrane. The function of this new respiratory complex will be addressed, and since it is distinct from the MFIc, we propose to name it as Qrc (for Quinone reductase complex) since it reduces quinones to quinols, which is the opposite function for the MFIc. In agreement with this result the electron donors to the Qrc have to be present in the periplasm, and in fact electron transfer assays indicate hydrogenases and dehydrogenases as possible ones.

Expression studies also show similar results for the Qrc and other proteins directly involved in the sulfate respiratory chain, as well as a mutant in one of the Qrc subunits was shown to be unable to growth on hydrogen/formate [3].

References

Active ATPase ClpY(HslU), a homologous subunit of the eukaryotic 26S proteasome, is required to maintain replication in a nrdA101ts mutant of *Escherichia coli* at restrictive temperature

E. López Acedo1, I. Salguero Corbacho1 and E. C. Guzmán1

1 Departamento de Bioquímica Biología Molecular y Genética. Universidad de Extremadura. E06080 Badajoz, Spain
2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom

The active enzyme ribonucleotide reductase (RNR) is a 1:1 complex of two subunits named proteins R1 and R2, each consisting of two polypeptide chains, coded by the genes *nrdA* and *nrdB*, respectively. The best-known defective RNR mutant in *E. coli* contains a thermolabile R1 subunit, coded by the *nrdA101* allele, which is inactivated *in vitro* after 2 min at 42ºC. In contrast, this protein is functionally active *in vivo* for 50 min at the restrictive temperature. This thermostolerance of RNR101 could be explained by the structural protection provided by the replication hyperstructure, if one accepts a model in which the RNR molecules that engage in the replication process are associated with the replication hyperstructure. Furthermore, if RNA or protein synthesis is inhibited at the restrictive temperature, the nrdA101 mutant strain is able to replicate whole chromosomes. Since gene expression requires RNA and protein synthesis, we have examined whether the phenotype of the nrdA101 mutant at restrictive temperature is a consequence of interfering de novo synthesis of a negative-acting protein.

It is established that heat shock proteases are induced after incubation at 42ºC. In this work we have conducted a time-course experiment to study the presumed heat-induced degradation of R1 and the putative rifampicin-dependent protection of R1 from degradation. Our results suggest that R1 is degraded by a protease whose synthesis might be induced either by the temperature shift and/or by the appearance of altered proteins. We tested the effect of a deficiency of certain proteases/choapers (Lon, ClpP, ClpX, ClpH, DnaK and ClpY) on RNR101 stability and its capacity to support DNA synthesis at 42ºC. Deletion of ClpX, ClpH or DnaK chaperones affected neither stability RNR101 nor the thermotolerance of DNA replication in nrdA101 mutant at 42ºC. However, the stability of RNR101 is increased in the absence of Lon and ClpP proteases at 42ºC, although this effect does not correlate with an increased capacity of DNA synthesis in the nrdA101 background at 42ºC. The results also indicate that the inhibition of the RNR degradation, observed when RNA synthesis is inhibited, is not sufficient to explain how the chromosomal replication can be completed at 42ºC.

Surprisingly, inactivation of ClpY thoroughly eliminated the capacity of DNA replication in the nrdA101 mutant at 42ºC. ClpY is a 50 kDa ATPase that works as a component of the ClpYQ protease, which is related to the eukaryotic 26S proteosome. We discuss the role of chaperone ClpY in remodelling reactions in order to stably maintain the replication hyperstructure, in presence of an altered RNR, in nrdA101 mutants.

Keywords Ribonucleotide reductase; protease, DNA replication, ClpY
Aerobic biodegradation of dichloromethane: new findings

J.E. Firsova1, M.L. Torgonskaya2, S. Vuilleumier3, N.V. Dorsina2 and Yu.A. Trotsenko1

1 G.K. Skyabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia
2 UMR 7156 UDS-CNRS, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France

Dichloromethane (CH₂Cl₂, DCM) is a highly toxic volatile mutagenic and carcinogenic compound globally used as solvent, degreasing agent and intermediate for industrial synthesis. Due to its persistence and the large quantities produced industrially (about 3×10⁶ tons annually worldwide), DCM has become one of the most abundant anthropogenic environmental pollutants. It was shown earlier that this toxicant can be utilized as the sole carbon and energy source by a wide range of microorganisms under both aerobic and anaerobic conditions.

Our unique collection of aerobic methylotrophic bacteria utilizing DCM as the sole carbon and energy source included 13 strains (DM1-DM13) belonging to Alpha- and Betaproteobacteria, which implement serine, ribulose monophosphate (RuMP) and ribulose bisphosphate (RuBP) pathways of C₅-metabolism. Based on pheno- and genotypic characteristics, 3 new genera (Allobacter, Methylohydrobacter, Methylyphilus) and 5 new species (Methylyphilus helvetica, Methylohydrobacter multivorans, Methylyphilus leisingerii, Paracoccus methylutens, Allobacter methylovorans) could be defined. Recently, two new DCM degrading aerobic facultatively methylotrophic bacteria with the RuBP pathway for C₅-assimilation were isolated, from a garden soil sample taken near Pushchino subsequently subjected to prolonged exposure to DCM (DM15), and from contaminated soil sampled at a Volgograd chemical plant (DM16). Polyphasic taxonomy studies allowed us to classify the strain DM15 as a single species of the novel genus with the proposed name ‘Gottschalkia methylica gen. nov. sp. nov.’, and the DM16 isolate - as a new species of Ancylobacter genus – as Ancylobacter dichloromethaneic sp. nov. Hence, our results clearly indicate a phylogenetic diversity of aerobic DCM destructors, and support the hypothesis that the capability for degradation of this pollutant is not limited to specific methylotrophs but develops in natural microbial populations due to the long-term selective influence of DCM.

It is known that dehalogenation of CH₂Cl₂ in all aerobic DCM-degrading methylotrophic bacteria characterised so far is catalyzed by cytoplasmic DCM dehalogenase (glutathione S-transferase) (DCMD) encoded by the dcm gene. The dechlorination process results in formaldehyde used for energy generation and biosynthesis, and intracellular production of hydrochloric acid, which is excreted as HCl and Cl⁻ ions to the medium. It is noteworthy, however, potential DCM-specific adaptation mechanisms for DCM transport into the cell or coping with hydrochloric acid remain to be investigated in detail.

We have shown that, for cell protection in the presence of DCM, Methylobacterium extorquens DM4, M. helvetica DM6 and A. methylovorans DM10 reduce their membrane fluidity by an increase of saturated (C₁₆:0, C₁₈:0) and a decrease of nonsaturated (C₁₆:1, C₁₈:1) fatty acids, as well as phosphatidylcholine accumulation. Further, a reduced lag phase and the onset of chloride release into the medium after DCM addition was detected for M. helvetica DM6 and A. methylovorans DM10 previously grown on minimal medium with methanol in the presence of 100mM NaCl. This effect resulted from earlier expression of the DCM dehalogenase, and perhaps also from the activation of a putative chloride exclusion system useful for DCM dechlorination process.

Also, electronic microscopy of cells of both strains DM6 and DM10, either grown with methanol in salinity stress conditions or with DCM, displayed unusual membrane-associated structures on their surface. The structures were found to contain chlorine and phosphorus atoms, and we speculate that these structures may be involved in chloride transport or the establishment of a negative charge for cell protection against high concentrations of external anions. The sensitivity of the DCM dehalogenation process to uncoupling agents (nigericin, valinomycin, carbon) cytochrome 3-chlorophenylhydrazone) revealed in several DCM degraders also suggests that the proton-motive force and/or energy-dependent processes might be involved in secondary active chloride excretion in these bacteria.

This work was funded by grant RFBR N 06-04-22000u a CNRS PICS N 3350, by EU Marie Curie AXIOM Project MEXT CT-2004-8332 and National Project of Russian Federal Ministry of Education and Science N 2.1.1/605.

Keywords: dichloromethane; dehalogenation; chloride; salinity; methylotrophy; taxonomy; phylogeny

Alterations by transition metals nickel, cadmium and mercury in Salmonella typhimurium growth and membrane proteins

Hossein Tayef-Nasrabadi1, and Ezzatollah Keyhani2

1 Institute of Biochemistry and Biophysics, University of Tehran, 13145 Tehran, Iran
2 Laboratory for Life Sciences, Saadat Abade, Sarve Sharghi 58, 19979 Tehran, Iran

While some transition metals are indispensable in trace amount for most living systems, all are toxic and a serious threat to all forms of life at elevated levels. Nickel, although highly toxic, has been recognized as an essential trace element for animals, plants and bacteria; cadmium is known as toxic for all living systems; mercury is one of the most toxic elements and no beneficial function has been associated with it. Increasing levels of mercury in air and water since the beginning of the twentieth century are taking catastrophic proportions. Salmonella typhimurium, a facultative anaerobic bacterium belonging to the Enterobacteriaceae genera, is a common cause of food poisoning worldwide. Although it has been the subject of many investigations, the bacterium is still extensively studied because of its importance for human and animal health and a better knowledge of its behaviour in stressful situations is of prime importance. This investigation focuses on the effect of nickel, cadmium and mercury on S. typhimurium growth and on its membrane proteins, using cytochromes as a probe in studying the alterations caused by excess transition metals.

S. typhimurium was grown either in minimal or in enriched medium at 35°C for 24-48 h, in a rotary shaker (at 150 rpm). Each medium was supplemented with increasing concentrations of either nickel (as nickel sulphate), cadmium (as cadmium sulphate) or mercury (as mercuric chloride). Cells were harvested by centrifugation and washed twice in phosphate buffer 0.1 M, pH 7. Dithionite reduced-minus-air oxidized difference spectra of cell suspensions were recorded at room temperature (~22°C) using an Aminco DW2 UV/VIS spectrophotometer. Results showed that S. typhimurium exhibited a much higher sensitivity to Hg²⁺ than to the other two metal ions. After 24 h growth in minimal medium the yield decreased by 50% in the presence of 0.26 mM Ni²⁺ and by 60% in the presence of either 0.08 mM Cd²⁺ or 0.0008 mM Hg²⁺. After growth in enriched medium, the yield decreased by approximately 80% in the presence of 5 mM Ni²⁺ (Fig. 1a) or 5 mM Cd²⁺ (Fig. 1b) and by 65% in the presence of 0.03 mM Hg²⁺ (Fig. 1c). In both media, for metal concentrations that led to a drastic decrease in cell yield, the cytochrome content (expressed as nmol/mg prot in the cell suspension) diminished to various extents, depending on the metal and on the cytochrome. In the presence of Ni²⁺ and Cd²⁺, as the metal concentration increased, the amount of cytochrome b₅₉₃ detectable in cells decreased more rapidly than that of other cytochromes. In the presence of increasing Hg²⁺ concentrations, the amount of cytochrome d was more specifically affected.

Transition metals toxicity results from a variety of mechanisms that include, besides binding to various cellular components, reactive oxygen species (ROS) production, protein structure alterations and enzyme inactivation, essential metal ions displacement from biomolecules. The metals selected in this investigation were less prone than others to trigger ROS production and other mechanisms, such as the ability to bind to proteins and nucleic acids, probably prevail in their toxicity. Hg²⁺, in particular, owes its extreme toxicity to its very high affinity for thiols, while Ni²⁺ and Cd²⁺ are known to bind to histidine and cysteine residues in proteins. Results indicated that Hg²⁺ was much more toxic than Cd²⁺ and Ni²⁺ in S. typhimurium and affected differently the cytochromes system.

Keywords transition metals, nickel, cadmium, mercury; Salmonella typhimurium, cytochromes.
Ammonium assimilation in the eukaryotic microalga *Chlamydomonas acidophila*

Rengel R1, Léon R1, Vega JM2, and Vigara J1

1Dpto. Química y CCCM “Prof. JC Vilchez Martín”. Huelva University. Spain
2Dpto. Bioquímica Vegetal y Biología Molecular. Sevilla University. Spain

Extremophiles are organisms that live at extremes of pH, temperature, pressure, salinity or high concentration of heavy metals. They are valuable organisms to study the origin of life and for their direct application in biotechnological processes, which may involve the organisms themselves or their biomolecules. In this work, we have used the extremophile microalga *Chlamydomonas acidophila*, isolated from the Tinto River, from Huelva (Spain), to study and characterize the enzyme glutamine synthetase, an enzyme involved in the nitrogen assimilation pathway of photosynthetic organisms.

Chlamydomonas ac. can live at low pH (2.5) and high metal and sulphur concentration. Nitrogen uptake, in the microalgae, is affected by the pH of the culture medium. In fact, at low pH (2.5), the uptake of nitrate is more favoured than ammonium uptake. Ammonium is considered a preferred nitrogen source for green algae and is assimilated via glutamine synthetase (GS)-glutamate synthase (GOGAT) cycle. GS transferase activity is assayed using glutamine and hydroxylamine as substrates. In *Chlamydomonas ac.*, the activity assay is dependent of Mn$^{2+}$ and AsO$_4^{2-}$. The enzyme has an optimum temperature of 40°C, and the kinetic data indicate a K_m value of 27 mM for glutamine. Opposite to *Chlamydomonas reinhardtii* (wild strain) *Chlamydomonas ac.* has not got GS isoenzymes, showing an only single band in native-PAGE. Other kinetic and molecular data have been also studied.

Supported by research grant no. AGL2007-65303-C02-01

Analysis of carbon source and pH-dependent transcriptional regulation of *Humicola grisea var. thermoidea* lignocellulolytic system

Mello-de-Sousa, T. M.; Derengowski, L. D.; Silva-Pereira, I.; Poças-Fonseca, M. J.

Environmental pH is an important signal for fungi physiology, intervening at the transcriptional regulation of several gene products. In filamentous fungi and yeasts, the PacC zinc-finger transcription factor regulates gene expression in response to alkaline external pH. The production of enzymes involved in plant cell wall breakdown is regulated mainly at the transcriptional level. Nonetheless, the involvement of the pH-related regulatory pathway in the lignocellulolytic enzymes expression has not been extensively studied. We have demonstrated that the thermophilic deuteromycete *Humicola grisea var. thermoidea* is a potent cellulases producer, presenting a considerable potential for agricultural wastes biocconversion processes. Results of our group support the existence of a pH regulatory pathway for *H. grisea* var: thermoidea transcriptional regulation. In this work, we have performed by quantitative real time RT-PCR a time course transcriptional analysis of several *H. grisea* genes. Eight lignocellulolytic genes (cbh1.1, cbh1.2, eg1, eg2, eg3, eg4, bg14 and xyn1) and two transcription factors (pacC and creA) were analyzed in the presence of simple (glucose) or complex (sugarcane bagasse) carbon sources and in acid or alkaline medium conditions. The qRT-PCR analysis revealed an early and strong induction of transcription of almost all lignocellulolytic genes, in a synergistic way, when the mycelia were grown with the complex carbon source and in alkaline conditions (pH 8.0). The only exception was eg4, that was acid induced. An opposite pattern of expression of the two transcription factors was observed. While pacC was induced in alkaline conditions and strongly repressed in presence of glucose, creA was induced by glucose and repressed in alkaline conditions. By electrophoretic mobility shift assays (EMSA) with upstream regulatory sequences of pacC, we showed that exists an in vitro interaction between the proteins PacC and CreA with pacC upstream regulatory sequence, where the both factor compete the same binding site. Taken together, this data corroborates our previous evidences supporting the existence of a pH regulatory pathway for *H. grisea* transcriptional regulation by PacC. Moreover, PacC is probably transcriptionally regulated by itself and may suffer influence of the carbon repression mechanism mediated by CreA.

Key words: pH, transcriptional regulation, PacC, CreA
Assaying the Single and Combined Genotoxicity of \(Calotropis\) procera Ait Latix and Chlorcyrin in \(Aspergillus\) terreus.

Jamal S.M.Sabir

Lisbon (Portugal), 2-4 December 2009

The conidial spores of \(Aspergillus\) terreus were treated singly and in a combination (alternatively and simultaneously) with latex of \(Calotropis\) procera Ait (used as natural insecticide) and the synthetic insecticide Chlorcyrin. The single mutagenic effects of \(Calotropis\) procera latex and the insecticide Chlorcyrin were tested by treating conidia of \(Aspergillus\) terreus with four different concentrations of \(Calotropis\) procera latex: 5%, 10%, 20% and 40%. And with five concentrations of Chlorcyrin: 0.2mL/L, 0.4mL/L, 0.6mL/L, 0.8mL/L and 1mL/L (the field concentration) for different exposure times individually. Whereas, the combined mutagenic effects of the both substances, were tested in three ways of treatments. First, the conidia of \(Aspergillus\) terreus were exposed to the optimal dose of \(Calotropis\) procera Ait latex (20%) for 45min., followed by exposure to the optimal concentration of Chlorcyrin (0.8mL/L) for 45 minutes. Second, same conidia were exposed to Chlorcyrin followed by \(Calotropis\) procera Ait latex with the mentioned concentrations and exposure times. Finally, third treatment included the exposure of the fungus conidia to a mixture of the two substances (same concentrations) for 90 minutes.

As a result, it was found in the first single treatment that an increase of \(Calotropis\) procera Ait latex concentration and exposure time led to an increase in auxotrophic mutants percentage, and the optimal dose for inducing mutation was found to be (20%) for 45min. of exposure which induced a percentage of 1.6 auxotrophic mutants. Similar trend were obtained in the second single treatment, that an increase of Chlorcyrin concentration and exposure time led to an increase in auxotropic mutants percentage, and the optimal dose was found to be 0.8mL/L for 45min. of exposure (the concentration of which 3.6% of auxotrophic mutants were obtained). Thus percentage of auxotrophic mutants induced by Chlorcyrin exceeded noticeably that of \(Calotropis\) procera Ait latex. Furthermore, Chlorcyrin shows to be a potent mutagenic substance as compared with \(Calotropis\) procera Ait latex which shows a milder mutagenic effect, and more cytotoxic effect. All combined treatments revealed an antagonistic effect.

Availability of CO\(_2\) concentrating mechanism in extremely haloalkaliphilic cyanobacteria 'Euhalothece natronophila' from soda lake Magadi (Kenya)

O.S. Samylna\(^1\) and R.N. Ivanovsky\(^2\)

1 Winogradsky Institute of Microbiology RAS, P.1-60-letiya Oktabrya 7/2, 117312, Moscow, Russia

2 Moscow State University, Biological faculty, Department of Microbiology, Leninskii Gory, 1/12, 119991, Moscow, Russia

\(Euhalothece\) natronophila is obligate extremely haloalkaliphilic unicellular cyanobacteria, isolated from soda lake Magadi (Kenya). It develops optimally in concentrated Na\(_2\)CO\(_3\)+NaHCO\(_3\) brines (1.7 M Na\(_2\)CO\(_3\)+NaHCO\(_3\), 1.2-2.4 M Na\(^+\), pH 10-10.5 in laboratory conditions). Thereby it is adapted to existence in drying up brines right to beginning of evaporites precipitation. This feature may cause development of cyanobacteria and their active functioning as primary producers during dry seasons in natural conditions.

Extremely haloalkaliphilic microorganisms are under special interest nowadays because of their unique characteristics due to environmental conditions. But most of the investigations dealing with CO\(_2\) concentrating mechanism (CCM) in cyanobacteria use model freshwater and marine strains, such as Synechococcus PCC7942, Synechocystis PCC6803 and Synechococcus PCC7002. Our aim was to investigate availability or absence of active CCM in 'E. natronophila' and its role as adaptive strategy for existence in Na\(_2\)CO\(_3\)+NaHCO\(_3\) brines.

As a result we revealed all CCM components in 'E. natronophila' cells (Fig. 1): transport systems (TS) for inorganic carbon (C\(_i\)), carboxysomes (CS) and carbon anhydrases (CA). Their quantity and functioning depends on the concentration of CO\(_2\)+HCO\(_3\)^\(-\) in medium.

Transport of C\(_i\) into the cells provides with three TS possessing different kinetic properties in intact cells: TS I with \(pK_{a1} 8.5\) and \(K_{a1} = 0.8-1.4\) mM; TS II with \(pK_{a1} 9.4-9.5\) and \(K_{a1} = 13-17\) mM; TS III with \(pK_{a1} 9.9-10.2\) and \(K_{a1} = 600-800\) mM. Cooperation of these TS supplies 'E. natronophila' cells with necessary amount of C\(_i\) in different cultural conditions. We suggest TS to be a mechanism for the regulation of C\(_i\) amount in cells. It means that their role is not only for C\(_i\) concentrating, but also for preventing C\(_i\) surplus in 'E. natronophila' cells what is necessary in soda environments for intracellular pH-homeostasis as CO\(_2\)/HCO\(_3^-\)/CO\(_3^{2-}\) are buffer components.

Presence of carbon anhydrases of \(\beta\)-type (\(\beta\)-CA) was shown by Western blot with antibodies to cytosolic \(\beta\)-CA from \(Chlamidomonas\) reinhardtii. Its amount in cells increases with a decrease of C\(_i\) concentration in cultural medium as well as quantity of carboxysomes, established by transmission electronic microscope. We didn’t find extracellular \(\alpha\)-CA in 'E. natronophila' cells using antibodies to thylakoidal \(\alpha\)-CA (anti-Ca3) of Chlamidomonas reinhardtii. Also trustworthy CA activity of intact cells was not registered. We consider it means the absence of extracellular CA in 'E. natronophila'. But it was found earlier (Kupriyanova et al., 2007) in glycoalxy of alkaliphilic strains of Microcoleus chthonoplastes and Rhodobacter dermatis linearis. So the role and importance of extracellular CA have to be discussed.

Thereby, extremely haloalkaliphilic cyanobacteria 'Euhalothece natronophila' possess CCM which is similar in structure to CCM of model nonextremophile strains of cyanobacteria, but it differs in some properties. Especially in affinity of TS which is three degree less than in nonextremophile cyanobacteria. The role of CCM components in haloalkaliphilic cyanobacteria may be suggested not only as "concentrating", but more exactly as "regulative". This work is financially supported by RFPI №08-04-00804-a, Presidium of RAS Program (" Biosphere origin and evolution") and Contract with Rosnauka № 02.512.12.0027. The authors are also very grateful to E. Kupriyanova, A. Markelova and N. Pronina (Institute of Plant Physiology RAS, Moscow, Russia) for their kind help in this investigation and discussion of results.

Keywords: extremely alkaliphilic, 'Euhalothece natronophila', CO\(_2\) concentrating mechanism (CCM), C\(_i\) transporters, carboxysomes, carbon anhydrases.
Berberine vs. \textit{P. polychaetum} alkaloid extract for antimicrobial activity

Çağakan Özbalcı; Çağlayan Ünsan, Dilek Kazan and Berna Sar yar AKBULUT
Marmara University, Faculty of Engineering

The emergence of widespread bacterial drug resistance is a major threat to public health. Natural products, specifically plant extracts, serve as invaluable sources for the development of novel anti-microbials. Berberine, the major alkaloid in the alkaloid extract of the endemic plant \textit{Papaver polychaetum} has a long history of medicinal use. It has demonstrated significant antimicrobial activity against different organisms including fungi and is relatively nontoxic to humans. In this study, the antimicrobial effect of the alkaloid extract of \textit{P. polychaetum} and pure berberine against \textit{E. coli} K12 has been investigated in order to determine the synergetic or additional effects of the compounds in the plant extract. Following determination of the minimum inhibitory concentration of berberine as 1250 μg/mL, \textit{E. coli} cells were grown in the presence of 750 μg/mL berberine or \textit{P. polychaetum} alkaloid extract. Inhibition of growth and protein expression differences upon addition of the pure alkaloid or the alkaloid extract of the plant extract were compared against the control group.

Biotechnology Pseudomonas strain early defence gene expression correlates to pathogenic potential

P. Shwed, J. Crosthwait, K. Nguyen, A. Tayabali, V. Seligy
Biotechnology Laboratory, Environmental Health Sciences and Research Bureau, Health Canada

The genus \textit{Pseudomonas} contains taxa that are of biotechnological interest and have been used commercially in applications ranging from biocontrol to bioremediation. \textit{Pseudomonads} are common constituents of soil and water environments as well as plant and animal hosts. Nevertheless, some strains may be pathogenic to humans such as \textit{P. aeruginosa} (Pa) that infects the lungs, urinary tract and wounds of immunocompromised individuals and is a major cause of hospital acquired infections. Therefore, \textit{Pseudomonads} vary with respect to impacts on immune and cell recognition gene expression.

The goal of this study was to determine differences in early defence gene expression in mouse macrophage cells (J774A.1), that were exposed to \textit{Pseudomonas} strains, used in Canada (Pa, \textit{P. fluorescens} (Pf) and \textit{P. stutzeri} (Ps)). Real time PCR was used to profile the transcript abundance of toll-like receptors, inflammatory response and housekeeping genes at 200 minutes. The profiles for each strain and magnitude of significant gene expression changes were ranked by strain and correlated to bioreduction and cytotoxicity assay results from 24 hr exposures.

All strains caused significant changes in proinflammatory genes (Tnf, Il6, Il1b), toll like receptors (Tlr2 and Tlr6) and genes in the NFκB Pathway. However, changes in gene expression in response to Pa strains were either unique, or greater in magnitude than for tested Pf and Ps strains. These results are consistent with greater cytotoxicity and pathogenic potential of Pa strains observed in other in vitro studies at later time points. Taken together, defence gene expression profiling has the potential to provide an early indication of cell perturbation, relative to other in vitro assays, for safety testing of microbes used in biotechnological applications.

\textbf{Keywords:} Pseudomonas, biotechnology, biosafety
Cadmium effect on *KlHIS4* promoter DNA binding factors

M. Lamas-Maceiras¹, M. Becerra¹, L. J. Lombardía ¹, and M.A. Freire-Picos¹
¹ FORMATEX Research Center, Zurbarán 1, 2-Office 1, 06002 Badajoz, Spain
² CIBER-BBN, Department of Applied Physics, University of Extremadura, Avda. Elvas s/n, 06071 Badajoz, Spain

The analysis of *KlHIS4* promoter sequence showed the presence of three sites similar to the Gcn4/Yap1 binding sites. Yap1 is a transcriptional factor involved in the heavy metal transcriptional regulation, so we have analysed the implication of these three sites in cadmium transcriptional regulation. A specific band, Cd2, was characterised in the region encompassing positions -283 to -276 (Fragment 2), which disappeared in the presence of cadmium or when the Gcn4/Yap1 consensus was mutated. The binding of a second factor causing the Cd3 band is also dependent on the Gcn4/Yap1 consensus at position -283 to -276, but it does not respond to cadmium. The gel-shift pattern of region -384 to -323 (Fragment 4) with no consensus was also altered by cadmium, thus, the cadmium transcriptional response of *KlHIS4* appears to be modulated by multiple promoter elements.

Keywords: yeast, *Kluyveromyces*, HIS4, cadmium, biosensor.

Characterisation of the NrfH cytochrome *c* quinol dehydrogenase from *Desulfovibrio vulgaris*

Daniela Matos, Filipa Cunha, Maria Luisa Rodrigues, Margarida Archer and Inês A.C. Pereira
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Avv. República, 2780-157 Oeiras, Portugal.

The NrfH cytochrome *c* is a membrane-anchored tetraheme cytochrome *c* that oxidises the quinone pool and is the physiological partner of the NrfA nitrite reductase. NrfH belongs to a wide family of cytochrome *c* quinol dehydrogenases that play a crucial role in bacterial respiration, by oxidizing menaquinol and transferring electrons to various periplasmic oxidoreductases [1,2]. These cytochromes are very widespread in bacterial respiratory chains. The NrfHA proteins form a bacterial membrane bound complex that reduces nitrite by the oxidation of menaquinol [1-2].

We have determined the structure of the native NrfHA complex [2], and elucidated its menaquinol binding site through the structure of the NrfHA bound to 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO), which is shown to act as a competitive inhibitor of the NrfH quinol oxidation activity [3]. The menaquinol-binding site is close to heme 1 of NrfH, which has very unusual heme coordination. Here we present further studies of the characterization of the NrfH proteins from two different organisms, *Desulfovibrio vulgaris* a sulfate-reducing Deltaproteobacterium and *Wolinella succinogenes* a nitrite-reducing Epsilonproteobacterium.

Characterization of KlTup1 repressor.

M.A. Freire Picos and A.M. Rodriguez Torres
Department of Biological Cellular and Molecular, University of A Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain.

The general repression complex containing the proteins Tup1p and Sun6p is a conserved global regulator of transcription present in different organisms from baker’s yeast through mammal, and serves as a model for the study of similar corepressor complexes in higher eukaryotes. Tup1p forms a complex in vivo with Sun6p, and regulates a wide variety of gene families or regulons (genes regulated by cell type, glucose, oxygen, DNA damage, and other signals) through its recruitment to target genes by association with regulon-specific DNA binding proteins through the RNA transcriptional machinery (1). Also this complex mediated repression involves interactions among the corepressor and hypoacetylated histones, histone deacetylases, where nucleosome positioning is part of this process, in a subset of these regulated genes, showing the importance of chromatin modification states in Tup1p-Sun6p mediated repression (2). To investigate the evolutionary conservation of these functions, the KlTUP1 gene from Kluyveromyces lactis has been cloned, by complementation of a Saccharomyces cerevisiae tup1 null mutation. The nucleotide sequence predicts a KlTup1p consists of 682 amino acids with a 62% identity to ScTup1p. A comparative analysis of transcriptional regulation of KlTUP1 in different carbon sources medium has been carried out. Here, we report a structural and functional analysis of KlTup1p repressor.

Keywords: yeast, transcriptional regulation, amino acid pathway, Kluyveromyces lactis.

References:

Acknowledgements: Supported by grant PGIDT06PXIB103086PR from Xunta de Galicia (Spain).

Construction of a plasmid vector for thermoacidophilic crenarchaeon Sulfolobus acidocaldarius

Y. Kawasaki and N. Kurosawa
Department of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, 1-276 Tangi-cho, Hachinohe, 020-8577, Japan

Recent studies regarding thermophilic archaea have provided many experimental data for better understanding of these interesting microorganisms. In addition, complete genomic sequences show the structures and organization of genes, suggest certain metabolic pathways, and provide comparisons at the genome level with other organisms. However, the sequence data also generate many new questions which require more powerful genetic tools to study. A host-vector system is a particularly useful tool for molecular biological and genetic studies (i.e. cloning, expression, complementation, promoter analysis, interference of genes), and may help to answer various questions that arise from current study of thermophilic archaea. The extreme thermophilic Sulfolobus are among the best-studied archaea but have lacked small, reliable plasmid vectors. Here we report the successful construction of a series of Sulfolobus-Escherichia coli shuttle vectors. Members of Sulfolobus are thermoacidophilic crenarchaeotes that can be cultivated easily under aerobic and heterotrophic conditions in both liquid and solid media. As a result, they have been considered good model organisms for genetics of thermophilic archaea.

A host-vector system for Sulfolobus-Saccharomyces cerevisiae based on the pyrEF complementation was developed. This consisted of pyrimidine auxotrophic strains and a plasmid vector, designated pSAV1. The pSAV1 vector is based on the complete pRN1 plasmid of S. islandicus, the ColE1 origin and beta-lactamase gene derived from E. coli cloning vectors, and the pyrEF operon of S. solfataricus. Purified plasmid in which the GGCC sites were methylated was used for transformation of pyrimidine auxotrophic strains of S. acidocaldarius. The transformants were selected directly on a xylene-tryptone (XT) solid medium without any prior liquid cultivating, and grew as well as the wild type in uracil-free medium. After replication in S. acidocaldarius, pSAV1 was successfully recovered from cultures of transformants by the standard alkaline lysis method and could be used for transformation without further amplification or methylation. The yield of plasmid from the culture increased after exponential phase and reached about 20 ng/mL culture in the stationary phase. This suggests that the copy number of pSAV1 in a host Sulfolobus cell was at least 14, probably about 20, in the stationary phase.

To determine the stability of the pSAV1 in S. acidocaldarius cells, the transformant (S. acidocaldarius Pyr [pSAV1]) was grown in XT medium without uracil and incubated at 75°C. After several times of sub-cultivations, the plasmid DNA was extracted and digested with restriction enzymes, and analyzed by agarose gel electrophoresis. The restriction endonuclease cleavage patterns of the plasmid DNA showed no difference with the patterns of the original pSAV1, indicating that there is no obvious deletion or rearrangement in the plasmid. The pSAV1 seems very stable and good potential to be initial plasmid to develop cloning or expression vectors of S. acidocaldarius.

Keywords: plasmid vector, Sulfolobus, pSAV1, pRN1.
Construction of auxotrophic mutants of *Methylophilus methylotrophus* AS1 by recombination-mediated marker exchange between linear DNA and bacterial chromosomes in cells carrying the *Escherichia coli* *aroP* transporter gene: application for the production from methanol

Yurgis A.V. Yomantas, Irina L. Tokmakova, Natalya V. Gorskova, Elena G. Abulakina, Svetlana M. Kazakova, Evgeny R. Gak, Sergey V. Mashko

Ajinomoto-Genetika Research Institute, 117545, Moscow, Russian Federation

The non-pathogenic, Gram-negative bacterium *Methylophilus methylotrophus* AS1 is able to grow efficiently on methanol, methylamine or trimethylamine as a carbon source, and it uses the ribulose monophosphate pathway for fixation of formaldehyde produced by the oxidation of these compounds. The aim of this investigation was to generate strains of *M. methylotrophus* AS1 with a potential for the industrial production of aromatic amino acids (*AroAAs*) from methanol. As a rule, investigations of species-specific features of the metabolic pathway and construction of auxotrophic mutants are a prerequisite for future breeding of industrial strain-producers. Auxotrophic mutants have been difficult to isolate from obligate methylotrophs using standard methods. *M. methylotrophus* AS1 could grow in the presence of high concentrations of analogs of *AroAAs* and some amino acids (Val, in particular) that significantly exceed the inhibitory values for other Gram-negative bacteria. These results indirectly confirmed suggestions that the failure to isolate methylotroph auxotrophs resulted from the inability of amino acids to permeate the cytoplasmic membrane.

In the present study, a new construction method for aromatic-auxotrophic mutants is described for *Methylophilus methylotrophus* AS1. It is based on the preliminary Mu-driven integration of the *Escherichia coli* *aroP* gene, which encodes the common aromatic amino acid transporter, in the genome of *M. methylotrophus*. The resulting recombinant strain, which has increased specific permeability to certain amino acids and their analogs, was used for mutagenesis. Mutagenesis was carried out by recombination-mediated substitution of the target genes in the chromosome by linear DNA using the FLP-excisable marker targeted by cloned homologous arms greater than 1,000 bp in length. *M. methylotrophus* AS1 *trpE, tyrA, pheA* and *aroG* genes were cloned in *E. coli*, sequenced, disrupted in vitro using a Km–marker and electroporated into an *aroP*-carrier recipient strain. This approach led to the construction of a set of auxotrophic marker-less methylotrophic mutants that had target genes in the chromosome destroyed.

The obtained mutants and developed method of Mu-driven integration of recombinant DNA in the *M. methylotrophus* AS1 chromosome were used for construction of strains producing L-phenylalanine from methanol (U.S. patent 6350596)

Keywords methylotroph, Mu-driven integration, marker-less mutants

Deficient activity of DnaA protein allows proficient replication at restrictive conditions for ribonucleotide reductase mutants

I. Salguero Corbacho1, E. López Acedo1 and E. C. Guzmán1

1Departamento de Bioquímica Biología Molecular y Genética. Universidad de Extremadura. E06080 Badajoz, Spain
2Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom

Ribonucleotide reductase (RNR) is the only enzyme required specifically under aerobic growth for the formation of deoxyribonucleotides in *Escherichia coli*. The best-known defective RNR mutant in *E. coli* contains a thermolabile *nrdA101* allele. This mutated enzyme is inactivated in 2 min in vitro, but, in vivo, a thermoresistant period of 50 min has been observed in the *nrdA101* mutant strain. The observed thermoresistant period of the thermosensitive *nrdA101* mutant strain in vivo is further extended by inhibiting RNA synthesis, allowing cells to complete replication at 42ºC. RNA and protein syntheses are required to initiate chromosome replication. To examine whether the inhibition of new initiation events was related to the extensive thermoresistant period, we studied this phenotype in double mutant strains.

In this work we show an increased thermoresistant period of chromosomal DNA replication in the *nrdA101* strain when the DnaA protein is deficient or inactivated, or when RNA or protein synthesis is inhibited. By using flow cytometry and marker frequency analysis, we found that the presence of *dnaA* alleles allowed the *nrdA101* strain to replicate the whole chromosome at the restrictive temperature. Furthermore, we show that the double *dnaA101* mutant strain is not only able to complete ongoing replication rounds but also is able to initiate new rounds of chromosomal replication at the restrictive temperature. Growth of strain *nrdA101* at the restrictive temperature causes filamentation and affects the DNA distribution throughout the cell. However, phase contrast microscopy observation of the *nrdA101* double mutant strains growing at the restrictive temperature showed no filamentation. Nucleoid segregation was studied by fluorescence microscopy of DAPI stained cells that had been grown for 4 hours at the restrictive temperature in the presence of cephalaxin, to inhibit cell division. These cells showed a normal nucleoid segregation in the *nrdA101* double mutant strains, in contrast with the abnormal segregations observed in the *nrdA101* strain. The aberrant division pattern and nucleoid segregation observed in the *nrdA101* strain have been attributed to uncoupling of replication and cell division. Our results are consistent with this notion, as they show that impaired replication, cell filamentation, and alteration of nucleoid segregation observed in the *nrdA101* strain at 42ºC were eliminated when DnaA protein activity is deficient.

Our results suggest that the long thermoresistant period of replication in the *nrdA101* mutant strain at the restrictive temperature could be ascribed to a reduction in the number of replication cycles, either induced by inhibition of RNA:protein synthesis or by a deficiency of DnaA protein. Given that replication fork progression is impaired in the *nrdA101* mutant, we propose that a reduction in the number of forks along the chromosome could increase the replication capacity of the mutant under restrictive conditions.

Keywords Ribonucleotide reductase; *nrdA101*, dnaA, DNA replication
Degradation of the Compatible Solute Ectoine

K. Schwiibert 1, G. Heidrich 1, G. Lentzen 1, H. Seitz 1, H. J. Knute 1

1 BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205 Berlin, Germany
2 Institute of Stocker Str. 28, 38453 Witten, Germany
3 Max-Planck-Institut für Molekulare Genetik, Ihnestr. 63-73, 14195 Berlin, Germany

For maintenance of osmotic equilibrium at elevated salt concentrations halophilic Bacteria synthesize and/or accumulate organic osmolytes. In response to the osmotic stress these molecules can reach high cytoplasmic levels without disturbing the cell’s metabolism and are, therefore, named compatible solutes.

One of the predominant compatible solutes in halophilic Bacteria is the aspartate derivative ectoine. For ectoine it was shown that it possesses protective properties in stabilizing enzymes and even whole cells against stresses such as UV radiation or cytotoxins [1]. Recent studies show that ectoine also protects against particle-induced inflammation in lung epithelia [2] and small bowel from ischemia and reperfusion injury [3]. Its protective properties make ectoine a valuable compound which is marketed in health care and skin care products. Ectoine is therefore produced annually on the scale of tons by industry in a biotechnological process [4] with the halophilic y-proteobacterium Halomonas elongata used as producer strain. It is therefore of great interest to elucidate the degradation pathway of ectoine in this organism.

Inspection of the genome of H. elongata helped to identify two gene clusters named doeABX and doeCD (degradation of ectoine) that are involved in ectoine degradation. The actual enzymes responsible for ectoine degradation are encoded by doeAB and doeC. Recombinant expression of doeA revealed that the DoeA protein catalyzes the hydrolysis of ectoine to N-acetyl-diaminobutyric acid (N-Ac-DABA). N-Ac-DABA serves as substrate for the subsequent deacetylation reaction by DoeB. Based on further genetic and biochemical analyses we propose that the pathway proceeds from diaminobutyric acid to aspartate via aspartate semialdehyde catalyzed by newly discovered transaminase DoeB and the dehydrogenase DoeC, respectively.

RT-PCR experiments showed that doeABX is transcribed together along with a third ORF named doeX. The transcriptional initiation site of the doeABX operon was mapped by rapid amplifying of cDNA ends (RACE). Inspection of the DNA sequence upstream of the initiation site revealed the presence of a putative –10 and –35 sequences that resembles the consensus sequence of sigma 70 dependent promoters. The newly identified doeX locus is coding for a putative protein with a calculated molecular mass of 17.9 kDa. The deduced amino acid sequence of DoeX shows a high degree of identity to transcriptional regulator proteins of the ArsC-Lrp family. Electrophoretic mobility shift assays (EMSA) proved that DoeX is indeed a DNA-binding protein with significant binding affinity to the promoter region of doeABX.

Detection and genetic characterization of vanA-containing Enterococcus strains in healthy Lusitano horses

Inês Moura 1,2,3, Hajer Radhoun 4, Carmen Torres 1, Gilberto Igrejas 3, and Patricia Poeta 1,2,3

1 University of Trás-os-Montes and Alto Douro, Veterinary Science Department, Vila Real, Portugal; 2 University of Trás-os-Montes and Alto Douro, Department of Genetics and Biotechnology, Vila real, Portugal; 3 Centre of Studies of Animal and Veterinary Sciences, Vila Real, Portugal; 4 Biochemistry and Molecular Biology Area, University of Rioja, Logroño, Spain.

For maintenance of osmotic equilibrium at elevated salt concentrations halophilic Bacteria synthesize and/or accumulate organic osmolytes. In response to the osmotic stress these molecules can reach high cytoplasmic levels without disturbing the cell’s metabolism and are, therefore, named compatible solutes.

One of the predominant compatible solutes in halophilic Bacteria is the aspartate derivative ectoine. For ectoine it was shown that it possesses protective properties in stabilizing enzymes and even whole cells against stresses such as UV radiation or cytotoxins [1]. Recent studies show that ectoine also protects against particle-induced inflammation in lung epithelia [2] and small bowel from ischemia and reperfusion injury [3]. Its protective properties make ectoine a valuable compound which is marketed in health care and skin care products. Ectoine is therefore produced annually on the scale of tons by industry in a biotechnological process [4] with the halophilic y-proteobacterium Halomonas elongata used as producer strain. It is therefore of great interest to elucidate the degradation pathway of ectoine in this organism.

Inspection of the genome of H. elongata helped to identify two gene clusters named doeABX and doeCD (degradation of ectoine) that are involved in ectoine degradation. The actual enzymes responsible for ectoine degradation are encoded by doeAB and doeCD. Recombinant expression of doeA revealed that the DoeA protein catalyzes the hydrolysis of ectoine to N-acetyl-diaminobutyric acid (N-Ac-DABA). N-Ac-DABA serves as substrate for the subsequent deacetylation reaction by DoeB. Based on further genetic and biochemical analyses we propose that the pathway proceeds from diaminobutyric acid to aspartate via aspartate semialdehyde catalyzed by newly discovered transaminase DoeB and the dehydrogenase DoeC, respectively.

RT-PCR experiments showed that doeABX is transcribed together along with a third ORF named doeX. The transcriptional initiation site of the doeABX operon was mapped by rapid amplifying of cDNA ends (RACE). Inspection of the DNA sequence upstream of the initiation site revealed the presence of a putative –10 and –35 sequences that resembles the consensus sequence of sigma 70 dependent promoters. The newly identified doeX locus is coding for a putative protein with a calculated molecular mass of 17.9 kDa. The deduced amino acid sequence of DoeX shows a high degree of identity to transcriptional regulator proteins of the ArsC-Lrp family. Electrophoretic mobility shift assays (EMSA) proved that DoeX is indeed a DNA-binding protein with significant binding affinity to the promoter region of doeABX.

Differences in vitamin requirements for Streptococcus pneumoniae serotype 14 cultivation in flask and in reactor

V. M. R. Gogolá, T. S. Carneiro, C. S. F. Geraldo, M. M. Tanizaká, and V. M. Gonçalves
1Laboratório de Bioprocessos, 2Laboratório de Vacinas Conjugadas, Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil 1500, 05035-900 São Paulo SP, Brazil

Introduction: The Streptococcus pneumoniae is a major cause of mortality in developing countries where more than 1 million people die every year. The emerging of multiresistant strains is a main obstacle in the treatment of pneumococcal disease. Faced with these facts, the vaccination is the best solution to reduce the mortality and morbidity rates. Currently, the available vaccines are based on the capsular polysaccharide (PS) protection. The PS is the most important pneumococcal virulence factor and the immunogenicity of the different pneumococcal PS is the base for S. pneumoniae classification in serotypes. These serotypes have an irregular regional and age group distribution, which should be taken into account in vaccine design. In Brazil, the serotype 14 is the most common serotype and often affects young children. Despite the importance of pneumococcal antigen production, very little attention has been devoted to pneumococcal nutritional requirements and metabolism. Pneumococci is an anaerobic fermentative microorganism and produces mainly lactate. The vitamin metabolism, on the other hand, varies among strains and the vitamin requirements are influenced by the composition of medium utilized.

Objectives: Determine vitamin requirements of S. pneumoniae serotype 14 in chemically defined medium, in order to reduce the number of compounds used and the PS production cost, consequently.

Materials and Methods: The S. pneumoniae serotype 14 strain ST 5287/09 was used in all experiments described. The stock culture was prepared in Todd-Hewitt (Difco) supplemented with 0.5% yeast extract (Difco) + 40% glycerol and stored in liquid nitrogen. The inocula were prepared from the stock culture in 50 mL of complex medium (a variant of the Hoeprich medium, containing glucose, acid-hydrolyzed casein, yeast extract, L-glutamine, asparagine, choline, thiglycolic acid and salts) in atmosphere of ~3% CO2, 36.5°C, under static cultivation. When these cultures achieved the exponential phase, the inocula were centrifuged, washed with NaCl 0.85% and transferred to flasks with 50 mL of Chemically Defined Medium - CDM (van de Rijn & Kessler, 1980), in order to get an initial optical density at 600 nm (OD600) around 0.1. The growth profile was evaluated in flasks with complete CDM (control) and CDM without each vitamin/cofactor to be tested: riboflavin, nicotinamide, pantothenic acid, thiamin, p-aminobenzoic acid, biotin, folie acid, pyridoxamine, pyridoxal, β-NAD, pyridoxamine + pyridal and p-aminobenzoic acid + folic acid. New cultures were performed in flask and reactor only with the indispensable vitamins identified in the previous step. For reactor cultivation, the inoculum preparation was the same as described above and all fermentations started with OD600=0.1. Batch fermentations were conducted in 1.5-L-bioreactor BioFlo 3000 (New Brunswick Scientific Inc.), under nitrogen atmosphere (0.5L/min), at 36°C and 100 rpm; pH was controlled at 7.0 by addition of 5M NaOH. Polypropylene was used as antifoam agent. The bioreactor parameters were monitored by the BioCommand software (New Brunswick Scientific Inc.) version 2.5.

Results and Discussion: In flask experiments, only the presence of the vitamins nicotinamide and pantothenic acid affected the cell growth in comparison with control. The complete CDM achieved a maximum OD (ODmax) of 2.5 and a maximum specific growth rate (μmax) of 0.6 h⁻¹. The individual omission of nicotinamide and pantothenic acid decrease the cell yield in 25% and 73%, respectively, while the same ODmax and μmax of the control was observed when both pantothenic acid and nicotinamide were added. However, this behavior was not observed in reactor cultivation. The complete CDM yielded ODmax=4.0 and μmax=0.78 h⁻¹, whilst for CDM with nicotinamide and pantothenic acid only these values were, correspondingly, 0.9 and 0.5. Even when the inoculum was prepared using the same medium of the reactor (CDM with nicotinamide and pantothenic acid only) to avoid cell death during centrifugation, the same behavior was observed. A little increase in cell growth was achieved (ODmax=1.73) when a pulse of the omitted vitamins was given at the end of exponential phase. This suggests that one or more of those omitted vitamins were indispensable for cell growth in reactor cultivation.

Conclusions: The vitamin requirements were different in flask and in reactor cultivation, affecting the growth performance. This behavior is undesirable, as long as the PS production is associated to cell yield. Given the optimal conditions to stimulate cell growth in reactor, as pH control and homogeneity, it is hypothesized that the bacteria did not have time to adapt to the imposed vitamin limitation, since no lag phase was observed. On the opposite, it was observed 2 hours of lag phase in all flask cultivations. Futures experiments will be performed to identify which vitamins should be added to stimulate the cell growth in reactor cultivation and obtain a similar yield observed using complete CDM.

Financial support: FAPESP, CAPES.

Leonid V. Aseev, Alexandrina A. Levandovskaya, Nadezda V. Skaptsova, and Irina V. Boni.
Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.

Expression of the Escherichia coli rpsB-tsf operon encoding essential components of translational machinery, ribosomal protein S2 and elongation factor Ts, is driven by a single promoter which is highly conserved among rpsB-tsf operon. The Streptococcus pneumoniae is a major cause of mortality in developing countries where more than 1 million of people die every year. The emerging of multiresistant strains is a main obstacle in the treatment of pneumococcal disease. Faced with these facts, the vaccination is the best solution to reduce the mortality and morbidity rates. Currently, the available vaccines are based on the capsular polysaccharide (PS) protection. The PS is the most important pneumococcal virulence factor and the immunogenicity of the different pneumococcal PS is the base for S. pneumoniae classification in serotypes. These serotypes have an irregular regional and age group distribution, which should be taken into account in vaccine design. In Brazil, the serotype 14 is the most common serotype and often affects young children. Despite the importance of pneumococcal antigen production, very little attention has been devoted to pneumococcal nutritional requirements and metabolism. Pneumococci is an anaerobic fermentative microorganism and produces mainly lactate. The vitamin metabolism, on the other hand, varies among strains and the vitamin requirements are influenced by the composition of medium utilized.

Objectives: Determine vitamin requirements of S. pneumoniae serotype 14 in chemically defined medium, in order to reduce the number of compounds used and the PS production cost, consequently.

Materials and Methods: The S. pneumoniae serotype 14 strain ST 5287/09 was used in all experiments described. The stock culture was prepared in Todd-Hewitt (Difco) supplemented with 0.5% yeast extract (Difco) + 40% glycerol and stored in liquid nitrogen. The inocula were prepared from the stock culture in 50 mL of complex medium (a variant of the Hoeprich medium, containing glucose, acid-hydrolyzed casein, yeast extract, L-glutamine, asparagine, choline, thiglycolic acid and salts) in atmosphere of ~3% CO2, 36.5°C, under static cultivation. When these cultures achieved the exponential phase, the inocula were centrifuged, washed with NaCl 0.85% and transferred to flasks with 50 mL of Chemically Defined Medium - CDM (van de Rijn & Kessler, 1980), in order to get an initial optical density at 600 nm (OD600) around 0.1. The growth profile was evaluated in flasks with complete CDM (control) and CDM without each vitamin/cofactor to be tested: riboflavin, nicotinamide, pantothenic acid, thiamin, p-aminobenzoic acid, biotin, folie acid, pyridoxamine, pyridoxal, β-NAD, pyridoxamine + pyridal and p-aminobenzoic acid + folic acid. New cultures were performed in flask and reactor only with the indispensable vitamins identified in the previous step. For reactor cultivation, the inoculum preparation was the same as described above and all fermentations started with OD600=0.1. Batch fermentations were conducted in 1.5-L-bioreactor BioFlo 3000 (New Brunswick Scientific Inc.), under nitrogen atmosphere (0.5L/min), at 36°C and 100 rpm; pH was controlled at 7.0 by addition of 5M NaOH. Polypropylene was used as antifoam agent. The bioreactor parameters were monitored by the BioCommand software (New Brunswick Scientific Inc.) version 2.5.

Results and Discussion: In flask experiments, only the presence of the vitamins nicotinamide and pantothenic acid affected the cell growth in comparison with control. The complete CDM achieved a maximum OD (ODmax) of 2.5 and a maximum specific growth rate (μmax) of 0.6 h⁻¹. The individual omission of nicotinamide and pantothenic acid decrease the cell yield in 25% and 73%, respectively, while the same ODmax and μmax of the control was observed when both pantothenic acid and nicotinamide were added. However, this behavior was not observed in reactor cultivation. The complete CDM yielded ODmax=4.0 and μmax=0.78 h⁻¹, whilst for CDM with nicotinamide and pantothenic acid only these values were, correspondingly, 0.9 and 0.5. Even when the inoculum was prepared using the same medium of the reactor (CDM with nicotinamide and pantothenic acid only) to avoid cell death during centrifugation, the same behavior was observed. A little increase in cell growth was achieved (ODmax=1.73) when a pulse of the omitted vitamins was given at the end of exponential phase. This suggests that one or more of those omitted vitamins were indispensable for cell growth in reactor cultivation.

Conclusions: The vitamin requirements were different in flask and in reactor cultivation, affecting the growth performance. This behavior is undesirable, as long as the PS production is associated to cell yield. Given the optimal conditions to stimulate cell growth in reactor, as pH control and homogeneity, it is hypothesized that the bacteria did not have time to adapt to the imposed vitamin limitation, since no lag phase was observed. On the opposite, it was observed 2 hours of lag phase in all flask cultivations. Futures experiments will be performed to identify which vitamins should be added to stimulate the cell growth in reactor cultivation and obtain a similar yield observed using complete CDM.

Financial support: FAPESP, CAPES.
Diversification of nucleoid-associated proteins in bacteria revealed by comparative proteomic analysis

Ryosuke L. Ohnwa, Yuri Ushijima, Kazuya Morikawa and Shinji Saito

Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennou-dai, Tsukuba 305-8575, Japan

Bacterial nucleoids are composed of hundreds of proteins including nucleoid proteins like Hu and H-NS, but most of the proteins have not been identified yet. In this study, we isolated nucleoids of Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus from log phase cultures, and identified their associated proteins by LC-MS/MS. As the nucleoid-fraction specific proteins, 228, 102, 120 and 59 proteins were identified from E. coli, P. aeruginosa, B. subtilis and S. aureus, respectively. Comparative genomic analyses with this set of proteins showed that only Hu is common among them, indicating that bacteria have varied the nucleoid-associated proteins. The variety of the identified proteins suggests that bacteria have evolved different strategies to adopt environment stresses.

Keywords Nucleoid; LC-MS/MS; Comparative genomics

Effect of cyanide and azide on growth and membrane proteins in *Salmonella typhimurium*

D. Minai-Tehrani1,2, M. Veissizadeh1, E. Keyhani1, and J. Keyhani3

1 Institute of Biochemistry and Biophysics, University of Tehran, 13145 Tehran, Iran
2 Biology Department, Faculty of Sciences, Shahid Beheshti University, Tehran, Iran
3 Laboratory for Life Sciences, Saadat Abade, Sarve Sharghi 58, 19979 Tehran, Iran

Potassium cyanide and sodium azide, powerful poisons that block respiration, are constantly released in the environment because of their extensive industrial use. A number of plants and microorganisms are equipped with cyanide-insensitive respiration and some scavenge and/or metabolize cyanide. *Salmonella typhimurium*, a gram-negative, facultative anaerobic enterobacterium, is a major cause of disease in human and animals, and frequent outbreaks of salmonellosis are a great concern in food industry. *S. typhimurium* respiratory chain includes cytochrome *d*, a terminal oxidase repeatedly relatively insensitive to cyanide; this would give the bacterium an advantage over other species in an increasingly contaminated environment. The control of *S. typhimurium* population being of great importance from a health point of view as well as from an economical point of view, a better knowledge of the bacterium resistance to toxic compounds is needed. In this research the effect of millimolar concentrations of cyanide and azide on *S. typhimurium* growth and on its membrane proteins, using cytochromes as a probe, was investigated.

Results showed that *S. typhimurium* was able to sustain growth in the presence of millimolar concentrations of either potassium cyanide or sodium azide and that it was more resistant to sodium azide than to potassium cyanide. As shown in Fig. 1, the yield after 24 h culture was 74% in the presence of 5 mM sodium azide (Fig. 1a) compared to 28% in 5 mM potassium cyanide (Fig. 1b), and 24% of the control in 10 mM azide (Fig. 1a) compared to 0% in 10 mM cyanide (Fig. 1b).

![Graph](image)

Fig. 1 Cell yield obtained after *S. typhimurium* was cultured for 24 h in the presence of various concentrations of potassium cyanide or sodium azide.

When cyanide was added to a suspension of oxidized *S. typhimurium* cells, a cytochrome *d*–CN complex was formed, detectable by difference spectrophotometry, while no complex was detectable when azide replaced cyanide. However, when both compounds were added to the cells, azide competitively inhibited the cytochrome *d*–CN complex formation. Secondary and Dixon plots were parabolic, suggesting that two azide molecules bound to cytochrome *d*. Data also showed that cyanide had more affinity than azide for cytochrome *d* in *S. typhimurium*.

Although binding of cyanide or azide to cytochrome *d*, and the ensuing inhibition of the cytochrome has been the subject of considerable research spanning many decades, important aspects of this inhibition still remain unclear. The inhibitors competition reported here is bringing some additional information about cyanide and azide binding to cytochrome *d* in *S. typhimurium*. Binding of azide which could not be directly detected under our experimental conditions, was evidenced by studying the kinetics of cyanide binding to cytochrome *d* in the presence of azide. Results showed that azide competed with cyanide for the same binding site. Finally, although cyanide and azide did bind to cytochrome *d* in *S. typhimurium*, the bacterium was able to grow in the presence of millimolar concentrations of both compounds, thus exhibiting a resistance conferring it an advantage in hostile environment.

Keywords: cyanide; azide; toxic waste; bioremediation; *Salmonella typhimurium*; cytochromes *hd*
Enhancement of extracellular purine nucleoside and AICA ribonucleoside accumulation by Bacillus strains through the genetic modification of genes involved in nucleoside export

Natalia P. Zakataeva1, Anastasia S. Sheremet1, Sergey V. Gronskiy1, and Vitaly A. Livshits1
1Ajinomoto-Genetica Research Institute, 1-64 Dorozhny Prospekt, b-1-1, Moscow 117545, Russia

Bacillus subtilis and its close relatives have been developed and engineered as industrial producers of primary metabolites, including vitamins (riboflavin, folic acid and biotin) and purine nucleosides (inosine and guanosine) as precursors of flavor-enhancing nucleotides.

We have previously shown that overexpression of genes encoding amino acid efflux transporters markedly improved the productivity of amino acid-producing strains (Zakataeva et al., 1998; Livshits et al., 2003). We have also found that the product of the Escherichia coli nepI (yicM) gene and its homologue YdBHI (YdBHl) are involved in export of purine nucleosides in B. subtilis and B. amyloliquefaciens (Gronskiy et al., 2005; Zakataeva et al., 2007). It could be predicted that enhancement of the expression of these genes might also increase purine nucleoside accumulation by the respective producing strains. To study the role of modified expression of the phdE and yicM genes on extracellular accumulation of purine derivatives by B. amyloliquefaciens-producing strains, several genetic modifications were introduced into the chromosomes of these naturally non-transformable bacteria by the replacement recombination method.

This method has been engineered to introduce marker-free deletions, insertions or point mutations into the chromosome of Bacillus strains, including those that are naturally non-transformable. The method is based on the construction of an antibiotic resistance plasmid and a replacement recombination procedure, which occurs at a very high frequency due to the use of a thermosensitive rolling-circle replication plasmid as a delivery vector, and also colony PCR analysis for screening. Use of PCR primers with mismatches at the 5′ end enables the selection of strains containing a single point mutation in the target gene. This method is efficient, fast and allows the generation of any of these genetic modifications without positive selection, the use of a counter-selectable marker or a special prerequisite strain. These features are especially important for metabolic engineering of food-grade industrial strains.

Using this method, the phdE gene was overexpressed from the chromosomes of the inosine and guanosine producer AJ1991 and the AICA (aminomimidazole carboline) ribonucleoside producer AJ1991 aputH.

Overexpression was achieved through chromosomal integration of the phdE± gene in the 5′ untranslated region of phdE, which is known to significantly enhance the gene expression level. Moreover, E. coli nepI was expressed under control of the B. amyloliquefaciens pur operon promoter, and the resulting fusion was integrated into the yicM gene of AJ1991. Study of the extracellular nucleoside accumulation by the resulting strains showed that the enhancement of phdE expression notably increased inosine and guanosine accumulation by AJ1991. We also found that the heterogeneous expression of the E. coli nepI gene in AJ1991 improved the nucleoside productivity of this strain.

We demonstrated that the substrate specificity of the PhdE pump also extends to the AICA ribonucleoside. Overexpression of the PhdE efflux pump in strain AJ1991 aputH resulted in increased extracellular accumulation of AICA, which is known to act as a DNA replication inhibitor. The PhdE protein is an ATP-binding cassette (ABC) transporter, which is responsible for the transport of various substrates across the cell membrane. It consists of a periplasmic binding protein, a transmembrane transporter domain and a nucleotide-binding domain. The PhdE protein is involved in the transport of AICA and other purine nucleosides. The overexpression of the PhdE gene in AJ1991 led to increased AICA accumulation in the extracellular medium.

The present data demonstrate that identification and enhancement of the expression of genes whose products facilitate transport of a desired metabolite out of cells could favor the improvement of the respective producing strains for industrial application.

Keywords: purine nucleoside export, AICA ribonucleoside export, marker-free genetic modifications, nepI, phdE, Bacillus amyloliquefaciens

Exploiting S. cerevisiae- and C. elegans-based eukaryotic screening bioassays to diagnose potentially adverse effects of xenobiotics in environmental samples

F. N. Gil1, C. P. Costa1, C.G. Ramos1, J. H. Leitão1, L. O. Martins1, J. D. Becker2, C. A. Viegas1
1IBB-Institute for Biotechnology and Bioengineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
2Gene Expression Unit, Unité de Génétique Moléculaire de Cinnamomum, Rua de Quinta Grande n°6, 2780-156 Oeiras, Portugal

The risk associated with the rapidly increasing volume of pesticides being applied in agriculture as well as for industrial and domestic uses is a major concern in ecotoxicology. Synthetic dyes are also, in general, persistent organic pollutants and most of them are xenobiotics that give rise to concerns over ecosystems and public health. Short-term bioassays, using simple eukaryotic models, are required to make a rapid assessment and warn of potential toxic effects of the bioavailable fraction of the xenobiotics in whole environmental samples. In addition they can be used for preliminary screening of the toxicity of chemicals, e.g. to support high-throughput chemical testing programmes that have been recently launched both in USA and Europe, eventually followed by more complex and expensive testing. Two promising eukaryotic models that also offer the advantage of keeping in line with regulatory limitations to the use of animals in toxicity testing, are the yeast Saccharomyces cerevisiae [1, 2] and the free-living soil nematode Caenorhabditis elegans. The first one is a lower eukaryote easy to manipulate and with a vast amount of genomics knowledge and resources are available. On the other hand, C. elegans has recognized relevance as a test organism for soil and aquatic ecotoxicological studies [3] and it is likely to complement toxicity data obtained with the unicellular yeast model with focus on effects on reproduction and development, neurotoxicity or xenometabolism.

To contribute to the development of cost-effective and non-animal alternative screening methods for the toxicological assessment of xenobiotics, we compared two small-scale bioassays to assess the potential toxicity of pesticides and of synthetic dyes. One is based on the inhibitory effects of sub-lethal levels of each xenobiotic on the yeast growth curve using microtiter plate susceptibility assays [1, 2]. The other on their effects on the reproduction of age-synchronized C. elegans worms [3]. Data will be presented on the relative toxicities determined for pesticides from different chemical families and for diverse azo- and anthraquinonic dyes, based on the comparison of the lowest-observed-effect-concentration (LOEC) and/or the 50%-inhibitory concentration (IC50) values estimated with both testing systems. Their correlation with ecotoxicity indexes reported in the literature for freshwater organisms will be discussed.

With the aim to identify molecular biomarkers that may be useful for environmental biomonitoring of herbicide toxicity using the yeast model, whole-genome DNA microarrays are being used to examine the global expression profiles occurring in yeast cells in response to sub-lethal levels (e.g. close to the LOEC) and the concentration that inhibits yeast growth by 20%, IC20 of herbicides. After cells exposure to the IC20 of the chloroacetanilide herbicide alachlor, 97 genes/ORFs showed statistically significant higher levels of transcripts than the control cells not exposed to the herbicide (fold change, FC > 1.5), while 34 were down-regulated (FC < -1.5). A lower number of genes/ORFs (32 and 8, respectively) were differentially expressed in cells exposed to the LOEC that mostly overlapped with the set of IC20-induced or –repressed genes. A total of 15 genes whose expression was modified between 2.5- and 46-fold and that were within biological function categories that are significantly enriched in our data-sets when compared to the entire yeast genome (p value < 0.01), were selected as possible candidates as biomarkers of alachlor exposure. Determination of the dose-response and exposure time-dependency of the expression of these genes is under way, based on real-time quantitative PCR, in order to get a clearer picture of their possible relevance to assess the herbicide toxicity in environmental samples.

Acknowledgments: to FEDER and FCT, Portugal (contracts PTDC/AMB/64230/2006 and PTDC/BIO/72108/2006)

References:

Keywords: toxicity bioassays, eukaryotic models; environmental biomonitoring; transcriptomics
Fermentation of fructo- and xylo-oligosaccharides by probiotic and butyrate-producing bacteria

Miguel João Lúcio1, Tatiana Catoja2, Deolinda Auxtero1 and Patrícia Moura1,2
1CiiEM, Instituto Superior de Ciências da Saúde Egas Moniz, Quinta da Granja, 2829-511 Monte de Caparica, Portugal
2LNEG - Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa

Fructo-oligosaccharides (FOS) and xylo-oligosaccharides (XOS) are respectively established and candidate prebiotics, widely studied on their ability to stimulate the growth and activity of health-promoting bacteria present in the human gut. The original definition of probiotic - “a non-digestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon, and thus improves host health” [1] - was synonymous of a selective increase in the growth and/or activity of preferentially bifidobacteria and/or lactobacilli. Presently, this definition was broadened - “a prebiotic is a non-viable food component that confers a health benefit on the host associated with modulation of the microbiota” [2] - and it is assumed that there are other key species which are relevant in the saccharolytic fermentation within the colon. Butyrate-producing bacteria are included in this group, since it is recognised that butyrate plays an important role in the maintenance of colonic health.

In this study, the kinetics and metabolism of pure cultures and co-cultures of Bifidobacterium adolescentis DSM 20083 and Clostridium butyricum DSM 10702 on FOS or XOS supplemented media were assessed. Bacterial growth, oligosaccharide (OS) consumption, and short chain fatty acids (SCFA), formate and lactate production were monitored. The pure cultures and co-culture of B. adolescentis and C. butyricum revealed distinct growth kinetics, different SCFA and lactate production profiles and OS consumption patterns, on each carbon source investigated. Both strains were able to efficiently ferment and grow on FOS, in co-culture and in monoculture. In contrast, the monoculture of C. butyricum revealed a poor assimilation of XOS. In co-culture fermentations, B. adolescentis and C. butyricum were able to positively interact, producing significant amounts of butyrate both on FOS or XOS. This might indicate the existence of cross-feeding between B. adolescentis and C. butyricum, which is especially relevant in the case of XOS supplemented media.

Keywords: Fructo-oligosaccharides, Xylo-oligosaccharides, butyrate, prebiotic

References

Formate dehydrogenases and hydrogen metabolism in Desulfovibrio vulgaris Hildenborough

Sofia M. da Silva1 and Inês A. C. Pereira 1
1Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal;

Desulfovibrio vulgaris Hildenborough (DvH) is a model organism for the study of Sulfate-Reducing Bacteria (SRB). The sulfate respiratory chain is still poorly understood and there seems to be several pathways involved in the energy conservation, such as hydrogen or CO cycling. Hydrogen is an important energy source for SRB in natural habitats, and previous studies showed that growth with H2 leads to the up-regulation of formate dehydrogenases (Fdh) and pyruvate-formate lyase in DvH [1], suggesting that formate cycling provides an alternative pathway for energy generation.

The DvH genome codes for three different FdhS. In this work we show that the formate dehydrogenase activity of cells grown in H2/sulfate increases several fold over lactate-grown cells. We isolated the three DvH FdhS, including FdhABC3, FdhAB, a soluble heterodimeric protein, and the soluble subunits of the membrane-bound Fdh, CfdABCD. The three FdhS show significant differences in activity profile. The growth conditions, including metal composition of the culture medium, influences the expression profile of the three FdhS.

Keywords: formate dehydrogenases, formate cycling, hydrogen

Functional Interaction Between GacA and Fur in Virulence Regulation of Pseudomonas syringae pv. tabaci 11528

Ji Young Cha1, Jun Seung Lee1, Dong Gwang Lee1, Jun Hyok Park1, and Hyung Suk Baik1
1 Department of Microbiology, College of Natural Science, Pusan National University, Busan 69-735, Korea

In Pseudomonas syringae pv. tabaci 11528, Fur (ferric uptake regulator) and GacA (global activator of cyanide and antibiotic production) are crucial global regulators, which are known to operate in a variety of other cellular processes. To identify the functional interaction between Fur and GacA in the virulence regulation of P. syringae pv. tabaci 1528, we conducted phenotype assays with a fur deletion mutant (BL33) and a gacA deletion mutant (BL473) of this plant pathogen. The results revealed that Fur and GacA coordinately regulate important virulence traits of P. syringae pv. tabaci 11528. In addition, using a quantitative real-time RT-PCR (RT-qPCR), we determined roles on the expression of several virulence-associated genes by Fur and GacA. Our results indicated that expression of the virulence genes is coordinately regulated by Fur and GacA. Thus, the regulation mechanisms of these global regulators were investigated by an electrophoretic mobility shift assay (EMSA). Consistent with the results of RT-qPCR, we showed that Fur and GacA directly regulate the virulence-related genes at the transcriptional level, respectively. These findings provide genetic evidence of the functional interaction between Fur and GacA in P. syringae pv. tabaci 11528.

Keywords virulence regulation; GacA; Fur; Pseudomonas syringae

Genetic manipulation of the carotenoids biosynthetic pathway by overexpression of the phytoene synthase enzyme in the microalga Chlamydomonas reinhardtii.

I. Couso, M. Vila and R. León

The enzyme phytoene synthase catalyses the first step in the carotenoids synthetic pathway in which the 20-carbon GGPP is converted into the first uncoloured carotenoid, phytoene. This is the first specific reaction to the carotenoids biosynthesis and has been regarded as a regulatory key and limiting step in various higher plants species. In microalgae, such as Chlamydomonas, the limiting-step role of phytoene synthase was still unclear, but we have shown that its overexpression by introducing additional copies of endogenous or exogenous psy genes in Chlamydomonas genome can lead to an increase in the carotenoid content.

In the present work we have isolated the genes encoding the psy of two microalgae, the model chlorophyte Chlamydomonas reinhardtii and the halotolerant carotene-hyperproductive Dunaliella salina. The functionality of these genes was checked by complementation experiments in bacteria. The genes were then subcloned into the algal expression vector pSI105 carrying the appropriate transit peptide and the microalga C. reinhardtii was transformed with the obtained constructions. Several colonies containing the additional CrPsy or DsPsy genes were isolated and their content in carotenoids were analysed by HPLC. In all cases we found an important increase in the intracellular concentration of several carotenoids, mainly lutein, violaxanthin and β-carotene, which intracellular level increased between 40 to 60% up from its level in control untransformed microalgal cells. The stability of the transgenes and the response of the transgenic lines obtained against several stressing conditions are now under study.

Keywords carotenoids; microalgae; psy, phytoene synthase Chlamydomonas reinhardtii.

Acknowledgements: We thank the Spanish Ministry of Education for financial support (AGL2007-6310-C02-01)
Genetic Transformation of Lignin degrading fungi facilitated by Agrobacterium tumefaciens

Krishna Kant Sharma and Ramesh Chander Kuhad

Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi-110021, India.

Agrobacterium tumefaciens, a soil phytopathogenic bacterium, generally transforms plants by delivering a portion of the resident Ti-plasmid, the T-DNA (transferred DNA), to plant. A. tumefaciens has played a major role in the development of plant genetic engineering and basic research in molecular biology, accounting for 80% of the transgenic plants produced so far. Initially, it was believed that only dicotyledons, gymnosperms and a few monocotyledonous species could be transformed by this bacterium; but recent achievements totally changed this view by showing that many ‘recalcitrant’ species not included in its natural host range can also be transformed.

Here we describe an efficient and convenient Agrobacterium mediated gene transformation system for successful delivery of T-DNA, carrying the genes coding for β-glucuronidase (uidA), green fluorescent protein (gfp) and hygromycin phosphotransferase (hpt) to the nuclear genome of lignin degrading white-rot fungi such as Phanerochaete chrysosporium, Ganoderma sp. RCKK-02, Pycnoporus cinnabarinus, Crinipellis sp, Pleurotus sajor-caju and BHR-UDSC (Scheme 1). The fungal transformants were confirmed by PCR and southern hybridization. The expression vector pCAMBIA 1304-RCKK was constructed by the addition of GPD promoter from plasmid p416 to the binary vector backbone pCAMBIA1 304, which controls uidA and gfp gene. Transmission Electron Microscopy (TEM) analysis revealed the attachment of bacterial cells to the fungal hyphae. Transformation frequency up to 75% was obtained depending on the fungal species used in the transformation experiments. The transfer efficiency was maximum at 20°C whereas no transfer was observed at temperature above 30°C.

Key Word: Agrobacterium; Transformation; Ganoderma sp.

Genomic variability of Thiomonas sp. isolated from arsenic-rich environments

Florence Arsène-Ploetze1, Sandrine Koechler1, Marie Marchal1, Jean-Yves Copper1, Violaine Bonnefoy1, Fabienne Battaglia-Brune1, Odille Bruneel1, Christopher G. Bryan1†, Jessica Cleiss1, Audrey Heinrich-Salmeron1, Marie-Claire Lett1, Didier Lièvremont1, Claudine Médigue6, Philippe N. Bertin1

1Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, France;
2Institut Pasteur, Genopole, Plate-forme puces à ADN, Paris, France;
3Laboratoire Hydrosciences Montpellier, UMR 5569 (CNRS - IRD - Universités Montpellier I et II), France;
4BRGM, Environnement et Procédés, Unité Ecotechnologie, Orléans, France; 5Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS/Université Aix-Marseille, UPR9043, France;
6UMR 8030, Génomique et Métabolique, Laboratoire de Génomique Comparatif, Evry, France.

Arsenic is widely distributed in the environment, released from both natural and anthropogenic sources. Its inorganic forms are highly toxic and impair the physiology of most higher organisms. To get insight into molecular mechanisms of arsenic adaptation in microorganisms, we have investigated arsenic-specific metabolic capacities of several bacteria isolated from arsenic-contaminated environments [1-3]. Bacteria of the Thiomonas genus are ubiquitous in many extreme environments, such as arsenic-rich anoxic mine drainage (AMD). The metabolism of carbon and arsenic was compared in eight Thiomonas strains belonging to two distinct phylogenetic groups. Greater physiological differences were found between these strains than might have been suggested by 16S rRNA/phylogeny, especially regarding arsenic metabolism. Differential proteomic analysis revealed different relationships between carbon assimilation and arsenic metabolism in these Thiomonas strains [2]. The genome of one of these strains, Thiomonas sp. 3As, was deciphered and compared with the genome of the other Thiomonas strains. The results obtained suggest that the Thiomonas genome has evolved rapidly through the gain or loss of genomic islands and that this evolution is probably influenced by the specific environmental conditions the strains live in. More generally, our in-depth exploration of (metagenome) sequences associated to physiology, genetics, DNA chips and (meta)proteomics experiments revealed diverse capabilities of arsenic-resistant microorganisms to cope with arsenic.

Keywords arsenic, horizontal gene transfer, evolution, genomic island

References
Glucansucrase-derived prebiotic oligosaccharides enhance enzyme activity in Bifidobacterium

S. M. Holt¹, J. M. Teresi², G. L. Cote³

¹Western Illinois University, Dept. Biological Sciences, Macomb, IL., 61455-9707, USA
²United States Department of Agriculture, 61604-3902, Peoria, IL., USA

The objective of this study was to determine the influence of alternansucrase-derived prebiotic oligosaccharides on enzyme activity in the beneficial colonic microbe Bifidobacterium adolescentis. Other carbohydrates were included for comparative purposes. Alternansucrase is a bacterial enzyme used to make prebiotic oligosaccharides and sweeteners. Fundamental knowledge of enzyme activity in Bifidobacterium may aid in the design of more effective prebiotics and may also help identify indicators of general metabolic activity when assessing their influence within the colon. Activities for α- and β-galactosidase and α- and β-glucosidase were determined from cell extracts of B. adolescentis grown on 18 test carbohydrates including alternansucrase-derived oligosaccharides. α- and β-galactosidase activities were enhanced on a variety of α- or β-linked carbohydrates regardless if a galactoside or glucoside. α-Glucosidase, however, was enhanced only on α-carbohydrates. β-Glucosidase activity was not enhanced on any carbohydrate tested except for melibiose. Alternansucrase-derived oligosaccharides significantly enhanced α-galactosidase and α-glucosidase activities compared to most of the carbohydrates tested. Most of the alternansucrase-derived oligosaccharides showed significant increases in enzyme activity versus their corresponding acceptor carbohydrates. α- and β-galactosidase may serve as biomarkers for microbial metabolic activity within the colon for potential prebiotics composed of α- or β-linked oligosaccharides whereas α-glucosidase activity may be restricted to assessing the influence of only α-linked carbohydrates. β-Glucosidase would probably not serve as a biomarker for microbial metabolic activity and does not seem to be significantly involved in carbohydrate degradation. In conclusion, the alternansucrase oligosaccharide synthesis process provided a value-added component to carbohydrates by increasing metabolic activity over certain acceptor carbohydrates.

Keywords Bifidobacterium; prebiotic

Induction of DNA double strand breaks and branched DNA replication structures does not predict the antimicrobial effect of thymidylate deprivation

C. Mata Martín and E. C. Guzmán

Departamento de Bioquímica Biología Molecular y Genética. Universidad de Extremadura. E06080 Badajoz, Spain

Thymidylate deprivation brings about “thymineless death” (TLD) in prokaryotes and eukaryotes. TLD is the phenomenon in which exponentially growing cell starved for thymine loses viability. TLD has been researched over five decades, but the precise mechanism remains elusive. Nevertheless, the enzyme thymidylate synthetase (TS), which catalyzes the de novo synthesis of TMP, has served for many years as a basis for chemotherapeutic strategies. To get insight into the mechanism of TLD we use Escherichia coli thyA deficient strain with is defective for the enzyme TS, requiring thymine or thymidine for growth. In this system TLD is promoted just by removing thymidylate from the growth medium. Numerous studies have identified a variety of cellular responses associated to thymidylate deprivation; most of them related with replicating cells. In this work we show that replication forks are required for TLD, but no replication process. Our results indicate that even though, DNA chromosomal replication process is not a requirement for TLD, the amount of forked DNA structures generated under thymidylate deprivation correlates with the significance of the lethality. Since stalled replication forks are generally viewed as promoting double strand breaks (DSBs) that could be the cause of death, we have investigated whether the lethal effect of thymidylate deprivation could be caused by the increase of the amount of DSBs generated by the presence of stalled replication forks (among others mechanisms). Furthermore, branched DNA created by stalled replication fork could generate entangled DNA that has been associated to TLD and defined as non migrating DNA (nmDNA). By using pulse field electrophoresis gel (PFEG) we show that DSB and nmDNA are induced by thymine starvation but, i) the amount of DSBs in recB strains doesn’t correlate with TLD, as the DSBs persisted after rifampicin addition- condition where TLD was suppressed ii) the presence of non migrating DNA that remain in the well after being digested with XbaI does not agree with TLD, as nmDNA was not observed after hydroxyurea addition-condition where TLD is not affected. We propose the forked DNA as the key element for TLD. In this sense, DSBs and nmDNA would be required but they wouldn’t be sufficient for the cell to undergo TLD.

Keywords thymidylate, thymineless death; fork, DNA replication.
Influence of inoculum and residual glucose concentration on *Streptococcus pneumoniae* serotype 6B cultivation

TS Carmo1, VMR Gogola1, AC, Horta1, TC Zangrìolami1, M M Tanizaki2, V M Gonçalves1

1Laboratório de Bioprocessos and 1Laboratório de Vacinas Conjugadas, Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, Brazil
2Departamento de Engenharia Química, UNICamp São Carlos, Brazil

Introduction: *Streptococcus pneumoniae* is a major pathogen commonly responsible for pneumonia, bacteremia, meningitis and otitis media, especially among young children and elderly. The most prominent pneumococcal virulence factor is the capsular polysaccharide (PS), which coats the surface of the bacterium and act as an anti-phagocytic factor “in vivo”. *S. pneumoniae* express at least 91 distinct capsules which are chemically and serologically distinct. The capsule is currently used as antigen in pneumococcal vaccines, either as free polysaccharide or as PS conjugated to proteins. The conjugated vaccines enhance PS immunogenic character, inducing T-dependent immune response and immunological memory. Pneumococcal serotype 6B is the second most prevalent in Brazil. The optimization of cultivation conditions is part of a pneumococcal vaccine development project of Instituto Butantan. In this project the three most prevalent pneumococcal serotype will be conjugated to a protein Pneumococcal Surface Protein A (PspA).

Objectives: In the present study we investigated the influence of both: the growth phase of the inoculum and the residual glucose concentration at the instant of the pulse or the start of feeding on capsular polysaccharide (CPS) production in batch and fed-batch cultivation.

Materials and Methods: *Streptococcus pneumoniae* serotype 6B strain ST 433/03 was used. Bench scale experiments were carried out using a variant of the Hoeprich medium, containing glucose, acid-hydrolyzed casein, dialyzed yeast extract, L-glutamine and asparagine as nitrogen sources, choline as a growth factor and salts. The inocula were cultivated in this medium and incubated in a candle jar at 37°C for 13h. The volume inoculated into the reactor varied in order to set the initial OD around 0.1 at 600nm. The experiments were conducted in 1L-bioreactors BioFlo 2000 (New Brunswick Scientific Inc.), at 37°C and 200 rpm, with controlled pH at 7.0 and polypropylene (PPG) - an antifoam agent - was added as required. The bioreactor was monitored by the LabView 7.1 program (National Instruments). Nine experiments were carried out in batch with a pulse of 100mL of 50% w/v glucose and 45mL of 46.2% w/v ammonium acetate. And six experiments were carried out in fed-batch.

Results and Discussion: According to the inoculum growth curve, a culture with an OD~1.6 was in the mid-log phase and a culture with an OD=2.6 was at the end of the log phase. In batch cultivation, it was observed that the lower was the OD of the starter culture, the higher was the PS concentration obtained. The residual glucose concentration at the moment of the pulse also influenced the PS production: PS production was higher when the pulse was given at higher residual glucose concentration. Hence, in batch culture the highest PS production (387 mg/L) was obtained using an OD=1.6 of the starter culture and giving the pulse when the residual glucose was ~15 g/L, while using a similar inoculum (OD=1.65), the PS concentration reached 248 mg/L after giving the pulse when the residual glucose was 4.5 g/L. The lowest PS production was obtained when a culture with an OD=2.6 was inoculated into the reactor and the pulse was given when the residual glucose was 3.4 g/L (PS=194 mg/L).

A similar relationship between OD of the inoculum and PS production was obtained in fed-batch cultures: the highest PS concentration (393 mg/L) was obtained when the reactor was inoculated using a culture with OD=1.6 and the lowest PS production (195 mg/L) was obtained by using a culture with OD=2.4. The effect of the residual concentration at the instant of the start of feeding on PS production was probably influenced by the presence of other components in the concentrated feeding medium, which could better fit the nutritional requirements of the microorganism.

Conclusions: The physiological state of the inoculum showed an important correlation to the PS production in batch and fed-batch cultivation of *S. pneumoniae* serotype 6B: mid-log phase inocula yielded high PS production. In batch production, it was also observed a synergic effect of the inoculum OD and the residual glucose concentration in the moment of the pulse on PS production. These phenomena are consequence of the growth profile and the action of lytic enzymes after the log phase should be involved. **Financial Support**: FAPESP.
Influence of the Mth genes on synthesis of alcohol oxidase and catalase in methylotrophic yeasts *Pichia methanolica*.

Isakova E.P., Deryabina Y. I., Leonovich O.A.

Bakh Institute of Biochemistry, Russian Academy of Sciences, Leninisky pr., 33, 117071, Russia

Some methylotrophic yeast mutants and their revertants, incapable of assimilating methanol and with much lower alcohol oxidase activity (AO) have been under investigation. Using analysis of molecular isozyme forms we researched the product activity of the genes, which are possible homologue of *Saccharomyces cerevisiae* peroxisome catalase - *CTA1*, and *AUG2*, coding one of alcohol oxidase subunits. The conditions favorable for the gene of *AUG2* expression (3% methanol in growth medium) lead to increased synthesis of peroxisome catalase. And on the contrary, the unfavorable conditions (without carbon source or with 1% glycerol) caused the decreased level of the peroxysome catalase. The wt/mutant mainly had dominant formation of AO isofrom with electrophoretic mobility which is typical to isogenic form 9, the product of the gene *AUG2*, and decreased level of peroxysome catalase. Four spontaneous revertants of the mutant *mth1* (*Rmth1*) restored their growth on methanol which was accompanied both with increasing activity of AO isogenic form 9, the product of the gene *AUG2*, and peroxysome catalase. The obtained results confirm the existence of general regulatory elements under the gene *AUG2* and *CTA1* function at some stages of regulation in methylotrophic yeasts *P. methanolica*.

This work was supported by the Russian Foundation for Basic Research, grants № 08-04-01691-a and № 09-04-90360-S-Оset-a.

Isolation, characterization and regulation of carotenoid biosynthetic pathway genes in *microalgae*.

B.F. Cordero1, I. Obraztsova1, L. Martin1, R. León2, I. Couso2, M.A. Vargas1, and H. Rodríguez1

1Instituto de Bioquímica Vegetal y Fotosíntesis, University of Sevilla and CSIC, Avda. Américo Vespucio nº 49, 41092 Sevilla, Spain

2Departamento de Química y Ciencia de Materiales, Facultad de Ciencias experimentales, Universidad de Huelva, Avda. Fuerzas Armadas s/n, 21071 Huelva, Spain

Carotenoids are produced by all photosynthetic species and several not photosynthetic organisms playing roles in light-harvesting, photoprotection, structural maintenance of pigment-protein complexes, and membrane structure and fluidity. The specific carotenoid biosynthetic pathway starts with the condensation of two geranylgeranyldiphosphate molecules to produce phytoene, the first carotenoid. Four desaturation reactions convert phytoene into lycopene, which is modified to β-carotene by the action of lycopene β-cyclase (LCYb) or into α-carotene by the action of LCYb and lycopene ε-cyclase (LCYE). The cyclization of lycopene to α- and β-carotene is a key branch point in the pathway of carotenoid biosynthesis and has proved to be a control step in the biosynthetic pathway. α-carotene is modified to lutein by two hydroxylases and a limited number of organisms including some green algae as *Haematococcus pluvialis* and *Chlorella zofingiensis* can synthesize astaxanthin from β-carotene by the action of a ketolase/oxygenase and a hydroxilase. Astaxanthin and lutein are high value carotenoids which are not only used as food dyes and as feed additives in aquaculture and poultry farming, but also are considered as effective agents for the prevention of a variety of age-related, degenerative and chronic diseases, as cataracts, macular degeneration, cancer and atherosclerosis.

Our group has carried out the isolation, characterization and the study of the regulation in response to irradiance and nitrogen limitation of the *lcYb* gene of *C. zofingiensis*. By using RT-PCR and RACE-PCR a 2131 bp cDNA with a 1641 bp open reading frame was isolated in this microalga. Alignment of this cDNA with the corresponding genomic sequence revealed the presence of 7 exons and 6 introns in the *lcYb* gene, which encodes a hypothetical protein of 546 amino acids with an estimated molecular weight of 60 kDa. Homology studies have shown that the deduced amino acid sequence has a high homology with sequences of other microalga and higher plants and lower with cyanobacterial, and very low with bacterial sequences. Hypothetical FAD binding domain present in other plant and microalgal lycopene b-cyclases has also been found in the *C. zofingiensis* LCYb sequence. Southern analysis with genomic DNA has indicated that the *C. zofingiensis* *lcYb* gene is present in a single copy. The functional analysis by heterologous genetic complementation in *E. coli* has shown that the protein allows the double cyclation of lycopene to produce β-carotene and the formation of a new β-cycle in the monocyced α-carotene to yield α-carotene. By quantitative Real Time PCR no differences in *lcYb* transcript levels have been observed in *C. zofingiensis* cells growing photoautotrophically at both high and low irradiance. However, nitrogen depletion increased significantly transcript levels at all irradiances.

We are also interested and working on the isolation and characterization of other genes of the carotenoid biosynthetic pathway. We also have partially isolated the phytoene synthase gene of *C. zofingiensis*. Phytene synthase is the first enzyme of the carotenoid pathway and therefore could play an important control role in the carbon flux toward carotenoid synthesis. Currently, we are trying to isolate the LCYe gene of *C. zofingiensis* by the design of degenerated primers based in the conserved motifs of different known LCYe from algae and plants. Moreover, we are studying the regulation of the carotenoid pathway in *H. pluvialis* by analysing the expression patterns of the main carotenogenic genes and the carotenoids accumulation profiles under different stress conditions such as, high irradiance, nutrients deficiency and salts stress.

This work has been supported by Ministerio de Educació y Ciencia, Spain (grant AGL 2007-65308-C02-02), and Junta de Andalucía, group BIO-299.

Keywords: carotenoids; astaxanthin; lutein; *Chlorella zofingiensis*; *Haematococcus pluvialis*; carotenoid biosynthesis genes.
Mechanisms of SigH activation in minor cell population: a stochastic process or gene activation by short junction duplication

Kazuya Morikawa¹, and Tarek Msadek²

¹ Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
² Biology of Gram Positive Pathogens, Department of Microbiology, Institut Pasteur, 75724 Paris Cedex 15, France

Staphylococcus aureus naturally inhabits on human nasal cavity, but it is also an opportunistic pathogen. It is equipped with a variety of stress tolerance/adaptation mechanisms, which are modulated by sigma factors or other transcription factors. The main focus in this presentation is on an ordinary silent sigma factor gene, sigH, whose physiological function is still unclear. Interestingly, it can be activated only in minor cell population. The SigH active cells can be selected by using a tetracycline resistance reporter system. The frequency fluctuates from 10^{-5} to undetectable level ($<10^{-9}$). This activation depends on the duplication of the sigH locus generating a new chimeric gene. The SigH activity diminishes at the frequencies of 10^{-2} ~ 10^{-3}, in concomitant with the disappearance of the amplified unit. Another line of experiments using GFP reporter shows that SigH is stochastically activated under certain culture condition with higher frequencies (10^{-2}) probably through the post-transcriptional regulation, indicating that there are multiple activation mechanisms. The agr quorum sensing system had a positive role in the stochastic SigH activation, but was not essential. The physiological significance of such SigH activation modes will be discussed.

Keywords: Staphylococcus aureus, sigma, stochastic expression, Short Junction duplication

Molecular characterization of light sensitive mutants of the microalga Chlamydomonas reinhardtii

M. Vila, I. Conso and R. León

Insertional mutagenesis has demonstrated to be a powerful tool to study the relationship existing between a gene sequence and its function in the microalga Chlamydomonas reinhardtii. The technique is based in nuclear transformation of the microalga with an exogenous DNA marker, which is integrated randomly into the genome. After screening for a particular phenotype and analysis of the disrupted genes it is possible to establish a functional relation between the affected gene and the phenotype selected. This approach has allowed identification of many mutants affected in many different aspects (Galván et al., 2007). And has become a popular method for forward genetics studies because identification of the affected genomic region is generally easier that location of genomic lesions caused by traditional mutagenesis procedures based on chemical or physical agents.

In the present work we have selected Chlamydomonas reinhardtii mutants sensitive to high light intensities using AphVIII gene that confers resistance to the antibiotic paromomycin as marker gene. Chlamydomonas cells were transformed by agitation with glass-beads method with the cassette pBluescriptII-AphVIII-cmrB or 1300 Insertional mutants were isolated in the presence of paromomycin and submitted to a basic screening to isolate light-sensitive or pigment deficient mutants. We found five high-light sensitive mutants. The genomic DNA of the selected mutants was isolated and submitted to a special PCR named enzyme site directed amplification PCR (RESDA-PCR) (González-Ballestor et al., 2005). The amplified bands were sequenced and compared with the genome sequence (version 4.0) of Chlamydomonas (http://genome.jgi-psf.org/Chlr4/Chlr4.home.html). This technique allowed us to identify the genomic region adjacent to the marker DNA used for transformation in four of the obtained mutants. All the identified sequences showed similarity with Chlamydomonas genome sequence. Detailed analysis of the affected genes at its relation with the observed phenotype is being carried out.

References

Keywords: microalgae; light-sensitive mutants, insertional mutagenesis, Chlamydomonas reinhardtii

Acknowledgements: We thank the Spanish Ministry of Education for financial support (AGL2007-65303-C02-01)
Multiple promoters of stress-responding genes of *Corynebacterium glutamicum*

J. Netvera, R. Šilar, P. Kadeřábková, M. Zemanová, and M. Pátek

Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic

Promoters of stress-responding genes of gram-positive amino-acid-producing bacterium *Corynebacterium glutamicum* have been characterized. Potential promoter regions of selected genes were cloned into the promoter-probe vector pET2 upstream of the promoterless cat reporter gene coding for chloramphenicol acetyl transferase (CAT). The promoter activity was assayed as activity of reporter enzyme CAT during standard cell growth at 30 °C and after heat shock (40 °C, 1 h) and cell surface stress (growth with 0.01 % SDS or 4 mM EDTA for 90 min) in *C. glutamicum* wild-type strain as well as in *C. glutamicum* ΔsigH, ΔsigE and ΔsigM mutant strains with deleted genes coding for the stress-responsive sigma factors of RNA polymerase. Promoter activities of promoter upstream of *C. glutamicum* ΔsigH (coding for alternative sigma factor), arrA (coding for small untranslated regulatory RNA), clpB, clpC, dhaL2 genes and dhaK-gypE-dhaL3-hspR operon (coding for chaperon proteins and a regulator involved in stress response) significantly increased after heat shock in *C. glutamicum* wild-type strain, while in *C. glutamicum* ΔsigH, promoter activities of these regions were significantly lower. Promoter activity of the region upstream of the sigE gene, coding for an alternative sigma factor, strongly increased after cell surface stress.

Using non-radioactive primer extension (PEX) method, multiple (2-4) transcriptional start points (TSPs) were determined within the upstream regions of all tested *C. glutamicum* stress-responding genes and the respective -10 and -35 hexamers of the putative promoters were proposed. The major TSP of sigE gene was mapped at the base A, located within the translation initiation ATG codon, while the other TSP, detected only after SDS treatment, was localized in the position –141 upstream of translation initiation codon. Since no effect of deletions of genes coding for stress-responsive sigma factors (sigD, sigE, sigH or sigM) on promoter activity was observed, both promoters P-sigE1 and P-sigE2 are most probably recognized by the primary sigma factor SigA.

Sequences highly similar to consensus sequences of promoters recognized by stress-responsive sigma factors (GGTAA[+12]GTT) were detected in –35 and –10 regions of transcription starting at two TSPs of the heat-shock genes (arrA, sigH, clpB, clpC, dhaL2 and dhaK-gypE-dhaL3-hspR operon), in addition to the –10 hexamers highly similar to the consensus sequence of vegetative *C. glutamicum* promoters recognized most probably by the primary sigma factor SigA. Transcription starting at two TSPs of dhaL2 and at one TSP of sigH was found to be strongly reduced in *C. glutamicum* ΔsigH after heat shock, when compared with the wild-type strain. These results are in agreement with the results of reporter CAT assays and suggest that SigH is directly involved in transcription of *C. glutamicum* sigH and dhaL2 genes after heat shock.

Multiple promoters of stress-responding genes in *C. glutamicum*, recognized by different sigma factors, represent important regulatory elements in cell response to environmental stress factors.

Keywords: *Corynebacterium glutamicum*, stress response; promoters, sigma factors

Plant Cell Contact-dependent Virulence Regulation of *hrp* Genes in *Pseudomonas syringae pv. tabaci* 11528

Jun Seung Lee, Ji Young Cha, Jun Hyek Park, Dong Gwang Lee, and Hyung Suk Baik

Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea

Pseudomonas syringae is a widespread and representative plant pathogen that can colonize the intercelular spaces of aerial organs. *P. syringae pv. tabaci* causes wildfire disease in tobacco plants. As a means to facilitate the isolation of its pathogenicity genes and to characterize the genome of the pathogen, we constructed a cosmid library of *P. syringae pv. tabaci* ATCC 11528. The library consisted of 2,304 clones with an insert ranging from 32 to 43 kb in size, the average size being 39 kb. Based upon colony PCR, the cosmids clones P16F02, P18A09 and P20H11 containing the *hrp* pathogenicity island (*hrp* PAI) were identified from this library, and then subjected to shotgun sequencing. Pathogenicity of *P. syringae* is dependent on the type III secretion system (T3SS), which is encoded by *hrp* PAI and required for injection of large repur excessive virulence effectors into host cells. It can be induced in minimal media which mimic plant apoplastic fluids, and the induction depends on the sigma factor HrpL. However, recent studies provided evidence that specific host factors induce the expression of the *Ralstonia solanacearum* *hrp* PAI. This specific plant cell induction of *hrp* PAI is controlled by PrhA (plant regulatory of *hrp*), a protein that shows homology to outer-membrane siderophore receptors. In this study, *prhA* homologues of *P. syringae pv. tabaci* 11528 and *P. syringae pv. tomato* DC3000 were amplified by PCR, and *prhA* mutants were constructed by allelic exchange. The *prhA* gene was shown to encode a protein of 722 amino acids, while *PrhA* revealed significant similarities to numerous Tmb-1-dependent siderophore receptor proteins. In several physiological analyses (growth rate, swarming motility, CAS universal siderophore detection assay), the *PrhA* mutants showed differences from the wild type strains. We tested whether *prhA* does regulate the transcription of *hrp*, by comparing the level of *hrp* activity after the cell culture in a *hrp*-inducing minimal medium. Although there was no difference in the level, *aprH* mutants reduced virulence in host plant. Therefore it was postulated that the *PrhA* of *P. syringae* is a putative pathogen-plant cell contact sensor, and a *hrp* promoter-*egfp* reporter gene fusion was employed to prove it. Co-culture of *P. syringae* and *Arabidopsis thaliana* or *Nicotiana tabacum* (tobacco) cell suspensions resulted in much lower induction of *hrp-gfp* expression than those obtained in *hrp*-inducing minimal medium. This work provides evidence that the recently characterized plant-responsive regulatory cascade induces *hrp* gene expression in *P. syringae* in the presence of plant cells.

Keywords: *Pseudomonas syringae*, *hrp* pathogenicity island; *prhA*; virulence regulation
Proteome Analysis of the Responses to Phenol Concentration Variations in Moderately Halophilic Bacteria Halomonas sp. MU12

Selim Ceylan1, Berna S. Akbulut1, Dilek Kazan1,2
1 Marmara University, Engineering Faculty, Biotechnology Department, Goztepe Campus, 34722, Istanbul, Türkiye
2 TÜBİTAK, Marmara Research Center, Genetic Engineering and Biotechnology Institute, 41470, Gebze-Kocaeli, Türkiye

Phenol is one of main pollutants found in the industrial wastewaters because of its widespread usage in the oil refining, pharmaceutical and resin manufacturing plants. The presence of phenol in the environment poses a significant risk to aquatic biota even at low concentrations. Removal of phenol from wastewaters is therefore an important issue. Although, physicochemical methods are used generally to remove phenol from industrial effluents, these treatments are usually expensive and complex. Comparing to chemical methods, biotreatment of phenol-containing wastewater is a low cost process and it has the possibility of complete mineralization of phenol.

Halophiles are an important group of microorganisms that can adapt to extremely saline environments. Moderately halophilic microorganisms have been in the center of industrial interest in the last decades owing to their growth in wide range of salt concentration.

In this study, responses to phenol concentration variations in moderately halophilic bacterium Halomonas sp. MU12 isolated from Çamaltı Salt lamin Area of Türkiye was investigated. Strain MU12 has an ability to grow between 5 % and 25 % NaCl concentrations. Proteome analysis is conducted by means of a two-dimensional polyacrylamide gel electrophoresis (2D PAGE), and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was conducted to obtain the adaptive responses inside the bacterium. The MU12 cells grown to the exponential phase in both 200 mgL\(^{-1}\) and 1000mgL\(^{-1}\) phenol containing medium were harvested and proteins were extracted for proteome analysis. Comparative analysis of the proteome profiles of strain MU12 grown in 200 mgL\(^{-1}\) and 1000mgL\(^{-1}\) phenol allowed us to identify all the proteins involved in the phenol adaptation metabolism. This project was supported by Marmara University Scientific Research Center with a project no FEN-C-DRP-181205-0286.

Keyword: phenol adaptation metabolism, proteomics, moderately halophiles

Proteomic analysis of antibiotic resistance in Salmonella spp. strains from wild rabbits and boars

L. Pinho1,2,3, H. Radhouni1,2,3, P. Vieira1,2,3,4, C. Carvalho1,3, C. Torres3, P. Domingues3, R. Vitorino5, P. Poeta4, and C. Grejies2,5
1 Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
2 Institute for Biotechnology and Bioengineering, Centre of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
3 Centre of Studies of Animal and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
4 Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
5 Biochemistry and Molecular Biology Area, University of La Rioja, Logroño, Spain

Salmonella is a Gram-negative, facultative intracellular and food-borne bacterium that causes gastroenteritis and typhoid fever in humans. Salmonella infections appear to be one of the most typical examples of enteric diseases transmitted from animals to humans. With more than 2,000 serovars, Salmonella also comprends pathogenic enterobacteria and some of its serotypes, mainly S. enteritidis and S. typhimurium, presenting as a major cause for food intoxications constituting a serious problem of public health.

Proteomics comes as a very important area on knowing the genes function and their products, as well as understanding the proteins involvement in specific cellular processes. Bidimensional electrophoresis (2-DE) combined with aminoacid sequencing by mass spectrometry has a fundamental role about understanding antibiotic resistance mechanisms in Salmonella spp. isolated from faecal samples of wild animals (rabbit and boar) from the North of Portugal.

Subsequently to extraction and protein solubilization of the bacterial strains, samples were submitted to IEF electrophoresis (isoelectric focusing) in 13 cm long IPG strips pH 4-7 and afterwards to a second dimension obtained in SDS-PAGE gels at 12.52%, 2-DE gels were then stained in Coomassie G-250 with posterior image analysis supported by Melanie 5.0 software for suitable protein spots cataloguing. A manual and individualized collection of 14 protein spots was conducted for later trypsin digestion and MALDI-TOF.

After aminoacid sequencing of each spot and comparing the obtained data with bioinformatic databases (http://www.ncbi.nlm.nih.gov/) it was possible to determine the specific peptides present, with a high protein score confidence interval. In the protein spots identified, several were related to different Salmonella enterica serovars (Typhi, Typhimurium, Paratyphi A, Paratyphi B and others) normally associated to humans gastroenteritis and salmonellosis. The presence of proteins related to Salmonella serovars related to infectious processes in humans with possible transmission from infected animals, brings to question a major public health problem when considering that these animals can be in contact with domesticated animals or even humans.

The complete proteome annotation of this bacterial strain isolated from wild rabbits and boars from the Trás-os-Montes and Alto Douro will allow to increase the knowledge on the bacterial resistance rate in wild animals.

Table 1. Comparison of the protein identification of selected spots through MALDI-TOF

<table>
<thead>
<tr>
<th>Spot</th>
<th>Protein Description</th>
<th>Species</th>
<th>Protein Name</th>
<th>Accession Number</th>
<th>Protein Mw</th>
<th>Protein PI</th>
<th>Protein PP Count</th>
<th>Peptide Score</th>
<th>Protein Score</th>
<th>Protein Score C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
<td>Salmonella typhimurium</td>
<td>gapA</td>
<td>P0A1P0</td>
<td>35564,30859</td>
<td>6,33</td>
<td>16</td>
<td>581</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Superoxide dismutase</td>
<td>Salmonella typhimurium</td>
<td>sodA</td>
<td>P0A1F6</td>
<td>27121,83008</td>
<td>5,95</td>
<td>7</td>
<td>323</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Urease</td>
<td>Salmonella rubislaw</td>
<td>ureA</td>
<td>Q57KH0</td>
<td>45309,51051</td>
<td>5,25</td>
<td>9</td>
<td>410</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Urease phosphate lyase</td>
<td>Salmonella rubislaw</td>
<td>ureA</td>
<td>Q5PJE0</td>
<td>27212,89098</td>
<td>6,98</td>
<td>9</td>
<td>307</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Tricarboxylic acid dehydrogenase</td>
<td>Salmonella typhimurium</td>
<td>tpi</td>
<td>P0A1F6</td>
<td>26859,89158</td>
<td>5,68</td>
<td>7</td>
<td>250</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Phosphoglycerate kinase</td>
<td>Salmonella typhimurium</td>
<td>gpk</td>
<td>Q57KH0</td>
<td>41309,66484</td>
<td>5,09</td>
<td>4</td>
<td>278</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>D-fructose-6-phosphate fructokinase</td>
<td>Salmonella typhimurium</td>
<td>frkA</td>
<td>Q57KH0</td>
<td>50796,53125</td>
<td>6,58</td>
<td>9</td>
<td>50,1</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Flagellin</td>
<td>Salmonella rubislaw</td>
<td>fiC</td>
<td>P0A1P0</td>
<td>51385,30467</td>
<td>4,93</td>
<td>4</td>
<td>83,8</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Regulation of ectoine biosynthesis in halotolerant methanotroph
Methylomicrobium alcaliphilum 20Z.

V.N. Khmelina, I.I. Mustakhimov, A.S. Roshetnikov, Y.A. Trotsenko

Institute of Biochemistry and Physiology of Microorganisms RAS, Prospect Nauki 5, Pushchino, Moscow region, 142290, Russia

Aerobic halotolerant methanotroph Methylomicrobium alcaliphilum 20Z regulates osmotic balance between cytoplasm and surrounding medium by accumulation of osmoprotectant ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) having multiple functions. The pathway of ectoine biosynthesis represents the branch of the biochemical pathway for aspartate family amino acids synthesis and involves three specific enzymes: diaminobutyric acid (DABA) acetyltransferase (EctA), DABA aminotransferase (EctB) and ectoine synthase (EctC). Remarkably, the genes encoding these enzymes in Mn. alcaliphilum 20Z were shown to be organized into ectABCask operon additionally containing aspartate kinase gene ask.

Transcription of the operon in Mn. alcaliphilum 20Z is initiated from two promoters ectAp1 and ectAp2 similar to the 0570-dependent promoter of E. coli. Upstream of the gene cluster a new open reading frame (ORF) was identified. Investigation of the EctR influence on the activity of the ectAp1p2 promoters in wild type and ectR M. alcaliphilum -mutant strains of 20Z implied that EctR is a negative regulator of the ectABCask operon. The recombinant EctR-His 6 specifically binds as homodimer to the putative -10 motif of the promoter ectAp1p2. The EctR binding site contains a pseudo palindromic sequence (TATTTAGT-GT-ACTATATA) composed of 8-bp half-sites separated by 2bp.

Analysis of the DNA fragment containing ectoine biosynthetic genes (EU315063) in methanol-utilizing bacterium Methylobacillus alcalicus showed the presence of 6 independent promoters of the 20Z strain from Mn. alcaliphilum 20Z (73% identity of translated amino acids). Moreover, NCBI Database search revealed ectR-like genes located immediately upstream of the ectoine gene cluster in 17 halophilic bacterial species. Between them, the orf of Oceanospirillum sp. (ZP_01114878), Nitrososphaera oceanica (ABA57535), Sarcophagus degradans (ABH08450), Rhizobium sp. (ZP_01114787) and Oceanobacter sp. (EAT11341) showed the highest identities of translated amino acid sequences (35.5, 43.2, 45.6, 51.7 and 55.1% respectively). These results clearly evidenced the presence of a new earlier uncharacterized regulatory system controlling ectoine biosynthesis at transcriptional level in diverse halophilic/tolerant bacteria.

Keywords: halophilic methanotrophs; ectoine; regulation of biosynthesis; gene transcription
Role of the nemRA operon of *Escherichia coli* K-12 in reducing ubiquinone as well as glyoxal

Changhan Lee1, Jongchul Shin1, Kwanghee Baek2, and Chankyu Park1

1Department of Biological Sciences, KAIST, Daejon, Korea
2Department of Genetic Engineering, Kyunghee University, Suwon, Korea

Glyoxal (GO) is a reactive aldehyde compound, generated by oxidation of glucose. Due to its modification of proteins as well as nucleic acids, it is toxic to bacterial cell. There are at least two mechanisms known to detoxify GO, aldo-keto reductases and glutathione-dependent glyoxalase. Previously, we characterized *yqhCD* genes as a system to remove intracellular GO. To further screen genes related to GO, we isolated novel GO R mutants from *yqhD* deletion strain. One of the GO R mutations was mapped in the *nemR* promoter region, which was carried out using TnphoA132 insertions and their cotransductional linkages. Since NemR and RutR, known as repressors of the *nemRA* operon, share the binding site in *nemR* promoter region, the mutation in this site directly affects the DNA binding affinity. Therefore, both repressors are loosely bound to the promoter, and the *nemRA* operon is constitutively upregulated. We examined enzymatic activities of NemA on GO, methylglyoxal (MG), acrolein, etc using NADPH as a cofactor. In addition, an overproduction of NemA confers GO resistance. NemA is known as a member of FMN containing old yellow enzyme (OYE) family, and its ability of to transfer electron to electrophilic substrates has been reported, although its physiological substrate remained obscure. We tested ubiquinone as its substrate and observed that not only NemA reduces ubiquinone to ubiquinol using NADPH, but also ubiquinone interacts with NemR, dissociating NemR-DNA complex. Therefore, we propose that the *nemRA* operon is induced by ubiquinone and plays a critical role in generating reduced ubiquinone pool, in addition to its activity in reducing aldehydes.

Keywords nemR; nemA; ubiquinone; glyoxal

ROS production and cell cycle arrest in *Saccharomyces cerevisiae* during nitrogen-depleted alcoholic fermentation

A. Mendes-Ferreira1, B. Sampaio-Marques2, C. Barbosa1, A. Mendes Faia1, P. Ludovico2, and C. Leão1

1Institute for Biotechnology and Bioengineering, Centre of Genetics and Biotechnology, (IBB/CGB-UTAD), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
2Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

In the present work, differences on the physiological state of a wine *Saccharomyces cerevisiae* strain growing in feed-batch culture under nitrogen deficiency during alcoholic fermentation were evaluated by flow cytometry, in respect to the following parameters: intracellular reactive oxygen species (ROS), plasma membrane integrity and cell cycle. The data obtained indicate that the stress conditions occurring during nitrogen-depleted fermentation resulted in ROS production that increased along fermentation about two-three fold comparatively to the control fermentation.

The use of dihydroethidium (DHE) as a probe for detecting the generation of superoxide anion showed a weak contribution of this anion for the overall ROS determined by MitoTracker Red CM-H2XRos, under nitrogen-depleted conditions, indicating that mitochondria are not a major target for nitrogen starvation during fermentation, as also supported by results obtained with rhodamine 123, a specific dye to evaluate mitochondrial function. In contrast, the superoxide anion levels largely contribute to the overall ROS observed under control conditions. Nitrogen depletion also induces loss of plasma membrane integrity (evaluated by PI) that followed the same profile of ROS production.

Nitrogen re-feeding 72 hours after inoculation into nitrogen-depleted fermentation revert the observed effects on plasma membrane integrity and decreases oxidative stress. In addition, cell cycle analysis revealed that nitrogen depletion induces, after 48 hours fermentation, a persistent arrest of 100% of cells in cell cycle phases G0/G1, comparatively to 60% of cells under control conditions. Nitrogen re-feeding allows cells re-entering cell cycle. These findings indicate that nitrogen depletin during wine fermentations induces oxidative stress associated to plasma membrane damage, cell cycle arrest without a major contribution of mitochondria. Altogether the results provide new insights on the understanding of wine fermentations under different initial nitrogen conditions.

This work was partially supported by FCT through the project POCTI/AGR-ALL/71460/2006

Keywords: Wine yeasts; nitrogen depletion; ROS; Cell cycle; membrane integrity.
Screening of *Halobacterium salinarum* DNA sequences coding for salt resistance in a yeast model

A. R. Monteiro¹, C. R. dos Santos¹, D. R. O. Ferreira¹, S. T. Farias¹ and M. Bucciarelli-Rodriguez¹

¹ Depto. Biologia Geral, ICB, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-090, Brazil.
² Depto. Biologia Molecular, CCEN, Universidade Federal de Paraíba, Cidade Universitária, João Pessoa, PB, 58059-900, Brazil.
³ Depto. Microbiologia, ICB, Universidade de São Paulo, Avenida Prof. Lineu Prestes, São Paulo, SP, 05508-900, Brazil.

In the past few years, the study of the Archaea Domain has revealed similarities to the Eukarya Domain, especially concerning elements involved in transcriptional regulation. *Halobacterium* species are salt-dependent halophilic organisms, unable to grow in NaCl concentrations lower than 1 M. Therefore, these organisms may be considered a rich source of genes involved in salt tolerance. Taking this into account, the budding yeast *Saccharomyces cerevisiae*, a well known organism for salt tolerance studies, was used as host to a genomic library of the Archaea *Halobacterium salinarum*, which was screened on plates containing 1.5 M of NaCl. The library was constructed in a plasmid harboring the strong yeast promoter PGK. Thirty-seven clones of *S. cerevisiae* able to grow in 1.5 M NaCl were isolated for further studies. Plasmids isolated from these clones were able to increase salt tolerance to new transformed cells and the loss of the plasmids led the host cells to present the original salt tolerance. The plasmid inserts of these selected clones are being currently characterized.

Keywords Archaea, Genomic Library, Salt tolerance

Supported by FAPEMIG CBB APQ-2337-3.12/07

Screening of novel bacteria for biohydrogen production

Luís Alves¹, Margarida Santana¹, Francisco Gírio¹ and Patrícia Moura¹²

¹ LNEG - Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa
² CiiEM, Instituto Superior de Ciências da Saúde Egas Moniz, Quinta da Granja, 2829-511 Monte de Caparica, Portugal

The biological production of hydrogen constitutes a promising alternative to fossil fuels based energy sources. Some major advantages of energy from hydrogen are its high energy content, the green nature of its combustion and the possibility of its use in fuel cells. In addition, the possibility of using biowaste materials as major fermentation substrates opens the perspective of adding “environmental value” to the process of biohydrogen production. Lignocellulosic-rich materials, such as agricultural and some industrial residues are inexpensive, renewable and abundant resources, which are particularly suitable for biohydrogen production. However, the process of direct fermentation of such lignocellulosic feedstock is still inefficient, and consequently hinders the possibility of implementing a consolidated bioprocessing strategy, in which enzyme production, substrate hydrolysis, and fermentation are accomplished in a single step by microorganisms that express cellulolytic and hemicellulolytic enzymes [1]. New and improved bacterial strains showing enhanced rates and/or yields of biohydrogen production are needed in order to achieve higher conversion efficiencies and a successful implementation of a “third generation” process of biohydrogen production.

The objective of this work was to characterize hydrogen production by *Clostridium butyricum* in the presence of different carbon sources and to isolate new biohydrogen producing strains which may more effectively convert carbohydrates into hydrogen.

The effect of different carbon sources was analysed in terms of hydrogen production, substrate concentration, organic acids production and pH. Xylose, which is one of the dominant monosaccharides obtained from saccharification of lignocellulosic feedstock, originated the highest value of hydrogen production among the tested sugars, making up more than 30% of the total gas mixture in the cultures headspace. Using anaerobic cultures techniques, seventeen potential hydrogen-producing isolates were obtained from an anaerobic digestor. These isolates were characterized morphologically and the hydrogen present at the cultures headspace was monitored.

Keywords Biohydrogen, *Clostridium butyricum*, xylose, lignocellulosic feedstock

Dr. Isabel Paula Marques (UB, LNEG, Lisboa, Portugal) is gratefully acknowledged for supplying the samples from the anaerobic digestor. Lurdes Bartolomeu (UB, LNEG, Lisboa, Portugal) is grateful acknowledged for support on GC analysis.

Structural Instability in Plasmid Vectors for DNA Vaccination

P. H. Oliveira1, K. J. Prather2, D. M. F. Prazeres1 and G. A. Monteiro1

1 IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Lisbon, Portugal
2 Department of Chemical Engineering, Massachusetts Institute of Technology, Room 66-458, Cambridge, Massachusetts 02139

DNA repeats are considered to be catalysts of molecular evolution by promoting genetic instability and mutational events. One of the numerous concerns associated with direct or inverted repeats consists on the occurrence of associated homologous recombination events within plasmids used for transient expression or biopharmaceutical applications, namely gene therapy and DNA vaccination (recently reviewed by Oliveira et al., 2009).

In the recent years some authors have found practical evidences for structural instability phenomena occurring spontaneously in plasmids used for DNA vaccination (reviewed by Oliveira et al., 2009). These include direct-repeat mediated deletion-formation events in the vector pCIneo (Ribeiro et al., 2008) or IS1-mediated instability in a vaccine against HIV (Prather et al., 2006).

In this work we present data on the influence of different growth parameters (medium composition, temperature shifts, aeration, absence/presence of selective pressure) and stress intensity (antibiotic concentration) on pCIneo deletion-formation. Furthermore, we show that this commercial vector contains additional instability regions, including a structure-dependent hotspot for IS2 insertion (Oliveira et al., submitted). Predictive models for recombination frequency were also developed that take into account repeat and spacer length (Oliveira et al., 2008).

A computational search for direct and inverted repeated regions with high recombination potential performed in a large sample of commercial vectors, led us to conclude that these hotspots are widespread, even in plasmids currently used for DNA vaccine development. As a result of this in silico analysis, we were able to detect a spontaneous recombination between two 21-bp direct repeats present in the human cytomegalovirus immediate early enhancer/promoter (huCMV IEEP) of pCIneo. This finding is of paramount importance, as the huCMV IEEP is one of the most frequently used regulatory elements.

Altogether, these findings are crucial in understanding not only how pDNA instability can be shaped by stressful environment but also the real extension of potentially threatening hotspots.

Keywords: plasmid, DNA vaccine, homologous recombination, transgene expression, repeats

References:

Studies of internal structure of multicellular microbial community by two-photon confocal microscopy

Z. Palková1, L. Vachová1, O. Chernyavskiy2 and L. Kubinová2

1 Department of Genetics and Microbiology, Faculty of Sciences, Charles University in Prague, Vinicna 5, 128 44 Prague, Czech Republic
2 Department of Biomathematics, Institute of Physiology AS CR, v.v.i., Videnska 1083, Prague 8, Czech Republic

Principles guiding the development and long-term survival of yeast populations significantly differ from those of shaken liquid cultures. When growing on solid surfaces, yeast form organised multicellular structures, colonies, of unique properties. Cells localised in central colony areas undergo metabolic changes different from those that occur in cells located at the colony margin. Consequently, cells in both regions undergo dissimilar fate [1,2]. More detailed understanding of principles involved in the formation and development of multicellular colonies requires new approaches allowing investigation of internal colony structure (at the level of individual cells) directly in situ, without cell removal from the microbial community. Recently, we succeeded in developing of a new approach enabling the monitoring of the presence and spatial localisation of fluorescently labelled proteins as well as of structures stained with specific fluorescent dyes within the whole Saccharomyces cerevisiae microcolonies, by use of two-photon excitation confocal microscopy [3]. Viewing the colonies from different angles allowed us to reconstruct a three-dimensional profile of the cells either producing specific GFP-tagged protein or possessing other specific properties visualised by staining with particular fluorescent dye. This technique allowed us even to monitor mutual organisation of microcolonies within a microcolony group.

We demonstrated that the production of Ato1p-GFP (a GFP tagged variant of putative ammonium exporter essential for proper colony development) starts synchronously in cells located in the outermost surface layer of the microcolony. This layer exhibits a uniform thickness over the whole colony surface (of about 50 μm in the 3-days old microcolonies) and is independent of the colony diameter over a relatively wide range of 650-1000 μm. During later colony development, new fluorescent cell layer(s) become visible under the first layer, i.e. in areas more distant from the surface, again over the whole colony. These new layers are separated by thin layers (8-20 μm) of less fluorescent cells. The layers of cells producing Ato1p-GFP are formed synchronously in all colonies developing nearby. GFP fluorescence localises predominantly to the plasma membrane and during later colony developmental phases also to vacuoles after degradation of GFP-tagged Ato1p protein.

The new approach enabled us to uncover skin-like protective cell layer covering the whole microcolony. This “skin” is formed by living cells tightly joined via thick cell walls, probably connected by surface proteins. This layer protects the colony population against environmental impacts, for example, against impact of 50 % ethanol. Ethanol, when applied on the whole colony, affects moderately only plasma membranes of skin cells, while the cells inside the colony remain fully alive. On the contrary, when the same ethanol concentration is applied directly on internal cells, they are completely damaged.

The work was supported by GACR204/08/0718, IAA500205066, LC06063, AV0Z50200510 and MSM0021620838 and BBMI to Z.P.

Keywords: Yeast cell imaging in deep microcolony layers; skin-like cell structure; yeast differentiation.
Studies on the expression levels of the carotenogenic enzymes in the microalga *Chlamydomonas reinhardtii*

I. Couso1,2, M. Vila1, M.A. Vargas1, I. Obraztsova2, H. Rodríguez1 and R. León1

2Plant Biochemistry and Photosynthesis Institute (CSIC) Avda. Américo Vespucio 49. 41092-Sevilla

Although microalgae and higher plants need light for photosynthesis, if the light input overcome the plant capacity to utilize it in the photosynthesis, the excess of light can cause over-reduction of the electron carriers and production of reactive oxygen species that will damage the cells. Among the mechanisms used in algae and plants to reduce the amount of energy that reaches the photosynthetic reaction centers, energy dissipation as heat is probably the most important short-term response. Thermal dissipation usually refered as energy dependent quenching or feedback de-excitation is induced by a low pH in the thylakoid lumen, that occurs during illumination with excess light. Low pH is involved in the activation of the enzyme violaxanthin de-epoxidase, which catalyses the removal of epoxy groups from violaxanthin, to synthesize the de-epoxidised xanthophyll zeaxanthin via the intermediate antheraxanthin, these xanthophylls constitute the xanthophyll cycle.

![Diagram of the xanthophyll cycle.](Image of xanthophyll cycle)

Fig. 1. Schematic representation of the xanthophyll cycle.

The expression level of the genes encoding the two first carotenogenic enzymes fitoene synthase and fitoene desaturase, and those encoding the main enzymes involved in the synthesis of xanthophylls, carotene hydroxylase and zeaxanthin epoxidase, has been analysed by quantitative real time PCR. *Chlamydomonas reinhardtii* pre-grown in the dark cells were submitted to light of increasing intensities (darkness, 150 and 800μEm⁻²s⁻¹) and the concentration of mRNA corresponding to the indicated genes was determined and normalized to the concentration of Cblp mRNA. This gene encodes a homologous protein to the β subunit of a heterotrimeric G protein and has been previously shown to stay at constant expression level under different irradiances (Im and Grossman, 2001). The evolution of the expression of the chosen carotenogenic genes at the different irradiances has been correlated with the intracellular levels of the xanthophyll cycle components violaxanthin, antheraxanthin and zeaxanthin. After 3 h of exposure to high light (800 μEm⁻²s⁻¹), about 20% of the total violaxanthin has been converted into zeaxanthin. This conversion increases in parallel with the light intensity and does not depend significantly on *de novo* synthesis of carotenoids, as stated in the presence of norflurazon.

References

Keywords: carotenoids, microalgae; *Chlamydomonas reinhardtii.

Acknowledgements: We thank the Spanish Ministry of Education for financial support (AGL2007-65303-C02)

The effects of a calpain inhibitor upon human and plant trypanosomatids life cycles

M. H. Braquinho1, F. A. Marinho1, L. S. Sangetto1, V. Ennes-Vidal2, S. S. C. Oliveira1, M. G. Chagas1, K. C. S. Gonçalves1, C. M. d’Avila-Ley2, A. L. S. Santos1

1Inst. Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
2Lab. Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil

Peptidases of microbial pathogens have attracted the attention because of their roles in pathogenesis, which may lead to the design of chemotherapeutic agents. In this context, calpain inhibitors appear an interesting alternative. Calpains are calcium-dependent cysteine peptidases that are involved in crucial cellular functions such as cytoskeletal rearrangements and activation of various receptors and pro-enzymes. In this work, we aimed to explore the effects of the calpain inhibitor III (MDL28170) and to detect calpain-like molecules (CALPs) in *Trypanosoma cruzi*, *Leishmania amazonensis* and *Phytomonas serpens*. MDL28170 promoted a powerful reduction on the growth rate after 48 h, and the IC₅₀ values were calculated to be 32 μM, 19 μM and 38 μM respectively. This inhibitor promoted an increase in the cellular volume, but not cell lysis, resulting in a static effect upon *T. cruzi* and *P. serpens*. On the other hand, a leishmanicidal effect was verified. Trypanosomatid CALPs presented a strong cross-reactivity with *Drosophila melanogaster* calpain and, for *T. cruzi*, with anti-cytoskeleton-associated protein from *Trypanosoma brucei* antibodies, and labeling was found on the cell surface but mainly intracellularly. Furthermore, an 80-kDa reactive protein was detected by Western blotting assays. No significative cross-reactivity was found with anti-human brain calpain antibody. The expression of CALPs was decreased in human trypanosomatids kept for long periods in axenic cultures in comparison to strains recently isolated from mice, as well as in MDL28170-treated cells, the latter being paralleled by an increased expression of classical peptidases, such as leishmanial gp63 and trypanosomal cruzipain. Different levels of CALP expression were also detected in distinct *T. cruzi* phylogenetic lineages, like Y strain (*TCI*), Dm28c (*TCII*) and INPA6147 strain (*Z3* zymodeme). These results may contribute for the investigation of the functions of CALPs in trypanosomatids and add new in vitro insights into the exploitation of calpain inhibitors in treating parasitic infections.

Keywords: Peptidase; Calpain; Inhibitor; Trypanosomatidae.
The Genotoxicity of Three Synthetic Pesticides: Chlorpyrifos, Cypermethrin and Their Mixture Chlorcyrin in Aspergillus terreus.

Jamal S.M.Sabir
Biology Dep., Faculty of Science, King Abdulaziz University, Jeddah 21589, P.O. Box 80141, Saudi Arabia.

In attempt to investigate the genotoxicity and the mode of action of the organophosphorous pesticide; Chlorpyrifos, the pyrethroid pesticide Cypermethrin and their mixture Chlorcyrin, the conidial spores of Aspergillus terreus were treated by five deferent concentrations (including the field concentration, 1ml/L) of each pesticide individually as follows:

Conidia were treated with 0.2, 0.4, 0.6, 0.8 and 1ml/L of each pesticide individually. Survival and mutation frequencies were calculated to find out the optimal dose for induction of mutation (by scoring the auxotrophs if possible).

As a result, it was found in each experiment that, with increasing of pesticide concentration and exposure time, a decrease in survival percentage and an increase up to a certain limit in mutation frequency were always observed. The optimal dose for inducing mutation by each of the pesticide used, was found to be 0.8ml/L.

Keywords: Genotoxicity, Mutagenesis, Chlorcyrin.

Thermoacidophilic archaea of Acidilobales ord. nov.: metabolic properties based on genomic data.

M. I. Prokofeva1, A. V. Mardanov1, V. A. Svetlitchnyi2, A. V. Beletsky2, A.V. Lebedinsky1, T.V. Kolganova2 T.P.Tourova1, E. A. Bonch-Osmolovskaya1, N. V. Ravin2, K. G. Skryabin2
1Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, 117312, Russia
2Centre “Bioengineering”, Russian Academy of Sciences, Moscow, 117312, Russia

A new order of thermoacidophilic archaea Acidilobales which includes Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov. was proposed based on the separate position of the Acidilobus – Caldisphaera group in the 16S rRNA-based phylogenetic tree, presence common specific signatures of in 16S rRNA, and common phenotypic properties distinguishing the representatives of this group from Desulfurococcales and other Crenarchaeota (Prokofeva et al., 2009). Members of Acidilobales order are anaerobic extremely thermophilic or hyperthermophilic acidophilic organotrophs with coccoid cells inhabiting terrestrial acidic hot springs.

To get insight into the metabolism and anaerobic thermoacidophilic survival strategy of these crenarchaeons, we have determined and annotated the complete 1496453-base genome of Acidilobus saccharovorans (Mardanov et al., 2009). A total of 1499 protein-coding genes have been identified, of which 246 are exclusive to A. saccharovorans.

Genomic data reveal pathways for utilization of organic substrates and mechanisms of adaptation to hot acidic habitats. Utilization of polymeric carbohydrates and proteins involves the function of numerous encoded hydrolitic enzymes. Further oxidation of monomers proceeds in the modified Embden-Meyerhof and Entner-Doudoroff pathways followed by oxidative tricarboxylic acid cycle. The electron transfer chain is branched with two sites of proton translocation and is linked to the reduction of elemental sulfur and thiosulfate. Adaptation to acidic environment is reflected by high ratio of secondary over ATP-dependent primary transporters, the suggested reversibility of H⁺-ATP synthase, and the function of the encoded H⁺-translocating pyrophosphatase.

References
Prokofeva et al./Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov. 2009. IJSEM, in press.
Mardanov et al./Genome sequence of crenarchaeon Acidilobus saccharovorans reveals the mechanisms of adaptation to anaerobic thermoacidophilic lifestyle. 2009. Manuscript ready for publication.
Thymol affects expression of dnaK, groEL, htpG and tf genes of Salmonella enterica serovar Thompson

R. Di Pasqua, D. Ercolini, G. Mauriello
Department of Food Science, Division of Microbiology, University of Naples Federico II, Via Università 100, 80055 - Portici (Na), Italy

Thymol is a natural antimicrobial and a component of some essential oils. Its inhibitory effect on the growth of different microorganisms is well known, while less known is its mechanism of action towards microbial cells. The response of bacteria grown in presence of thymol has not been satisfactorily investigated although it is known that a modification of membrane fatty acids composition is caused. However, it remains to be assessed whether the modifications in membrane composition really lead to an increased resistance or are just part of a general adaptive response. It is not known whether other mechanisms, mediated by the activity of stress associated proteins, are involved in the adaptation to thymol. To address this question four different proteins, classified as chaperone proteins, have been chosen to monitor their expression during different stage of the growth of a target microorganism. Salmonellae are significant not only as an ongoing threat to worldwide public health, but also as a model system for the study of fundamental mechanisms of bacterial pathogenesis, that is why it has been selected as target microorganism in this study. The four different proteins chosen were DnaK, GroEL, Trigger factor (Tig) and HtpG, the expression of these proteins is commonly enhanced by the exposition of the microbial cells to stress conditions as chemical, thermal or oxidative factors. The growth of Salmonella enterica serovar Thompson was monitored in standard conditions and under the different stress factors, presence of thymol, NaCl and growth at 11°C. The expression of dnaK, groEL, tf and htpG genes was monitored by real time PCR after RNA extraction from cultures at different time of growth. It is possible to assert that the presence of thymol, as single stress factor, determined an over expression of all the genes, from 0.07 fold of the GroEL to 323.93 fold of the same protein, compared to control. Interestingly, the combination of thymol with the other stress factors do not lead to an over expression higher than the one registered with the thymol alone. On the other hand, it has been observed that the association of the thymol with the other stress factors led to an over expression lower than the one observed when the strain was exposed to NaCl or grown at 11°C, without thymol. The results indicate that the thymol induces a significant expression of stress related proteins. This over expression is surprisingly higher than the one related to the stress determined by NaCl and by low temperature, but strangely lower when the thymol is combined with the other stress factors. The regulation of the expression of these proteins, and certainly not only those, can be the basis of the adaptation of the cells to this antimicrobial compound. These results provide interesting information to any studies bridging the gap between mechanisms evaluated at the molecular level and observations at the organism level. A better understanding of the interactions between natural antimicrobials and cell target molecules is going to be fundamental to work out the best environmental conditions to be used to ensure an effective antimicrobial activity.

Keywords Thymol; Salmonella; Gene expression; Stress proteins;

Toxicity differences between Cr(VI) species in strain Ochrobactrum tritici 5bv11

Romeu Francisco1 and Paula Vasconcelos Morais1,2
IMAR-CMA, 3004-517 Coimbra, Portugal1 and Department of Biochemistry, FCTUC, University of Coimbra, 3001-401 Coimbra, Portugal2

Abstract

Studies of Cr(VI) toxicity are generally performed using chromate salts in solution, both when studying the effects on prokaryotes and eukaryotes. Some studies on human carcinogenesis and toxicology on bacteria were done using dichromate, but comparison with chromate was never reported before, and dichromate existence was never taken into consideration and usually overlooked.

This paper studied comparatively the effect of dichromate and chromate on the physiology of O. tritici strain 5bv11, a highly Cr(VI)-resistant and reducing microorganism. This study demonstrated that the addition of chromate or dichromate sodium salts to growth medium at neutral pH ended-up in two different solutions with a different balance of chemical species. Cr(VI) was toxic to O. tritici strain 5bv11, as clearly shown on growth, reduction, respiration, glucose uptake assays and by comparing cell morphology. Moreover, the addition of sodium dichromate was always more toxic to cells when compared to chromate and achieved a higher inhibition of every parameter studied. The toxicity differences between the two Cr(VI) oxyanions indicate the possibility of a different impact of Cr(VI) contamination on the environment. This may be of major importance, considering the slight acidity of most of the arable lands which favours the presence of dichromate, the more toxic species.
Transcriptional regulation of ADE2 and PUT2 genes in Kluyveromyces lactis.

M. Lamas-Maceiras and A.M. Rodríguez Torres
Departamento de Biología Celular y Molecular, Universidad de A Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain.

The existence of ORFs with high homologies in those genes involved in the amino acids biosynthetic pathways points out that is possible to consider the existence of the same metabolic routes and regulation system. The ADE2 gene from S. cerevisiae is regulated by 2 mechanisms: the General Control through the transcriptional factor Gcn4p, and Basal Control through the factors Bas1p and Bas2p in absence of Gcn4p, which are characteristic of genes involved in the amino acids biosynthetic pathways (1). In K. lactis all the genes involved in these metabolic pathways have not been cloned yet, but those already characterized like KlTRP1 and KILEU2, have shown that even they have the consensus sequences for these factors, the transcription is not activated in absence of aminoacids in the medium (Gcn4p dependent), nor in the absence of Adenine neither in the presence of phosphates (Bas1p and Bas2p dependent) like take place in S. cerevisiae. In this work, the analysis of the KIADE2 promoter region have not shown the consensus sequences for these factors, and also have been confirmed by Northern analysis that repression by adenine described for ADE2 gene in S. cerevisiae have not take place in the same conditions.

Saccharomyces cerevisiae is able to use a wide variety of nitrogen sources for growth. In order to select the best out of a large diversity of available nitrogen sources, the yeast has developed molecular mechanisms. Proline is an important forerunner in protein biosynthesis but also plays an important role in other processes such as: cell protector under osmotic stress, radical acceptor, provisional nitrogen storage, etc. Kluyveromyces lactis can grow on proline as the sole source of nitrogen. In the K. lactis genome, it has been reported the presence of homologous sequences to those PUT1, PUT2 (this work), PUT3, PUT4 and GAPI1 genes from S. cerevisiae, among others, implicated in the nitrogen metabolism system, indicating that the proline utilization in K. lactis is similar to that described in S. cerevisiae (3). This fact was confirmed with Northern analysis where we can postulate that K. lactis respond to induction by proline in the same way.

Thus, we report the isolation and characterization of ADE2 and PUT2 genes from Kluyveromyces lactis, including their protein structure, flanking sequence regions, and transcriptional gene regulation by different nutrients in the medium.

Keywords: yeast, transcriptional regulation, amino acid pathway, Kluyveromyces lactis.

References:

Acknowledgements: Supported by grant PGIDIT06PXIB103086PR from Xunta de Galicia (Spain).

Vital staining of yeast acidified vacuoles using neutral red

I. Corbacho, F. Teixidó, I.M. Hernández, and I. Olivero
Department of Biomedical Sciences, Area of Microbiology, University of Extremadura, Avda. Elvas s/n, 06071 Badajoz, Spain

Neutral red is a vital dye widely used in plants and animals histology. It is commonly used for the staining of lysosomes, the Golgi apparatus, or the Nissl granules in neurons. In addition, it has also been used as counterstain in combination with other dyes (i. e. with Janus Green B it is used to stain embrional tissues and supravital staining of blood). Besides its dye properties, neutral red is a pH indicator as well, changing from red to yellow in the range of pH 6.8 to pH 8.0.

The vacuole of Saccharomyces cerevisiae is a lysosome-like organelle which plays an important role in its physiology. It maintains an acidic constant pH due to the presence of a V-ATPase in its membrane. The ATPase activity in the medium (Gcn4p dependent), nor in the absence of Adenine neither in the presence of phosphates (Bas1p and Bas2p dependent) like take place in S. cerevisiae. In our work we describe a group of experiments designed to set up a reproducible and reliable method for rapid and easy vacuole acidification assays. Moreover, the fact that the neutral red only accumulated in vacuoles when the extracellular pH was higher than the vacuolar pH, lead us to fix the conditions to use the data of neutral red accumulation in the vacuole, as an indirect measure of the luminal vacuolar pH, when the cells are maintained in extracellular solutions buffered at different pHs. In addition, we have compared the usage of neutral red with the use of quinacrine, a fluorescent dye that can accumulate in acidic compartments too. Advantages and disadvantages of both methods in vacuole acidification assays are discussed.

Keywords: neutral red, Saccharomyces cerevisiae, vma, quinacrine, vacuolar acidification
Volatile ammonia, the signaling molecule in different stages of multicellular yeast community development

L. Vachova1, Z. Palkova2, V. Stovicek3 and H. Kucerova4

1Department of Cell and Molecular Microbiology, Institute of Microbiology AS CR, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
2Department of Genetics and Microbiology, Faculty of Sciences, Charles University in Prague, Vísečkova 5, 128 44 Prague, Czech Republic

The way of life within yeast colony, an example of multicellular community of eukaryotic microorganism, differs significantly in many features from the life in shaken yeast culture. Life within a colony and survival of its population requires coordinated behaviour of individual cells in favour of the whole population. This has to be mediated by various signals. Ammonia functions as one of the signalling molecules influencing colony development in different stages. Volatile nature of this molecule enables long-distance signalling under natural conditions. Ammonia then also contributes to synchronisation of development of group of colonies growing in the same territory [1].

We found, that both microcolonies (colonies arising from one cell) and giant colonies (colonies arising from cell suspension spotted on the agar) produce ammonia in pulses accompanied by alkalisation of the colony surroundings. These pulses are separated by acidification of the medium. Previous studies revealed that during second alkalization (7-9 day of development of giant Saccharomyces cerevisiae BY4742 colonies) ammonia induces alternative adaptive metabolism in cells of the colony and is important for differentiation of colony population and its survival [2,3]. We showed, that dependently on ammonia signalling, cells containing high amounts of proteins of adaptive metabolism (e.g. Pex1p, Ctp1p, Cit3p, Le2p, Ats1p, Ats2p and Ats3p) localise specifically to the colony margin. These cells are able to produce higher amounts of ammonia than central colonial cells. On the contrary, central chronologically aged cells contain higher activities of stress-defence enzymes catalase Ctp1p and superoxid dismutases Sod1p and Sod2p, and they contain much higher activity of plasma membrane H+/ATPase Pma1p than younger margin cells. This centre-margin differentiation predetermines the fate of colony cells; central cells undergo apoptotic-like dying and outer cells are fully capable to form healthy progeny.

Recent analysis of early development of microcolonies of S.278 derived strains, which are capable of dimorphic transition, suggested new function of ammonia during the first alkaline phase (6-24 hrs after colony inoculation) [4]. We discovered that after early new microcolony is originated from one cell, ammonia induces dimorphic transition resulting in oriented pseudohyphal cell expansion in the direction of ammonia source. This consequently leads to unification of adjacent microcolonies to one more numerous entity. Subsequently, unified microcolonies developed as one community. This mechanism helps to form more numerous community of cooperating cells, which possess higher capacity for protecting themselves against harmful environment. In addition, it prevents the possible competition of populations of small individual microcolonies for space and nutrients.

The work was supported by GACR204/08/0718, IAA500200506, ICL531, AV0Z50020510 and MSM0021620858 and HIRMI to Z.P.

Keywords:
yeast colony differentiation and development; ammonia signalling; dimorphic transition

Vph1p, the vacuolar subunit of the V-ATPase in Saccharomyces cerevisiae, can compensate the lack of Stv1p, the Golgi subunit, to allow proper N-glycosylation of proteins

I. Corbacho, F. Teixidó, I. Olivero, and L.M. Hernández
Department of Biomedical Sciences, Area of Microbiology, University of Extremadura, Avda. Elvas s/n, 06071 Badajoz, Spain

In eukaryotic cells, the pH of the intracellular compartments is a carefully controlled parameter that affects many cellular processes. This control is done by a family of V-ATPases in Saccharomyces cerevisiae is represented by a V-type ATPase. This enzyme consists of 13 subunits and requires 3 more polypeptides for its assembly. In S. cerevisiae, V-ATPase is located in the vacuolar membrane as well as in secretory pathway organelles like Golgi or endosome. Deletion of any of the genes encoding V-ATPase subunits resulted in a non-functional V-ATPase and a characteristic vma phenotype. There are, however, two exceptions VPH1 and STV1 whose deletion do not produce a vma phenotype. They encode two isoforms of the V-ATPase “a” subunit, responsible for the enzyme location. Vph1p is mainly found in complexes isolated from the vacuolar membrane, while Stv1p is located in complexes of the Golgi membranes.

Previous studies have shown that Stv1p can compensate, at least partially, the lack of Vph1p in terms of vacuole acidification. It has also been described that overexpression of VPH1 and STV1 in cells lacking VPH1, completely restored vacuole acidification. In this work, we have checked several Golgi functions related to N-glycosylation in order to determine how the vacuole located isofrom Vph1p can compensate the lack of the Golgi located Stv1p in STV1 deleted strains. We checked for mannosyl phosphate transfer, outer chain elongation, and the addition of the terminal (1,3)-linked mannoses to N-linked oligosaccharides, in several strains: the “a” subunit deleted strains vph1delta and stv1delta; and the “common” subunits deleted strains vma2delta, vma3delta. In addition, we also checked the wild type and the double mutant vph1delta/stv1delta as controls.

The lack of the common subunits Vma2p or Vma3p resulted in a defective Golgi function, leading to a significant reduction of the mannosylphosphate transfer and a slight reduction in the outer chain elongation and terminal mannoses addition. As expected, when Vph1p was not present, no effect on glycosylation was detected. However, unexpectedly, when the Golgi-specific subunit of the V-ATPase, Stv1p, was absent, N-glycosylation was not disturbed. This suggested that vacuolar Vph1p subunit may compensate the lack of the Golgi Stv1p. To confirm this hypothesis, a double mutant lacking both subunits was constructed. In the double mutant, N-glycosylation processes were affected to the same extent as in vma mutants. These results reveal that the Golgi-specific Stv1p can be substituted by the vacuole-specific Vph1p, in stv1delta strains and suggest that the location determinants of the “a” subunit isoforms are not very strict, allowing them to travel to different locations, when needed.

Keywords:
V-ATPase, Saccharomyces cerevisiae, STV1, VPH1, N-glycosylation, vma

References:
Alternative electron sinks of *Deinococcus geothermalis*
M. Peltola1, M. Salkinoja-Salonen1

1 Department of Applied Chemistry and Microbiology, University of Helsinki, Finland.

Deinococcus geothermalis is known as an aerobic, highly resistant towards oxidative agents and tenacious biofilm forming bacterium causing biofouling in warm water industry. The strength and the compact biofilm structure is based on glycoconjugates present in the cell envelopes and numerous type IV pili like adhesion threads connecting cells to abiotic surfaces (steel or glass) and to neighbour cells.

Biofilm mode of growth may represent for the *Deinococcus* one way to minimize oxidative stress. Adhesion to electron conductive surfaces can offer a sink for the electrons discharged from the respiration chain. We investigated *D. geothermalis* ability to grow under microaerophilic and anaerobic conditions when supplied with alternative electron acceptors iron, manganese dioxide, nitrate and formate. The preliminary results showed that under microaerophilic conditions (O2 1%, with varying level of CO2) *D. geothermalis* grew as well in both oligotrophic and eutrophic media. Anaerobic growth with electron sinks other than oxygen rises the question if cell membrane or the biofilm e.g. adhesion threads contain conductive material.

Acknowledgements: We acknowledge PhD fellowship from ABS graduate school, Academy of Finland, the Photobiomics grant and TEKES PolarKem-project.

Keywords *Deinococcus geothermalis*; biofilm; anaerobic; electrons

Anaerobic Baffled Tank (ABR) and Role of biofilm

Z. Yousefi 1, B. Alizadeh1, and A. Fouadian1

1 Mazandaran University of Medical Sciences, km 18 khazrabad Road, Sari, Iran

The overall objective of this study is the development of the most appropriate microbial culture for the wastewater treatment in developing countries. Two reactors constructed for the study. Firstly the reactor injected with low strength wastewater. The start-up of the reactor extended about 3 months. Once the biomass has been established, either as a granular particle or a floe, reactor operation is quite stable. Treatment of low strength wastewaters has been found to encourage the dominance of scavenging bacteria such as *Methanosaeta* in the ABR. Dilute wastewaters inherently provide a low mass transfer driving force between biomass and substrate, and subsequently biomass activities will be greatly reduced according to Monod kinetics.

The most significant advantage of the ABR is its ability to separate acidogenesis and methanogenesis longitudinally down the reactor, allowing the reactor to behave as a two-phase system without the associated control problems and high costs. Anaerobic systems can create better efficiency to very high organic loads removal and also the system efficiency will improve by temperature increasing and this system can be applied to treat domestic, small communities and industrial wastewaters in addition to leachate as a cost-effective system with high efficiency rate.

Keywords: ABR; wastewater; biofilm development
Antibacterial activity of quaternary ammonium monomers in solution and in non leaching coatings

D. E. Romero Tobar1, G. Gozzelino 1, N. Chaitiemwong2, W. Hazeleger2 and R. Beumer2

1Department of Materials Science and Chemical Engineering, Politecnico di Torino, C.so. Duca degli Abruzzi 24, 10129 Torino, Italy
2LABORATORY OF FOOD MICROBIOLOGY, Department of Agrotechnology and Food Sciences, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands

The retention of pathogen bacteria on contact surfaces increases the risk of cross-contamination and diseases transmission in industrial, hospital and domestic environments. Functional coatings containing biocides can endow antimicrobial properties to the surfaces in order to obtain free pathogen surfaces. The chemical bonding to the coating structure of monomers containing bioactive groups is a successful method to prevent the residual toxicity caused by a biocide release into the surroundings. In this study the antimicrobials activities of acrylic quaternary ammonium monomers (QAMs) in solution were investigated and compared with the antimicrobials activities of coatings obtained by insertion of QAMs into a urethane diacrylate structure by UV copolymerization. The effect of three dimethyl alkyl QAMs with alkyl chain of 2 (C2), 8 (C8) and 16 (C16) carbon atoms were investigated against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Listeria monocytogenes (L. monocytogenes). Figure 1 shows the reduction of the number of viable cells observed for cells in suspensions or attached on stainless steel with regard to the alkyl chain. The QAM with the shortest chain shows a limited effect towards cell suspension, while the C8 and C16 QAMs show high efficacy A survival decrease higher that the detection limit (> 6 log units) on L. monocytogenes, S. aureus is observed. However, the reduction grade was markedly lower on cells layered on stainless steel. Surprisingly, the C16 QAM bonded to the polymer structure lost the antibacterial activity. Results demonstrate that the C9 QAM modified coating could be a promising antimicrobial material but concentrations higher than 1% should be tested to achieve higher growth inhibition.

Antimicrobial and photocatalytic effect of silicate and silicone hygienic coatings

J. Vytrasova1, L. Hochmannová2, P. Snevajsova1,

1 Department of Biological and Biochemical Sciences, University of Pardubice, Studentska 573, Pardubice 532 10, Czech Republic
2 SYNPO Inc., S. K. Neumann 1316, Pardubice 532 07, Czech Republic

Coatings with antimicrobial properties may play an important role to reduce the number of microbes and prevent microbial transmission. This is particularly important along a food chain, in water treatment plants as well as in pharmaceutical industry and hospitals. The conventional methods of disinfection with wiping are not effective in the longer term taking much time and use aggressive chemicals. Disinfection with hard ultraviolet C light is usually not satisfactory. Photocatalytic oxidation on surfaces coated with titanium dioxide might offer a possible alternative. Silicone and silicate paints based on photocatalytic active nanooxides were formulated and evaluated. Photocatalytic efficiency of coatings was evaluated as an absorbance change of organic dye Orange II solution. Antimicrobial properties of coatings were evaluated using agar plate methods and Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Penicillium chrysogenum and Aspergillus niger suspension as a test microorganisms. Membranes impregnated with tested coatings were deposited on the surface of agar. Then the plates were inoculated by a suspension of test microorganisms. The growth/no growth pattern of microorganisms were determined after incubation under optimal conditions for test microbes. The antimicrobial activity of coatings was evaluated by measuring the zone of inhibition against test microorganisms.

The coatings contained nanoparticles of titanium dioxide and zinc oxide showed the antimicrobial activity against test microorganisms. Whereas coating with zinc oxides nanoparticles successfully inhibited the growth of both bacteria and fungi, the photocatalytic nanoparticles of titanium dioxide inhibited bacteria but not fungi (weak inhibition has been observed).

Acknowledgement This study was supported by the Ministry of Education, Youth and Sports of the Czech Republic. Project No. 082162/02 and by GACR No. 203/08/1356, as well as project no. MPO FT-TA4/064.

Keywords hygienic coatings, antimicrobial effect
Controlling the microbiological quality of surface is nowadays a major issue in food or medicine. Currently, and whatever the sector involved, treatment for cleaning / disinfection are undertaken regularly to ensure the hygiene of surfaces. The regulatory tests used to evaluate the antimicrobial activity of disinfecting agents are based on the use of cells in suspension or deposited and dried. However, in industry or in medical environment, microorganisms are usually found as biofilms (complex adherent cell included in a matrix of organic polymers) and are very different from their planktonic counterparts. This state of "community" generates resistance of microbial cells to the activity of disinfectants and thus increases the persistence of pathogenic microorganisms on the food chain. While the precise mechanisms underlying this resistance are still poorly understood, it appears as a multifactorial process primarily related to physiological and structural characteristics of the biofilm. Various factors such as the limited penetration of antimicrobial agents in the matrix, the physiological state of cells in the bulk of the biofilm or the expression of biofilm-specific phenotypes are beginning to be more clearly identified. In this context, we sought to identify structures and components that are involved in the resistance of these communities to the action of antimicrobial agents in three species frequently encountered in industrial and medical environments (Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus).

Using the Calgary biofilm device, the susceptibility of 24h-biofilms of two strains of each species were evaluated for three disinfectants with different modes of action (peracetic acid, benzalkonium chloride and O-phthalaldehyde).

Results confirmed the greater resistance of some biofilms to disinfectants, as observed for P. aeruginosa with benzalkonium chloride. The structural study of biofilms by confocal laser microscopy scanning (CLSM) associated with the use of specific fluorescent markers (live/dead stain, lectins, metabolic activity tracers...) allowed us to characterize the heterogeneity of the architecture and composition of the biofilm. Relations have been found between the structural parameters of these biofilms (biovolume, thickness ...) and the resistance to antimicrobials tested. These results contribute to a better understanding of the relation between the structure and the properties of these biological communities. In order to guarantee the effectiveness of cleaning and disinfection treatments, the biofilm state should be considered in the establishment of new regulatory standards for assessing bactericidal activity of disinfectants.
Biofilm formation by algae on sandstone monuments and their inhibition: A case study of Agra (India)

Alka Jain and Seema Bhadauria
Microbiology Research laboratory, Department of Botany, R.B.S. College, Agra – 282002 (India)

Algae form thick biofilm on sandstone. The analysis of biofilm on stone showed a marked softening of the substratum and the progressive deepening of the biological growth in the layers beneath the surface that was due to the mobilization of elements and to enhanced water retention by polysaccharide sheaths. The species of algal biofilm produce and secrete a variety of metabolites which directly dissolve the stone compounds or increase their solubility. The influence of algal biofilm was studied on three sandstone monuments of Agra (India) viz. Sikandara, Christian Cemetery and Kailash temple. The study of diversity of algae showed dominance of Cyanobacteria members followed by Chlorophyceae and Bacillariophyceae members. The experiment approach included (a) SEM study of biodeteriorated sandstone (b) inclusion of See Spray™, H2O2, Pursue™ and Benzalkonium chloride in culture medium to visualize the in-vitro intervention of algal growth (c) estimation of Chlorophyll of treated algae (d) estimation of protein by Bradford method and SDS-PAGE (e) pH analysis and (f) vitality test.

Research revealed that quaternary ammonium compound – Pursue™ and Benzalkonium chloride (BKC) were appropriate algicide since they affect the cell membrane and chloroplasts. H2O2 couldn’t destroy the algal growth because of the presence of H2O2 scavenging system in Cyanobacteria while See Spray™ could inhibit the algal growth temporarily.

Key words – algae; sandstone; chlorophyll estimation; algicide; Hydrogen peroxide; quaternary ammonium compounds

Biofilm formation by kefir micro-organisms

V. Ninane1 and G. Berben1
1Walloon Agricultural Research Centre, Quality of Agricultural Products Department, 24 Chaussée de Namur, 5030 Gembloux, Belgium

Kefir grains are dairy starters made of lactic acid bacteria, yeasts and, sometimes, acetic bacteria embedded in a polysaccharidic matrix produced by the micro-organisms. Grains look like cauliflower florets with a firm gummy consistency. Kefir grains form spontaneously in the Caucasus but an in vitro grain formation has never been reported. The aim of this work was to identify the pathway that may lead to an in vitro grain constitution by characterising the aggregation behaviour of kefir micro-organisms. Complete kefir microbial consortia, extracted from grains (KJ), were therefore incubated at 22 °C in different culture media and atmospheric conditions during 2 weeks. Culture media used were synthetic broths, regular milk or milk enriched with constituents known to enhance, directly or indirectly, the microbial polysaccharide production or the matrix firmness (yeasts extract, glucose or ethanol). The experiment was conducted twice at different time, with distinct microbial extracts. At the end of the incubation, the microbial consortia developed structures under some culture conditions: in the M17, MR5.4, Rogosa-CW and KPL broth incubated in anaerobic atmosphere, in the MR5.4 broth incubated in aerobic atmosphere and, once, in milk enriched with yeast extract. As this microbial structure, that appeared to be the closest in consistency to kefir grains, was observed only once, the experiment in milk was achieved with the kefir micro-organisms isolated in standardized pure cultures. By this way, sticky biofilm formation became a reproducible event as it occurred at each of the two assays performed. In conclusion, kefir micro-organisms formed structures in vitro but none of them appeared to be grains; they differed from grains in consistency and in shape. The one closest to grains in consistency was obtained in milk enriched with yeast extract.

Keywords: kefir, dairy starter, biofilm
Biofilm Formation of *Listeria monocytogenes* on Various Surfaces

Jalali Mohammad1, Mahdavi Manijhe and Kasra kermanshahi R2.

1Department of Nutrition, School of Health, Isfahan University of Medical Sciences Isfahan, Iran
2Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran

Introduction & Objective: *Listeria monocytogenes* is considered as a ubiquitous foodborne pathogen which can lead to serious infections, especially in newborns, elderly, pregnant, and immunocompromised people. The organism has been isolated from many foods and may cause meningitis, septicemia and abortion in pregnant women. Also *L. monocytogenes* forms biofilms on many food contact surface materials and medical devices. Development of biofilms on many surfaces is a potential source of contamination of foods that may lead to spoilage or transmission of foodborne pathogens.

Materials & Methods: Biofilm formation of *L. monocytogenes* (RITCC 1293 serotype 4a) was investigated. Hydrophobicity of *L. monocytogenes* was measured by MATH method. Then biofilm formation of the organism was assessed at 2, 4, 8, 16 and 20 hours on stainless steel (type 304 no 2B), polyethylene and glass by drop plate method.

Results: Results indicated that *L. monocytogenes* with 85% of hydrophobicity formed biofilm on each of three surfaces. Biofilm formation on stainless steel surfaces was significantly more than other surfaces (p<0.05).

Conclusion: The ability of biofilm formation of *L. monocytogenes* on medical devices and food containers is very important as far as hygiene and disease outbreaks are concerned.

Cell-surface hydrophobicity and corrosion characteristics of hydrocarbon degrading bacteria *Bacillus cereus* ACE2 and *Serratia marcescens* ACE4

A. Rajasekar and Y.P Ting

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576

Two highly efficient hydrocarbon-degrading bacteria, *Bacillus cereus* ACE4 and *Serratia marcescens* ACE2, isolated from petroleum transporting pipelines, were identified by 16S rDNA gene analysis. This paper reports on the cell-surface hydrophobicity of these bacteria and its role in the corrosion of aluminium 2024 aeronautical alloy (AA 2024). The cell-surface hydrophobicities and emulsification index (E) of *B. cereus* ACE4 and *S. marcescens* ACE2 grown in hexadecane-containing medium are 86 %, E24 40%, E48 66%, E72 85% and 60 %, E24 40%, E48 66%, E72 85% respectively. The significant difference may be due to the efficiency of biosurfactant production which contributes to the increase in the cell surface hydrophobicity of the *B. cereus* ACE4 strain and enhanced bacterial adhesion on the AA 2024. Biocorrosion studies in minimal salt medium and surface analysis of the AA 2024 were carried out using weight loss method, and SEM-EDAX and FTIR respectively. Results showed that extracellular polysaccharides accumulate with the exposure time and revealed that biofilms are formed as micro-colonies, and subsequently causes pitting corrosion. The corrosion damage caused by *B. cereus* ACE4 is vigorous when compared to *S. marcescens* ACE2. The potential role of the high hydrophobicity bacterial isolates on biocorrosion of AA 2024 is discussed. This study highlights the importance of hydrophobic isolates in the biocorrosion of aircraft materials.

Keywords: Cell-surface hydrophobicity; Aluminium alloy 2024; *Bacillus cereus* ACE4; *Serratia marcescens* ACE2; Biocorrosion; SEM; IR spectroscopy
Characterization of corrosive bacterial consortia isolated from a cooling tower

A. Rajasekar and Y.P Ting
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576

Microbial communities associated with biofilms are known to promote corrosion of cooling water pipelines. Knowledge of the microbial populations responsible for biocorrosion and the interactions of different microorganisms with metallic surfaces is required in order to implement efficient monitoring and control strategies. In this study, the analysis of the occurrence of corrosive bacterial community in water samples collected from cooling tower was performed using traditional cultivation techniques and identification based on 16S rRNA gene sequence. Seven aerobic bacterial species were identified: Pseudomonas putida ARTYP1, Pseudomonas aeruginosa ARTYP2, Massilia timonae ARTYP3, Massilia albidaflava ARTYP4, Pseudomonas mosselii ARTYP5, Massilia sp. ARTYP6 and Pseudomonas sp. ARTYP7. Although some of these species have commonly been observed and reported in biocorrosion studies, Oxalobacteraceae group members are identified for the first time in the cooling tower pipeline corrosion. The biocorrosion behaviour of copper metal by the new species ARTYP3 Massilia timonae was selected for further investigated using weight loss method, electrochemical techniques and surface analysis techniques (SEM and FTIR). Thin bacterial biofilms were observed and pitting corrosion was revealed after the removal of the biofilms. The potential role of each species in biofilm formation and the corrosion of steel is discussed.

Keywords: Cooling tower; Biocorrosion; Bacterial community; 16S rRNA gene analysis

Fig. 1 Scanning electron microscopy micrographs of bacteria adhered on the surface of pipeline steel and their corrosive effect. (a) Bacteria adhered after 5 days of exposure; (b) Corroded surface after removal of corrosion products and adhered bacteria; (c) Control sample: metal exposed to the medium without bacteria.

Comparison of methods for detection of biofilm in Coagulase-Negative Staphylococci

M. L. Ribeiro de Souza da Cunha and A. Oliveira
UNESP, Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University Julio de Mesquita Filho, Botucatu, São Paulo, Brazil.

Coagulase-negative staphylococci (CNS) are most often associated with nosocomial infections, especially in premature and under weight newborns. The most important pathogenic factor of these microorganisms is the production of extracellular polymeric acid and the consequent formation of biofilm which facilitates their adherence to the surfaces of catheters and other medical devices. A total of 100 clinical samples of coagulase-negative staphylococci (CNS) isolated from infected medical devices received from the Neonatal Unit, University Hospital, Botucatu Medical School, including 50 isolated from catheter tips, 30 from blood cultures, and 20 collected from the nasal cavity of healthy subjects were investigated in order to evaluate the efficiency of three phenotypic methods of detection of biofilm formation, and also analyze the icaA, icaD and icaC genes, using the PCR method. The clinical isolates were screened by Tissue Culture Plate (TCP), Borosilicate Tube Method (TM), and Congo Red Agar (CRA) method. Of the 100 tested isolates, 82% were positive in the PCR method; in the TM, 82%; in the TCP assay, 81%; and 76% in CRA method. The method of adherence to the borosilicate test tube was the method that best correlated with the detection of the ica genes, showing better sensitivity and specificity when compared with the PCR technique. Our data indicates that the Tube Method is an accurate and reproducible method for screening and this technique can serve as a reliable tool for determining biofilm formation by clinical isolates of staphylococci, once it is also a fast, easy and low-cost method.

Production of biofilm by coagulase-negative staphylococci detected by the Tube method (TM). 1: sample not producing biofilm, 2 and 3: samples producing biofilm, 4: S. epidermidis ATCC 12228 (negative control), 5: S. xylosus ATCC 29979 (positive control).

Keywords: Biofilm, Coagulase-negative Staphylococci, Risk Factors, Infection, Phenotypic methods, PCR.
Confocal analysis of 60 biofilms structure using a microplate based high throughput method.

A. Bridier1,2, F. Dubos-Brissonnet3,4, V. Thomas1, R. Briandet1,2

1INRA, UMR7673 « Biodehésion et Hygiène des Matériaux », F-91300 Massy, France,
2AgroParisTech, UMR7673 « Biodehésion et Hygiène des Matériaux », F-91300 Massy, France,
3STERIS SA, F-92265 Fontenay-aux-Roses, France

Dominant role in the persistence of foodborne pathogens along the food chain is attributed to their ability of building cell communities with complex spatial structures and social self-protective mechanisms. They demonstrate pronounced resistance to antimicrobial stress in comparison with their planktonic counterparts. This may be related to physiological changes of surface-associated cells and/or reactivity of antimicrobials with the extracellular matrix. Both phenomena are directly related to the three-dimensional organization of the biofilm. Understanding of structural architecture of cell communities could shed light on their high antimicrobial biofilm resistance. In this context, our studies aim to qualitative and quantitative characterization of spatial biofilm structure for 60 foodborne pathogens using a high throughput confocal method. Six species were chosen for their implication in human infection (Listeria monocytogenes, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa) and 10 strains of each were selected to study intra-specific variability.

Biofilms were grown in Tryptone Soy Broth in 96-wells microplate during 24h. Confocal Laser Scanning Microscopy (CLSM) was used to record in-situ the 3D biofilm structure data. In order to visualize spatial structure and composition, biofilms were dyed with specific fluorescent markers. Recorded images were then processed to extract important biofilm structure parameters such as biovolume, thickness or roughness.

Under the described growth conditions, we observed a significant inter- and intra-species variability in biofilm formation and 3D architecture. Interspecies comparison of biofilm architecture has shown that E. faecalis and S. aureus strains formed compact biofilms with regular thickness whereas most P. aeruginosa strains produced the well-described mushroom-like mucoid structures. L. monocytogenes and S. enterica strains formed thin monolayer biofilms with small scattered clusters while E. coli produced rough biofilm. Biovolume heterogeneities were most pronounced for the biofilms grown from S. aureus, E. coli and P. aeruginosa species.

Our results have shown the diversity of biofilms architecture of 60 foodborne pathogens in static conditions. Specific three-dimensional structures which were identified can have a key role in (i) bacterial settlement (ii) tolerance to disinfection and (iii) persistence of pathogenic bacteria in the food chain. The combined use of microplate and confocal imaging proves to be a good alternative to the other high throughput techniques commonly used to study biofilm as it allows direct in-situ qualitative and quantitative characterization of these tri-dimensional biological structures.

Culturing phototrophic biofilms on surfaces: what determines biomass accumulation and species succession

R. Congestri1, F. Di Pippo2, N.T.W. Ellwood3 and P. Albertano4

1IBBA-Laboratory for Biology of Algae, Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, 00133 Rome, Italy;
2Department of Geological Sciences, University of Rome “Roma Tre”, Largo San Leonardo Murialdo 1, 00146 Rome, Italy;
3STERIS SA, F-92265 Fontenay-aux-Roses, France

A range of microorganisms can be found living in close association to each other and attached to various surfaces forming structures known as biofilms. Natural aquatic biofilms are comprised of phototrophs (cyanobacteria and microalgae) and heterotrophs (bacteria, fungi and protozoa). They can form multilayered and highly structured communities maintained by a secreted exopolymeric matrix that also provides adhesion to surfaces. In order to enhance the understanding of the complex functioning of phototrophic biofilms it is necessary to investigate the effects that environmental conditions and key species have on structure. Natural biofilms are difficult to investigate, because of the ambiguity of environmental conditions and the difficulty to maintain structural integrity during sampling. Laboratory microcosm experiments were thus performed where the main environmental variables could be controlled for biofilms grown on artificial substrata. Phototrophic biofilms, sampled seasonally from an Italian wastewater treatment plant (Congestri et al. 2006, Di Pippo et al. 2009) were cultivated in a specially-developed incubator where light, temperature and flow velocity could be closely controlled to determine their effect on changes in the phototrophic community structure and biomass accrual from colonisation through to maturation.

During biofilm development the community composition differed greatly from the initial inocula. There was a marked decrease in taxon richness (about 50%) over the experimental period. In particular, there was a strong reduction of diatom diversity, Diadema confervacea was the only diatom to survive until the later stages. Coccal pathogens using a high throughput confocal method. Six species were chosen for their implication in human infection (Listeria monocytogenes, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa) and 10 strains of each were selected to study intra-specific variability. The filamentous and colonial species of the biofilm matrix. Both phenomena are directly related to the three-dimensional organization of the biofilm. Understanding of structural architecture of cell communities could shed light on their high antimicrobial biofilm resistance. In this context, our studies aim to qualitative and quantitative characterization of spatial biofilm structure for 60 foodborne pathogens using a high throughput confocal method. Six species were chosen for their implication in human infection (Listeria monocytogenes, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa) and 10 strains of each were selected to study intra-specific variability.

Biofilms were grown in Tryptone Soy Broth in 96-wells microplate during 24h. Confocal Laser Scanning Microscopy (CLSM) was used to record in-situ the 3D biofilm structure data. In order to visualize spatial structure and composition, biofilms were dyed with specific fluorescent markers. Recorded images were then processed to extract important biofilm structure parameters such as biovolume, thickness or roughness.

Under the described growth conditions, we observed a significant inter- and intra-species variability in biofilm formation and 3D architecture. Interspecies comparison of biofilm architecture has shown that E. faecalis and S. aureus strains formed compact biofilms with regular thickness whereas most P. aeruginosa strains produced the well-described mushroom-like mucoid structures. L. monocytogenes and S. enterica strains formed thin monolayer biofilms with small scattered clusters while E. coli produced rough biofilm. Biovolume heterogeneities were most pronounced for the biofilms grown from S. aureus, E. coli and P. aeruginosa species.

Our results have shown the diversity of biofilms architecture of 60 foodborne pathogens in static conditions. Specific three-dimensional structures which were identified can have a key role in (i) bacterial settlement (ii) tolerance to disinfection and (iii) persistence of pathogenic bacteria in the food chain. The combined use of microplate and confocal imaging proves to be a good alternative to the other high throughput techniques commonly used to study biofilm as it allows direct in-situ qualitative and quantitative characterization of these tri-dimensional biological structures.

Culturing phototrophic biofilms on surfaces: what determines biomass accumulation and species succession

R. Congestri1, F. Di Pippo2, N.T.W. Ellwood3 and P. Albertano4

1IBBA-Laboratory for Biology of Algae, Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, 00133 Rome, Italy;
2Department of Geological Sciences, University of Rome “Roma Tre”, Largo San Leonardo Murialdo 1, 00146 Rome, Italy;
3STERIS SA, F-92265 Fontenay-aux-Roses, France

A range of microorganisms can be found living in close association to each other and attached to various surfaces forming structures known as biofilms. Natural aquatic biofilms are comprised of phototrophs (cyanobacteria and microalgae) and heterotrophs (bacteria, fungi and protozoa). They can form multilayered and highly structured communities maintained by a secreted exopolymeric matrix that also provides adhesion to surfaces. In order to enhance the understanding of the complex functioning of phototrophic biofilms it is necessary to investigate the effects that environmental conditions and key species have on structure. Natural biofilms are difficult to investigate, because of the ambiguity of environmental conditions and the difficulty to maintain structural integrity during sampling. Laboratory microcosm experiments were thus performed where the main environmental variables could be controlled for biofilms grown on artificial substrata. Phototrophic biofilms, sampled seasonally from an Italian wastewater treatment plant (Congestri et al. 2006, Di Pippo et al. 2009) were cultivated in a specially-developed incubator where light, temperature and flow velocity could be closely controlled to determine their effect on changes in the phototrophic community structure and biomass accrual from colonisation through to maturation.

During biofilm development the community composition differed greatly from the initial inocula. There was a marked decrease in taxon richness (about 50%) over the experimental period. In particular, there was a strong reduction of diatom diversity, Diadema confervacea was the only diatom to survive until the later stages. Coccal chlorophytes tended to attach first to the polycarbonate slides under high irradiance, while cyanobacteria colonised the initial stages of development of biofilms grown under low irradiance. D. confervacea was only found under low flow conditions, underlying the fact that shear forces also condition biofilm taxonomic structure. On the basis of this observation, we suggested that the initial community formation could be stochastic and depended highly on inoculum composition, but the role of light and secondly that of flow were considered the main drivers in the initial shaping of biofilm composition.

In general, the communities shifted toward cyanobacterial dominance during the latter developmental stages, contributing up to 99% of total phototrophic biovolume. This dominance was put down to the superior competitiveness of the cyanobacteria over the algae for resources. The filamentous and colonial species of the biofilm intertwined and formed a net-like structure that seemed to enhanced adhesion and permanence during the inoculation period. This suggests that these adhesion processes may have a selective role among diatom life forms present in the inocula. Biofilm development was severely limited by the lowest light condition tested (15 μmol photon m⁻² s⁻¹) with communities composed only of few coccal green algae and cyanobacteria that did not show any substantial growth during the incubation period (30 days).

Keywords: phototrophic biofilms, biovolume, species composition, microcosm

Differences between clinical and food isolates of *Listeria monocytogenes* in biofilm formation

Barbosa, J., Silva, J., Magalhães, R., Santos, I., Almeida, G., Teixeira, P.*
CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa
Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal

Pathogenic microorganisms as *Listeria monocytogenes* are known to form biofilms. The risk of food products contamination in food industry and the growth on medical devices, in the clinical environment, is a reason of concern.

The objectives of this work were to examine and compare biofilm formation by food and clinical isolates of *L. monocytogenes*. A total of 376 *L. monocytogenes*, 258 isolated from various food products and 118 clinical isolates were investigated concerning their biofilm production capacity in 96-wells microtiter plates, at 4 °C during 5 days and at 37 °C during 24h. The strains were classified as strong (OD630nm ≥ 0.220), moderate (0.110 ≤ OD630nm < 0.220), weak (0.055 ≤ OD630nm < 0.110) or no biofilm formers (OD630nm < 0.055) based upon the OD at 630 nm of bacterial films.

Statistically significant differences (P < 0.01) were found between biofilm formation at 4 °C or at 37 °C. At 4 °C, statistically significant differences between clinical and food isolates were observed (P < 0.01). Although being classified as weak producers, food isolates produced more biofilms than clinical isolates. Statistically significant differences (P < 0.01) between clinical and food isolates were also observed at 37 °C. However, at this temperature, clinical isolates produced more biofilms than food isolates; 4% and 0.4% of the clinical and food isolates, respectively, were classified as strong biofilm formers.

Biofilm production was demonstrated to differ between clinical and food isolates but these differences were temperature dependent.

This work was supported by FCT/FEDER Project PTDC/AGR-ALI/64662/2006.

Disruption of *Gluconacetobacter diazotrophicus* levansucrase encoding gene (*lsdA*) alters tolerance to abiotic stress, biofilm formation and sugarcane colonization.

M.L. Velázquez-Hernández¹, V.M. Balzabal-Aguirre¹, F. Cruz-Vázquez¹, L.E. Fuentes-Ramírez², A. Bravo-Patlíño³, M. Cajero Juárez¹, M.P. Chávez-Moctezuma³ and J.J. Valdez Alarcón³

¹Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo. Km. 9.5 carretera Morelia-Zinapécuaro s/n. 58093, Tarímbaro, Michoacán, México.
²Instituto de Ciencias, Universidad Autónoma de Puebla. 14 Sur y Av. San Claudio, Cd. Universitaria. 72570, Puebla, Puebla, México.
³Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edif. B-3; Cd. Universitaria. 58000, Morelia, Michoacán, México.

Gluconacetobacter diazotrophicus is a diazotrophic endophyte commonly associated to sugarcane and other host plants. Its levansucrase has been the subject of intensive research due to its ability to synthesize fructans of low degree of polymerization. However the biological role of levansucrases in nature is not well understood. For plant pathogenic bacteria, it has been suggested that levan, the fructan synthesized by levansucrase, constitutes a physical barrier that isolates the bacterium, thus avoiding recognition by plant defense mechanisms. Levan is a highly hygroscopic, fluid polymer that could also contribute to tolerance to osmotic stress and biofilm formation. In this work, we evaluated the effect of the disruption of the levansucrase encoding gene (*lsdA*) from *G. diazotrophicus* in tolerance to osmotic stress, biofilm formation and colonization of sugarcane.

Construction of *lsdA* defective strain. The *G. diazotrophicus* levansucrase-deficient strain was constructed by interruption of an 1.4 kb with the uppR cassette from pBSL46 that generated plasmid pLSL4. This was electroporated in *G. diazotrophicus* PAI 5 R, an spontaneous rifampycin resistant mutant, and transformants that recombined the disrupted locus were selected by phenotype, and PCR and Southern blot analysis. Mutant strain PAI 5 R was selected for further studies. Disruption of the *lsdA* gene neither modified growth kinetics nor carbon source utilization.

Tolerance to osmotic stress. For tolerance to osmotic stress, effect of osmolettes is described at the indicated concentrations and its equivalent as osmotic pressure (Ψ) is also indicated. When NaCl was used as an osmolette, PAI 5 R and L-3 mutant strain grew similarly up to 25 mM NaCl (-0.609 MPa), but from 50 (-0.712 MPa) to 150 mM (-1.173 MPa) NaCl a reduction in tolerance was observed for the L-3 strain. At concentrations from 200 (-1.627 MPa) to 250 mM (-1.838 MPa) NaCl, both PAI 5 R and L-3 strain reduced their survival two orders of magnitude, but a difference in tolerance to NaCl was still observed among both strains. When 350 mM (-1.952 MPa) was used, none of the strains survived. Polyethylene glycol 400 (PEG 400) was used as a non-ionic osmolette. Both strains tolerated up to 300 mM (-1.168 MPa); no growth was detected at 400 mM (-1.357 MPa). When sucrose was tested as an organic osmolette, no difference on tolerance was observed between both strains, until a concentration of 876 mM (-3.607 MPa) was reached. L-3 strain was more susceptible at this concentration of sucrose. PAI 5 R and L-3 strains were also tested for dessication tolerance. Both strains were grown in liquid medium, cells were collected by filtration and the filters with the cells were incubated in Petri Dishes at 30°C and cell survival was estimated. By 18 and 48 h of incubation, a clear decrease in survival was observed for the L-3 strain as compared to PAI 5 R strain. By 72 h, PAI 5 R strain survived under dessication conditions but L-3 strain did not. After 144 h, none of the strains survived. The ability to form biofilms was evaluated in static cultures with Cristal Violet staining. L-3 strain showed a reduction of 30% in its ability to form biofilms when compared to PAI 5 R.

Sugarcane colonization. To evaluate the effect of levansucrase mutation in sugarcane colonization, PAI 5 R and L-3 strains were inoculated in sugarcane plants obtained by micropropagation and the quotient between the number of bacterial cells/g tissue fresh weight and the number of inoculated bacterial cells was estimated. When the L-3 strain was inoculated, it showed lower numbers of bacterial cells associated to the roots or leaves of sugarcane plants at 4 h post-inoculation. At longer times (24 h post-inoculation) no difference was observed between PAI 5 R and L-3 strain.

Concluding remarks. Altogether these results suggest that the reduction in the ability of *G. diazotrophicus* levansucrase-defective strain to colonize sugarcane is related in part with a reduction in its ability to adapt to the high osmotic pressure found in its sucrose-rich endophytic habitat, the sugarcane phloem and a reduction in its ability to form biofilms. This conclusion complements previous reports in which levan is related to the formation of a barrier that isolates the bacterium against the plant defense mechanisms.

Keywords: fructan, biofilm, osmotic stress.
Ecological approaches for dairy wastewater treatment

I. Schneider1 and Y. Topalova1

1SOFIA UNIVERSITY “St. Kl. Ohridski”, Faculty of Biology, Department “General and Applied Hydrobiology”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria

The achievement of a good ecological status of receivers after discharge of waste or partially treated water from dairy industry requires harmonic interaction between water treatment technology and self-purification processes. The present research included two modules. First: an anaerobic treatment process for dairy wastewater in broadly dispersed sequencing batch bioreactor with fixed biomass was studied. As a source of active biological system was used specially treated and adapted activated sludge from Sofia Waste Water Treatment Plant. The immobilization of initially inoculated biomass, the addition of microbiological preparations, and its modification for increase of the biodegradation activity to target contaminants were investigated as ecological approaches for the stimulation of water treatment process.

Second: self-purification processes in a water receiver for partially treated dairy wastewater were investigated. The functional role and restructuring of the microbial communities in the water, sediment water and sediments were studied.

The results showed that most important approaches for achievement of high effectiveness of wastewater treatment process were both - the adaptation and immobilization of biomass. In that aspect the data showed that biofilm in the bioreactors and in the river sediments plays the essential role in biodegradation of the target pollutants in comparison of the free swimming cells. The effect of the added preparations was lower. It thoroughly was related with low improvement of the rate of metabolism and functioning of the biological system mainly on enzyme level. The results confirmed the scientific hypothesis that as much the biodiversity of the biocenoses as much difficult is to incorporate allochtonic microorganisms in the community structure.

Keywords: adaptation, immobilization, biofilm

Effect of chromium on biofilm formation: bacterial biofilms in association with cyanobacterial strain.

Sabeen Sabri and Anjum Nasim Sabri

Department of Microbiology and Molecular Genetics, Quaid-e-Azam Campus, University of the Punjab, Lahore 545900, Pakistan

Three chromium resistant bacterial strains (SA1, SA2, SA3) and one cyanobacterial strain (SAP1) were isolated. The bacterial strains were isolated from two different biofilm samples collected from different sources. The cyanobacterial strain was isolated from the roots of hydrophytes. The bacterial strains SA1 and SA2 were twitch positive and SA3 was twitch negative. The isolated strains were checked for biofilm formation through microtitre plate assay. The biofilm formation was also checked on glass and coupons in presence and absence of Chromium (K₂CrO₄). The biofilms were observed through light and fluorescent microscopy and analysis was done through ----- . Biofilm was checked in combination of bacterial and cyanobacterial strains. The results showed that all the strains showed more attachment towards the glass. The combination of bacteria and cyanobacteria reveals that bacteria use cyanobacterial filaments as a substrate and attaches to it and form biofilms. Chromium reduction potential was also checked in biofilms of all the strains. Further the effect of biofilms on Triticum aestivum was checked. Results showed that the strains showed hydrophobic adherence towards the roots of the plants.
Effect of different synthetic and naturally occurring biocides on bacteria isolated from biofilms of dental unit water: their biofilm forming ability

Anjum Nasim Sabri, Amna Khan, Noor-ul-saba Ijaz and Irum Liaqat
Department of Microbiology and Molecular Genetics, University of the Punjab, Q.A. Campus, Lahore-54590, Pakistan

Dental unit waterlines (DUWL) are an integral part of dental surgery equipment, supplying water as a coolant, primarily for air turbine and ultrasonic scalers. DUWL when not in use remain connected to main water supply providing conditions for biofilm development within 8 hours. Bacteria shed from the biofilm can maintain and support massive numbers of planktonic organisms. Characteristically biofilm bacteria exhibit 3000 fold more resistance to surfactants, biocides and antibiotics than organisms floating freely in fluids. Biofilms on tubings within DUWL provide a reservoir of microorganisms and must be controlled. This study compared different biocides (synthetic biocides used in oral mouthwash and antibiotics) for their ability to reduce and eliminate the biofilm bacteria. Sodium dodecyl sulphate (SDS), Hydrogen peroxide (H2O2), Sodium hypochlorite (NaOCl), Phenol (Phe), Tween 20 (Tw 20), Ethylene dihydro tetraoxide (EDTA), Chlorohexidine gluconate (CHX) and Povidine iodine (PI) were tested against DUWL biofilm bacteria. SDS, H2O2, Tw 20 and EDTA completely eliminate viable bacteria when applied singly, however, combined forms of these were found to be more effective in eliminating the biofilm bacteria. Some combinations effectively reduced the biofilm bacterial population. The most effective combination was of CHX with rest of the six biocides, although CHX gave the most consistent and sustained antimicrobial effect over time. In this study, the effects of eight biocides were monitored on DUWL biofilms individually and in combination by epifluorescence microscopy and total viable counts (TVC). Applying all the biocides simultaneously resulted in elimination of most bacteria. Relationship of these biocides with cell wall constituents were also developed. Further the effect of these synthetic biocides (CHX) were compared with naturally occurring compounds in Neem plants, on biofilm formation by these isolates. Isolates were also compared for their ability of biofilm formation in the presence of naturally antibiotic producing strain of Streptomyces. Dental unit isolates growth was also compared with different antibiotics available in the market.

Effect of tyrosol in Candida species biofilm development

Margarida Martins, Mariana Henriques, Joana Azeredo, Rosário Oliveira
IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering , Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Candida spp. are the most common agents of opportunistic mycoses and are often associated with biofilms. The production of diffusible alcohol molecules allows the modulation of microbial physiological functions and probably offers a strategy for communication between Candida spp. Tyrosol has been shown to be a quorum-sensing signal in Candida albicans that is accumulated in planktonic and biofilm supernatants. Although tyrosol accelerates C. albicans germ tube formation under inducing conditions, the effect of tyrosol on biofilm formation is not clear. Additionally, to date it is not known whether tyrosol affects biofilm development of Non-Candida albicans Candida (NCAC) spp.

In this sense, this work aimed to examine the effect of a commercial formulation of tyrosol on different stages of NCAC spp. biofilm maturation, as an indicator of a role for this compound in biofilm development. Using a rapid and robust method (96-well plate model), the effect of tyrosol (10, 100 and 1000 μM) on C. dubliniensis CBS 7987, C. parapsilosis ATCC 22019 and C. tropicalis ATCC 750 biofilm formation was examined at different stages. C. albicans CECT 1472 was used as a control. Standardized cell suspensions (200 μl of 1 × 10^7 cells/ml in RPMI) were inoculated into microtitre plates and incubated for 3 and 48 h at 37°C, 130 rpm. At these time points the medium was removed and sessile cells were washed with ultrapure sterile water. Tyrosol was then added to Candida spp. sessile cells and the plates were incubated at 37°C for additional 24 h. Biofilm cells mitochondrial activity was evaluated by the XTT reduction assay and biofilm total biomass by crystal violet assay. The results of these experiments showed that tyrosol did not exhibit major effects on C. albicans and C. dubliniensis biofilm development. In contrast, tyrosol (10 and 100 μM) induced a significant reduction in the mitochondrial activity of C. parapsilosis sessile population and mature biofilms during subsequent development. The highest reduction levels of absorbance at 490 nm, compared with the control, were observed in mature biofilm cells treated for 24h with 10 and 100 μM tyrosol. Furthermore, addition of tyrosol (100 and 1000 μM) to C. tropicalis adhered cells population led to a significant decrease in biofilm cells mitochondrial activity during further development, as indicated by the lower levels of XTT readings compared with control biofilms. Under the conditions used in this study no changes were detected in total biomass of Candida spp. sessile cells treated with tyrosol.

These results show that tyrosol regulates C. parapsilosis and C. tropicalis biofilm cells mitochondrial activity, suggesting a role of this alcohol in the communication between Candida spp.

Keywords Candida spp.; biofilm; tyrosol
Evaluation of chemical and physical disinfection of process water and the treatment of biofilms in a pilot plant

E. Vankerkhoven 1, A. Van Asche 1, K. Willems 1, and H. Redlirs 1
1Research Group Process Microbial Ecology and Management, Department Microbial and Molecular Systems, Katholieke Universiteit Leuven Association, Campus De Nayer, Jan De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium

In several industrial and non-industrial applications, cooling water is reused and circulated in heat exchanger circuits. Cooling towers, heat exchangers, and humidifiers are just a few examples in which water is reused. However, continuous water reuse leads to a decreasing water quality due to the growth of microorganisms, biofouling, and corrosion. Microbial contamination of process water and formation of biofilms on the surface of piping and heat exchangers frequently result in operational problems and health risks. To avoid such problems, an effective, cost-efficient, and environmentally-friendly water treatment is required. Nowadays, a variety of physical and chemical techniques are routinely used for water disinfection, including chlorination and ultraviolet light. However, these disinfection methods suffer from severe drawbacks. Moreover, the ecological aspects of the various disinfections techniques have rarely been taken into account in their evaluation.

In a recently started research project, different chemical and physical disinfection techniques (sodium hypochlorite, peracetic acid, hydrogen peroxide, chlorine dioxide, ultraviolet and ultrason) are evaluated in their efficacy to inactivate free-living bacteria and treat biofilms. Many studies have already focused on disinfection using ultrasound, UV, or chlorination, but to study disinfection techniques in standardized conditions, mostly lab-scale experiments were carried out. In this study however, experiments are performed on a pilot plant system for a better simulation of conditions encountered in industrial environments.

The main focus of the project is to explore possible synergistic or additive effects between chemical disinfectants and other techniques. Such synergistic effects can ultimately result in a decrease of the amount of chemicals that are required for effective disinfection and treatment of biofilms. In a first set of experiments, the physical disinfection techniques and different concentrations of chemical disinfectants were evaluated individually for their potential to inactivate free-living bacteria and treat biofilms.

When the inactivation of free-living bacteria is examined, treatment with UV, ultrasound and the chemical disinfectants resulted in a significant decrease in the number of free-living bacteria. Application of UV and ultrasound resulted in a 2-3 log reduction of the number of free-living bacteria. The effect of the chemical disinfectants on the number of free-living bacteria depended on the applied dose. Based on the concentration of the chemical disinfectants that is required to eliminate the free-living bacteria completely, hypochlorite was the most effective disinfectant, followed by chlorine dioxide. Peracetic acid was slightly more effective than hydrogen peroxide.

When biofilm-associated bacteria were assessed, it was observed that the efficacy of UV and ultrasound were comparable. Both physical disinfection techniques caused approximately a 1.5 log reduction in the number of biofilm-associated bacteria, which is less effective than the efficacy to inactivate free-living bacteria. Regarding the chemical disinfectants, it was observed that the concentrations that enabled the complete inactivation of free-living bacteria, were not sufficient to completely remove the biofilm-associated bacteria. Consequently, higher doses of chemical disinfectant is required to effectively remove biofilms. Again, hypochlorite and chlorine dioxide appeared to be the most effective disinfectants.

However, it must be stated that chlorine-based disinfectants are also associated with problems such as the development of resistance to chlorination, discoloration and the production of unpleasant odors and flavors, or the production of toxic by-products. A reduction of the required hypochlorite concentration and hence a reduction of toxic by-products may be achieved by combining hypochlorite treatment with a physical disinfection technique.

In preliminary experiments it was already demonstrated that a combination of physical disinfection techniques and chemical disinfectants resulted in a synergistic effect in the efficacy to treat biofilms.

Keywords: disinfection; biofilm; UV; ultrasound, chlorination; peracetic acid; hydrogen peroxide; pilot plant

Growth Phase-Dependent Regulation of csgD, the Master Regulator of Biofilm Formation: Interplay between Multiple Transcription Factors

Akira Ishihama*, Hiroshi Ogasawara, Tomohiro Shimada, Jun Teramoto, Ayako Kori, Kayako Yamada, and Kaneyoshi Yamamoto

Department of Frontier Biosciences, Hosei University, Koganei, Tokyo 184-8584, Japan
*Corresponding author: aishiham@hosei.ac.jp

Under stressful conditions in nature, Escherichia coli forms biofilms for long-term survival. Curli filaments are an essential architecture for cell-cell contacts within biofilms. Structural components and assembly factors of curli are encoded by the divergently transcribed csgBAD and csgDEFG operons, which are regulated by CsgD, a master regulator of bacterial biofilm formation. Reflecting the response of biofilm formation to various external factors and conditions, the csgD promoter is under the control of multiple transcription factors including CysR, Crl, CRP, CsgD, MtrA, OmpR, ResE, RntA and two nucleoid proteins, H-NS and IHF (1). During the course of our systematic search of regulation target genes by a total of 300 transcription factors from E. coli, we further identified several hitherto uncharacterized transcription factors as the regulators of the csg operons. At present, however, it remains unsolved how these factors influence a single and the same promoter. By transcriptional analysis using a set of E. coli mutants, each lacking one of these regulatory proteins, these transcription factors have been classified into positive and negative regulators in transcription of the csgD gene. We then determined the binding site(s) of purified individual factors within a narrow region of the csgD promoter. By a systematic analysis of complex formation between various combinations of these regulatory proteins and various segments of the csgD promoter, we realized that the multiple transcription factors sharing the same DNA region for binding either compete or cooperate depending on the combination. These findings indicate that the relative level of functional molecules of the participating transcription factors is an important factor for control of biofilm formation.

When inactivation of free-living bacteria is examined, treatment with UV, ultrasound and the chemical disinfectants resulted in a significant decrease in the number of free-living bacteria. Application of UV and ultrasound resulted in a 2-3 log reduction of the number of free-living bacteria. The effect of the chemical disinfectants on the number of free-living bacteria depended on the applied dose. Based on the concentration of the chemical disinfectants that is required to eliminate the free-living bacteria completely, hypochlorite was the most effective disinfectant, followed by chlorine dioxide. Peracetic acid was slightly more effective than hydrogen peroxide.

When biofilm-associated bacteria were assessed, it was observed that the efficacy of UV and ultrasound were comparable. Both physical disinfection techniques caused approximately a 1.5 log reduction in the number of biofilm-associated bacteria, which is less effective than the efficacy to inactivate free-living bacteria. Regarding the chemical disinfectants, it was observed that the concentrations that enabled the complete inactivation of free-living bacteria, were not sufficient to completely remove the biofilm-associated bacteria. Consequently, higher doses of chemical disinfectant is required to effectively remove biofilms. Again, hypochlorite and chlorine dioxide appeared to be the most effective disinfectants.

However, it must be stated that chlorine-based disinfectants are also associated with problems such as the development of resistance to chlorination, discoloration and the production of unpleasant odors and flavors, or the production of toxic by-products. A reduction of the required hypochlorite concentration and hence a reduction of toxic by-products may be achieved by combining hypochlorite treatment with a physical disinfection technique.

In preliminary experiments it was already demonstrated that a combination of physical disinfection techniques and chemical disinfectants resulted in a synergistic effect in the efficacy to treat biofilms.

Keywords: biofilm; master regulator; csgD promoter; transcription factor; regulation network

In vitro activities of the minocycline and EDTA solutions (CATH-SAFE®) against microorganisms embedded in biofilm on the surface of hemodialysis catheters

Leite, B. A.; Santos, C. A. L.; Campos Júnior, F. F.; Biernat, J. C.; Rosito, J.; Pizzolitto, A. C.; Pizzolitto, E. L.

1Programa de Pós-Graduação em Biotecnologia- Universidade Federa de São Carlos-UFSCar, São Carlos/SP, Brasil
4Laboratório Lebon – Indústria Farmacêutica – Porto Alegre/RS, Brasil.

Catheters have become essential in the management of critical-care patients, yet the inside of a catheter can act as a source of infection due to biofilms. The use of minocycline and ethylenediaminetetraacetic acid (M-EDTA) as a potent calcium, magnesium and iron chelating agents destroy bacterial and fungal cell membrane and disrupts biofilm, thus allowing the associated antibiotic to exert its action locally at a high concentration. This study aimed to verify the in vitro action of the minocycline and M-EDTA solutions (CATH-SAFE®) on the biofilm produced in double lumen hemodialysis catheter. Viable cell count and scanning electron microscopy (SEM) were the techniques used. For biofilm formation, the catheter was immersed in Mueller-Hinton broth previously inoculated with suspension of 1.0x10^8 CFU.mL-1 of Staphylococcus aureus and Staphylococcus epidermidis, and incubated at 37°C for 120 hours. Then, the catheter was removed and 3 ml of M-EDTA solution (CATH-SAFE®) - Minocycline hydrochloride 3mg and 30mg EDTA) instilled, remaining in the lumen of catheter for 72 hours. After this period, the solution was removed and the catheter segmented in 1 cm-sections separated in hub, mean, tip.

All together, our results pointed to the important role played by ORF185 and ORF186 in the potential PGN modification which consequently permit bacteria persistence within the precarious intracellular environment. Future work will address the molecular mechanisms involving ORF185 and ORF186. The achievement of this work will exceed the framework of Shigella in regard to the high conservatism of the studied genes among several other pathogenic bacteria.

Key words: Shigella flexneri, PGN, biofilm.

Impact of peptidoglycan modifications on bacterial virulence: functional analysis of two Shigella flexneri genes; orf185 and orf186

Abdelmouhiti Kaoukab-Bajii, Latéfa Biskri and Abdelmoumains Alloua

Université Libre de Bruxelles, Faculté de Médecine, Laboratoire de Bactériologie Moléculaire (CP : 614B) ; Campus Hospitalo-universitaire Erasme, Route de Lennik 808, 1070, Anderlecht

Funded by FRIA

Shigella flexneri is a Gram-negative pathogenic bacterium that causes bacillary dysentery, a disease responsible for one million deaths per year in developing nations. After ingestion, S. flexneri travels to the colon where it induces macrophages apoptosis and invades epithelial cells. The required virulence genes are located on a large virulence plasmid (pWR100) encoding a type III secretion system (T3SS). Here, we investigated the virulence function of two uncharacterised plasmidic genes orf185 and orf186. Proteins sequence alignment reveals that the product of orf185 gene belongs to the Carbohydrate esterase family and orf186 encodes for a potential glycosyltransferase involved in Peptidoglycan (PGN) modification. Here, we knock out (KO) the 2 genes and studied the phenotype of generated mutants both in vitro and in vivo. We show for the first time that S. flexneri can form biofilm. The formation of the later was enhanced upon inactivation of genes orf185 and orf186. We also show that mutation of orf185 and orf186 genes reduce the bacterial entry into HeLa cells. Furthermore, our results showed that the two mutated strains have a different PGN compared to wild-type strain. In-line with observation, we show that bactericidal activity, upon human polymorphonuclear neutrophil (PMN), is higher in the two orf185 and orf186 mutants. Lastly, we found that the capacity of our mutants to induce keratoconjunctivitis in vivo, using the Guinea-pig model, is attenuated compared to wild-type Shigella.

All together, our results pointed to the important role played by orf185 and orf186 in the potential PGN modification which consequently permit bacteria persistence within the precarious intracellular environment. Future work will address the molecular mechanisms involving ORF185 and ORF186. The achievement of this work will exceed the framework of Shigella in regard to the high conservation of the studied genes among several other pathogenic bacteria.

Key words: Shigella flexneri, PGN, biofilm.
Microbial cell surface hydrophobicity and surface energy obtained using the sessile droplet technique: identification of sources of inaccuracies due to the topography and chemical heterogeneity of microbial lawns.

A. Méndez-Vilas, L. Labajos-Broncano, J. Perera-Nuñez, and M.L. González-Martín
Department of Applied Physics, University of Extremadura, Avda Elvas s/n, 06071 Badajoz, Spain
CIBER-BBN, Network Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine, Badajoz, Spain.

General Considerations. Microbial Hydrophobicity and surface energy are fundamental properties to study interfacial phenomena in which they are involved, such as their adhesion to surfaces. One of the main methodologies used to quantify these properties is the contact angle method, which lies on the measurement of equilibrium contact angles of liquid droplets resting on microbial cell (multi)layers. This same approach is usually used to quantify these properties for the surfaces the microbes are interacting with (e.g. biomaterials), which are commonly characterized in a polished state. Characterization of both microbial and materials surfaces allows theoretical models to be explored for the rationalization of the interaction process. This methodology is common in the investigation of initial microbial adhesion (thought to be of a reversible physico-chemical nature), the first step in the development of biofilms.

Motivation. Measurement of equilibrium (Young’s) contact angles assumes smooth and homogeneous surfaces. These two premises are commonly verified for material surfaces before contact angles are measured. In the case of rough and heterogeneous surfaces, observed contact angle may largely differ from the Young’s contact angle, as both types of irregularities cause contact angle hysteresis. Very little is known however about surface topography (roughness) and heterogeneity of the microbial lawns used to characterize their properties.

Objectives. Unfortunately, microbial surfaces can not be polished! Therefore, our goal was the exploitation of atomic force microscopy (AFM) to quantify the surface topography of bacterial lawns, as well as its Phase Imaging (PI) mode to explore their physico-chemical homogeneity. The quantification of the level of non-ideality of these microbial surfaces will allow to ascertain the level of uncertainty in the determined cell surface properties, and therefore, in the predictions made by entering these values into available theoretical models.

Results. The relevant roughness parameter in relation to contact angles is Wenzel roughness factor, defined as the surface-to-projected area ratio, which can be accessed experimentally via AFM by simple triangulation. Values as high as 1.3 have been obtained (for comparison, values of about 1.005 are commonly found in polished materials), which means a very rough surface. This is comparable to the roughness displayed by polymers, and definitely roughness can not be neglected. On the other side, PI has identified the presence of a ultrathin (few nm) liquid-layer discontinuously covering the bacterial lawns, rendering them extremely heterogeneous. We propose that the origin of such a stable (non-evaporating) liquid-like layer lies in the deliquescence behavior of one the two components of the buffer used (KPi), K2HPO4, as discussed also in another of our presentations, which is able to absorb water from the environment and form a (liquid) dissolution at the surface.

Conclusions. Bacterial lawns commonly used for the determination of their hydrophobic properties have been analyzed using AFM. Results reveal a very rough and chemically heterogeneous surface, which compromises the use of the Young’s contact angle concept in this context. The potential inaccuracies in the measurement of the microbial cell surface properties using this method might be one of the key reasons of the lack of success of established colloidal models to analyze microbial adhesion and of the variability at inter- and intra-laboratory levels.

Microbial corrosion inhibition of steel by a cationic surfactant synthesis

H. Hamitouche, A. Khelifa, and A. Hadj-Zian
University Saad Dahleb of Blida, department of industrial chemistry. BP 270, road of soumaa , Blida (09100s), Algeria.

Le microbial corrosion process is responsible for large number of catastrophic failures causing a great economical impact in actual industry; microbial corrosion is corrosion that is caused by the presence and activities of microbes. Since the sulfate-reducing bacteria (SRB) has been considered the major bacterial species in causing metal corrosion under anaerobic and aerobic environments.

The SRB presence in oil environments was detected in 1926 and was rapidly recognized as responsible for the production of hydrogen sulfide, which is a toxic and corrosive gas responsible for a variety of environmental and economic problems including reservoir souring, contamination of natural gas and oil, corrosion of metal surfaces, and the plugging of reservoirs due to the precipitation of metal, more than 77% of the corruptions in the producing oil well in the United States of America are induced by SRB. Sulfate reducing bacteria (SRB) are responsible for the corrosion of cast iron, carbon steel, and low alloy steels, stainless steels, high nickel alloys and copper alloys. A large number of approaches may be used to prevent or minimize microbiological degradation of materials but the most adapted method is the use of biocides, a biocide is a chemical substance capable of killing living organisms.

The subject of this work consists of the study of the inhibitive synthesized biocide named quaternary ammonium salt, the results obtained from this study by test-kits show that, the new synthesized biocide can stop microbial growth under the conditions tested only with 50 ppm of biocide synthesized.

Keywords sulfate-reducing bacteria, biocide.
Microphytobenthic biofilms in the Cabras lagoon (Sardinia, Italy)

Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

The Cabras lagoon (western Sardinia, Italy) is a shallow transitional system renowned for its naturalistic (Ramsar Convention on Wetlands, Naturo 2000 network for EU Habitat directive) and economical importance (e.g. artisanal fisheries). However, the lagoon is increasingly subjected to anthropogenic pressure due to massive nutrient loading, reduction of freshwater input from upland, modifications of the inlets and other man-made interventions which have reduced the water exchange with the adjacent Gulf of Oristano. Especially during the warm season, there is a tendency for hypoxic and anoxic conditions to occur in near-bottom waters. This may lead to dystrophic events, causing a major loss of the biological resources of the lagoon. To assess the ecological quality of the lagoon, numerical models have been developed to predict the evolution of both hydrological and ecological variables within the lagoon system under different meteorological forcing. In parallel, investigations of the physical and chemical characteristics of the sediments and the macrobenthic assemblages have shown a close link between the distribution of organic-C boundling fine sediments, benthic macroinvertebrates, and the water residence times computed from the models [1].

In these systems, a detailed analysis of sediment dynamics are particularly important because the partitioning and transport of fine sediments can strongly influence the redistribution and accumulation of large amounts of organic and inorganic material, and consequently the spatio-temporal distribution of benthic assemblages and the trophic status and functioning of the lagoon [2, 3]. Primary producers are considered to be an important source of organic matter to the Cabras lagoon [2]. Nevertheless, studies on the presence and distribution of microphytobenthic assemblages in the Cabras lagoon are still lacking although the importance of this highly variable, biological component has been shown in other organic-enriched coastal lagoons [4-6].

Benthic phototrophic primary producers may develop at the sediment surface in form of biofilms in which cyanobacteria and microalgae are embedded in a common extracellular matrix (EPS) [4, 7] that contributes to the cohesive properties of the fine sediment fraction [8]. To evaluate the microphytobenthos biomass surface sediment, six sample replicates were collected at three sites in the Cabras lagoon and chlorophyll a (Chl a) was extracted in 90% acetone and spectrophotometrically detected. Accessory photosynthetic pigments were also estimated to evaluate the proportion of the different phototrophic taxa in the communities. Samples were analysed by light and fluorescence microscopy to assess the spatial distribution and composition of microphytobenthic species in relation to sediment characteristics. In addition, Alcian Blue cytochemical stain at pH 2.5 of EPS was used to ascertain the presence of colloidal and bound polysaccharides. Preliminary results showed microphytobenthos biomass highly variable in space between and within sampling sites with Chl a content values ranging between 4.1 and 107.4 μg g⁻¹ dry wt. However, values of accessory pigments concentrations and their ratios to Chl a contents suggested the dominance of diatoms and the presence of cyanobacteria and green algae in most of the biofilm communities. The spatial variability was also confirmed by microscopy observations showing the heterogeneity of microphytobenthos species composition. Acidalic colloidal polysaccharides were visualised with Alcian Blue stain in diatom-dominated biofilms, while bound polysaccharides were prevalently found in the sheaths of the filamentous cyanobacteria.

Keywords microphytobenthos, phototrophic biofilms, exopolymers, cyanobacteria, microalgae

References

Microphytobenthic biofilms in the Cabras lagoon (Sardinia, Italy)

Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

Listeria monocytogenes is a pathogen responsible for severe illness with high mortality rates. It is frequently found in different kinds of food processing environments and its capacity to develop biofilms is an issue of major concern on food safety. Although many studies have been made concerning adhesion and biofilm formation by mono-cultures of L. monocytogenes, it is known that the vast majority of microorganisms in the natural environment and in the food processing environment occurs in multispecies biofilms. Several works have shown that association with strains belonging to other genus, as Pseudomonas, Flavobacterium and Staphylococcus, may increase or decrease L. monocytogenes attachment and biofilm formation, depending on the strain. In this work, both monoculture and mixed biofilms were performed in order to investigate how biofilm formation by different isolates of L. monocytogenes is affected in presence of Pseudomonas fluorescens. Moreover, taking into account the cases where an antagonism effect was found, different supernatants were collected and tested for their influence alone on biofilm formation by L. monocytogenes.

The L. monocytogenes strains assayed were CECT 4031 (collection strain), 747 and 994 (food isolates), 1562 (collection strain), and PF7A (food isolate). Each L. monocytogenes strain was tested for monoculture and mixed culture biofilm formation with each one of the P. fluorescens strains. Assays were performed during three days in 96-well microtitre plates, at room temperature (22 ± 2ºC) with shaking at 120 rpm. The medium used was BHI (replaced every 24 hours) and the suspensions were collected, centrifuged and filtered through 0.2 μm filters.

Results concerning monoculture and mixed biofilms formation revealed a significant decrease of biomass in biofilms formed by CECT 4031 and 1562 L. monocytogenes strains when in the presence of both P. fluorescens strains, with the strongest antagonist effect being found between 1562 and PF7A isolates. These two last isolates were then used to obtain supernatants to be applied during biofilm formation by CECT 4031 and 1562 L. monocytogenes strains, in order to infer about possible extruded metabolites that could influence biofilm formation. The results of this approach showed that PF7A +1562 mixed biofilm, 1562 overnight suspension and 1562 biofilm supernatants lead to a significant biomass decrease when applied on CECT 4031 biofilm formation. Although this does not help to explain the antagonism effect of PF7A upon this Listeria strain (which in turn may be associated with strictly intracellular quorum-sensing phenomena), it highlights an interesting repression within these two L. monocytogenes strains. Moreover, the auto-repression phenomena, not only between different L. monocytogenes strains but also within the same strain. This shows how complex biofilm regulation can be and adds auto-repression as one more aspect to be considered when studying biofilm formation by this bacterium.

Keywords: Listeria monocytogenes; Pseudomonas fluorescens; mixed biofilms; antagonism; auto-repression

Monoculture and mixed biofilms of Listeria monocytogenes and Pseudomonas fluorescens – evidences of antagonism and self-repression

Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

Listeria monocytogenes is a pathogen responsible for severe illness with high mortality rates. It is frequently found in different kinds of food processing environments and its capacity to develop biofilms is an issue of major concern on food safety. Although many studies have been made concerning adhesion and biofilm formation by mono-cultures of L. monocytogenes, it is known that the vast majority of microorganisms in the natural environment and in the food processing environment occurs in multispecies biofilms. Several works have shown that association with strains belonging to other genus, as Pseudomonas, Flavobacterium and Staphylococcus, may increase or decrease L. monocytogenes attachment and biofilm formation, depending on the strain. In this work, both monoculture and mixed biofilms were performed in order to investigate how biofilm formation by different isolates of L. monocytogenes is affected in presence of Pseudomonas fluorescens. Moreover, taking into account the cases where an antagonism effect was found, different supernatants were collected and tested for their influence alone on biofilm formation by L. monocytogenes.

The L. monocytogenes strains assayed were CECT 4031 (collection strain), 747 and 994 (food isolates), 1562 (collection strain), and PF7A (food isolate). Each L. monocytogenes strain was tested for monoculture and mixed culture biofilm formation with each one of the P. fluorescens strains. Assays were performed during three days in 96-well microtitre plates, at room temperature (22 ± 2ºC) with shaking at 120 rpm. The medium used was BHI (replaced every 24 hours) and the suspensions were collected, centrifuged and filtered through 0.2 μm filters.

Results concerning monoculture and mixed biofilms formation revealed a significant decrease of biomass in biofilms formed by CECT 4031 and 1562 L. monocytogenes strains when in the presence of both P. fluorescens strains, with the strongest antagonist effect being found between 1562 and PF7A isolates. These two last isolates were then used to obtain supernatants to be applied during biofilm formation by CECT 4031 and 1562 L. monocytogenes strains, in order to infer about possible extruded metabolites that could influence biofilm formation. The results of this approach showed that PF7A +1562 mixed biofilm, 1562 overnight suspension and 1562 biofilm supernatants lead to a significant biomass decrease when applied on CECT 4031 biofilm formation. Although this does not help to explain the antagonism effect of PF7A upon this Listeria strain (which in turn may be associated with strictly intracellular quorum-sensing phenomena), it highlights an interesting repression within these two L. monocytogenes strains. Moreover, the auto-repression phenomena, not only between different L. monocytogenes strains but also within the same strain. This shows how complex biofilm regulation can be and adds auto-repression as one more aspect to be considered when studying biofilm formation by this bacterium.

Keywords: Listeria monocytogenes; Pseudomonas fluorescens; mixed biofilms; antagonism; auto-repression
Motility and biofilm formation ability of isolated vs collection *P. aeruginosa*: effect of single and combined antimicrobial application

Machado, J. Graça, and M. O. Pereira

IBIB, Institute for Biotechnology and Bioengineering Research, Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-587 Braga, Portugal

Biofilms can be defined as communities of microorganisms attached to a surface. During biofilm development, sessile cells acquire physiological characteristics differentiating them from planktonic cells which include an increased resistance to antimicrobial treatment. *Pseudomonas aeruginosa* is an opportunistic pathogenic bacterium, considered as the normal bacterial flora of the pharynx, mucous membranes and skin, and is widely investigated for its high incidence in clinical environments and its ability to form strong biofilms. When this organism is isolated from clinical settings, efforts should be made to substantiate its clinical relevance often using a collection strain as control. The current treatment to eradicate *P. aeruginosa* favours the use of empirical antimicrobial combinations, balancing the potential for greater toxicity against the lower emergence of antimicrobial resistance and the greater killing that might be achieved by combination therapies acting synergistically. Studies showed that co-application of antimicrobial agents in some cases allowed improvement of biofilm destruction compared with single drug attack. With this work it is aimed to characterize and compare isolated and collection *P. aeruginosa* regarding its motility and biofilm formation ability and how this is affected by single or combined antimicrobial treatment.

P. aeruginosa from collection (ATCC 10145) (PAC) and *P. aeruginosa* isolated (PAI) from a medical device (endoscope) were used as biofilm producers. Biofilms were formed for 24 h in 96-well plates, being then non- and treated with 1 mM of Benzalkonium chloride (BZK), 1 μg/mL of Ciprofloxacin (Cip), and a combination of both, for 30 min. BZK is applied as a clinical disinfectant and antiseptic in health care facilities and domestic households and Cip is an antibiotic used to treat urinary tract infections. Crystal Violet (CV) staining together with XTT, were used to assess total attached biomass and respiratory activity, respectively. To evaluate bacterial motility, swimming, swarming, and twitching assays were performed.

The data revealed that resulting PAI biofilms have less attached biomass and respiratory activity when compared to PAC biofilms. Also it was shown that alone none of the antimicrobial agents selected are effective on biomass clearance. BZK seems to favor biomass accumulation whereas Cip slightly affects only the PAI biofilm. Moreover, when combined, BZK and Cip seem to improve the detachment of both strains biofilms. As regards respiratory activity, when exposed to Cip attack only the strain biofilm was affected. On the other hand, BZK have promoted the PA and PAI biofilms activity decrease. Furthermore, the combined action of antimicrobial agents affects both biofilms activity. Regarding bacterial motility, results showed that the motility effects are mainly notorious in PAI, which have revealed larger diameters of the migration zones in all the assays. The flat colony suggests that these strain spread mostly by swimming motility.

This study allowed understanding that the combination of two antimicrobial agents might not be an advantage in what concerns to *P. aeruginosa* biofilm removal, and thus to surface disinfection. Comparing both strains, it can be concluded that PAI have less ability to attach the surfaces and to develop biofilm than PAC. Taking into account that PAI is constantly under stress conditions provided by the exposition on its natural environment, this isolated strain probably developed resistance mechanisms that may led to phenotypic changes at locomotive appendix level (flagella and pili). These cell surface structures where shown to play an important role in the early events of biofilm development in a wide variety of surfaces, namely by making possible the flagellum-mediated swimming movement and further *P. aeruginosa* surface contact.

Keywords: Biofilm; *P. aeruginosa*; Antimicrobial agents; Motility, Locomotive appendixes

On site monitoring of biofilm formation on quartz quarries using colorimetric techniques

B. Prieto, N. Aira, P. Sanmartín and B. Silva

Quarries and other mining activities cause an important impact on the landscapes and the companies are obliged to restore the degraded areas. In the case of quartz exploitations the common techniques for reducing the visual impact, based on the re-vegetation of open-rock faces, are not efficient due to the characteristics of the mineral (chemically inert, very hard and with very low porosity and, consequently, with low capacity of water absorption). As an alternative technique, the induction of biofilms on quartz surfaces was evaluated.

In this work we present the results of the monitization of biofilm development on quartz surfaces in the “Serrabal” quarry (Vedra, A Coruña, NW Spain), where a highly pure white quartz is extracted. Test areas from selected open-rock faces were inoculated with microorganisms isolated from biofilms that had grown spontaneously on quartz outcrops close to the mine, and water and different nutritional products were applied on the test areas in order to favour the development of biofilms. The biofilm microorganism composition was characterised by molecular biology techniques, which permitted to identify algae, cyanobacteria and bryophyte species.

Biofilm development was monitored on site by colour measurements, according to previous studies which demonstrated that colour measurements allow accurate quantification of colonization progress by coloured organisms directly on the field, even when the level of colonization is not detectable by the human eye (Prieto et al. 2002; Prieto et al. 2004). Colour measurements were carried out using an portable spectrophotometer and were expressed within the CIEL*a*b* colour space. ΔE*, total colour difference, was the parameter that best reflected the biofilm evolution, as its values increased not only during the experimental period (four months) but also 22 months after (Figure). The evaluation of the chromatic parameters (a*, b*, and C*) and luminosity (L*) permitted to determine the beggining of biofilm development and also to evaluate its physiological evolution along time.

Keywords: on site monitoring, CIELAB colour measurements, biofilm induction.
PAH degrading Bacterial community from the Sea Surface Microlayer in an estuarine system

Francisco J.R.C. COELHO1,2, Sara SOUSA1, Ana L. SANTOS1,2, Newton C. M. GOMES1,2, Adelaide ALMEIDA1,2 and Ângela CUNHA1,2

1 Department of Biology, University of Aveiro, 3810-193 Aveiro
2 CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

The sea surface microlayer (SML) is a thin biogenic film on the surface of the water bodies that physically bounds the ocean and the atmosphere. Due to its hydrophobic nature, important amounts of autochtonous and anthropogenic recalcitrant compounds such as polycyclic aromatic hydrocarbons (PAH), tend to concentrate in the SML, in relation to the UW. Although it is accept that such levels of contamination may activate the bacteria communities capable of degrading this compounds, little is known about their structure. The aim of this study is to compare the bacterioneuston and bacterioplankton communities in terms of abundance and structural diversity along a PAH contamination gradient in an estuarine system. The culturable fraction of PAH degrading bacteria from the SML was also characterized. Fluorescence In Situ Hybridization (FISH) was applied to study total microorganism abundance and quantification of Bacteria and γ-Proteobacteria specific groups. Denaturing Gradient Gel Electrophoresis (DGGE) was applied to access diversity of 16S rRNA gene fragments and Pseudomonas-specific gacA gene fragments. PAH degrading bacterial strains were isolated using naphthalene as a sole carbon source. PAH microorganisms abundance was similar between the two compartments of the water column. The relative abundance of the Bacteria domain was also similar between the SML and UW. The γ-Proteobacteria subclass showed the highest values at the estuarine sections where the concentration of low molecular weight PAH was highest. According to the DGGE profiles of 16S rRNA gene fragments, the overall bacterial diversity was similar in bacterioneuston and bacterioplankton communities. Pseudomonas-specific gacA gene fragments analyses suggest that diversity of this genus is higher in the SML. Pseudomonasaceae and Enterobacteriaceae families were the dominant PAH degraders in the culturable fraction of the bacterioneuston in a contaminated site from the estuarine system Ria de Aveiro.

Keywords sea surface microlayer; polycyclic aromatic hydrocarbons; bacterioneuston.

Phosphomonoesterase and phosphodiesterase activities of cultured phototrophic biofilms

N.T.W. Ellwood 1, F. Di Pippo 2 and P. Albertano 2

1Department of Geological Sciences, University of Rome “Roma Tre”, Largo San Leonardo Murialdo 1, 00146 Rome, Italy; 2LABA-Laboratory for Biology of Algae, Department of Biology, University of Rome “Tor Vergata”, via della Ricerca scientifica 1, 00133 Rome, Italy.

An increase in extracellular phosphatase activity has often been reported as response to phosphorus limitation in a wide range of organisms. An increase in activity indicates a potential to degrade organic matter and is closely coupled with phosphorus (P) uptake. A study of phototrophic biofilms reconstructed of strains isolated from a wastewater treatment plant was undertaken and cultures started under diverse phosphorus regimes in a continuous flow incubator, P replete, P limited and organic P only. Artificial colormetric substrates that produce a colorimetric product when hydrolysed were used to determine phosphomonoesterase (PMEase) and phosphodiesterase (PDEase) activities of the cultures over an 18 day incubation period. PMEase and PDEase activities of full biofilms, cells only, and medium were measured and compared with biofilm nitrogen (N) and P content, and biomass accumulation (dry weight).

Biofilm growth was higher under P repletion than the P limited and organic P treatment; growth under the latter two treatments was not significantly different. Under all treatments there was a decrease in cellular P during growth suggesting growth dilution of cellular P. As a function of dry weight, biofilm phosphorus content decreased whilst nitrogen was generally unchanged and resulted in large increases of the biofilm N:P ratio indicative of stoichiometric P limitation. PMEase and PDEase were measurable on each occasion for all biofilms possibly a result of continual P requirement due to biofilm nutrient status (growth dilution of P or the increase in N/P) or the presence of constitutive activity. The P content of the organic P biofilm was high compared to the P replete biofilms and indicates the efficiency of phosphate mediated P uptake, although this was aided to some degree by the slowing of growth to maintain cellular P levels.

Sites of phosphatase activity were mainly cellular (PMEase, 59%; PDEase, 77% of the total activity) compared to the activity in the matrix. Activity was almost entirely restricted to the biofilm as phosphatases were not released into the medium. This suggests that biofilm P requirements are mostly met by recycling of biofilm derived organic material and interstitial sources. PDEase has been shown to be a secondary response to higher P limitation and this would adequately explain the increase of PDEase activity later in the incubation period when biofilm P content decreased to around 0.5% of the dry weight. The use of cultured biofilms was shown to be a useful tool in unravelling the complex processes involved in nutrient acquisition and utilization within these complex microbial communities.

Keywords Phosphomonoesterase, phosphodiesterase, biofilm, phototrophs, phosphorus limitation, nutrient status, N/P ratio
Plasmids, antibiotics and their influence on the formation of dynamic
Escherichia coli biofilms

J.S. Teodósio, M. Simões, L.F. Melo, F.J. Mergulhão

Faculdade de Engenharia da Universidade do Porto, PORTLEP – Laboratory for Process, Environmental and Energy Engineering, Porto, Portugal

Escherichia coli is commonly used as an indicator organism for food and water contamination and is frequently found in biofilms formed on piping systems. However, compared to the wealth of information concerning biofilm formation by other Gram negative bacteria, such as several members of the *Pseudomonas* genus, comprehensive information regarding the dynamic formation of *E. coli* biofilms is not yet available.

For certain *Pseudomonas* species it is known that biofilm-forming cells are more resistant to antibiotic treatment than their planktonic counterparts. However, these findings were made using cells that are naturally susceptible to these antimicrobial agents.

On this work we set out to investigate the influence of antibiotic addition on the biofilm-forming capacity of cells that have been transformed with a plasmid conferring resistance to kanamycin. Thus, we have compared the kinetics of biofilm formation using “empty” *E. coli* JM109(DE3) cells grown on a glucose containing medium (case 1) with the results obtained when these cells were previously transformed with the pET9a vector and the medium supplemented with 20 µg/mL of kanamycin (case 2).

Kanamycin is members of the aminoglycoside family of antibiotics that enter the cytosol and interact with ribosomal proteins, thereby causing inhibition of protein synthesis and an increased frequency of translational errors. Kanamycin resistance genes have been extensively used as selective markers on several recombinant vectors such as pET9a (from Novagen). These genes encode bacterial aminophosphotransferases that inactivate kanamycin by transferring one phosphate from ATP to a specific position on the antibiotic molecule.

In order to assess the influence of the plasmid and of the antibiotic presence on the biofilm-forming capacity of the cells we have used an experimental system that includes a recirculating tank, where planktonic cells grow, and a flow cell system for biofilm formation. This flow cell is composed by a poly(methyl methacrylate) semicircular duct with 10 apertures on its flat wall where several removable rectangular pieces (coupons) are placed. Sampling is performed by stopping the flow, removing the coupon of interest, replacing it with a sterilized one and starting the flow again.

When no antibiotic is added (case 1) planktonic cell culture reaches a much higher optical density than the one attained in case 2 (transformed cells and antibiotic added). Since the culture medium composition is the same in both cases we speculated that the metabolic burden of hosting a high-copy plasmid and/or the resource drain caused by the expression of the resistance gene might be responsible for this decreased cellular concentration. However, by analyzing the biofilm cells we see that *E. coli* JM109(DE3) grown without antibiotic (case 1) maintain a relatively constant cellular density of approximately 8.20E6 cells/cm² throughout the experience whereas when transformed cells are used and the antibiotic is added (case 2) the number of attached cells increases along the experimental time reaching a maximum value which is much higher than the average value attained in case 1. Additionally, comparing the biofilm wet weight and thickness we have observed that when transformed cells are used (case 2) thicker and heavier biofilms are obtained. Thus, it seems that the primary effects of either the expression of antibiotic resistance genes and/or the maintenance of a high-copy plasmid are a shift from planktonic to sessile state, allowing the formation of more phenotypically complex biofilms.

Keywords: Biofilms, plasmid, *Escherichia coli*, antibiotic

Acknowledgements: This work is funded by project PTDC/ECB/69092/2006, from the Portuguese Science and Technology Foundation (FCT).

Pseudomonas fluorescens ER74508 adherence to polymer networks made of polydimethylsiloxane and/or cellulose acetate butyrate

P. Lembèré1, S. Cantin-Rivière2, S. Péraltà3 and P. Di Martino4

1 Laboratoire ERRMECe, UFR sciences et techniques, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, BP 222, 95302 Pontoise, France.

2 Laboratoire LPP, Université de Cergy-Pontoise, 5, mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise Cedex, France.

Pseudomonas fluorescens is a psychrotrophic bacillus frequently found in water and soil, sometimes in association with plants, animals, and man. *P. fluorescens* isolates from various ecological habitats have the capacity to adhere to and thus contaminate several surfaces, including human respiratory epithelium, plant material, and inert surfaces. The main objective of this work was to study *P. fluorescens* adhesion to polymers as a function of material topography and surface free energy. The previously described *P. fluorescens* ER74508 clinical isolate was used as the tested strain. Two different chemical polymers were used: α,ω-diacylact-polydimethylsiloxane (PDMS) and cellulose acetate butyrate (CAB).

The PDMS network was synthesized by free-radical polymerisation with 2,2-Azobis isobutyronitrile (AIBN). The CAB network was synthesized by isocyanate-alcohol addition between the OH function of the CAB oligomers and NCO pluri-isocyanate crosslinker (Desmodur N 3300®). Polymer networks were also synthesized with different mass compositions (w/w): 100% CAB, 75% CAB + 25% PDMS (75/25), 50% CAB + 50% PDMS (50/50), 25% CAB + 75% PDMS (25/75) and 100% PDMS. The unreacted material that remained in the network after polymerization was determined by extraction with dichloromethane. After extraction, the samples were dried under vacuum at 50°C and weighted. The extracted content (EC) is the ratio between the weights of samples before and after extraction expressed as a percentage. EC was lower than 9% for all the networks and than 4% for most of them. All synthesized samples were transparent indicating that there is no phase separation at the microscopic scale.

The physical and chemical properties of the networks were analysed by Dynamic Thermal Analysis (DTA), atomic force microscopy (AFM), and dynamic contact angles measurements. DMTA revealed that the 75/25 and 50/50 networks were correctly interpenetrated, 25/75 samples were inhomogeneous.

These three combinations of polymers have nearly the same surface energy. Among the five studied networks, two distinct profiles of surface topography were observed: the 100% PDMS, 75/25 and 50/50 networks are very smooth with a roughness close to one nanometer while the 100% CAB and 25/75 samples have a roughness of respectively 7 and 20 nm.

Bacterial suspensions calibrated at 10⁸ cells/ml were incubated with the polymer networks at 37°C for 3 hours and adherence was quantified by ATP-metry after elimination of planktonic cells by washings. Two levels of adherence were obtained: maximal adherence to 100% CAB and 25/75 networks and minimal adherence to 75/25, 50/50 and 100% PDMS networks. Adherent bacteria and exopolysaccharides were visualised by epifluorescence microscopy after staining with DAPI, TRITC conjugated peanut agglutinin and FITC-conjugated Concanavalin A lectins.

In conclusion, we produced polymer networks with different compositions and determined the relation between the physical and chemical properties of the networks and bacterial adherence. For mixed polymer networks, the nanotopography had a high influence on *P. fluorescens* adherence: a roughness increase was associated with an adherence increase. An increase of the nanotopography promoted adherence of microcolonies. Smoother surfaces favoured adherence of scattered bacteria. The influence of the nanotopography onto slower colonisation processes i.e. biofilm formation is under study at our laboratory.

Keywords: *Pseudomonas fluorescens*, polymer networks, adherence, nanotopography.
Quantification of stone biofilms: incomplete factorial designs for the optimization of phytopigment extraction in dimethyl sulfoxide.

I. Fernández-Silva1, P. Sanmartín1, B. Silva1, A. Moldes1,2, and B. Prieto1

1Departamento de Edafología e Química Agrícola, Facultade de Farmacia, USC, 15782 Santiago de Compostela, Spain
2Departamento de Enxeñería Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain

Stone surfaces constitute an adequate environment for the formation of biofilms, which accelerate the deterioration of works of art built on this material. Thus an efficient method for the quantification of photosynthetic growth on rock surfaces is an indispensable tool for the study of the conservation of monuments and the bioreceptivity of building materials. In a previous work we observed that the application of ultrasound improves the extraction efficiency of phytopigments from rock materials, commonly used as biomarkers for the quantification of biomass.

In this work we followed an incomplete factorial design in order to optimize the experimental conditions of phytopigment extraction in dimethyl sulfoxide (DMSO), specifically from rock materials after application of ultrasound. The independent variables were extractant:sample ratio, temperature and duration of extraction. The experimental data allowed the development of empirical models for each phytopigment, describing the interrelationship between operational and experimental variables by equations, including linear, interaction and quadratic terms. The model predicted that the application of ultrasound directly to the intact samples followed by incubation in 0.43 DMSO:sample (vol/surface) at 63°C during 40 min will release at least 90% of total chlorophyll-a. This method will allow to detect and quantify the biocolonization of stone surfaces at early stages.

Quantification of stone biofilms: phytopigments extraction improvement by application of ultrasonic methods.

I. Fernández-Silva1, P. Sanmartín1, B. Silva1, A. Moldes1,2, and B. Prieto1

1Departamento de Edafología e Química Agrícola, Facultade de Farmacia, USC, 15782 Santiago de Compostela, Spain
2Departamento de Enxeñería Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain

Biofilm formation on rock surfaces constitutes a problem for the conservation of monuments and buildings. Chlorophyll-a is a commonly used biomarker for the quantification of photosynthetic growth, however its total extraction from rock materials is incomplete. In this work we assayed the application of ultrasounds in order to improve the extraction efficiency of phytopigments in dimethyl sulfoxide (DMSO).

For this purpose, biofilms were allowed to develop on 6x6x1 cm rock blocks and three mechanical treatments were assayed prior to phytopigment extraction: in the first case, the samples were crushed (control), in the second, ultrasonic bathing was applied to the crushed blocks, and in the third treatment, ultrasound was applied directly to the intact block samples with the help of an ultrasonic tip generator. Subsequently, extraction in DMSO was carried out at different experimental conditions and the concentration of chlorophyll-a, chlorophyll-b and total carotenoids was measured with the help of an spectrophotometer. The results achieved allowed to conclude that the application of ultrasounds improves the extraction efficiency of phytopigments from rock materials, even when it is applied directly to the intact rock samples.
Role of planktonic and sessile extracellular signals on interspecies relationships

S. P. Lopes, I. Machado, M. J. Vieira, M. O. Pereira

IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

It is well established that in nature, bacteria are found primarily as residents of surface-associated communities called biofilms, which are likely to consist of consortia of species that influence each other in synergetic and antagonistic manners. Although few reports specifically address interactions within multispecies biofilms, recent studies have shown that certain bacterial species, as a microbial defence mechanism, secrete extracellular products that interfere with biofilm formation and cell-to-cell communication. This study aimed to evaluate whether synergetic or antagonistic associations occur during multispecies planktonic growth and, single and binary biofilm formation and activity.

P. aeruginosa (ATCC 10145) and Escherichia coli k12 were the strains used in this study. Previously, supernatants obtained under planktonic and biofilm cultures of each single species were recovered, filtered and stored for further experiments. The latter supernatants were supplemented with TSB and used as the growth media to planktonic and sessile growth of both single- and two-species cultures. Planktonic bacterial growth on 96-wells plates was examined through OD absorbance measurement. Biofilms were obtained after 24 h and evaluated in terms of biomass, through CV and respiratory activity, with XTT. For dual-species growth it was used a combination of 50% of suspended inocula of each species.

Results indicated that both biofilm supernatants had an inhibitory effect on the growth of all planktonic cultures, mainly in the exponential stage. Conversely, single- and two-species planktonic growth has been stimulated in the presence of the P. aeruginosa planktonic supernatant. Concerning biofilm studies, it was found that the supernatants resulting from bacterial biofilm cultures favoured biomass accumulation. This may be due to the release of signalling molecules secreted by bacteria within the biofilms, inducing neighbouring cells to shift from planktonic to sessile growth. None of the supernatants tested had effect in P. aeruginosa biofilms, although all stimulated E. coli biomass accumulation. Concerning E. coli biofilm supernatant, all the biofilms formed in this medium showed biomass increase, more pronounced for dual-species biofilms. Thus, it is possible that E. coli have produced signalling molecules for the bulk media that later may be on the basis of a cooperative biofilm formation by both strains. Regarding respiratory activity, it was observed that this parameter was not significantly altered as biomass values.

However, it was noted a slight decrease when the biofilms grew in planktonic supernatants, probably due to the presence of a secondary metabolite released by bacteria in planktonic conditions that can disturb biofilm activity. Since few studies have reported the complex web of interactions within biofilm communities, those results help to understand the behaviour of bacteria when facing microbial defence mechanisms promoted by other species.

Keywords: biofilms; synergetic interactions; biofilm growth

Survival of Listeria monocytogenes in a desserts factory: evaluation of the sanitization treatments employed and of its infrastructure.

M. Campsdepadros Sans, R. Solà Aimerich, A.M. Stechigel Glikman, J. Quilez Grau, M. Romeu Ferran

1 Unit of Research in Lipids and Artherosclerosis - Department of Medicine and Surgery, Faculty of Medicine and Sciences of the Health of Reus. University Rovira I Virgil, C/ Sant Llorenç, 21 - 43201 Reus, Spain
2 Unit of Microbiology - Department of Basic Medical Sciences, Faculty of Medicine and Sciences of the Health of Reus. University Rovira I Virgil, C/ Sant Llorenç, 21 - 43201 Reus, Spain
3 Unit of Human Nutrition - Department of Biochemistry and Biotechnology, Faculty of Medicine and Sciences of the Health of Reus. University Rovira I Virgil, C/ Sant Llorenç, 21 - 43201 Reus, Spain
4 Unit of Pharmacology - Department of Basic Medical Sciences, Faculty of Medicine and Sciences of the Health of Reus. University Rovira I Virgil, C/ Sant Llorenç, 21 - 43201 Reus, Spain

Listeria is a rare but clinically important disease caused by Listeria monocytogenes (LM), which produces severe effects on the health of the susceptible population, as immunodepressed people, infants and pregnant women. This bacterium can grow at food-storage temperatures and possess potential for long-term survival, and also has the ability to form biofilms as a protection to disinfectants and antimicrobials. Many foods could be contaminated with LM, but the most dangerous are, principally, the kind “ready-to-eat” (RTE). Epidemiological investigations about food-borne illnesses demonstrated that the presence of vegetative pathogens was frequently due to post-process recontamination, being the surfaces and the environment (probably) the most important elements for these events.

At the present work, we have evaluated a dessert-making factory designed with white rooms, filtered-air positive-pressure (FAPP), hand sanitizer systems, boot washer machines, refrigerated rooms, application of HACCP principles, and different protocols for raw materials treatment. They adopted a program based on two-sort working areas, having different levels of biological risk: the high-risk zones in which happens direct contact between food and surfaces, and low-risk areas within the production facilities (walls, floors, drainage, etc.). The goals were to determine the efficiency of cleaning and disinfection treatments against the persistence of LM in the rooms for food preparation, and to evaluate the pathogen activity and biofilm formation at refrigeration temperature, especially those areas difficult to clean and persistently moist.

Microbiological sampling for LM detection on the surfaces in contact with or without foods, was through smear 10 x 10 cm areas using pre-moistened hyssops, inoculating those into a selective chromogenic broth (Path-Chek Hygiene Listeria Detection Broth), and incubating at 28 - 30°C/+1ºC by 24-48 hours. Positive tests (black colour) were confirmed using API Listeria (ISO 11290.1).

LM was not detected on the surfaces in contact with food, and positive results were restricted to low-risk zones, with 15,2% (N= 164) before the cleaning treatment and 6,9% (N= 333) after doing sanitization. The areas where the bacterium was persistent were circumscribed basically to the floor (either in the sanitary entrance) or in different elements that contacted directly with the floor (shoe soles, steps of stairs, water ponds for shoes sanitizing, beside drains, etc.). There is specially troubled for an integrated hygiene control (it includes baths for shoes sanitizing, automatic hands washing, hands-drying by towel paper and hands sanitizing). All these results show a potential risk to transfer LM from different environments of the factory to the final products.

Keywords: Listeria monocytogenes; survival; food processing; refrigeration temperature
Use of Biosurfactants to reduce adhesion of *Staphylococcus aureus* to plastic surfaces.

Valle, M.Z.; Massocco, M.M.; Nitschke, M.

Microbial Biotechnology Lab., Chemistry Institute of São Carlos, University of São Paulo, Avenida Trabalhador São-Carlense, 400. CEP 13560-970. São Carlos – SP – Brazil.

Introduction. Microbial adhesion to surfaces is considered the main event involved in biofilm establishment. Bacteria growing on biofilms are more tolerant to chemical and physical treatments thus; they are a cause of great concern for food processing and in biomedical field since bacteria can colonize medical devices and food contact surfaces representing an important source of contamination. Extensive efforts have been directed to avoid bacterial attachment; among them, the change on surface properties by conditioning with biosurfactants (BS) has been studied. Biosurfactants, surface active products of microbial origin, have several advantages over synthetic surfactants. BS have low toxicity, are biodegradable, present chemical diversity, are effective under extreme environmental conditions, such as temperature, pH and ionic strength, show strong surface activity and emulsifying ability and have antimicrobial and anti-adhesive properties. In additional BS can be obtained from renewable substrates, reducing the costs and enlarging the possibility of commercial production. The aim of this work was to verify the potential use of biosurfactants in inhibiting adhesion of growing cells of *Staphylococcus aureus* ATCC 25923 on polystyrene (PS) surfaces.

Materials and methods. Two biosurfactants were used: Surfactin from * Bacillus subtilis* and Rhamnolipid (Jeneil JBR599) at 0,1% aqueous solution. Polystyrene microplates were filled with 200µL of each biosurfactant for 24 hours, and after gently washing with water, they were filled with 180µL of TSYE broth. A bacterial suspension was made with water and 200µL of this suspension was inoculated in each well containing the broth and incubated at 35°C for 48 hours. At time defined intervals the wells were washed with water, fixed for 15 minutes with methanol and stained for 15 minutes with violet crystal 1%. After washing with water, the stained wells were discolored with 200µL acetic acid. The optical density (630 nm) of this stained solution was used for the measurement of adhered cells. Unconditioned plates were used as control.

Results. Results showed that the pretreatment with surfactin solution was able to reduce significantly the adhesion of *Staphylococcus aureus* to the plastic surface. After two hour contact surfactin reduced the adhesion by 77% however, the reduction level was decreased at long time intervals. The conditioning with commercial rhamnolipid did not show a significant decrease in adhesion levels.

Conclusion. These results suggest that surfactin have good potential as anti-adhesive agent to control *Staphylococcus aureus* adhesion.

Keywords adhesion; biosurfactants; *Staphylococcus aureus*; surfactin; rhamnolipids

Acknowledgements to FAPESP for financial support.

Adaptation of Novosphingobium sp. PPIY to grow on complex mixtures of aromatic compounds dissolved in oil phases

E. Notomista, V.Cafaro, V.Izzo, L. Troncone, G. Smaldone, N. D’Urso, F. Garzillo, M. Varcamonti, and A. Di Donato

Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Via Cintia, I-80126 Napoli and CEINGE-Biotecnologie Avanzate S.c.ar.l., Napoli, Italy.

Aromatic compounds are among the most widespread and dangerous environmental pollutants. Several polycyclic aromatic hydrocarbons (PAH), like naphthalene and phenanthrene, are very toxic for aquatic organisms, whereas, benzene, chrysene, benzo[a]anthracene, benzo[a]pyrene and aromatic amines are carcinogenic and represent a direct risk for human health. The main sources of aromatic compounds released into the environment are fuel oil spills which occur not only during accidents involving oil tankers but daily during fuel transfers, thus generating a widespread hydrocarbon pollution.

The so-called “obligate hydrocarbonoclastic bacteria” (OHCb), like Alkanivorax, Marinobacter and Oleispira, are among the most effective oil degraders. However, OHCbs degrade prevalently or exclusively the saturated fraction of petroleum and oil fuels. The most effective degraders of aromatic compounds belong to Sphingomonadales (Gram-), Pseudomonadales (Gram-), and Mycobacteria (Gram+).

We have recently characterized a novel Sphingomonadales, *Novosphingobium* sp. PPIY, isolated from surface seawater samples collected inside a closed bay for the docking of small boats in the harbour of Pozzuoli (Naples, Italy). The strain PPIY not only uses a surprisingly large number of mono and polycyclic aromatic compounds as the sole carbon and energy sources but it shows a very interesting and effective adaptation to grow on complex mixtures of aromatic compounds dissolved in oil phases like diesel-oil and gasoline.

Novosphingobium sp. PPIY showed the ability to form “biofilm” on several types of hydrophobic surfaces and, in water/oil systems, to operate the emulsification of the oil phase to small drops with a diameter ≤ 1 mm. Analysis of diesel-oil emulsions by phase contrast microscopy revealed that each diesel-oil drop is covered by a biofilm containing bacterial cells at a density which roughly increases with the incubation time. These finding suggest that *Novosphingobium* sp. PPIY has developed a “mechanical” emulsification strategy based on physical entrapment of small quantities of oil phase. Interestingly, no paraffin-dissolved single aromatic hydrocarbon reproduces all the features of the diesel-oil grown cultures, even if the paraffin phase is always emulsified to small drops scarcely covered by cells. All the features of the diesel-oil grown cultures could be reproduced instead using paraffin containing a mixture of 1% p-xylene (a mono-cyclic hydrocarbon), 2% naphthalene (a bi-cyclic hydrocarbon), 1% phenanthrene (a tri-cyclic hydrocarbon) and 1% pyrene (a tetra-cyclic hydrocarbon). Mixtures lacking pyrene or with a reduced concentration of pyrene result in oil drops with incomplete biofilm and few cells attached on the surface. Few other aromatic compounds, like propylbenzene, tetrahydroanaphthalene, dibenzofuran and dibenzothiofene, show a behaviour similar to pyrene.

Also cultures of strain PPIY grown in rich medium are able to emulsify paraffin and diesel oil producing small drops scarcely covered by cells. The supernatants of these stationary cultures are able to stabilize the paraffin droplets produced by shaking a paraffin/water biphasic system. These oil droplets remain stable for more than one week. SDS-PAGE of these supernatants show the presence of several extracellular proteins not present in cell pellets, whereas, no or few polysaccharides (EPS) can be found. These data allow to propose an intriguing mechanism for the formation of the biofilm-covered diesel-oil droplets. It may be hypothesized that extracellular biomolecules (likely proteins) secreted by strain PPIY bind and stabilize oil droplets generated by shaking. Cells can thus utilize the surface of these coated drops and produce the extracellular matrix. The biofilm composed by cells and extracellular matrix would increase the mechanical stability of drops. The surface colonization step and/or the secretion of the extracellular matrix could be induced or stimulated by the presence in the oil phase of some aromatic compounds like pyrene, propylbenzene, tetrahydroanaphthalene, dibenzofuran and dibenzothiofene which are present in small amount in the heavy fractions of petroleum like diesel-oil and boat diesel-oil but not in the light fractions as in gasoline. These aromatic compounds would act as signal molecules indicating to cells that an oil phase is adapt to colonization.

Keywords monoxygenase; hydroxytyrosol; bioconversion.
Advances on Pentachlorophenol Bioremediation by the Ascomycota fungus *Penicillium glandicola*

M.B. Carvalho¹, S. Tavares¹, I. Martin's¹, M. C. Leitão¹, C. Rodrigues¹, I. McLellan¹, M. V. San Romão¹,²,³, A. Harthouse¹ and C. Silva Pereira¹,²,³

¹Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, apartado 127, 2781-901, Oeiras Portugal
²IBET, apartado 12, 2781-901, Oeiras Portugal
³Faculty of Science and Technology, University of the West of Scotland, Paisley Campus, PA1 2BE, UK

Estação Vitivinícola Nacional (EVN), Dois Portos Rovisco Pais, 1049-001 Lisboa, Portugal

During the last century, Pentachlorophenol (PCP) has been used worldwide as pesticide, biocide, herbicide and wood preservative. PCP may persist for a long time in the environment mainly due to its moderate chemical stability and physical properties. Currently, due to its toxicity to humans and other organisms, its use is significantly restricted. However, past use and unsuitable legislations in some countries, together with the trans-boundary nature of PCP, have resulted in global PCP contamination of terrestrial and aquatic ecosystems.

Microbial transformation of pollutants by endogenous soil microflora is a major component in their environmental fate. Amongst the soil microbial community, fungal species are especially important, as they secrete a variety of extracellular enzymes, which ensure the decomposition of the highly recalcitrant lignin/cellulose composites and the breakdown of xenobiotic compounds. Up to now, the best studied fungal species belong to the Basidiomycota phylum, with the other phyla seldom studied. However, some studies emphasise the significance of fungi from the Ascomycota and Zygomycota phyla to have potential to be used in the biodegradation of PCP.

While testing fungal strains from the cork colonising community, it was observed that fifteen of the seventeen strains tested could degrade PCP to a certain extent. Additionally, PCP in media was completely degraded co-metabolically by *T. longibrachiatum, P. glandicola* and *M. plumbbeu* and metabolically by those and *P. janczewskii* and *C. stigmaphila*¹. Their environmental significance is noteworthy, when their wide distribution from soils and decaying fruits to wood is considered.

Penicillium glandicola was recognised as a model for the present study, which aims at identifying PCP degradation intermediates, leading to a better understand of its degradation pathways. PCP abiotic and biotic decay, in submerged fungal cultures, was monitored with time, by liquid chromatography. PCP degradation rate was observed to be dependent on the glucose concentration in media. The characterisation of PCP sub-products is on-going, preliminary identifying (using liquid chromatography) the compounds which are apparently associated with PCP decay. Ultimately, in order to advance our understanding of the PCP degradation pathway used by *P. glandicola*, comprehensive 2D proteomic analyses are being undertaken (both at the intracellular and extracellular level).

Keywords: Ascomycota fungi; *Penicillium glandicola*; Pentachlorophenol; Bioremediation; liquid-chromatography; proteomics

Acknowledgements: MBC is grateful to FC&T for the fellowship SFRH/BD/38205/2004. The work was partially supported by FC&T (POCTI/AM527/742004) and by NATO (ESF/MD/SFP 981674)

An integrated approach involving chemical and ecotoxicological evaluation of the efficacy of a bioremediation tool based on bioaugmentation with *Pseudomonas* sp. ADP in soils contaminated with atrazine commercial formulations

C.P. Costa¹, S. Chelinho², M. Moreira-Santos², P. Viana³, S. André³, D.B Líma¹, R. Ribeiro¹, A.M. Fialho¹, J.P. Sousa², C.A. Viegas³

¹IHIB-Instituto de Biotecnologia y Bioengineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
²IMAR – Instituto do Mar, CIC, Departamento de Zoologia, Universidade de Coimbra, 3004-517 Coimbra, Portugal;
³APA-Agência Portuguesa do Ambiente, 2611-665 Amadora, Portugal

Atrazine, an s-triazine herbicide, is among the most frequently detected pesticides in soil and freshwater. Over-use and accidental spills are major threats, resulting in concern regarding the impact of this herbicide and of its toxic metabolites on human and ecosystems health. These facts have promoted search for efficient bioremediation strategies for atrazine polluted environments. *Pseudomonas* sp. ADP is one of the best characterized atrazine-mineralizing bacteria. A previous study, based on mineralization assays carried out in small closed microcosms spiked with pure ¹⁴C-labelled atrazine, showed that bioaugmentation with *Pseudomonas* sp. ADP combined with soil amendment with organic acids could be a promising approach to cleanup soil polluted with high herbicide concentrations [1]. In the present study, we examined this potential bioremediation strategy in larger open soil microcosms for optimization under more realistic conditions. A representative crop soil from Central Portugal was spiked with two herbicidal commercial formulations, one containing atrazine as single active ingredient [2] and another one also containing the chloroacetanilide herbicide s-metolachlor. Doses higher than the recommended dose for agricultural application, namely between 10- and 200-fold, were tested, mimicking over-use and spill scenarios. Contaminated soils were inoculated with the bacterial inoculum (~1x10⁸ CFU/g of soil) and amended with citrate solutions or not amended. To monitor the efficacy of this bioremediation tool, chemical analysis and ecotoxicological assays were carried out in soil samples and in water extracts (elutriates, leachates) from bioremediated and non-bioremediated soils. Data will be presented integrating atrazine biodegradation in soil microcosms and the efficacy of soil cleanup based on the ecotoxicological evaluation. Results show that one sole bacterial inoculation or several successive inoculations plus biostimulation, depending on the initial level of soil contamination with the herbicide, allowed rapid (in 1 week) and almost complete removal of atrazine from soil (> 98% of initial), even though atrazine mineralization was apparently not complete in the bioremediated soils [2]. Importantly, in the case of the soils spiked with the herbicidal formulation containing atrazine as single active ingredient, atrazine and possible toxic intermediary metabolites seemed to be reduced to levels that are no longer toxic to aquatic organisms (*P. subcapitata* and *D. magna*) and to a plant (*Avena sativa*), demonstrating a clearly effective soil detoxification. On the contrary, for the soils spiked with the mixed commercial formulation, apparently atrazine biodegradation was not accompanied by soil detoxification. Results stress the importance of monitoring ecotoxicity before and after the implementation of a bioremediation approach, besides chemical analysis, to obtain a more realistic glimpse of its potential ecological impact.

Acknowledgments: to FEDER and FCT, Portugal (contracts PPCDT/AMB/56039/2004 and PTDC/AMB/64250/2006 and grants to SC and MMS)

References:

Keywords: atrazine biodegradation; *Pseudomonas* sp. ADP, ecotoxicological assessment, bioremediation efficacy
Applied genetic engineering in the removal of heavy metals
V. Almaguer Cantú1, I. Balderas Renteria2, K. Arévalo Niño1 and L. H. Morales Ramos1
1 Instituto de Biotecnología, F.C.B., Universidad Autónoma de Nuevo León. Ave. Universidad 66451, San Nicolás de los Garza, N.L. México
2 INGGEN, F.C.Q. Universidad Autónoma de Nuevo León. Ave. Guerrero 66430, Monterrey, N.L. México

The heavy metals dissolved in water cause a very aggressive contamination for the aquatic organisms. Some microorganisms present the capacity to accumulate heavy metals in their interior, and later on the heavy metals are passed to more organisms. Therefore, recoveries of heavy metals from wastewater from industries are an important issue for environmental protection and remediation. One of the most popular technique employed for to solve this problem, has been the bioremediation. Biological systems share or arise many peptides and proteins as metal transporters and among those, metallothioneins are one of the most efficient. Metallothioneins are small cysteine-rich proteins with a low molecular weight capable of binding heavy metal ions such as Zn2+ and Cd2+. They are ubiquitous tissue components in higher organisms, which tentatively have been attributed both unspecific protective functions against toxic metal ions and highly specific roles in fundamental zinc-regulated cellular processes. Metal bind to metallothioneins in a coordinated tetrahedral mode or motif by cysteinic sulfide and such structural coordination allow showing 2 motifs consisting in 11 cystein residues binding to 4 metal ions and 9 cystein residues binding to 3 metal ions. Cellular accumulation process with microorganisms optimized by recombinant technologies could overcome the deficiencies of common metal cleanup processes and maybe an alternative for removal and recovery of heavy metals from contaminated water or soil. In this study, genetically engineering Escherichia coli strain was constructed to express a fusion protein consisting of a metallothionein of mouse fused the thioroxin as the metal-binding-stimulator to create efficient recombinant biosorbents in order to investigate the strains ability to accumulate Cadmium and Lead ions. The recombinant protein was expressed by addition of 1 mM IPTG and the kinetics of sorption was conducted with the recombinant bacteria show that the results of 48% of sorption of cadmium and 99% of sorption by lead. The kinetic of sorption adjust a model of second order that which indicates us a phenomenon of transfer of mass where the likeness of the biomaterial for the metal was $K_{ads} = 0.25$[L/(mg·h)] as long as $K_p = 0.90$[L/(mg·h)]

Keywords Biosorption, Heavy metals, Metallothioneins

Bacterial Reduction of Polycyclic Aromatic Hydrocarbons and Heavy metals in Bonny Light Crude oil Using some Common organic wastes as Biostimulants
7Ebenewu, A.; 7Umbar, A.; 8Shinkafi, A.L. and 9Al-Mustapha M.N.
1Dept. of Microbiology, Faculty of Sciences, Usmanu Danfodiyo University, Sokoto. P.M.B. 2346, Sokoto State, Nigeria.
2Dept. Of Plant Science and Technology (Applied Microbiology Research Unit) University of Jos. P.M.B 2084, Jos, Plateau State, Nigeria.
3Dept. of Chemistry, Faculty of Sciences, Usmanu Danfodiyo University, Sokoto. P.M.B. 2346, Sokoto State, Nigeria.
4Dept. of Industrial Biotechnology, University Putra Malaysia (UPM), Serdang-Selangor. D.E. Malaysia.
5Remediation services Division, Shell Petroleum Development Company, Rumuobiakani, Port-Harcourt- Nigeria.
6Biology Programme (Microbiology option), Abubakar Tafawa Balewa University, Bauchi, Bauchi state, Nigeria.
7Dept. of Science Laboratory Technology, Abdu Gusau Polytechnic Talata Mafara, Zamfara State, Nigeria.

The inevitable exploration and Production of crude oil coupled with daily use of hydrocarbon-based fuels in Nigeria results in serious environmental damage. Thus, oil contamination of agricultural lands and drinking water sources is a common phenomenon particularly in the Niger Delta region. In order to boost agriculture and ensure the provision of potable water, a clean up strategy that employs the use of microorganisms (Bioremediation) appears to be more promising. One of the ways by which Bioremediation can be enhanced is through addition of nutrients. This is why some selected organic wastes that are nutrient rich were used in this work with a view to assessing their effect on PAHs and heavy metals reduction. About 10ml of this medium was dispensed in universal bottles and 0.5ml of Bonny light crude oil was then overlaid in each bottle and seeded with crude oil degrading bacteria. After seven days the residual crude was extracted and subjected to chromatographic analysis using GC-MS methods. A significant (P<0.05) reduction in Polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals was achieved. The results obtained indicate that these organic wastes have a potential as Bioenhancement agents in Bioremediation.

Keywords: Polycyclic Aromatic Hydrocarbons, Bioremediation, Organic wastes
Bias in analytical procedure of microorganism's community structure in soil

Ken Mizuno, Yoshiaki Kato, Nobuhiko Nomura, Toshiaki Nakajima, Hiroo Uchiyama
Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan

When the bioremediation is done, it is necessary to evaluate the influence that the clean-up work gives to human health and to evaluate the ecosystem effect. In this work, we examined the method for analyzing to understand the influence that the bioremediation gave to an environmental (soil) microorganism group accurately in this announcement. The method for analyzing consists of the following four processes, collection of environmental (soil) sample, DNA extraction from the sample, DNA amplification by PCR and statistics processing of electrophoresis Profile by denaturing gradient gel electrophoresis (DGGE) or terminal restriction fragment length polymorphism (T-RFLP). In this announcement, DGGE was adopted and examined that bias in the above-mentioned of four processes and influence to the microorganism group structure analysis.

In the collection of the soil sample, we examined the influence of soil granules and sample source on the bacterial and fungal floras. Pulverizing granules by hand and deference of sample collection position altered the fungal flora, but had no effect on the bacterial flora. In the process of DNA extraction from the sample, when we compare the microorganism group structures by using DNA extracted from a kit on the market, as a result, the difference was admitted in the soil that did not do DNA extraction easily though the difference was not admitted in the microorganism group structure between the kits for the soil that did DNA extraction easily. Moreover, the addition of skimmed milk has improved extraction efficiency of DNA to the soil with a difficult DNA extraction. In the process of DNA amplification by PCR, we compared DGGE fingerprints by 18S rDNA and internal transcribed spacer (ITS) region from same extracted DNA sample. Both of fingerprints moved statistical analysis. In the process of statistics processing of the DGGE profile, principal components analysis (PCA) and multidimensional scaling (MDS) gave different statistical results.

Keywords DNA extraction; PCR-DGGE; statistical analysis; bioremediation; microorganism structure

Bioaugmentation of a rotating biological contacter with a bacterial strain able to degrade fluorinated phenols

A. F. Duque, V. S. Bessa, M. F. Carvalho and P. M. L. Castro
CBQF/Escola Superior de Biotecnologia – Portuguese Catholic University, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal

Biodegradation of fluorinated compounds, including fluorophenols, in wastewaters has been scarcely reported. The general perception is that these wastewaters cannot be biotreated and therefore they are usually incinerated or landfilled. The new EU wastewater directive will enforce stringent requirements for the removal of harmful (micro)pollutants, which provides a strong drive for developing biotreatment systems able to remove such pollutants. The use of immobilised cultures is promising to enable long-term adaptation for biodegradation of these compounds, which generally cannot be attained in conventional activated sludge processes. Immobilised cultures may also overcome the changes in supply of a specific pollutant, which generates different quantifies and types of pollutants in a sequentially alternating manner.

Bioreactor systems with high biomass retention that are extremely promising for the treatment of slow degrading (micro)pollutants are rotating biological contactors (RBC). RBCs could be used as a biological post-treatment for organofluorine compounds. The main aim of this study was to investigate the performance of a laboratory scale RBC towards shock loadings of 2-fluorophenol (2FP). Along a period of ca. 2 months, a stable operated RBC was subjected, every 2 weeks, to 48 h organic shock loadings with 0.22 mM of 2FP fed simultaneously with an acetate (2.45 mM) containing medium. No biodegradation of 2FP was observed. Subsequently, the RBC was bioaugmented with a specific bacterial strain able to degrade 2FP and intermittent 48 h organic shock loadings with 0.22 mM, 0.44 mM, 0.88 mM and 1.76 mM of 2FP were applied during ca. 6 months. Degradation of the compound was observed, indicating that bioaugmentation is often necessary when biodegradation of highly recalcitrant compounds is targeted. From the established microbial community in the biofilm, bacterial strains able to degrade other fluorinated compounds were recovered after one year operation, for which metabolic studies are under way.

Keywords: RBC; fluorinated compounds; 2-fluorophenol (2FP), degradation, bioaugmentation

Acknowledgements:
A.F. Duque and M.F. Carvalho wish to acknowledge a research grant from Fundação para a Ciência e Tecnologia (FCT), Portugal (Ref. SFRH/BD/30771/2006 and SFRH/BPD/44670/2008, respectively) and Fundo Social Europeu (III Quadro Comunitário de Apoio). This work was supported by the FCT Project - PTDC/BIO/67366/2006.
Biodegradation of Polyvinyl chloride (PVC) by newly isolated fungal strain of Lentinus tigrinus PV2

Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan

Polyvinyl chloride (PVC) is one of the most important synthetic plastics causing environmental pollution when they are disposed off as waste. The present study was conducted to study the biodegradability of the newly isolated fungal strain for PVC. Fungus was isolated from plastic waste contaminated soil. The strain was identified on the basis of morphological and molecular characterization by rRNA as Lentinus tigrinus PV2. The biodegradability of the strains was checked in shake flask experiments with Mineral Salt Media (MSM) with PVC as a carbon source. The biodegradation was analyzed by surface changes (Visual and scanning electron microscopy), utilization of PVC as carbon source (biomass quantification and starch test). Further more the structural and molecular weight changes in PVC film were analyzed by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The results showed that Lentinus tigrinus PV2 has good degradation potential of PVC and could be used as candidates for bioremediation of plastics waste.

Keywords: Biodegradation, Polyvinyl chloride, Fungus
Bioremediation of heavy metals through symbiosis between leguminous plant and rhizobium with engineered metallothionein and phytochelatin synthase genes

Yoshikatsu Murooka1,*, Akiko Ike2, Mitsuo Yamashita1
1Hiroshima Institute of Technology, Hiroshima 731-5193, Japan,
2Hagoromo University of International Studies, Sakai, Osaka 592-8344, Japan

Toxic metal contamination in agricultural fields is an important world wide problem. Particularly, cadmium contamination in rice grains is the most important issue in Asian countries. We developed a novel bioremediation system, “symbiotic engineering”, based on the symbiosis between leguminous plant, Astragalus sinicus and the recombinant rhizobium, Mesorhizobium huakuii subsp. rengei B3, by overexpressing a synthetic tetrameric metallothionein gene (MTL4) and cDNA encoding the phytochelatin synthase from Arabidopsis thaliana (AtPCS).

The MTL4 and AtPCS genes were fused to the nodule-specific expressing promoter, nolII or nolIIH promoter. By the expression of the MTL4 and AtPCS genes, MTL4 protein and phytochelatin ([γ-Glu-Cys]n·Gly · PCs) were formed in the recombinant rhizobium and increased the ability of cells to bind Cd2+ by 9- to 19-fold approximately. When the recombinant rhizobium established the symbiotic relationship with A. sinicus, the symbionts increased Cd2+ accumulation in root nodules by 1.5- to 2 fold. The expression of both MTL4 and AtPCS genes showed additive effect on Cd2+ accumulation in nodules. Introduction of the iron-regulated transporter gene from A. thaliana (AtIRT1) in the recombinant rhizobium advantaged the accumulation of Cu2+ and As5+ in the nodules of A. sinicus. In rice paddy soil, addition of recombinant strain B3 carrying a plasmid with the both MTL4 and AtPCS genes significantly increased the amount of CO2 evolved from compost loaded with LMWPEs after inoculation with the isolated strain.

A microorganism isolated from the compost made from animal fodder formed clear zone with about 4mm of diameter at 58°C. The isolated strain was a rod shaped Gram negative bacterium. Based on the results of the 16S rDNA analysis, the isolated strain was identified to be Methylobacterium chloromethanicum and sequenced its 16S rDNA gene and the nucleotide sequence was deposited in the GenBank nucleotide sequence database under accession number of NZ ABE1000007.

The PE degrading bacteria having been reported so far belong to Pseudomonas spp., Bacillus spp., Mycobacterium spp., and Nocardia spp. and therefore the present strain can be said to be a new species active for PE degradation. It is an aerobic bacterium and is known to consume methanol and methylamine together with other C2, C3, C4 compounds for growth.

The bacterium acclimated with a low molecular weight PE1 was active not only for the degradation of PE1 but also for the other higher molecular weight LMWPEs, PE2, PE3 and PE4. However the biodegradability decreased with increase in the melt viscosity of the LMWPEs.

The low molecular weight fraction of PE1 decreased significantly as a result of the degradation, and the molecular weight distribution of PE1 after the degradation was much narrower than that of PE1 before the degradation. The FTIR spectra of LMWPE before and after the biodegradation were normalized with respect to the peaks at 2830 and 2920 cm−1 corresponding to C-H stretching. A LMWPE exhibited small peaks at 719 and 729 cm−1 corresponding to alkynes disclosing that some hydrogen atoms were dehydrogenated forming unsaturated bonds during the thermal degradation of PE to prepare LMWPE. After the biodegradation of LMWPE, new peaks appeared on the FTIR spectra at 1095 and 1026 cm−1 assignable to C-O stretching revealing that some carbons in LMWPE were oxidized by the microbial action of the isolated strain.

Bioremediation of Polyethylene

Mal Nam Kim1, Moon Kyung Yoon1 and Jin San Yoon1
1Department of Polymer Science and Engineering, Inha University, 402-751 Incheon, South Korea

Polyethylene is one of the most consuming plastics due to its durability and excellent mechanical properties together with price-competitiveness and good processability. It is being widely used for many single use receptacles, packages, fishing tools and agricultural films. However due to the recently grown environmental pressure, eventual fate of plastics after use became more and more important.

It has been admitted that the molecular weight of polyethylene should be lower than 500, otherwise it should be at least formulated with transition metal pro-oxidants and then oxidized to low molecular weight so as to be biodegraded. A lot of researches have been carried out to examine biodegradation of polyethylene containing pro-oxidants and to explore microorganism degrading polyethylene having deliberately been oxidized.

In this study, a thermophilic bacterium able to degrade low-molecular-weight PE(LMWPE) was isolated from compost. LMWPEs were prepared by thermal degradation of HDPE and LDPE under strict nitrogen atmosphere. Biodegradation of LMWPEs whose average molecular weights were well above 500 was examined by measuring the amount of CO2 evolved from compost loaded with LMWPEs after inoculation with the isolated strain.

The PE degrading bacteria having been reported so far belong to Pseudomonas spp., Bacillus spp., Mycobacterium spp., and Nocardia spp. and therefore the present strain can be said to be a new species active for PE degradation. It is an aerobic bacterium and is known to consume methanol and methylamine together with other C2, C3, C4 compounds for growth.

The bacterium acclimated with a low molecular weight PE1 was active not only for the degradation of PE1 but also for the other higher molecular weight LMWPEs, PE2, PE3 and PE4. However the biodegradability decreased with increase in the melt viscosity of the LMWPEs.

The low molecular weight fraction of PE1 decreased significantly as a result of the degradation, and the molecular weight distribution of PE1 after the degradation was much narrower than that of PE1 before the degradation. The weight-average-molecular weight (Mw) of PE1 increased from 1,700 to 2,400 during the biodegradation. This should be attributed to the preferential assimilation of the low molecular weight fraction of PE1 by the microorganism.
Biosorption of mercury by bacteria and potential applications for bioremediation

Fabienne François1, Carine Lombard1, Jean-Michel Guignier2, Daniel García3, Anne-Laure Molinier3, David Pignol3, Jean M. Abouseoud1, A. Yataghene2, A. Amrane*3,4, R. Maachi2

1Département de Génie des Procédés Pharmaceutiques, Institut des Sciences de l’Ingénieur-Ain Dahab, Université Yahia Fares de Médéa-Médéa 26900, Algeria
2Laboratoire de Génie de la Réaction, Institut de Chimie Industrielle, Faculté de Génie des Procédés, Université Houari Boumedine, Alger 16111, Algeria
3Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes 1, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France
4Université européenne de Bretagne

Heavy metals, and particularly metallic mercury and its organic derivatives, are responsible for acute toxicity and heavy metal pollution represents a public health and wildlife concern. Bacteria resistant to heavy metals constitute an attractive approach to develop systems to decontaminate soils, sediments or water [1]. Biosorption of heavy metals by bacteria or bacterial biomass have been developed for the bioremediation of contaminated water [2,3].

Here we selected and characterized bacteria displaying mercury biosorption propensity. The isolation of bacteria from soil, effluents and river sediments contaminated with heavy metals (Rio Tinto mining area, Spain) permitted to select bacteria for their resistance to mercury (MICs in the 20 – 100 μM range). Seven strains were further selected for their mucoid phenotype indicative of biosorption propensity. The bacteria were identified by 16s rDNA sequencing. The fixation of mercury was quantified by inductively coupled plasma-optical emission spectroscopy and the mercury extracellular sequestration was characterized by transmission electron microscopy in conjunction with X-ray energy dispersive spectroscopy. Bacteria grown in the presence of mercury generated mercury extracellular sequestration as HgS precipitates and/or beads. Non-living bacterial biomass incubated in the presence of mercury only generated extracellular sequestration of mercury beads, with a biosorption yield superior to that of the living bacteria (40-120 mg Hg per g of dry biomass). These results permit to propose biosorption methods to remove mercury from contaminated water.

Keywords biosorption; decontamination; mercury; toxic metals; resistant bacteria.

References

Biosurfactant production by Pseudomonas fluorescens – Physico-chemical characterization and solubilization of a model organic compound, naphthalene

M. Abouseoud4, A. Yataghene1, A. Amrane*3,4, R. Maachi2

1Département de Génie des Procédés Pharmaceutiques, Institut des Sciences de l’Ingénieur-Ain Dahab, Université Yahia Fares de Médéa-Médéa 26900, Algeria
2Laboratoire de Génie de la Réaction, Institut de Chimie Industrielle, Faculté de Génie des Procédés, Université Houari Boumedine, Alger 16111, Algeria
3Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes 1, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France
4Université européenne de Bretagne

Biosurfactants are amphiphilic compounds with surface activity; they are produced by a large number of microorganisms, including bacteria, yeasts and fungi. Biosurfactants production is an important area of research, owing to the large number of potential applications, especially as substitutes for synthetic surfactants in oil and other industries. Pseudomonas are the best-known bacteria capable of utilizing hydrocarbons as carbon and energy sources and producing biosurfactants to enhance the uptake of such immiscible hydrophobic compounds.

Production of biosurfactant by free and alginate entrapped cells of Pseudomonas fluorescens Migula 1895-DSMZ was investigated using olive oil as a sole carbon and energy source. Biosurfactant synthesis was followed by measuring surface tension and emulsifying index E24 over five days at ambient temperature and neutral pH. The properties of biosurfactant that was separated by acetone precipitation showed that the biosurfactant was a glycolipopeptid-type, and had a good foaming and emulsifying activities. The critical micellar concentration (CMC) was found 290 mg L-1. The biosurfactant also showed good stability during exposure to high temperatures (up to 120°C for 15 minutes), high salinity (20% NaCl) and a wide range of pH (4-9).

Wetability and solubility tests were also conducted and showed that the isolated biosurfactant decreased the surface hydrophobicity of polystyrene and increased the solubility of a model organic compound, naphthalene, in aqueous solutions. Above the CMC, naphthalene solubility was deeply affected by biosurfactant concentration (3 to 7 times its aqueous solubility), pH and salinity. The solubility reached a saturation value (205 mg L-1) when biosurfactant concentration exceeded 1.5 g L-1. For alkaline pH or high salinity (above 10%) the solubility decreased by more than 50%. The weight solubilization ratio decreased from 0.63 to 0.015 for increasing biosurfactant concentration up to 1.5 g L-1, alkaline pH or high salinity; and reached a constant value for 4.0 g L-1 biosurfactant irrespective of pH and salinity. In all cases, the solubility of naphthalene in water was enhanced by the biosurfactant addition, showing its potential for application in bioremediation of polycyclic aromatic hydrocarbons contamination in extreme environments.

Keywords Biosurfactant; Pseudomonas; Physico-chemical characterization; Naphthalene; Stability; Solubility.
Changes in microbial populations over time in an AMD affected field site

M. Reinicke, F. Schindler and E. Kothe
Friedrich-Schiller-Universität Jena, Institute of microbiology-microbial phytopathology, Neugasse 25, 07743 Jena, Germany

Microbial communities play an essential role in the global metabolic cycles of carbon, nitrogen, sulfur and other elements. Especially in contaminated regions, microbes are important parts of the ecosystem influencing element mobility. The microbial communities have to cope with these contaminants, which are providing an additional selective pressure.

At our study and sampling site near Ronneburg (Thuringia, Germany), heavy metals were mobilized via leaching processes driven by acidic mine drainage (AMD) and microbial leaching with Acidithiobacillus ferrooxidans. During the leaching process, the leachate percolated through the isolation layer and contaminated the underground with mobilized heavy metals and salts.

After removal of the heap material, the salt and heavy metal rich sediment led to a pH in the range of 3 to 4.5, while the content of organic matter is very limited. As a result of these parameters an obvious decrease in numbers of cfu per gram soil of 100 to 1000 fold were observed in comparison to an uncontaminated soil. The test field Gessenwiese was installed 2001. Three large plots were prepared with different treatments: 5 cm with topsoil or compost and no amendment as control.

To understand the interdependencies between affecting conditions and to investigate the influence of heavy metals, the population dynamics and growth characteristics of single isolates were investigated including both cultivation-dependent and DNA-based fingerprinting methods. Plating strain isolation, direct cell counts and respiration measurements were used to establish surface and vertical profiles at the heavy metal contaminated field site to follow microbial diversity over time.

Long time observation of the living cells showed that the cell number decreases slowly after addition of compost. The positive effect of the compost and topsoil addition to fertilize substrates and promote plant growth can still be visualized of plant growth. Plating experiments showed a majority of Gram-positive bacteria with the ability to form spores. With molecular methods, it was able to detect also Gram-negative microbes, which usually are predominant and widespread in soil. Cloning of 16S rRNA genes helps to describe the entire microbial community. A 16S rRNA gene bank is set up to identify the active microbial consortia.

Keywords: acid mine drainage, heavy metal, 16S rDNA

Characterization of Ni-resistant plant growth promoting bacterium Bacillus megaterium for microbial-assisted phytoremediation of Ni contaminated soils

Mani Rajkumar 1,2, Ying Ma1, and Helena Freitas1
1 Centre for Functional Ecology, Department of Botany, University of Coimbra, Coimbra 3000-455, Portugal
2 Present address: Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada, Kobe, 657-8501, Japan

The use of microorganisms for the remediation of metal contaminated soil is an area of extensive research and development. A nickel-resistant bacterial strain SR28C was isolated from a nickel rich serpentine soil in the northeast region of Portugal. Based on the morphological, biochemical characteristics and comparative analysis of partial 16s rDNA sequence with already available database, the microorganism was closely related to Bacillus megaterium. The strain B. megaterium SR28C tolerated concentrations up to 1200 mg Ni L⁻¹ on a Luria-Bartani (LB) agar medium and biosorbed a substantial amount of nickel. Besides, B. megaterium SR28C showed high degree of resistance to various metals (Cu, Zn, Cd, Pb and Cr) and antibiotics (ampicillin, tetracycline, streptomycin, chloramphenicol, penicillin and kanamycin) tested. In addition, the strain exhibited the solubilization of phosphorus and production of IAA in NBRIP medium and LB medium, respectively in the absence and presence of nickel. Concurrent production of IAA and the solubilization of phosphorus revealed its plant growth promotion potential. In pot experiment, inoculation of plants with B. megaterium SR28C significantly promoted the growth of Brassica juncea, Luffa cylindrical and Sorghum halepense in Ni contaminated soils. However, the maximum increase in shoot and root biomass was observed in L. cylindrical. In addition to plant growth promotion, the strain SR28C protected the test plants from Ni toxicity by reducing the uptake of Ni by plants. Thus, the innate capability of this novel isolate for parallel bioremediation and plant growth promotion has significance in the management of environmental and agricultural problems.

Keywords: Nickel; Antibiotic resistance; Bacillus megaterium; Phosphate solubilization
Chlorpyrifos degradation in a biomix of biobed system with allophonic top soil

G. R. Tortella, 1, 2, O. Rubilar, 1, 2, M. Cea, 2, M. Avendaño1, S. Fernandez-Alberti, 1, and M. C. Diez 1, 2

1Department of Chemical Engineering, Universidad de La Frontera, P. O. Box 54-D. Temuco, Chile.
2Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Av. 01145. Temuco, Chile.

Studies in several parts of the world, mainly in Sweden, have demonstrated that biobeds can effectively treat pesticide waste arising from accidental spillages. The biobed is a simple biological system composed by biomixture of top soil, peat and straw, providing a matrix to adsorb the pesticides and facilitate their biodegradation. The straw stimulates the growth of lignin-degrading fungi and the formation of the ligninolytic enzymes; the soil provides sorption capacity and should have a humus and clay content that promote microbial activity, and is also an important source of pesticides degrading microorganisms, that can act synergistically with the fungi; the peat contributes to sorption capacity, moisture control and also abiotic degradation of pesticides. Therefore, the aim of this study was performed to determine whether biomix of biobeds system with allophanic top soil (Andisol) can degrade effectively the organophosphorous insecticide chlorpyrifos.

The biomix was conformed of straw (50% v/v), peat (25% v/v) and topsoil (25% v/v). The biomix was pre-incubated for 0, 15 and 30 day at 20 ± 1 °C before to be contaminated with chlorpyrifos (160 mg kg⁻¹) and the chlorpyrifos degradation was evaluated during 30 days. Besides, the degradation of chlorpyrifos in biobed system at the concentration of 320 and 480 mg kg⁻¹ was evaluated. CO₂ evolution, enzymatic activities (manganese peroxidase (MnP) and fluorescein diacetate hydrolysis-FDA), residual concentration of chlorpyrifos and TCP (3,5,6-trichloro-2-pyridinol) formation were periodically evaluated in both studied.

Degradation of chlorpyrifos (160 mg kg⁻¹) was quicker with 15 day of pre-incubation of the biomix (90%). Instead, the degradation with 0 and 30 days of pre-incubation were 83 and 80%, respectively. The maximum of TCP formation occurs after 10 days of incubation, in the tree pre-incubation period evaluated, with values of 49, 27 and 47% of initial chlorpyrifos concentration. However, over this time, degradation of TCP was observed in all assays.

MnP activity was highest in 0 day of pre-incubation period (11 U Kg⁻¹ of soil), instead at 15 and 30 days the activities were 8 and 3 U Kg⁻¹ of soil, respectively. Initial FDA activity was 9.5, 6.3 and 2.5 μg g⁻¹ h⁻¹ at 0, 30 and 15 days of pre-incubation period, respectively. No significant differences were observed in CO₂ formation.

The degradation of chlorpyrifos 320 and 480 mg kg⁻¹ occurred efficiently in biobed system (> 90%) after 40 days of incubation period. In both assays TCP formation was detected, however, over 10 days degradation of TCP was observed in both assays. Significant differences were not found in CO₂, MnP and FDA activities, but them increased in the time.

In conclusion, the results of this study demonstrate that pre-incubation time of biomix with allophanic soil between 0-30 days had no major effect on the chlorpyrifos degradation. High concentration of chlorpyrifos can be degraded in biobed. TCP was formed in the biobed system, but it also can be also degraded by this system.

Keywords: Biobeds; Allophanic soil; chlorpyrifos.

Acknowledgements: Investigation financed by Fondecyt 1090678, Fondecyt 3090049.
Complete Dechlorination of Tetrachloroethene and Trichloroethene by Korean *Dehalococcoides* spp. in a Chloroethene-contaminated Freshwater Sediment

Jaejin Lee, Jihoon Yang, Keunje Voo, and Joohong Park
School of Civil and Environmental Engineering, Yonsei University, Shinchondong 134, Seodaemungu, Seoul, South Korea

Tetrachloroethene (PCE) and Trichloroethene (TCE) are one of the most common contaminants in the environments. Contamination of groundwater aquifers by PCE and TCE is a serious environmental concern. It is known that chlorinated ethenes can be reductively dechlorinated to lesser chlorinated compounds including ethene, which is a nontoxic end-product. Under anaerobic condition, microorganisms use chlorinated ethenes as the terminal electron acceptors and then energy is produced for the cell growth. This process is known as chlororespiration. During the process, the accumulations of intermediates, such as cis-1,2-Dichloroethene (cis-DCE) and Vinyl Chloride (VC), should be avoided, since those intermediates are recalcitrant and carcinogenic. Interestingly, it is known that no microorganisms but *Dehalococcoides* spp. can dechlorinate beyond cis-DCE. Nevertheless, no *Dehalococcoides* isolates have been obtained outside North America and little is known about the presence, the distribution, and the dechlorinating activities of *Dehalococcoides* spp. in other continents. In this study, we attempted to obtain the enrichment cultures that completely dechlorinate PCE and TCE to ethene and to compare *Dehalococcoides* populations in Korea with previously characterized *Dehalococcoides* spp. The freshwater sediments were collected from Wonju Streams, located by Woosan Industrial Complex. Approximately 10 g of sediment was used to establish anaerobic microcosms. All microcosms filled with sodium bicarbonate buffer (5mM, pH 7.2, anoxic) up to 100 ml. A set of microcosms were amended with 0.13 mM of PCE and a second set of microcosms received 0.18 mM of TCE. Heat-treated microcosms served as negative controls. Microcosms were incubated at roomtemperature for 50 days. In every one of two weeks, 0.1 ml of Headspace gas was taken to analyze the dechlorinating activities using a gas chromatography. After the dechlorination was observed, Korean *Dehalococcoides* populations, involved in the dechlorination process, were characterized based upon 16S rRNA genes. For identification and quantification, the microbial community structure analysis, nested PCR, and quantitative real-time PCR were conducted. During the incubation period, PCE and TCE were quickly dechlorinated to ethene. The microbial community shifts and nested PCR result show that Korean *Dehalococcoides* populations were responsible for the complete dechlorination. These populations seemed quite similar to the previously characterized *Dehalococcoides* spp. in 16S rRNA sequences. The qPCR results also support that *Dehalococcoides* populations were grown during the incubation period in respond to PCE or TCE addition. These results imply that *Dehalococcoides* spp., which is responsible for the complete dechlorination, exist in not only in North America but also other continents and that the presence of *Dehalococcoides* spp. is essential for the complete detoxification of chlorinated ethenes.

Keywords Tetrachloroethene; Trichloroethene, Reductive Dechlorination, *Dehalococcoides* spp.
Degradation of hydroquinone in Sphingomonas sp. strain TTNP3

B.A. Kolvenbach1,2, F.L.P. Gabriel3, H.-P.E. Kohler3, A. Schäffer2, and P.F.X. Corvini1

1 Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, 4132 Muttenz, Switzerland
2 Institute for Environmental Research, Rheinisch-Westfälische Technische Hochschule, 52074 Aachen, Germany
3 Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland

Degradation of hydroquinone in Sphingomonas sp. strain TTNP3 involves the metabolism of endocrine disruptors such as nonylphenol and bisphenol A. The activated sludge isolate Sphingomonas sp. strain TTNP3 uses a type II ipso-substitution mechanism to degrade these substances to hydroquinone (HQ). Our study presents the metabolites formed during HQ degradation by TTNP3 and discusses specific characteristics of the ring-cleaving hydroquinone dioxygenase.

Both raw and partially purified cell extracts of Sphingomonas sp. strain TTNP3 showed HQ degradation activity. We analyzed the corresponding metabolites and identified them using HPLC-radiodetection and GC-MS. Whereas raw cell extract transformed HQ to 3-oxoadipate via 4-hydroxymuconic acid semialdehyde and maleylacetate, partially purified cell extract yielded only 4-hydroxymuconic acid semialdehyde. This result indicates that HQ is subjected to ring-cleavage by a hydroquinone-1,2-dioxygenase in strain TTNP3.

Keywords: endocrine disruptors, degradation, hydroquinone, dioxygenase

Degradation of vapour phase toluene in a sustainable organic biofilter media

Krishnakumar B and Ajit Haridas

Environmental Technology, National Institute for Interdisciplinary Science & Technology (CSIR-India), Thiruvananthapuram 19, India

Degradation of vapour phase toluene was studied in a sustainable organic biofilter media under continuous and pulse feed mode. Coir pith natural micro-flora (2.3×10⁶ CFU), high water holding capacity (700-750% w/w), moisture content (83%), porosity (80 %) etc. were ideal for application in biofilter. The biofilter does not require any addition of nutrients except the bio-sludge loaded at the start up stage. 100% toluene removal was achieved up to a filter volumetric loading of 103.5 g toluene/m³.h. The CO₂ produced accounted 60% (w/w) of the theoretical CO₂ from corresponding toluene (assuming complete mineralization of toluene). At a tested maximum of toluene loading of 120.72 g/m³.h, 80% removal was achieved. Furthermore, inlet toluene conc. ranging from 0.725-2.63 g/m⁴ was removed in the biofilter without any toxicity effect in short acclimation period (4-7 days). Biofilter media with coir pith and activated carbon performed better than media with pith alone. Toluene loading under different 1 hr. pulse feeding cycles (15, 5 and 1 minute on time) indicated the biofilter can handle shock loading conditions. However, more retention time is required for complete degradation under higher loading conditions. During continuous operation of the biofilter, the pH of the medium was around neutral range and the pressure drop was negligible (0-4 mm H₂O). The toluene degrading microbial community consisted of 4 Pseudomonas sp. The grazing fauna in the coir pith based biofilter media composed of ciliated protozoa (Colpoda inflate, Euplotes harpa and Acineria sp.). The micro-metazoan community was represented by Nematodes, Rotifers, Tardigrades and Fly larva. The dynamic grazing fauna exhibited a unique spatio-temporal distribution throughout the biofilter column. The grazing fauna is considered to have enabled the smooth start up of the coir pith based biofilter media by providing nutrient recycling. The present study reveals coir pith medium is an excellent renewable alternative for peat as biofilter media. Also, Inherent problems of biofilters during continuous operation such as filter bed clogging and nutrient limitations could be addressed with sustainable grazing community in the filter bed.

Keywords: biofiltration, Toluene, grazing fauna
Diversity of methylotrophic bacteria isolated from mangrove species and their potential for bioremediation of heavy metals

M. Nobrega Dourado1, A. Ferreira1, W. Luiz Araújo1, J. Lúcio Azevedo1, and P. Teixeira Lacava1
1 ESALQ - University of São Paulo, Piracicaba, SP, Brazil
2 CESEP - Center for Experimental Study of Subsurface Environmental Processes, Colorado School of Mines, Golden, CO 80401
3 UNIFAL-MG - Federal University of Alfenas, Alfenas, MG, Brazil

The high biological productivity of the mangrove ecosystem demands a high nutrient availability at the beginning of the trophic chain. Microorganism activities are essential in the organic matter decomposition process and nutrient fixation. Bacteria species adapted to mangrove conditions present a potential source of new biotechnologies resources, such as bacteria species that produce valuable enzymes. The genus Methylobacterium is comprised the PPFMs (pink-pigmented facultative methylotrophic) bacteria. These bacteria can fix nitrogen, nodulate the host plant, produce cytokinin (a plant hormone) and enzymes such as pectinase and cellulase, as well as be used on the bioremediation of polluted environments due to its metal tolerance. These characteristics make Methylobacterium spp. important genus for plant growth promotion. To further examine these characteristics, Methylobacterium spp. were isolated from the mangrove species (Figure 1) such as Rhizophora mangle, Laguncularia racemosa and Avicennia sp. as endophytic bacteria. Samples of mangrove species were collected in Bertioga, São Paulo, Brazil, from locations either contaminated and uncontaminated by oil spills. The tolerances of the isolates to different heavy metals were assessed by exposing them to cadmium (Cd), lead (Pb) and arsenic (As) in different concentrations (0,1mM; 0,3mM; 1mM; 2mM; 4mM and 8mM) (Figure 2). Additionally, the genetic diversity of Methylobacterium spp. by the sequence analysis of the gene 16S rRNA (ribosomal RNA gene) was analyzed. The isolates from the oil spill locations were grouped, suggesting that oil can select microorganisms that tolerate oil compounds and change the methylotrophic bacteria community. Cadmium is the most toxic heavy metal assessed in this work followed by arsenic and lead, and two isolates are tolerant to cadmium, lead and arsenic concentration assessed (Figure 3). These isolates have the potential to be used for bioremediation of mangrove environments that are contaminated by oil spills by immobilizing heavy metals present in the oil.

Keywords: bacteria diversity, 16S rRNA, Methylobacterium, endophytes, plant bacteria interaction

Dynamic model of multi-trophic interactions in bioremediation food webs

Menka Mittal1, and Karl Rockne1
1 Department of Civil and Material Engineering, University of Illinois at Chicago, Chicago, IL 60607 USA
2 Center for Experimental Study of Subsurface Environmental Processes (CESEP), Colorado School of Mines, Golden, CO 80401

Non-steady state mathematical models were developed to examine the dynamics of organic pollutant utilization, microbial competition, inhibition and predation in a multi-trophic system populated by bacteria of different growth rates and ciliated protozoa in continuously mixed flow and batch reactors under different conditions. Assuming that nitrogen and phosphorous were present in excess, the biodegradation of naphthalene was examined as a model organic pollutant (substrate). A slow growing bacterium can co-exist in the system along with a fast growing bacteria species adapted to mangrove conditions present a potential source of new biotechnologies resources, such as bacteria species that produce valuable enzymes. To further examine these characteristics, Methylobacterium spp. were isolated from the mangrove species (Figure 1) such as Rhizophora mangle, Laguncularia racemosa and Avicennia sp. as endophytic bacteria. Samples of mangrove species were collected in Bertioga, São Paulo, Brazil, from locations either contaminated and uncontaminated by oil spills. The tolerances of the isolates to different heavy metals were assessed by exposing them to cadmium (Cd), lead (Pb) and arsenic (As) in different concentrations (0,1mM; 0,3mM; 1mM; 2mM; 4mM and 8mM) (Figure 2). Additionally, the genetic diversity of Methylobacterium spp. by the sequence analysis of the gene 16S rRNA (ribosomal RNA gene) was analyzed. The isolates from the oil spill locations were grouped, suggesting that oil can select microorganisms that tolerate oil compounds and change the methylotrophic bacteria community. Cadmium is the most toxic heavy metal assessed in this work followed by arsenic and lead, and two isolates are tolerant to cadmium, lead and arsenic concentration assessed (Figure 3). These isolates have the potential to be used for bioremediation of mangrove environments that are contaminated by oil spills by immobilizing heavy metals present in the oil.

Keywords: bacteria diversity, 16S rRNA, Methylobacterium, endophytes, plant bacteria interaction
Enhanced Diodegradation of 1,2-Dichloroethane in Soil Contaminated with Heavy Metals under Different Bioremediation Strategies

Balgobind, A., A. O. Olaniran, and B. Pillay
Department of Microbiology, School of Biochemistry, Genetics and Microbiology (Westville), University of KwaZulu-Natal, Durban, South Africa

1,2-Dichloroethane (1,2-DCA) represents one of the world’s most important toxic pollutants and is produced annually in excess of 5.443×109 kg per year, quantities larger than that of any other chlorinated aliphatic compound. The major concern over soil contamination with 1,2-DCA stems largely from health risks as it has been identified as a potential carcinogen to human. Owing to their toxicity, persistence and potential for bioaccumulation, there is a growing interest in technologies for their removal. Co-contaminated environments are considered difficult to remediate because of the mixed nature of the contaminants and the fact that the two components often must be treated differently. Therefore, the focus of this study was to assess the impacts of arsenic and cadmium on the aerobic biodegradation of 1,2-DCA, by indigenous microorganisms, in co-contaminated soil undergoing different bioremediation treatments. 1,2-Dichloroethane was degraded readily in both As3+ and Cd2+ contaminated loam soil with the degradation rate constants ranging between 0.0813 - 0.204 day⁻¹ and 0.091 - 0.216 day⁻¹, respectively. The presence of heavy metals have a negative impact on 1,2-DCA degradation, resulting in up to 9.31% reduction in 1,2-DCA degradation, after 20 days. Bioaugmentation and treatment additives increased 1,2-DCA degradation, with the best degradation observed upon the addition fertilizer and calcium carbonate, resulting in up to 14.92% and 16.95% increase in 1,2-DCA degradation, respectively. Bioaugmentation proved to be the better option with dual-bioaugmentation being most effective resulting in up to 37.50% increase in 1,2-DCA degradation, after only 5 days. An initial decrease in urease activity was observed from day 0 to day 5, followed by a steady increase for all treatments except for soils biostimulated with fertilizer. Dual-bioaugmented soils caused a 22.95% and 8.48% increase in total 1,2-DCA degrading population in As3+ and Cd2+ co-contaminated soil, respectively. Results from this study have promising potential for effective remediation of soils co-contaminated with chlorinated organics and heavy metals. However, the best bioremediation strategy will depend on the soil types, microbial population present in the soil matrices, nutrient availability and metal forms.

Evaluation of toxic compounds effects on aerobic granule activity

A. F. Duque1, Pronk, M.2, M.K. de Kreuk3, M.F. Carvalho1, P.M.L. Castro and M.C.M. van Loosdrecht1
1CBQF: Escola Superior de Biotecnologia – Portuguese Catholic University, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
2Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands

Aerobic granule formation is used as a novel technology for the biological treatment of wastewaters. Aerobic granular sludge presents several advantages towards activated sludge, such as excellent settling properties, high biomass retention, ability to deal with high organic loading rates and to perform simultaneously diverse biological processes, such as COD, N and P removal. Researchers have focussed mainly in the biological processes in domestic wastewater treatment. However, these studies are not directly applicable to industrial wastewaters due to their specific composition. Several industries are dealing with a high concentration of salt, pH and other toxic compounds, like fluorophenols, in their wastewater. Xenobiotics can inhibit the biological processes of the plants treating these industrial wastewaters. Preliminary studies reported in the literature have shown that granules seem to be more resistant to toxic effects of phenol than flocculated sludge, mainly because of the compact and shielding structure of the granules.

In this work, the short term effects of salt, pH and 2-fluorophenol (2FP) on the conversion processes of nitrification and phosphate removal by aerobic granules were investigated and compared to activated sludge systems. Experiments were conducted in batch mode with granular sludge and crushed granules, obtained from a pilot plant in The Netherlands, and with activated sludge, obtained from a wastewater treatment plant (WWTP) also located in The Netherlands. Ammonium consumption, nitrite and nitrate production and phosphate removal were measured along the 2 h experiments. Overall, the results showed that granular sludge is less affected by toxic compounds than activated sludge. Measurements of the oxygen uptake rate (OUR) inside the granules and studies on the change of granules morphology are ongoing.

Keywords: Granular sludge; Activated Sludge; Toxicity; 2-fluorophenol; pH; Salinity

Acknowledgements:
A.F. Duque and M.F. Carvalho wish to acknowledge a research grant from Fundação para a Ciência e Tecnologia (FCT), Portugal (Ref. SFRH/BD/30771/2006 and SFRH/BPD/44670/2008, respectively) and Fundo Social Europeu (III Quadro Comunitário de Apoio). This work was supported by the EU project INNOWATECH – Contract-No. 03682.
Extracellular production of hydroxyl radical by *Streptomyces cyaneus* CECT 3335 via quinone redox cycling: a new strategy for BTEX degradation

R. Moya, M. Hernández, J. Rodríguez, F. Guillén, and M.E. Arias

The growing demand of society for the design of strategies for degradation of persistent organic pollutants detected in waters and/or soils is reflected in stringent governmental regulations. The search for strategies to solve this problem is addressed to development of new degradation technologies based on oxidative physico-chemical and biological processes, including the so-called “Advanced Oxidation Processes” (AOP) based on the production of oxygen reactive radicals. Among biological approaches, procedures which involve the oxidative potential of ligninolytic microorganisms are being explored [1, 2, 3]. The degradation capability of ligninolytic fungi and bacteria is based on the low substrate specificity of their oxidative enzymes, and especially in the discovery of low molecular weight and high redox potential oxidizing agents, which significantly increase the range of compounds susceptible to degradation. These agents include hydroxyl radicals (·OH) generated through quinones redox cycling. Among the ligninolytic microorganisms, ·OH production has been demonstrated in white and brown-rot fungi. Basically quinone redox cycling consists in intracellular quinone reduction followed by the secretion and further oxidation of the generated hydroquinone into a semiquinone. In white-rot fungi this reaction is catalysed by ligninolytic enzymes such as laccases [4]. Autooxidation of semiquinones radicals closes the cycle leading to the production of superoxide radical anion which dissipates to H2O2. If this cycle is carried out in the presence of Fe3+, its reduction by both superoxide and semiquinone generates ·OH via Fenton reaction.

For years, our research group has been working in the characterization of the complex enzyme systems involved in the lignocellulase degradation in streptomycetes. As far as ligninolytic enzymes such as peroxidases [5, 6] and more recently laccases [1, 2] have been described in different *Streptomyces* strains, the interest to know if laccases were catalysed by a still uncharacterised intracellular system, which reduces quinone to hydroquinone, and the ligninolytic enzyme lactase, converting hydroquinone into semiquinone. Oxidation of the semiquinone by O2 and/or Fe3+ renders the quinone, with the concomitant production of superoxide anion radical (O2−) and Fe2+. Then, after O2 dismutation, the H2O2 generated is decomposed to ·OH by Fe3+ (Fenton reaction). Production of ·OH by this mechanism has been shown to be operative for several hours, being attributable to the quinone reductase activity only during the exponential phase of growth. Nevertheless, the ·OH production can be improved by raising the pH of the incubation to values enabling hydroquinone autoxidation. Based on the strong oxidative power of ·OH, these findings have led us to evaluate how much the stimulation of ·OH production in *S. cyaneus* could increase its biodegradative capacity. Using benzene as a xenobiotic model compound, our current results are revealing that there is a good correlation between OH· levels and benzene degradation rate. Finally, 2 days old mycelium of *S. cyaneus* together with 2.6-dimethoxybenzoquinone and Fe3+ was assayed to degrade 500 μM of benzene, toluene, ethylbenzene and the three xylene isomers. The degradation rate achieved against all BTEX after 4 h incubation was 50-60% with a control without quinone and Fe3+.

Results

Results obtained in this study showed the first evidence on the production of extracellular hydroxyl radicals (·OH) via quinone redox cycling by a ligninolytic bacteria. It has been found that the incubation of *S. cyaneus* at pH 5 with lignin peroxidase and related Fe3+ leads to the production of ·OH on a constant basis. The redox cycle is catalysed by a still uncharacterised intracellular system, which reduces quinone to hydroquinone, and the ligninolytic enzyme lactase, converting hydroquinone into semiquinone. Oxidation of the semiquinone by O2 and/or Fe3+ renders the quinone, with the concomitant production of superoxide anion radical (O2−) and Fe2+. Then, after O2 dismutation, the H2O2 generated is decomposed to ·OH by Fe3+ (Fenton reaction). Production of ·OH by this mechanism has been shown to be operative for several hours, being attributable to the quinone reductase activity only during the exponential phase of growth. Nevertheless, the ·OH production can be improved by raising the pH of the incubation to values enabling hydroquinone autoxidation. Based on the strong oxidative power of ·OH, these findings have led us to evaluate how much the stimulation of ·OH production in *S. cyaneus* could increase its biodegradative capacity. Using benzene as a xenobiotic model compound, our current results are revealing that there is a good correlation between ·OH· levels and benzene degradation rate. Finally, 2 days old mycelium of *S. cyaneus* together with 2.6-dimethoxybenzoquinone and Fe3+ was assayed to degrade 500 μM of benzene, toluene, ethylbenzene and the three xylene isomers. The degradation rate achieved against all BTEX after 4 h incubation was 50-60% with a control without quinone and Fe3+.

References

Keywords: Quinone redox cycling, Streptomyces, laccase, BTEX degradation

Fed-batch and repeated fed-batch cultures of *Candida* sp. in an airlift bioreactor for the removal of Cr(VI) from aqueous solutions

F.M. Guillén-Jiménez1, L. Morales-Barrera2, B.E. Barragán-Huerta3 and E. Cristiani-Urbina3

1 Biochemical Engineering Department, National School of Biological Sciences, National Polytechnic Institute. 2 Polytechnique.
2 Environmental Systems Engineering Department, National School of Biological Sciences, National Polytechnic Institute.
3 Av. Wilfrido Massieu s/n. Colonia Zacatenco, Mexico, D.F., C.P. 07738, Mexico

Hexavalent chromium compounds (Cr(VI)), mainly chromates and dichromates, are widely used in many industrial processes, including manufacturing of metallic alloys (the most important use of chromium), chrome leather tanning, metal cleaning processing, wood preservation, ceramics, pyrotechnics, electronics, and so on. The large volumes of contaminated wastewater generated from those industrial processes and their mishandling have caused contamination of water bodies, soils and sediments. Some microbiological methods have been proposed to remove Cr(VI) from wastewaters since they are considered effective and economically feasible alternatives to conventional treatment methods. However, some microorganisms lose viability and Cr(VI)-removing capacity in the presence of high concentrations of Cr(VI), which further complicates the biological treatment of Cr(VI)-contaminated wastewater. Therefore, it is important to explore some strategies that could allow to diminish the toxic effects of Cr(VI) on microorganisms. One potential alternative could be the use of reaction systems in which low Cr(VI) concentrations in the culture medium are maintained, such as fed-batch and repeated fed-batch cultures.

The main aim of this work was to examine the ability of *Candida* sp. to remove Cr(VI) in fed-batch and repeated fed-batch cultures.

The fed-batch and repeated fed-batch cultures were conducted in an airlift bioreactor with a multi-perforated concentric tube. The fed-batch cultures were initiated with a 2.54 L batch culture and when the Cr(VI) had been almost completely removed, the continuous addition of culture medium containing 1.5 mM Cr(VI) was begun. After reaching a total liquid volume of 3.7 L, the bioreactor was drained to a medium volume of 2.5 L. Thereafter, the supply flow of fresh culture medium was maintained constant until a total liquid volume of 3.7 – 4 L was reached (repeated fed-batch culture). Two feeding rates of Cr(VI) were tested in both the fed-batch and repeated fed-batch cultures, 0.514 and 1.05 mg Cr(VI) h-1. Experiments were carried out at room temperature (24 ± 1 °C) and the air flow rate was maintained at 0.5 vvm.

Results showed that the total cell mass attained in the fed-batch cultures was higher than the obtained in the repeated fed-batch cultures; however Cr(VI) reduction was observed to be influenced by the incubation time progression.

Candida sp. was capable of reducing the highly toxic Cr(VI) to the less toxic trivalent chromium [Cr(III)], both in the fed-batch and the repeated-fed batch cultures; however Cr(VI) reduction was observed to be influenced by the feeding rate of Cr(VI).

At the two Cr(VI) feeding rates tested, the Cr(VI) removal efficiencies were higher in the fed-batch cultures than in the repeated-fed batch cultures. The highest efficiencies of Cr(VI) removal were achieved when a Cr(VI) feeding rate of 0.514 mg h-1 was used, with values of 71.88-72.92% for the first fed-batch culture and of 67.3-69.45% for the second one.

The volumetric rate of Cr(VI) reduction exhibited by *Candida* sp. in fed-batch and repeated fed-batch cultures decreased as the incubation time increased. Moreover, the volumetric Cr(VI) reduction rates were higher in the fed-batch cultures than in the repeated-fed-batch ones. The highest volumetric rate of Cr(VI) reduction was 0.226 mg L-1 h-1 and it was obtained in the fed-batch culture carried out with a Cr(VI) feeding rate of 1.05 mg h-1.

The above results suggest that the fed-batch process could be an effective biological method for the detoxification of Cr(VI)-laden wastewaters.

Keywords: Cr(VI) removal; Candida; fed-batch culture; repeated fed-batch culture
Functional expression and substrate specificity of three ring-hydroxylating dioxygenases from the PAH-degrading strain Mycobacterium 6PY1

Y. Jouanneau, S. Krivobok, and C. Meyer

Laboratoire de Chimie et Biologie des Métaux, IRTSV, CEFA, 38054 Grenoble, France

Contamination of soil and sediments by polycyclic aromatic hydrocarbons (PAHs) is widespread. The persistence of toxic pollutants, especially PAHs comprising 4-5 cycles, may pose health problems, thus justifying the implementation of bioremediation strategies to treat polluted sites, based on the ability of certain microorganisms to degrade PAHs. Increasing evidence suggests that sphingomonads and Mycobacterium species mainly contribute to PAH degradation thanks to dedicated catalytic enzymes. Ring-hydroxylating dioxygenases (RHDs), which catalyze the initial attack of various aromatic hydrocarbons, play a critical role in the oxidative degradation of PAHs. In previous work, we showed that in Sphingomonas CHY-1 a single RHD endowed with an exceptionally broad substrate specificity, catalyzed the dioxygenation of 9 of the 16 priority PAHs including benzo[a]pyrene (1-3). Here, we investigated the properties of three RHDs found in the pyrene-degrading strain Mycobacterium 6PY1. The oxygenase component of two RHDs (Pdo1 and Pdo2) were previously identified in this strain by proteomic analysis of pyrene-induced proteins (4), but their catalytic activity could not be studied because we lacked an appropriate expression system. In addition, associated electron carriers had not been found.

Two sets of genes encoding additional oxygenase component of RHDs, called Pdo3 and Pdo4, have been identified in the genome of strain 6PY1. The deduced sequences of the Pdo3 and Pdo4 polypeptides were highly similar to each other and closely related to Pdo1. Recombinant expression of Pdo1, Pdo2 and Pdo3 was examined in different E. coli host cells using vectors having either a P\text{P}_{\text{prom}} or P\text{P}_{\text{prom}}. Best results in terms of enzyme activity were obtained when expression was driven from the \text{P}_{\text{prom}} promoter, irrespective of the host cells used.

Besides, a pair of genes coding for a reductase and a ferredoxin, were found close to catalytic genes related to PAH metabolism. Due to the relatively high frequency of rare codons in their sequence, successful over-expression of these genes in E. coli required that a strain supplying rare tRNAs (Rosetta) be used. The ferredoxin was purified as a 8-kDa monomeric protein containing a [3Fe-4S] cluster, in contrast with most RHD-associated ferredoxins which contain a [2Fe-2S] cluster.

When Pdo1 and Pdo2 were separately co-expressed with the ferredoxin and the reductase in E. coli, the enzyme activity (phenanthrene as substrate) was increased 10-fold and 2-fold, respectively. Both oxygenases used phenanthrene as best substrate, but Pdo2 showed 3- to 4-fold higher specific activity. In addition, while Pdo2 produced 1,4-phenanthrene dihydrodiol as single product, the Pdo1 enzyme also produced the 9,10-isomer. Pdo1 also converted pyrene, fluoranthene and anthracene to corresponding dihydrodiols but at slower rates. On the other hand, Pdo2 catalyzed the oxygenation of naphthalene, anthracene and biphenyl, but showed negligible activity with pyrene and fluoranthene. The Pdo3 exhibited a substrate selectivity similar to that of Pdo1. Hence, utilization of PAHs by Mycobacterium 6PY1 involves at least two types of RHDs with narrow substrate ranges. The presence of multiple copies of Pdo1-like oxygenases, if simultaneously expressed in bacterial cells, might be a means to cope with relatively low specific activity of this oxygenase for pyrene and other 4-ring PAHs. Our data have general relevance given that many Mycobacterium strains found on PAH-contaminated sites have genes coding similar RHDs.

Keywords : dioxygenases; ring hydroxylation; PAH biodegradation; ferredoxin, Mycobacterium

Fungal strains capable to use polyurethane as sole carbon source

A. Loredo-Treviño1, G. García2, A. Velasco-Téllez2, R. Rodríguez-Herrera3 and C.N. Aguilar4

1Group of bioprocesses. School of Chemistry. Universidad Autónoma de Cuauhtla. Sahuillo, 25280, México.
2Research and Development Division. Nemak SA, García, N.L.66000, México.

Polyurethanes (PU) are plastics whose are used as raw material in several industries. This xenobiotic substance has been used as adhesive, flexible foam, elastomer, covering, etc. It is made from a diol and a diisocyanate and it is classified as polyester or polyether PU. Given its versatility, its production has increased and has brought the problem of its disposal. The actual strategies include burning and recycling. However, there is recent interest in the search of a biological alternative for the degradation of PU, using microorganisms or their enzymes involved in the mechanisms implied in this process. It has been reported that polyester PU are more susceptible to microbial attack and this has been attributed to enzymes with protease, esterase and urease activities.

The major part of the research of biological degradation of PU focus in the use of bacteria such as Pseudomonas, Comamonas and Bacillus, however there is very little information in the use of molds. The aim of this work was to find molds capable of using polyurethane as sole carbon source and to find out if they showed any of the enzymatic activities mentioned before. Molds were isolated from sand samples contaminated with polyurethane and were cultured in a minimal medium with PU as sole carbon source. Also, the molds were cultured on the resins used for the synthesis of the plastic. The strains were incubated at 30 °C for 7 days and the molds capable of growing in the medium were preserved to their later study. Also, strains from the collection of our research group were tested following the same protocol.

The fungal strains that grew using PU as sole carbon source were cultivated in specific media for the detection of protease, urease and esterase activities and were also incubated at 30 °C for 7 days. Several molds were capable of growing on one or both of the resins used for the synthesis of PU, but not all of the molds that grew on the resins, grew on the plastic. Among the genera that grew using PU were Alternaria, Aspergillus and Paecilomyces and 20 fungal strains grew using it. All of the 20 showed protease activity, 19 showed urease activity and only 11 of them showed esterase activity. This study reveals that several fungi have the ability of using PU as sole carbon source exhibiting several enzymatic activities associated with PU hydrolysis.

Keywords: polyurethane; biodegradation

References

Genetic engineering of *Cupriavidus metallidurans* CH34 for bioremediation of heavy metals in wastewater.

R. Biondo, O. F. Quadros, E. J. Vicente, A. C. G. Schenber
Instituto de Ciências Biomédicas da Universidade de São Paulo. Av: Prof. Lineu Prestes, 1374, aula 166, Cidade Universitária, São Paulo-SP, Brasil. CEP: 05508-900

This work describes the targeting of a synthetic metal-chelating protein to the cell surface of the heavy metal resistant *Cupriavidus metallidurans* CH34 bacterial strain. This bacterium is adapted to thrive in soils highly polluted with metal ions and, thus, has been considered a suitable candidate for bioremediation. For this purpose, an analog gene of the natural phytochelatin (Glu-Cys)nGly with n=20, *EC20sp*, was synthesized *in vitro* and fused to the autotransporter β-domain coding sequence of the IgA protease of *Neisseria gonorrhoeae*, which successfully targeted the hybrid protein towards the bacterial outer membrane. The translocation, surface display, and functionality of the *EC20sp*-β-domain protein were initially demonstrated in *Escherichia coli* upon insertion of the fused protein under control of the *plac* promoter. As for the *C. metallidurans* CH34 strain, the *EC20sp*-β-domain gene fusion was placed under the control of a new heterologous promoter which allowed strong levels of basal expression, that were even stronger in the presence of metal stress. The recombinant strain, *C. metallidurans/pCM2*, proved to have significantly enhanced ability for immobilizing Cd²⁺, Co²⁺, Cu²⁺, Hg²⁺, Mn²⁺, Ni²⁺, Pb²⁺ and Zn²⁺ ions from the external media as compared to the wild type.

Key words: Genetic engineering. *Cupriavidus metallidurans* CH34. Bioremediation. Wastewater. Heavy metals. Synthetic phytochelatin.

Growth of *Trametes versicolor* on nitro- and hydroxyphenol derivates

H. Yemendzhiev¹, N. Peneva², P. Zlateva², A. Krastanov², Z. Alexieva²

¹Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
²Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria

The mycelium of basidiomycete fungus *Trametes versicolor* was earlier shown to grow on phenol as its soul carbon and energy source. The presented research refers to the ability of the strain to degrade and assimilate some nitro- and hydroxy-phenol derivates.

The culture growth and degradation was carried out in a liquid Czapek salt medium under aerobic condition at pH 6.5 and 28 °C. The medium was supplemented with 0.5 g/l of- α-, m-, p- nitrophenol as well as resorcinol, catechol and hydroquinone, respectively. Each of the investigated compounds was added to the medium as a sole source of carbon and energy.

The investigated strain utilized completely 0.5 g/l of hydroxylated phenols for 80-96 hours. The best degradation was observed in the experiments with resorcinol. The most toxic nitrophenols were differently degraded. The best degradation was registered with o-nitrophenol. The strain was able to degrade it completely in 216 hours. After that period of time the strain could not grow. The worst degradation was observed in the experiments with p-nitrophenol. Only 32% were removed from the culture medium in 120 hours and the strain growth was extremely slow.

The dynamics of degradation processes was investigated and characterized by specific growth rate (µmax), metabolic coefficient (k) and rate of degradation (Q). The best utilized compounds were used in experiments with the purpose to determine the intracellular activities of the first three enzymes of the phenol catabolism. The obtained phenol hydroxylase [EC 1.14.13.7] activities in cells cultivated in a medium complemented with resorcinol as a single carbon source were as follow: with phenol as a substrate in the enzyme reaction mixture - 0.2 U/mg protein, with resorcinol as a substrate in the enzyme reaction mixture - 0.34 U/mg protein. In cells cultivated in a medium complemented with o-nitrophenol as a single carbon source the activities of this enzyme were: 0.17 U/mg protein with phenol and 0.15 U/mg protein with o-nitrophenol used as substrates in the enzyme reaction mixtures, respectively. The activities of catechol-1,2-dioxygenase [EC 1.13.11.1] was 0.15 U/mg protein, and 0.12 U/mg protein in cells grown on resorcinol and o-nitrophenol, accordingly. The activities of cis,cis – muconate lactonizing enzyme [EC 5.5.1.5] were determined as 0.33 U/mg protein, and 0.34 U/mg protein in cells grown on resorcinol and o-nitrophenol in the same order.

The results from the implemented enzyme analysis are in a good accordance with the obtained kinetic parameters of investigated degradation processes. The other conclusion which could be made is that the substrate specificity of the first enzyme - phenol hydroxylase is decisive for the rate of degradation of the studied toxic aromatic compounds.

Keywords *Trametes versicolor*; phenol hydroxylase; catechol-1,2-dioxygenase; cis,cis- muconate lactonizing enzyme; nitrophenols; hydroxyphenols
Hexavalent chromium detoxification of *Bacillus pumilus*-S4, *Pseudomonas doudoroffii*-S5 and *Exiguobacterium*-S8 in association with Hydrophytes

Sadia Ejaz, Muhammad Faisal* and Shahida Hasnain
Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan

Three chromium resistant bacterial strains *Bacillus pumilus*-S4, *Pseudomonas doudoroffii*-S5 and *Exiguobacterium*-S8 isolated from chromium contaminated wastewater / soil that could resist very high concentration of K$_2$CrO$_4$ in Lagar (up to 25 mg ml$^{-1}$) and acetate minimal medium (2 mg ml$^{-1}$). Strains showed growth at diverse pH and temperatures ranges and could resist multiple heavy metals. It was observed that the %age Cr (VI) reduction of strain *Pseudomonas doudoroffii*-S5 was more (8.27 mg Cr(VI) 24 hours$^{-1}$) at lower initial K$_2$CrO$_4$ concentration (100 g ml$^{-1}$) but overall more chromate (28.4 mg Cr (VI) 24 hours$^{-1}$) was reduced higher initial concentration (1000 g ml$^{-1}$). Addition of various heavy metals (ZnSO$_4$, CuSO$_4$ and MnSO$_4$ at 50 g ml$^{-1}$) in the chromium reduction media did not affect significantly on the Cr (VI) reduction potential of these isolates. Cr (VI) removal potential of strains was accelerated in the presence of *Pistia stratiotes* and *Eichhornia crassipes*. Both component (Bacteria and plants) support each other growth which results more Cr (VI) detoxification.

Keywords: Chromium, heavy metals, *Bacillus pumilus*, *Pseudomonas doudoroffii*, *Exiguobacterium*, *Pistia stratiotes*

High Throughput Anlaysis of Aromatic Dioxygenase Gene Amplicons from a Tidal Mudflat Using Titanim-Pyrosequencing

Tae Kwon Lee1, Jaejin Lee1, Shoko Iwai2, Benli Chai2, Doan van Tuan1, James M. Tiedje1,2, Joonhong Park1
1School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
2Center for Microbial Ecology, Michigan State University, East Lansing, USA

Aromatic dioxygenase from microbial populations in the environments plays an important role for detoxifying polychlorinated biphenyls (PCBs). It is known that anthropogenic aromatics including PCBs affect not only terrestrial environments but also marine environments (i.e. coastal sediments). However, to our knowledge, very little is known about aromatic dioxygenase for degrading biphenyls in marine sediments. In this study, high throughput analysis using titanium pyrosequencing based upon stable isotope probing (SIP) technique was performed in laboratory microcosms amended with biphenyl and sediments collected from a Korea tidal mudflat. Since the amount of 13C-labeled-DNA, which was isolated by SIP, was not sufficient, 13C-labeled-DNA was amplified using Multiple Displacement Amplification (MDA) approach. To obtain a broader range of aromatic dioxygenase genes, genes were amplified using specific primers targeting rieske iron-sulfur protein as a conserved region and amplicons were high throughput sequenced using titanium pyrosequencing. The translation was done on the fixed reading frame after the primers were removed. As delineated by the primer position, the reading frames 3 and -1 were used to translate reads. After removing the reads that contain stop codons in the translated sequences, have ambiguous sequences in the nucleotides, or are shorter than 225 nt, 1,303 reads (among the total 8,162 reads) were identified as aromatic dioxygenase genes. According to results of BLASTX search, a wide range of aromatic dioxygenase genes targeting biphenyl, benzoate, dibenzofuran, and naphthalene were detected, and 50% of the detected genes were found to be putative. Further analyses revealed that the diversity of gene-targeted approach was greater than results of microbial based on 16S rRNA and it provided much more information to detect potential biological or ecological functions based on functional gene of degrading PCBs in a tidal mudflat.

Keywords: Keyword; Dioxygenase, Metagenomic, Stable Isotope Probing, Pyrosequencing,
Impact of fungus bioaugmentation on diesel-contaminated soil bioremediation by co-composting

J. Abraham, T. Gea, and T. Vicent
Chemical Engineering Department, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain

Co-composting was studied as an ex-situ strategy for bioremediation of soils contaminated with gasoline and diesel. Compost from 4-weeks sludge composting was used as co-substrate. The effect of white-rot fungus bioaugmentation by inoculating Trametes versicolor was also analyzed.

Co-composting experiments were undertaken for 60 days in 4.5 L reactors, thermally isolated and equipped with on-line temperature monitoring and intermittent aeration system to ensure a high oxygen level and avoid anaerobic conditions. Experimental conditions as co-substrate dose and inoculation procedure were previously adjusted in petri dishes experimental trials. Soil presented a 5% of organic matter and was contaminated with a 3% of a mixture of gasoline and diesel (ratio 1:1).

Three different approaches were tested: co-composting (CC); bioaugmentation by inoculation of T. versicolor at initial time and 21 days (BA); and bioaugmentation by inoculation of T. versicolor after 21 days of co-composting (after the first initial decomposition phase) (CB). Experiments were undertaken in duplicate.

After 60 days of co-composting a final total petrol hydrocarbon (TPH) reduction around 60% was achieved. The biodegradation level achieved was higher for short chain hydrocarbons, being approximately 94% for C10-C12 fraction, 76% for C12-C16, 60% for C16-C21 and 50% for C21-C30.

Obtained results showed that initial bioaugmentation with Trametes versicolor significantly increased initial hydrocarbons degradation rate in all TPH fractions. In general, oxygen consumption was higher in BA reactors. However, bioaugmentation after 21 days of co-composting was not effective, probably due to competition of inoculated fungus with adapted biomass in the composting matrix. In consequence, fungus inoculation should be undertaken at the beginning of the process. After 60 days, laccase levels decreased significantly in all experiments indicating the disappearance of T. versicolor. Final TPH levels were similar in all trials. Consequently, initial bioaugmention is a useful strategy to accelerate the bioremediation process although its effect is negligible in a long term co-composting process.

Keywords: soil bioremediation; diesel; fungus; bioaugmentation; Trametes versicolor; co-composting; compost

Influence of predation by flagellates on the bacterial response to crude oil input in unpolluted oligotrophic and chronically oil-polluted mesotrophic Mediterranean sites.

Caroline Sauret1, Urania Christaki2, Ioannis Hatzianestis3, Jean-François Ghiglione1
1Observatoire Océanologique de Banyuls (OOB), CNRS UMR-7621, 66650 Banyuls sur mer
2ULCO, Laboratoire d’Océanologie et Géoscience, F-62930 Wimereux, France
3Hellenic Center for Marine Research (HCMR), Institut d’Océanographie, P.O. BOX 712, 19013 Anavyssos, Greece

The coupling of limitation by resource (bottom-up) and predation (top-down), as well as the history of the polluted site are of great interest to evaluate the potential of petroleum bioremediation by bacteria. Moreover, the influence of petroleum on flagellate diversity as well as on total and metabolically active bacterial diversity has never been integrated in such scenario. These aspects have been studied in mesocosms experiment (75L) with seawater originated from unpolluted oligotrophic or chronically oil-polluted mesotrophic sites in the Aegean Sea. We found that the ubiquitous Paraphysomonas foraminifera is oil-tolerant and an important grazer of bacteria, limiting their growth always <10^7 cells ml^-1. Peaks of bacterial abundance as well as following peaks of flagellate (prey-predator cycle) were higher in oil+nutrients or oil+emulsifier compared to oil or control conditions, where total hydrocarbon biodegradation (especially alkanes) was greater. Changes in both total and active bacterial diversity were faster in the chronically polluted site, resulting in a better biodegradation of the most complex hydrocarbons (polsycyclic aromatic hydrocarbons - PAH). Interestingly, most of the bacterial population selected after nutrient or emulsifier addition were metabolically active, suggesting that biostimulation privileged the emergence of bacterial species adapted to oil.

Such integrative studies have important implication on understanding the impact and efficiency of bioremediation strategies in marine ecosystems.

Keywords: Oil Biodegradation; Biostimulation, Bacterial Predation, Diversity
Influence of readily assimilable carbon sources on the phenol degradation by Trichosporon cutaneum R57 strain

Z. Alexieva*, M. Gerginova, H. Yemendzhiev, N. Shivarova, and B. Atanasov
Institute of Microbiology, Bulgarian Academy of Sciences, Acad.G. Bonchev str., Bl.26 1113 Sofia, Bulgaria

The aromatic compounds metabolism in particular phenol and its derivatives is an intensive subject in studies of prokaryotes. Nowadays the investigations of different yeast species that metabolize aromatic compounds are of significant scientific interest. Trichosporon yeast strains, isolated from various sources, polluted with toxic compounds are among the most studied yeast with respect to aromatic compound biodegradation in eukaryotes. Usually the environmental pollution is a result of different compounds simultaneously.

The object of present investigation is a strain Trichosporon cutaneum R 57 able to grow and degrades phenol as a sole carbon and energy source up to 1 g/l in a short period of time (16-18h). The strain is also able to degrade phenol in a very short period of time in rich medium despite the presence of additional carbon source (such as peptone or amino acid).

The aim of the present investigation is to carry out the influence of additional carbon sources such as glucose and acetate on the phenol degradation in Trichosporon cutaneum R57 strain. The activity of two key enzymes for catabolism of phenol as phenol hydroxylase [EC 1.14.13.7] and catechol-1,2-dioxygenase [EC 1.13.11.1] were determined in cells grown in a medium Yeast Nitrogen Base without Amino Acids used for analyses of carbon assimilation in yeast strains comprising different mixtures of the mentioned above carbon sources.

The effect of glucose and acetate on the phenol degradation ability of Trichosporon cutaneum R57 strain was examined in the condition of batch cultivation. It was established that in YNB w/o AA medium the glucose and phenol assimilation flowed simultaneously so that the assimilation rate of glucose was much higher than that of phenol. Some delay in phenol degradation was observed in the experiments for studying the acetate influence in the medium. In these experiments however the phenol was completely degraded by the time of acetate assimilation.

The results obtained after enzymes analyses in the cells cultivated in the medium with two carbon sources such as phenol and acetate that are known to be utilized by Trichosporon cutaneum R57 are of special interests. In our experiments in a culture medium with 0,5 g/l phenol included the presence of acetate (1,8 g/l) did not influence negatively the phenol hydroxylase activity (0,833 U/mg protein), compared to the activity in the same medium without other than phenol carbon source (1,14 U/mg protein), but obviously lowered twice the activity of catechol-1,2-dioxygenase (0,108 U/mg protein and 0,206 U/mg protein respectively). On the contrary, the influence of glucose presence in the media had much stronger influence on the activity of both investigated enzymes. In a culture medium containing 0,5 g/l phenol and 1,5 g/l glucose the activity of the phenol hydroxylase dropped to 0,225 U/mg protein and catechol-1,2-dioxygenase activity was 0,65 U/mg protein. It should be pointed that some basal activity of both enzymes (3,5 ml/mg protein) was established even in cells cultivated in a medium with glucose as a sole carbon source.

Our results showed that in these experiments the presence of acetate, respectively glucose do not repress and/or inactivate phenol degradation enzymes such as phenol hydroxylase and catechol 1,2 dioxygenase in the investigated Trichosporon cutaneum R 57 strain.

On the basis of our previous and recent analyses, the investigated strain could be considered to have a good potential for application in remediation of phenol contaminated environment and improvement of phenol removing treatment of industrial wastewaters.

Keywords: phenol biodegradation; glucose; acetate; phenol hydroxylase; catechol-1,2-dioxygenase; Trichosporon cutaneum

Inoculation of selected Rhizobacteria favours plant growth under stress conditions

Stephan Shilev, Maria Sancho, Salvador Rodriguez, Enrique D. Sancho
Department of Microbiology, University of Córdoba, Campus de Rabanales, Ed. Ochoa, E-14014, Córdoba (Spain)

Introduction and Experimental Procedures. Many processes in natural soils of warm regions frequently produce saline soils. In these conditions, an inadequate water regime can increase the salinity and represents a significant problem in agriculture. The application of bioinoculants is an environmental-friendly and economically viable approach for recovering soils and increasing biomass production. Sunflower is a wide cultivated crop relatively resistant to soil salinity. In this work we studied the inoculation effect of two different rhizobacteria (Pseudomonas fluorescens biotype F - wild type-, and P. fluorescens CECT 378 -collection strain-) on the growth of sunflower plants. Furthermore, we assessed the abilities of these bacteria to utilize acrylamidopropane carboxylic acid (ACC) as the sole source of nitrogen, as well as the production of indoleacetic acid (IAA) and siderophores as parameters to characterize the plant-growth promoters. The quantification of IAA production was made following a published protocol [1] and the production of siderophores was determined by a modified method [2]. Sunflower (Helianthus annuus L. cv. Sungro 393) seeds were grown in growth chamber conditions [3] during 5 weeks. The inoculation with both bacteria strains was made separately (10^7 cfu/g), every two. Determination of Na+ and K+ content in roots, leaves and stems were determined by atomic absorption spectrophotometry after extraction with acetic acid solution.

Results and discussion. The study of the Na+ tolerance of both bacterial strains in liquid media showed a greater tolerance for the collection strain, just as the production of IAA without triptophan in medium. The microbial production of siderophores is often related with pathogen suppression and iron acquisition. In this way, we have found a positive response in both strains, whose quantification is currently underway at our laboratories. The growth chamber experiment in saline conditions, showed a significant reduction of plant growth, affecting some plant parameters (Table 1).

When NaCl was used to induce salt stress, Na+ content in leaves, stems and roots increased, but the inoculated plants showed less Na+ content in all cases. In salt treatments, the amount of K+ accumulated by leaves and stems was higher than the accumulated amount of Na+, while in roots it was the opposite. The K+/Na+ correlation coefficients in leaves, stems and roots of sunflower plants, showed this decreasing order: leaves > stems > roots. Both bacterial inoculants contribute to increment this coefficient in all parts of the plant.

Conclusions. The inoculation of both bacterial suspensions decreased considerably the levels of accumulated Na+ in all parts of the plant while their K+ content increased, as well as their biomass. Probably, this is due to the stimulation of plant root growth by IAA, better iron status because siderophores production, and to the capability to utilize ACC through ACC-deaminase, thus decreasing ethylene production which implies enhanced root length.

Acknowledgements. Supported by the Fund, “Science Investigation” (Ministry of Education and Science, Bulgaria) and the Univ. of Córdoba (Spain). Keywords: Rhizobacteria, Pseudomonas fluorescens, sunflower, stress, salinity.

References.

0 5
Interactions microorganism-salt marsh plants in the presence of Cu and PAHs contamination

CIMAR / CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
Laboratório de Hidrobiologia, Instituto de Ciências Biomédicas, Universidade do Porto, Largo Professor Abel Salazar, n.º 2, 4099-003 Porto, Portugal
Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal

Recovering impacted estuarine environments is a nowadays priority. Remediation methodologies using both microorganisms (bioremediation) and plants (phytoremediation) could be a valid option due to their capability to respond over different contaminants. However, knowledge about the occurrence of antagonisms and synergisms effects among different pollutants and how they influence plant-microorganisms interactions is still scarce. This study aimed to investigate the effect of Cu and PAHs, two common pollutants in estuaries, on salt marsh microbial community, in the presence/absence of Halimiones portulacoides, salt marsh plant by means of sediment and elutriate solution experiments, in controlled environmental conditions. Cu and PAHs concentrations were measured in solutions and in sediments at the beginning and at the end of the experiments. Toxicity was measured using the test ToxScreen. In order to estimate microbial abundance total cell counts (TCC) were enumerated by DAPI and bacterial diversity was characterized by means of automated rRNA intergenic spacer analysis (ARISA).

The chemical analysis showed that none of the contaminants (Cu or PAHs) interfered with each other concentrations in solution or sediment. Also, the presence of plants seemed to have no influence on Cu levels. However, the presence of plants clearly interfered with the degradation of higher molecular weight PAHs in sediments, since the pace of biodegradation was lower. In fact, the TCC showed lower microbial numbers in the presence of plants. These findings can reflect a competition between plants and microorganisms for nutrients, and highlights the need of fertilization in order to obtain optimal effects of phytoremediation for this type of compounds. On the other hand, in the absence of plants, Cu displayed higher toxicity when compared to other treatments. This fact can be related to Cu complexation by organic compounds released by the plants. In terms of bacterial diversity, it was observed that plants had also an effect on microbial community but only in control and Cu treatments, whereas the presence of PAHs, alone or in combination with Cu, seemed to overcome the eventual effect induced by the presence of plants.

Keywords: microbial community, plant-microorganisms interactions, salt marshes, Cu, PAHs

Isolation and characterization of Ni resistant endophytic bacteria from Alyssum serpyllifolium and their potential in promoting plant growth and Ni accumulation by host and non-host plants

Ying Ma, Mani Rajkumar, Noriharu Ae, and Helena Freitas

1Centre for Functional Ecology, Department of Botany, University of Coimbra, Coimbra 3000, Portugal.
2Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan

Phytoremediation is an environmental friendly, cost-effective and plant-based solution for the remediation of heavy metal-contaminated soils. The benefits of combining endophytic bacteria with hyperaccumulating plants for increased remediation of pollutants have been successfully tried for heavy metal removal from contaminated soils. This study was undertaken to assess whether the Ni resistant-endophytic bacteria with general PGP traits, such as the ability to produce IAA, siderophore and ACCD and solubilize P, promote growth uniformly across hyperaccumulator plant species including non-hosts in Ni contaminated soils. Four Ni resistant-plant growth promoting endophytic bacteria (PGPE) were isolated from the tissues of Alyssum serpyllifolium grown in serpentine soils, Braganca, Portugal and subsequent testing revealed that they all exhibited PGP traits associated with plant growth promotion. The plant growth promoting effects of PGPE on their host Alyssum serpyllifolium and another brassicaceous plant, Brassica juncea were assessed with different concentrations of Ni in phytagar medium. The results indicated that none of the four isolates produced any disease symptoms or abnormalities in both test plants. However, among the strains, A3R3 significantly increased the biomass and Ni content of both plants. Further, a pot experiment was also conducted with Ni supplemented soils using Alyssum serpyllifolium and another brassicaceous plant, Brassica juncea. The inoculation with A3R3 increased the biomass of both test plants. Our observations showed that the A3R3 protect the plants against the inhibitory effects of nickel, probably due to the production of IAA, siderophore, ACCD and solubilization of phosphate. In addition, A3R3 significantly increased the Ni concentration in the root and shoot tissues of Alyssum serpyllifolium and another brassicaceous plant, Brassica juncea. The analysis of population densities of inoculated A3R3 demonstrated that this strain was able to colonize the root and shoot interior and rhizosphere soil of host and non-host plants. The plant growth promotion and colonization potential of A3R3 in the test plants, suggests that inoculation with metal resistant PGPE might have significant potential to improve phytoremediation efficiency in metal contaminated soils.

Keywords: Endophytic bacteria; Nickel; Phytoextraction; Alyssum serpyllifolium
Isolation and screening of bacteria to decolorize Azo-dyes

Rakesh Kumar, Anju Sehrawat, Mukesh Kumar and Satish Rana
Department of Biotechnology Engg, Ambala College of Engg & Applied Research, Devsthali Near Mithapur, Ambala Cantt. India 133101

Different bacteria were isolated from textile effluents. Out of the 17 bacterial isolates, three isolates were found to make a clear zone around their colonies on azo-dye supplemented media plates. Further these were screened for azo-dye decoloration under liquid conditions. The isolate 1DD was found capable to decolorize the broth within 16 hour at 37°C under stationary conditions. The isolate can be further exploited for decoloration of textile dye effluent which is the major problem of textile industry as well a threat to aquatic life.

Isolation and selection of phenol-degrading bacteria from the wastewater-contaminated soils in Iran

N. Kolahchi and M.R. Soudi
National Laboratory of Industrial Microbiology, Department of Biology, Alzahra University, Tehran, Iran.

Bioaugmentation can be assumed as a promising technology for biodegradation of organic substances in wastewater treatment (WWT) systems. The technology should be effective in dealing with contamination to hazardous and toxic chemicals such as phenol.

Phenol is now one of the most common toxic environmental pollutants, which mainly originates from industrial processes and its bioremediation is very important to meet the environmental regulations.

The aim of this study at first was to examine the bioremediation potential of aerobic WWT system by screening naturally occurring population of phenol degrading bacteria. Spreading a number of samples of the activated sludge on standard agar plates, as well as pretreatment in enriched broth, resulted in isolation of 8 phenol resistant bacterial strains out of 324 different isolates, but poor phenol degrading capacity was observed. The preliminary results addressed to requirement of active exogenous microorganisms.

To screen high strength phenol degrading bacteria, we sampled wastewater-contaminated soils in an industrial region of Tehran province, Iran, and a phenol-degrading bacterium designated as SKO-1 was isolated from these soils by direct spreading plate method, in order to avoid biodiversity alteration during the course of enrichment.

This gram positive, non-motile, non-sporulating and rod shaped bacterium was able to utilize phenol, as the sole carbon source in the mineral medium with the phenol concentration varying from 100 to 1000 mg/l. The cultures were grown aerobically in 250 ml flasks, the temperature in all the batch experiments was maintained at 30±0.1°C and the shaker speed was maintained at 130 rpm. The influence of the adaptation of the bacterium to the substrate was studied as well. The well-acclimatized culture of SKO-1 degraded the initial phenol concentration of 1000 mg/l completely in less than 72 hours.

Bioaugmentation using various bacterial strains has proved to be a promising option for the clean-up of polluted sites and it can be a suitable tool for biotransformation and biodegradation of many recalcitrant organic compounds as well as phenol.

Keywords: Bioaugmentation; biodegrading bacteria; biotransformation; phenol

This work, as a part of the project (No.0890188703), is supported by Petrochemical Research and Technology Co. in Iran.
Microbes and their contribution in environmental sustenance: Multipotent microbes from East Calcutta Wetland

Madhusmita Mishra1*, Ashoke Ranjan Thakur1, and Shaon RayChaudhuri1

1 Department of Biotechnology, West Bengal University of Technology, BF 142, Sector 1, Salt Lake, Kolkata 700064, West Bengal, India.
2 West Bengal State University, Barasat, North 24 parganas, West Bengal, India.

This study put forward the bioremedial potential of novel isolates from a wetland ecosystem of Kolkata viz. East Calcutta Wetland (ECW). This wetland ecosystem spans an area of 12,500 hectares and it acts as the dumping ground for the mega city. But the significant fact remains that this region also acts as a resource recovery system where waste is recycled and used in production of commercial products like paddy, vegetables as well as fish. The diversity of the microbial resource of this region was depicted by the culture independent approach and this study reveals presence of significant groups like Acinetobacter, Actinobacteria, Proteobacteria and Firmicutes. The current study aims at culture dependent isolation of potential microbes followed by their complete characterization and extensive study on their bioremedial potential which would cover up remediation of heavy metals as well as crude oil.

The culture based technique resulted in nine pure bacterial isolates from soil and water samples collected from different sites of ECW produced. The isolates were characterized based on their morphological, physiological and biochemical features. The 16S rDNA homology based molecular identification indicates the bacterial isolates as belonging to two different genus, Acinetobacter and Pseudomonas.

All the isolates were found to tolerate heavy metals like nickel (Ni), copper (Cu), silver (Ag), aluminium (Al), iron (Fe), chromium (Cr), lead (Pb) up to different extent. Energy Dispersive Xray Fluorescence (EDXRF) analysis provided the extent of metal accumulation where as Transmission Electron Microscopy revealed the localization of metal inside the cell. The cellular response towards the metal induced stress was detected by Scanning Electron Microscopy and the significant changes observed were shortening of cell, cell elongation or the development of extracellular matrix. Presence of SOD gene was detected by using universal primers and its presence also supported the cellular defense mechanism.

The isolates were found to grow in vegetative oils like coconut oil as well as mineral oils like diesel, mobil and burnt mobil. The Acinetobacter isolates showed more than 65% degradation of lubricants like mobil and burnt mobil in a span of 72 hours.

The significant outcome of this study would be the employment of these isolates in remediation of environment co contaminated with metals as well as with oil spills.

Keywords East Calcutta Wetland, Bioremediation, Heavy metals, Crude oil

Microbial biotransformation of fluorinated biphenyls

C.D. Murphy, B.R. Clark, J. Amadio and J. Power

School of Biomolecular and Biomedical Science and Centre for Synthesis and Chemical Biology, University College Dublin, Ireland

Organofluorine compounds are used in an increasing number of applications in industry, agriculture and medicine, and consequently these compounds are ubiquitous environmental contaminants. In comparison with the research conducted on the biodegradation of chlorinated biphenyls, much less is known about the interactions between fluorobiphenyl and microorganisms. In this paper we describe experiments conducted on the biotransformation and biodegradation of fluorobiphenyl in a bacterium and a fungus, and the determination of the products using a combination of HPLC, GC-MS and 19F NMR. Pseudomonas pseudoalcaligenes KF707 is a well known biphenyl degrader, and has also been shown to grow on 2- and 4-fluorobiphenyl. Here we present data to demonstrated that it can also utilise 4,4’-difluorobiphenyl as a carbon source, generating a range of fluorometabolites, including 4-fluorobenzoate. Cunninghamella elegans is a fungus known to transform wide variety of xenobiotic compounds, as it has cytochrome P450 activity and contains enzymes that are associated with phase II metabolism in mammals. This fungus can transform 4-fluorobiphenyl to mono- and di-hydroxylated 4-fluorobiphenyl, in addition to sulphate and β-glucuronide conjugates. To explore the effect of additional fluorine substitution on fluorobiphenyl transformation, 4,4’-difluorobiphenyl and 2,3,4,5,6-pentafluorobiphenyl were also incubated with cultures of C. elegans and the biotransformation products determined.

Keywords Cunninghamella elegans, fluorine, Pseudomonas,

Microorganism and their contribution in environmental sustenance: Multipotent microbes from East Calcutta Wetland

Madhusmita Mishra1*, Ashoke Ranjan Thakur1, and Shaon RayChaudhuri1

1 Department of Biotechnology, West Bengal University of Technology, BF 142, Sector 1, Salt Lake, Kolkata 700064, West Bengal, India.
2 West Bengal State University, Barasat, North 24 parganas, West Bengal, India.

This study put forward the bioremedial potential of novel isolates from a wetland ecosystem of Kolkata viz. East Calcutta Wetland (ECW). This wetland ecosystem spans an area of 12,500 hectares and it acts as the dumping ground for the mega city. But the significant fact remains that this region also acts as a resource recovery system where waste is recycled and used in production of commercial products like paddy, vegetables as well as fish. The diversity of the microbial resource of this region was depicted by the culture independent approach and this study reveals presence of significant groups like Acinetobacter, Actinobacteria, Proteobacteria and Firmicutes. The current study aims at culture dependent isolation of potential microbes followed by their complete characterization and extensive study on their bioremedial potential which would cover up remediation of heavy metals as well as crude oil.

The culture based technique resulted in nine pure bacterial isolates from soil and water samples collected from different sites of ECW produced. The isolates were characterized based on their morphological, physiological and biochemical features. The 16S rDNA homology based molecular identification indicates the bacterial isolates as belonging to two different genus, Acinetobacter and Pseudomonas.

All the isolates were found to tolerate heavy metals like nickel (Ni), copper (Cu), silver (Ag), aluminium (Al), iron (Fe), chromium (Cr), lead (Pb) up to different extent. Energy Dispersive Xray Fluorescence (EDXRF) analysis provided the extent of metal accumulation where as Transmission Electron Microscopy revealed the localization of metal inside the cell. The cellular response towards the metal induced stress was detected by Scanning Electron Microscopy and the significant changes observed were shortening of cell, cell elongation or the development of extracellular matrix. Presence of SOD gene was detected by using universal primers and its presence also supported the cellular defense mechanism.

The isolates were found to grow in vegetative oils like coconut oil as well as mineral oils like diesel, mobil and burnt mobil. The Acinetobacter isolates showed more than 65% degradation of lubricants like mobil and burnt mobil in a span of 72 hours.

The significant outcome of this study would be the employment of these isolates in remediation of environment co contaminated with metals as well as with oil spills.

Keywords East Calcutta Wetland, Bioremediation, Heavy metals, Crude oil

Microbial biotransformation of fluorinated biphenyls

C.D. Murphy, B.R. Clark, J. Amadio and J. Power

School of Biomolecular and Biomedical Science and Centre for Synthesis and Chemical Biology, University College Dublin, Ireland

Organofluorine compounds are used in an increasing number of applications in industry, agriculture and medicine, and consequently these compounds are ubiquitous environmental contaminants. In comparison with the research conducted on the biodegradation of chlorinated biphenyls, much less is known about the interactions between fluorobiphenyl and microorganisms. In this paper we describe experiments conducted on the biotransformation and biodegradation of fluorobiphenyl in a bacterium and a fungus, and the determination of the products using a combination of HPLC, GC-MS and 19F NMR. Pseudomonas pseudoalcaligenes KF707 is a well known biphenyl degrader, and has also been shown to grow on 2- and 4-fluorobiphenyl. Here we present data to demonstrated that it can also utilise 4,4’-difluorobiphenyl as a carbon source, generating a range of fluorometabolites, including 4-fluorobenzoate. Cunninghamella elegans is a fungus known to transform wide variety of xenobiotic compounds, as it has cytochrome P450 activity and contains enzymes that are associated with phase II metabolism in mammals. This fungus can transform 4-fluorobiphenyl to mono- and di-hydroxylated 4-fluorobiphenyl, in addition to sulphate and β-glucuronide conjugates. To explore the effect of additional fluorine substitution on fluorobiphenyl transformation, 4,4’-difluorobiphenyl and 2,3,4,5,6-pentafluorobiphenyl were also incubated with cultures of C. elegans and the biotransformation products determined.

Keywords Cunninghamella elegans, fluorine, Pseudomonas,

Microorganism and their contribution in environmental sustenance: Multipotent microbes from East Calcutta Wetland

Madhusmita Mishra1*, Ashoke Ranjan Thakur1, and Shaon RayChaudhuri1

1 Department of Biotechnology, West Bengal University of Technology, BF 142, Sector 1, Salt Lake, Kolkata 700064, West Bengal, India.
2 West Bengal State University, Barasat, North 24 parganas, West Bengal, India.

This study put forward the bioremedial potential of novel isolates from a wetland ecosystem of Kolkata viz. East Calcutta Wetland (ECW). This wetland ecosystem spans an area of 12,500 hectares and it acts as the dumping ground for the mega city. But the significant fact remains that this region also acts as a resource recovery system where waste is recycled and used in production of commercial products like paddy, vegetables as well as fish. The diversity of the microbial resource of this region was depicted by the culture independent approach and this study reveals presence of significant groups like Acinetobacter, Actinobacteria, Proteobacteria and Firmicutes. The current study aims at culture dependent isolation of potential microbes followed by their complete characterization and extensive study on their bioremedial potential which would cover up remediation of heavy metals as well as crude oil.

The culture based technique resulted in nine pure bacterial isolates from soil and water samples collected from different sites of ECW produced. The isolates were characterized based on their morphological, physiological and biochemical features. The 16S rDNA homology based molecular identification indicates the bacterial isolates as belonging to two different genus, Acinetobacter and Pseudomonas.

All the isolates were found to tolerate heavy metals like nickel (Ni), copper (Cu), silver (Ag), aluminium (Al), iron (Fe), chromium (Cr), lead (Pb) up to different extent. Energy Dispersive Xray Fluorescence (EDXRF) analysis provided the extent of metal accumulation where as Transmission Electron Microscopy revealed the localization of metal inside the cell. The cellular response towards the metal induced stress was detected by Scanning Electron Microscopy and the significant changes observed were shortening of cell, cell elongation or the development of extracellular matrix. Presence of SOD gene was detected by using universal primers and its presence also supported the cellular defense mechanism.

The isolates were found to grow in vegetative oils like coconut oil as well as mineral oils like diesel, mobil and burnt mobil. The Acinetobacter isolates showed more than 65% degradation of lubricants like mobil and burnt mobil in a span of 72 hours.

The significant outcome of this study would be the employment of these isolates in remediation of environment co contaminated with metals as well as with oil spills.

Keywords East Calcutta Wetland, Bioremediation, Heavy metals, Crude oil

Microbial biotransformation of fluorinated biphenyls

C.D. Murphy, B.R. Clark, J. Amadio and J. Power

School of Biomolecular and Biomedical Science and Centre for Synthesis and Chemical Biology, University College Dublin, Ireland
Monitoring of oil-degrading bacteria during bio remediation by foodborn compost

Eri Hara1, Masato Kurihara2, Nobuhiko Nomura1, Toshiaki Nakajima1, and Hiros Uchiyama1

1 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
2 Advanced Technology Research Laboratories, Memitsu Kosan Co., Ltd, Sodegaura, Chiba 299-0293, Japan

Oil spills is one of the main pollution in soil, groundwater, and marine environments. For successful bioremediation, it is essential to understand the dynamics of microbial population responsible for the degradation of the target pollutants at the remediation sites. We focused on foodborn compost as the bioremediation promoter because it is rich in nutrients and in diverse microorganisms, and the use of compost in bioremediation supports recycling.

In this study, we investigated the effects of foodborn compost on the fate of total petroleum hydrocarbons (TPH) and oil-degrading bacteria during bioremediation.

We tested four bioremediation promoters—nutrients, mushroom, biofertilizer, and foodborn compost—and no promoter (control). We collected samples periodically and determined TPH concentration. During 89 days, the TPH concentration was reduced from an initial 4,700 ppm to 4,300 ppm in the control, to 2,700 ppm with nutrients, to 2,800 ppm with mushroom, and to 2,850 ppm with biofertilizer. In contrast, it was initially increased to 8,300 ppm with compost, and then reduced to 2,400 ppm during 74 days, showing the highest degradation rate among all treatments. In addition, the compost removed the oil stench at the TPH concentration reached 2,500 ppm.

To investigate the effects of each treatment on the total number of bacterial cells, we quantified 16S rDNA by real-time PCR. The number of cells in the control changed little, but those in the other treatments increased quickly.

To monitor the behaviors of oil-degrading bacteria, we designed PCR primers to detect alkB, alkM, C12O gene, and C23O gene. After verification of their availability for soil samples, these genes were quantified by real-time PCR. Bacteria possessing alkB increased in all treatments, including the control. Bacteria possessing alkM were increased in all promoter treatments but not the control. Catechol-degrading bacteria possessing C23O gene were not so many in the nutrients and mushroom treatments relatively, but those possessing C212O gene concerned in degradation of same substance proliferated in these treatments, indicating that the bacterial structures depended on the promoters added. C23O gene was detected from the start, but C12O gene became detectable in the late phase of bioremediation. In the compost treatment, bacteria possessing alkM and C23O gene increased significantly.

These results suggest that oil-degrading bacteria were increased most by the addition of foodborn compost, which led to a remarkable decrease of TPH concentration.

Keywords: bioremediation; oil; compost; real-time PCR

NAA for studying effects of potentially toxic metals (Cr, Hg) on Arthrobacter globiformis

N. Tsibakhashvili1,2, L. Moulishtshili1, E. Kırkesalı3, S. Kerkenia4, M.V. Frontasyeva5,7, S.S. Pavlos1, I. Zinicovscaia3, P. Bode4, Th.G. van Meerten4

1 Andronikashvili Institute of Physics, Tbilisi 0177, Georgia
2 Chavchavadze State University, Tbilisi 0179, Georgia
3 Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research, Dubna 141980 Russian Federation
4 Delft University of Technology, 2629JB Delft, The Netherlands

Oil spills is one of the main pollution in soil, groundwater, and marine environments. For successful bioremediation, it is essential to understand the dynamics of microbial population responsible for the degradation of the target pollutants at the remediation sites. We focused on foodborn compost as the bioremediation promoter because it is rich in nutrients and in diverse microorganisms, and the use of compost in bioremediation supports recycling.

In this study, we investigated the effects of foodborn compost on the fate of total petroleum hydrocarbons (TPH) and oil-degrading bacteria during bioremediation.

We tested four bioremediation promoters—nutrients, mushroom, biofertilizer, and foodborn compost—and no promoter (control). We collected samples periodically and determined TPH concentration. During 89 days, the TPH concentration was reduced from an initial 4,700 ppm to 4,300 ppm in the control, to 2,700 ppm with nutrients, to 2,800 ppm with mushroom, and to 2,850 ppm with biofertilizer. In contrast, it was initially increased to 8,300 ppm with compost, and then reduced to 2,400 ppm during 74 days, showing the highest degradation rate among all treatments. In addition, the compost removed the oil stench at the TPH concentration reached 2,500 ppm.

To investigate the effects of each treatment on the total number of bacterial cells, we quantified 16S rDNA by real-time PCR. The number of cells in the control changed little, but those in the other treatments increased quickly.

To monitor the behaviors of oil-degrading bacteria, we designed PCR primers to detect alkB, alkM, C12O gene, and C23O gene. After verification of their availability for soil samples, these genes were quantified by real-time PCR. Bacteria possessing alkB increased in all treatments, including the control. Bacteria possessing alkM were increased in all promoter treatments but not the control. Catechol-degrading bacteria possessing C23O gene were not so many in the nutrients and mushroom treatments relatively, but those possessing C212O gene concerned in degradation of same substance proliferated in these treatments, indicating that the bacterial structures depended on the promoters added. C23O gene was detected from the start, but C12O gene became detectable in the late phase of bioremediation. In the compost treatment, bacteria possessing alkM and C23O gene increased significantly.

These results suggest that oil-degrading bacteria were increased most by the addition of foodborn compost, which led to a remarkable decrease of TPH concentration.

Keywords: Arthrobacter globiformis, NAA, Cr(VI), Hg(II), accumulation

Acknowledgement: We are grateful to STCU for their support (Grant 94330)
New proteins expression by PGPR <i>Pseudomonas fluorescens</i> under arsenic-induced stress conditions

Stephan Shileva*, Cristóbal Verdugob, María Sanchoa, Enrique D. Sanchoa.

1Department of Microbiology, University of Córdoba, Campus de Rabanales, Ed. S. Ochoa, E-14014 Córdoba (Spain)
2Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Ed. M. Curie, E-14014 Córdoba (Spain)

Introduction and Experimental Procedures. Some <i>Pseudomonas</i> strains promote plant growth and heavy metal accumulation in contaminated soils and they possess an efficient system to survive in abiotic stress conditions [1]. Proteomics is one of the best strategies used to reveal the dynamic expressions of whole proteins in cells and their interactions. The aim of this work was to study the protein profile changes and the differentially expressed proteins in <i>P. fluorescens</i> biotype F (tolerant to arsenic) and <i>Pseudomonas fluorescens</i> CECT 378 (sensitive), exposed to sodium arsenate. Both strains were grown separately in the presence or absence of 1000 ppm As (Na₂HAsO₄), till reaching medium stationary phase. After centrifugation and washing, the whole cells extracts were obtained by resuspending the pellet in lysis buffer and ultrasonication. The quantification was made using Bradford method followed by loading of the protein sample on the 17 cm IPG strip pH 4-7. IEF was performed in focusing tray by rehydration and changing the tension of the linear current. After equilibration with DTT and iodoacetamide buffers, SDS-PAGE was performed. All the experiments were repeated twice. Gels were stained with 1 % Coomassie Brilliant Blue G250 to visualize the proteins [2] and they were scanned and analyzed using PD-Quest software version 7.1.0 (Bio-Rad). The differences between selected spots in control and arsenic treatments were considered to be significant by ANOVA (p<0.05) (Statistix 8.0). Furthermore, tryptic digestion of protein of interest were picked automatically using Investigator ProPiC station (Genomic Solutions). Resulted peptides of the trypsin digestion had been purified and after co-precipitation the samples were analyzed in a range between 800 and 4000Da using mass spectrometry MALDI-TOF/TOF to obtain a peptide fingerprint (MS) in a spectrometry 4700 Proteomics Analyzer (Applied Biosystems, USA). Moreover, the protein identification was realized using Mascot (MatrixScience, UK) in MSTART database.

Results and discussion. The mechanisms of tolerance are of essential interest to discover how bacteria survive the extreme conditions. The pattern of protein separation expressed using two-dimensional PAGE was consistent in all the gels. Comparing the treatment for each strain with corresponding control, the appearance of a total of 9 differentially expressed and statistically significant protein spots in <i>P. fluorescens</i> biotype F and 7 in <i>P. fluorescens</i> CECT 378 after exposure to 1000 ppm of arsenic, had been observed. In tolerant strain, in presence of arsenic, were found 4 newly appeared, 4 upregulated and 1 downregulated spots, comparing with the corresponding control. On the other hand, from the 7 differentially expressed spots in the non-tolerant strain, 1 was newly appeared, 3 upregulated and 3 downregulated. The most significant findings in case of tolerant strains, in the presence of As, was the appearance of enzyme arsenate reductase (spot 5). This enzyme catalyses the conversion of arsenate in arsenite, that is a more toxic substance. When tolerant bacterial cell detects the arsenite, it is extruded out of the cell through the membrane system. On the other hand, the unique appeared protein, in case of the sensitive strain, is tyrosine phosphatase (spot 5).

Conclusions. <i>Pseudomonas fluorescens </i>strains showed important changes when grown under arsenic stress conditions; changes that were statistically significant. The tolerant strain showed 4 newly appeared spots, while the sensitive presented just 1 spot. All of these spots have a low molecular weight. Thus, we propose arsenate reductase to be the main determinant of tolerance of wild-type <i>P. fluorescens</i>.

Acknowledgements. This work was supported by the Spanish Agency for International Cooperation (AECI).

References

Keywords: <i>Pseudomonas fluorescens</i>, protein profile, PGPR, abiotic stress, As tolerance, MALDI-TOF
Nickel(II) biosorption by *Rhodotorula glutinis*

A. Suazo-Madrid, E. Aranda-García, L. Morales-Barrera and E. Cristiani-Urbina

2Department of Biotechnology, West Bengal University of Technology, BF 142, Sector 1, Salt Lake, Kolkata 700064, West Bengal, India.

Divalent nickel [Ni(II)] is one of the most widely used heavy metals in electroplating, non-ferrous metal and mineral processing industries. The effluent emanating from these industries is often associated with high concentration of Ni(II) ions, which are toxic to both higher and lower organisms. In humans, nickel can cause serious problems, such as dermatitis, allergic sensitization, lung and nervous system damages. It is also a known carcinogenic, embryotoxic and teratogenic element. A number of conventional technologies have been used to remove Ni(II) ions from wastewater streams, such as adsorption on activated carbon, chemical precipitation and crystallization in the form of nickel carbonate. However, these technologies are either ineffective or expensive when heavy metals are present in the wastewater at low concentrations or when low concentrations of heavy metals in treated water are required.

Biosorption of heavy metals is an effective separation process for the removal and recovery of heavy metals ions from aqueous solutions. It utilizes the properties of certain kinds of inactive or dead biomass to bind and accumulate these pollutants by different mechanisms, such as physical adsorption, chemisorption, complexation, ion exchange and surface micro-precipitation. Despite the known potential of yeasts to remove heavy metal cations from aqueous solutions, there is little information on the sorption ability of heavy metals by *Rhodotorula glutinis*. This yeast is of biotechnological interest because it is able to produce carotenoids naturally, which have wide applications as colorants, feed supplements, nutraceuticals, and so on. The biomass left after the extraction of carotenoids from *R. glutinis* is a waste material, which could be used as a potential biosorbent for the removal of nickel from contaminated wastewaters.

The main aim of this work was to study the effect of different conditions such as pH, initial metal concentration, contact time, and temperature on the capacity of untreated and acetone-pretreated *R. glutinis* biomass to biosorb Ni(II) ions from aqueous solutions. Furthermore, various kinetic and isotherm models were tested to describe the kinetics and Ni(II) biosorption data.

Rhodotorula glutinis was grown in YPD medium (20 g l⁻¹ dextrose, 10 g l⁻¹ yeast extract, and 20 g l⁻¹ casein peptone) at 25 °C for 24 h. Afterwards, the yeast cells were separated by centrifuging at 3500 rpm for 15 min, and washed three times with distilled water. The resulting pellets were divided into two portions: the first portion was dried at 60 °C for 24 h, and the second one was treated three times with acetone in order to extract the carotenoids. The acetone-pretreated yeast biomass was then washed thoroughly with distilled water and dried at 60°C for 24 h. To check the influence of pH, initial Ni(II) concentration, temperature and contact time on Ni(II) biosorption by *R. glutinis*, different conditions of pH (3-7.5), initial Ni(II) concentration (10-400 mg l⁻¹), temperature (25-60 °C), and contact time (0-17-120 h) were evaluated. A control was also run under similar conditions with the aqueous solutions.

Results showed that the capacity and initial volumetric rate of Ni(II) biosorption of untreated and pretreated *R. glutinis* biomass increased as the solution pH increased, attaining maximum values at pH 7.5. The Ni(II) biosorption capacity of the pretreated yeast biomass was 17% higher than that of the untreated one, so the pretreated biomass was chosen to carry out later studies.

The experiments performed at different initial Ni(II) concentrations showed that the Ni(II) biosorption capacity increased as the contact time increased, until it reached a constant value which was dependent on the contact time and the initial Ni(II) concentration. The maximum Ni(II) biosorption capacity of pretreated *R. glutinis* biomass was about 40.22 mg g⁻¹. Among the two-parameter models tested (Langmuir, Freundlich, Temkin, Flory-Huggins and Dubinin-Radushkevich) to describe the equilibrium between the Ni(II) sorbed onto the pretreated yeast biomass and Ni(II) ions in the solution, the best fit was produced by the Langmuir model (*r² = 0.99*). The maximum Ni(II) biosorption capacity predicted by the Langmuir model (41.67 mg g⁻¹) was very close to that obtained experimentally.

The experimental data were analyzed using two adsorption kinetic models (the pseudo-first- and the pseudo-second-order kinetic equations) to determine the best fit equation for the biosorption of Ni(II) ions onto pretreated *R. glutinis* biomass. Results showed that the pseudo-second-order kinetic model provided the best fit predicted data with experimental results, which suggests that chemisorption could be the rate-limiting step. From the data obtained at different temperatures, the thermodynamic constants of biosorption (activation energy, enthalpy and entropy) were also evaluated.

Keywords: biosorption, nickel, *Rhodotorula glutinis*, kinetic models, equilibrium models.

Novel microorganisms from East Calcutta Wetland: Implications for environmental sustenance

Madhusmita Mishra, Ashoke Ranjan Thakur, and Shaun RayChaudhuri

1Department of Biotechnology, West Bengal University of Technology, BF 142, Sector 1, Salt Lake, Kolkata 700064, West Bengal, India.

The baseline of the study was the exploitation of rich microbial resource of a wetland ecosystem of Kolkata viz. East Calcutta Wetland (ECW). It is worth mentioning that this wetland region of about 12,500 hectares acts as the dumping ground for the mega city but at the same hand it also acts as a resource recovery system where waste is recycled and used in production of paddy, vegetables as well as fish. The culture independent studies had revealed the existence of diverse bacterial population in the wetland ecosystem and indicate presence of significant groups like Acinetobacter, Actinobacteria, Proteobacteria and Firmicutes. With this pre-existing data, the objectives of the current work were the following (a) culture dependent isolation of potential microbes followed by their complete morphological, physiological, biochemical and molecular characterization, (b) to investigate their heavy metal uptake as well as crude oil degradation efficiency and (c) the assessment of these isolates from a commercial viewpoint keeping in view their ability to produce extracellular enzymes like lipase and protease.

Microbial enrichments from soil and water samples collected from different sites of ECW produced nine pure bacterial isolates. Preliminary characterization was based on the morphological, biochemical and physiological properties. 16S rDNA homology revealed the molecular characterization and the bacterial isolates were identified as belonging to two different genus, *Acinetobacter* and *Pseudomonas*.

All the isolates were found to tolerate heavy metals like nickel (Ni), copper (Cu), silver (Ag), aluminium (Al), iron (Fe), chromium (Cr), lead (Pb) under different extended and EDXRF analysis indicates maximum accumulation found in case of Pb salt. Transmission Electron Microscopy reveals the throughout intracellular accumulation of metals making them good candidate for concentration of toxic metal. Scanning Electron Microscopy depicts the cellular response towards metal induced stress either in form of cell shortening, cell elongation or the development of extracellular matrix to cause minimization of metal microbe interaction. Detection of SOD gene further strengthened the cellular defense mechanism.

The isolates were found to utilize vegetative oils like coconut oil as well as mineral oils like diesel, mobil and burnt mobil as principal carbon sources for growth. The *Acinetobacter* isolates showed more than 65% degradation of lubricants like burnt mobil and mobil in a span of 72 hours.

Lipase enzyme from one of the isolate was used as an additive to detergent and provided efficient wash performance in multipurpose functions like cleaning of glassware, clothes, utensils, sinks etc. A market survey indicated wide acceptability of the detergent with enzyme additive within different socio economic population. The extracellular enzymes protease and lipase from one of the isolates were tried out as dehairing agents for the treatment of goat hide replacing the conventional method using harmful chemicals. The efficiency of pretanning process like soaking and degreasing were found to be enhanced on application of enzyme as compared to the conventional process.

Thus the entire work stems from the isolation and identification of microbes from the environmental origin and their further application in bioremediation proceeding towards commercialization.

Keywords: Microbial Ecology, Bioremediation, Heavy metals, Crude oil, Microbial Enzymes.
Plant-microorganisms associations in salt marshes: influence on hydrocarbon degradation

H. Ribeiro1, A. P. Mucha2, C. M. R. Almeida3, and A. A. Bordalo3

1LABORATÓRIO DE HIDROBIOLOGIA, Instituto de Ciências Biomédicas Abel Salazar, Largo do Prof. Abel Salazar, Porto, 4099-003, Portugal
2CISMAR: CISMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragas – 289, Porto, 4050-123, Portugal

Estuaries are often considered sinks for contaminants, (e.g. hydrocarbons), receiving important anthropogenic inputs from the upstream catchments and from metropolitan areas and industries located on or near those areas.

Bioremediation is potentially less damaging and cost effective method for the recovery of contaminated areas compared to alternatives such as soil washing, incineration or disposal to landfill. Soil-sediment microorganisms can be stimulated by plant root exudates and the presence of plants can enhance the potential of microorganisms for bioremediation of soils/sediments contaminated with organic contaminants, like hydrocarbons, by providing specific microenvironments for pollutant-degrading microorganisms.

The aim of this work was to investigate the effect of several salt marsh plants roots (Juncus maritimus, Phragmites australis, Triglochin stricta and Spartina patens) commonly found in Atlantic temperate estuaries on the hydrocarbons degradation. The study was carried out in River Lima Estuary (NW Portugal) lower and middle stretches, an urban-industrialized estuary with a large salt marsh area, which is the end member of an international watershed.

In order to estimate microbial abundance, total cell counts (TCC) of sediment samples were enumerated by DAPI. Culturable hydrocarbon degraders were determined using a modified most probable number (MPN) protocol. For hydrocarbon concentration analysis dry sediment samples were extracted either with acetone or with hexane/acetone (1:1) using ultrasonic extraction or microwave assisted extraction. Extracts were fractioned with (i)trill. Aliphatic hydrocarbons were determined by gas chromatography with flame ionisation detection (GC/FID) and the PAHs were analysed by gas chromatography with mass spectrometry (GC/MS).

The results of the total microbial abundance did not show important differences between sampling sites, between sediments (uncolonized by plants) and rhizosediments (colonized by plants) or between rhizosediments of the different plants. However, in what the hydrocarbon degrader microorganism abundance is concerned, important differences were observed between samples and locations. Comparing the different sampling sites, higher numbers of hydrocarbon degraders were registered in the upper station of the middle estuary. Also it must be noted that, in general, higher numbers of hydrocarbon degraders were observed in sediments colonized by plants (rhizosediments) than in uncolonized sediments. Finally, there were observed differences in numbers of hydrocarbon degraders between the rhizosediments of the different plants collected at the same site (Juncus maritimus > Phragmites australis > Triglochin stricta).

These results show that salt marsh plants can have an important positive influence by enhancing the microbial communities responsible for the hydrocarbon degradation, and that this influence can vary with the plant-microorganisms associations.

This work was partially funded by Fundação para a Ciência e Tecnologia, Portugal, through fellowships awarded to H. Ribeiro (SFRH/BD/47631/2008).

Keywords: Bioremediation; hydrocarbons; estuary, salt marsh

References

Reactive Violet 12 dye decolorization by mycelial culture of *Trametes versicolor*

A. Krastanov1, H. Yemendzhiev1, I. Stoilova1, and Z. Alexieva1

1 Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
2 Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd, 4002 Plovdiv, Bulgaria

The industry is a major source of pollution for water ecosystems. Industrial production of textile, cellulose and various chemicals is connected with synthetic dyes usage. The discharged effluents could have a hazardous influence on the environment. The biological treatment for synthetic dyes removal is a very perspective, environmentally protective and low cost approach for solution of such problems. One of the recently wide used in dyeing of cellulose fabrics and textile industry dyes is an Antraquinon Dichloro Triazine Based Dye, known as Reactive Violet 12. Its popularity is due to the effective cold dying properties. There is not any data in the scientific literature about the process of biodecolorization of wastewater obtained after treating with this dye.

The process of Reactive Violet 12 decolorization by *Trametes versicolor* strain 1 was investigated in this study. The experiments were carried out with different concentrations of dye (50mg/l and 125mg/l) and glucose (1, 2 and 3%) in a medium. The highest values of the specific decolorization rates (Q) of the processes carried out with different glucose concentrations were obtained in the presence of 1% glucose. The enzyme activity of laccase (IEC 1.10.3.2) was measured during the process of decolorization. A direct correlation between the observed enzyme activity and the effectiveness of investigated processes was proved. In spite of the fastest speed of decolorization registered in the medium complemented with 1% glucose the total decolorization was improved by increasing the initial glucose concentration in the medium. The higher concentrations of glucose maintained more percentage of decolorization due to the better growth of *Trametes versicolor*. Nevertheless it was established that maximal laccase activity was comparably equal in all described experiments (120 U/ml – 145 U/ml).

It was established that the best conditions for laccase production are in a medium containing 3% glucose. Correspondingly, the decolorization of 125mg/l Reactive Violet 12 dye in these conditions was 100 % completed in 360 hours.

Keywords decolorization; laccase; Reactive Violet 12; *Trametes versicolor*

Removal of bentazon by liquid and solid state cultures of *Ganoderma lucidum*

J. S. Coelho, A. L. Oliveira, A. Bracht, C. G. M. Souza and R.M. Peralta

Department of Biochemistry, University of Maringá, Maringá, PR, Brazil, 87015900

The herbicide bentazon is commonly used as a post-emergence herbicide in cereal crops. In Brazil, it is mainly used on peanuts, rice, beans, corn, soy-beans and wheat. Bentazon is degraded at a moderate rate by microorganisms in the soil environment. As consequence, after pesticide application, residues may remain in the crops, soil and natural water and constitute a health risk because of their toxicity. Removing bentazon from the environment is an ecologically responsible, safe, and cost-effective way to a top concern for land management agencies. Bioremediation using various microbial organisms is one way of doing it. In the last years, the capability of white rot fungi (WRF) to biodegrade several xenobiotics and recalcitrant pollutants has generated a considerable research interest in the area of industrial/environmental microbiology. WRF are the only microorganisms known to be able to degrade the highly recalcitrant natural polymer lignin because they possess a powerful enzymatic system formed mainly by peroxidases and laccases. *Ganoderma lucidum* is one of the most important and widely distributed WRF in the world and it is associated with the degradation of a wide variety of woods. The potential of *G. lucidum* and its enzymes in bioremediation processes is still far from being fully explored. Within this context, the objective of this work was to compare the removal of the herbicide bentazon by liquid and solid state cultures of *G. lucidum*. The fungus was cultured on potato dextrose agar Petri dishes (PDA) for up to 2 weeks at 28 °C. When the Petri dish was fully covered with mycelia, mycelial plugs measuring 10 mm in diameter were made and used as inoculum. *G. lucidum* was cultivated under liquid stationary or in solid state conditions at 28 °C in the dark. Three disks with 10 mm of diameter from the growing edge of the mycelium on PDA plates were transferred to 125 ml Erlenmeyer flasks containing 25 ml of mineral solution supplemented with corn cob powder at 1% as substrate (liquid cultivation) or to flasks containing 5 g of corn cob powder at 75% of moisture content (solid state cultivation). Different amounts of bentazon (0.50 mM) were added to the media. At periodic intervals 25 ml of cold water were added to the solid state cultures and the mixtures were shaken for 1 h at 4 °C. Liquid and solid state cultures were then filtered, and the filtrates were used as source of enzymes. For extracting the bentazon possibly sorbed on the fungal mycelia and residual corn cob, 25 ml of methanol were added to the insoluble materials obtained after aqueous extraction and the mixtures were shaken at 120 rpm in an orbital shaker for 2 h. To evaluate the residual bentazon, the combined aqueous and methanolic extracts were concentrated just to dryness by using a rotary evaporator. Each residue was reconstituted in 10 ml of a mixture of methanol/acetic acid 0.1 M (50:50). A HPLC system with a LC-20AT Shimadzu system controller, Shimadzu SPD-20 A UV-VIS detector, equipped with a reversed Shimpack C18 column (4.6 x 250 mm), maintained at 30 °C, was used for determining the residual amounts of bentazon. All samples in duplicate were filtered through a 0.22 µm filter unit before injection and the solvents were filtered through a 0.45 µm filter. The mobile phase was methanol:acetic acid 0.1 M (50:50) and the flow rate was 1 ml/min. Detection was done at 254 nm. The herbicide concentrations were determined using a calibration curve constructed with peak areas of authentic standards. Identification of bentazon in the samples was based on retention time (6.38 min) and fortification of the samples with standards. Laccase activity was determined with 2,2'-azino-di-(3-ethylbenzothialozin-6-sulfonic acid) (ABTS) as the substrate. Oxidation of ABTS was monitored as absorbance increase at 420 nm. The Mn peroxidase activity was assayed by following the oxidation of MnSO₄ in malonate buffer in the presence of H₂O₂. Manganese ions form a complex with malonate, which absorbs at 270 nm. One unit (U) of enzymatic activity was defined as the amount of enzyme required to produce 1 µmol product per min and was expressed as U/L. *G. lucidum* was able to grow in liquid and solid state cultures using corn cob as substrate. In control cultures, identical maximal laccase activities were 1,000 U/L in both types of cultivation. In relation to Mn peroxidase, solid state conditions allowed the obtainment of high Mn peroxidase activity (230 U/L), in comparison to that one obtained in liquid cultures (15.5 U/L). Bentazon had a negative effect on the mycelial growth (visual analysis) in both types of cultures. No growth was observed upon the addition of 25 and 60 mM bentazon in liquid and solid state cultures, respectively. In despite of the apparent growth inhibition, the herbicide enhanced the production of laccase to a maximal value of 1,800 U/L, using 2.5 mM and 30 mM bentazon in liquid and solid state cultures, respectively. The Mn peroxidase activity was only slightly improved by bentazon: using 10 mM of bentazon, the production of Mn peroxidase was 21 and 262 U/L in liquid and solid state cultures, respectively. After 10 days of cultivation, the residual bentazon present in the combined extracts was 47 and 12% of the initially added to liquid and solid state cultures, respectively. In the present work *G. lucidum* showed a considerable tolerance to bentazon when cultured on solid state conditions. The data suggest that under both types of cultivation, the fungus was able to degrade bentazon. Degradation, however, was more efficient under solid state conditions, where high levels of both laccase and Mn peroxidase activities were found. These observations suggest that both enzymes may have a role in bentazon degradation. These observations
suggest the use of solid state cultures of *Ganoderma lucidum* in strategies designed to reduce the contamination of the environment by this herbicide.

Keywords: bentazon; *Ganoderma lucidum*; herbicides; laccase; ligninolytic enzymes; white rot fungus.

Removal of Heavy Metals in Wastewater Effluents in an Integrated Mode Using Supercmacroporous Gels for Enrichment and Biogenic Sulphide for Subsequent Precipitation

Önby, L1, Jarquin, M1, Alvarez, MT2, Plieva, F.M1, and Mattiasson, B1

1 Department of Biotechnology, Center for Chemistry, and Chemical Engineering, Lund University, Sweden. P.O. Box 124, SE-222 00 Lund, Sweden

2Instituto de Investigaciones Fármaco Bioquímicas, Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, Casilla Postal 3239, La Paz, Bolivia

Efficient wastewater treatment systems for the removal of heavy metals are needed. Available techniques suitable for capture of heavy metals (HM) prevailing at low concentrations are scarce and not as well developed. The capture of HM can be achieved by adsorbents. Enriched metal solutions can thereafter be precipitated by e.g. biogenic sulphide (BS). In this study, adsorbents based on supermacroporous gels (cryogels) and bearing metal-chelate functionalities (iminodiacetate residues (IDA) and ligand derived from derivatization of epoxy-cryogel with tris(2-aminoethyl)amine (TREN) followed by the treatment with bromacetic acid (defined as TBA ligand)) have been prepared and evaluated on capture with HM. The cryogels were prepared in plastic carriers, resulting in a desired mechanical stability. Sorption experiments for different metals (Cu2+, Zn2+, Ni2+ and Cd2+ with IDA adsorbent and Cu2+ and Pb2+ with TBA adsorbent) were carried out in batch and column modes. Obtained capacities with Cu2+ were 74 and 19 mol/m3 gel for TBA and IDA adsorbents respectively. The TBA ligand showed potentials for the removal of Cu2+ ions from aqueous solutions at low concentration. About 80 and 90 % of Cu2+ ions were captured with the TBA adsorbent after applying 20 L of Cu2+ solutions (0.50 and 0.25 mg/L, respectively) in column mode. A suggested integrated treatment includes (1) capture of HM ions by the cryogel adsorbents followed by (2) precipitation of enriched HM using BS.

Keywords: Adsorption; Biogenic sulphide; Cryogels; Heavy metals; Water treatment.
Response of a denitrifying *Pseudomonas* to sodium benzoate

Trelita de Sousa, Teja Gaonkar, and Saroj Bhosle

Department of Microbiology, Goa University, Taleigao Plateau, Goa – India, 403 206

Biodegradation of hydrocarbons by natural populations of denitrifying bacteria represents an effective means of elimination of petroleum contamination. These facultative microorganisms have an ideal mechanism of respiration using nitrate as the terminal electron acceptor in the absence of oxygen and can afford an extensive range of habitats with different oxygen concentrations as compared to other microbial groups and thus form an ideal strategy for hydrocarbon removal.

An aerobic denitrifying bacterium was isolated from the sand dunes along the Arabian Sea and maintained on nitrate reduction medium (NRM) and denitrification medium (DM) with KNO₃ as the nitrate source. The culture was identified as *Pseudomonas aeruginosa* from its morphological and biochemical characterization and by 16sRNA gene sequencing. When the culture was spot-inoculated in bromothymol blue medium with increasing concentrations of nitrate, it exhibited denitrification with up to 4% of nitrate concentration. Further, this investigation was directed at studying the response of the *Pseudomonas* culture to sodium benzoate (a model compound) and its effect on denitrification. The culture showed growth in a mineral salts medium with up to 3% sodium benzoate and exhibited the ortho mode of ring cleavage. The culture was inoculated in DM supplemented with 0.1% sodium benzoate and incubated under static conditions and on shaker conditions with 50rpm, 100rpm and 150rpm. Nitrite was formed and reduced within 6hr at 100rpm and within 8hr under static conditions, at 50rpm and at 150rpm as shown in Fig.1. The effect of different concentrations of sodium benzoate on nitrite formation and reduction was studied by growing the culture in DM supplemented with increasing concentrations of sodium benzoate. The supernatant was taken every 2hr and treated with sulphuric acid and naphthaleneamine. The increase and decrease in nitrite was determined by measuring the absorbance at 540nm as illustrated in Fig.2. It was observed that with the inoculum from a benzoate medium, the nitrite was formed and reduced with 1% sodium benzoate after 8hr as compared to inoculum not exposed to benzoate which gave a reduction after 10hr (Fig.2).

![Figure 1: Effect of inoculation on nitrite formation during growth in presence of 0.1% sodium benzoate](image1)

![Figure 2: Effect of different concentrations of sodium benzoate on nitrite formation during growth](image2)

The culture is a strong denitrifier and shows great potential in hydrocarbon bioremediation. Further work on the response of the culture to sodium benzoate with respect to growth, pigment production and emulsification activity will be presented.

Keywords: hydrocarbon; denitrification; sodium benzoate; nitrite; *Pseudomonas*

Screening of pentachlorophenol degradation ability of several fungi isolates from Tunisian soils

C. Rodrigues*, A. Varelà1, S. Tavares1, K. Lyambo1, I. McLellan1, M. Carvalho1, M.V. San Román1,2,3, M. Blaghen4, A. Hursthouse4 and C. Silva Pereira1,2,4* corresponding author, *equally contributing authors.

1Instituto de Tecnologia Química e Biológica (ITQB), Apartado 127, 2780-903 Oeiras, Portugal
2Instituto de Biologia Experimental e Tecnológica (IBET), Apartado 12, 2780-901 Oeiras, Portugal
3INRB-L-INIA (Ex-EAN), Av. da República, Quinta do Marquês, 2784-505 Oeiras, Portugal
4School of Engineering & Science, University of the West of Scotland, Paisley, PA1 2BE, UK

All environmental compartments are linked together, but soil behaves as the main vector for pollutant migration as a result of agricultural and industrial activities. Soil degradation and pollution is increasing affecting its sustainability and consequently its quality and normal function. Persistent organic pollutants (POPs) persist long in the environment may travel long distances from the source of application and are bio-accumulative in living organisms. In soil POPs strongly absorb to the humic matter, where microbial transformation by the endogenous soil microbes is a major component.

Man-made pentachlorophenol (PCP) is environmentally persistent (photo stable) and its water solubility together with its moderate mobility makes soil/water interaction acute, thus a good model for assessing the environmental decay of POPs.

Fungi are known for their diversity and remarkable ability to degrade complex and persistent natural materials such as lignin and chitin. In contrast to bacteria, fungi are able to extend the location of their biomass through hyphal growth. They are able to grow under environmentally stressed conditions such as low nutrient availability, low water activity and at low pH values where bacterial growth might be limited.

The study presented focuses on the capacity of fungal strains amongst the soil colonising communities to bioremediate PCP. The soil samples studied were systematically collected inside Tunisian Oak forests (summer/winter) and comprehensively analysed (chemical and microbial). This forest is at risk from PCP pollution and its impact on the soil fungal colonising community.

The authors are deeply thankful to NATO sfp-981674 team members, especially to member of Tunisia team, lead by Prof. A. Hassen, who have executed the soil sampling. The work was partially supported by the projects: NATOsfp sfp-981674.
Screening of Potential Biosurfactant Producing rhizospheric Microorganisms of fique (Furcraea sp) for potential soil bioremediation

L. Sastoque-Cala1, A. M. Cotes-Prado1, Rodríguez-Vázquez, R2, Pedroza-Rodríguez AM3

1Colombia Corporation of Agriculture Investigation. CORPOICA. Bogotá, Colombia.
2Biotechnology and Bioengineering Department. Center for Research and Advanced Studies of I.P.N (CINVESTAV-IPN)

Aliphatic hydrocarbons are non-polar compounds, of low solubility in water, hydrophobic and with a high biocorrosion factor. It has been estimated that when these compounds are released into the environment they accumulate in soils, where due to their high affinity for organic C they are frequently found adhered to soil particles. Recently it has been suggested that certain rhizosphere inhabiting microorganisms from perennial plants such as fique, a native Agavaceae living in different ecosystems and that presents restoring effects on soils and is an ideal model for microorganism isolation with potential for soil bioremediation.

In this work, the production of biosurfactants was studied as well as their emulsifying ability of aliphatic hydrocarbons (kerosene) and the stability of the biosurfactives under extreme conditions. Thirity one Rhizobacteria (16 Pseudomonas, 9 spotedul Bacillus and 6 Actinomycetes) were isolated from Figue roots coming from three distinct producing regions. 51.0% of the evaluated Rhizobacteria presented extracellular glycolipid production. From these biosurfactant producing isolates fifteen corresponded to the genus Pseudomonas and one to the genus Bacillus. Stable and compact emulsions of kerosene with the supernatant fluid of the culture were observed after 24 h of cultivation reaching maximal value of 69% at 120h of incubation. The emulsifying agent maintained its properties over a wide range of pH (2-9), at high salinity (20% NaCl), and during exposure to high temperatures (121 °C). The microbial biosurfactizer was effective at these extreme environmental conditions and was able to emulsify the tested pure aliphatic hydrocarbons.

The isolates with higher emulsification percentages and extracellular glycolipid production were identified using a Biolog® identification system as P. fluorescens, P. putida. The best production of 4.2 g/l was obtained when the cells were grown on minimal salt medium containing 2% (w/v) glycerol and 0.1% (w/v) ammonium sulfate 30 °C and 180rpm after 12 days. The optimum biosurfactant production pH value was found to be 7.0. The biosurfactant could reduce surface tension to 29mN/m and emulsified hexadecane up to E247≈68.

The isolates P. fluorescens and P. putida have biosolubility promoter mechanisms as the production of biosurfactants that favor hydrocarbon’s solubility evidencing their potential as inoculants in bioremediation processes of hydrocarbon polluted soil.

Sequential Photo-Biodegradation of MCPA with the Use of Exilamps

Karetnikova Elena A; Tchaikovskaya Olga N.; Sokolova Irina V.; Khabarova Anna I.

Institute of Water and Ecological Problems, Far East Branch Russian Academy of Sciences, 65 Kim-Yu-Chen St., Khabarovsk 680000, Russia

Photoysis is one of perspective methods of degradation of organic compounds. Most experimental works on research of photochemical transformation of toxicants have been done with using of mercury lamps. However is known organic molecules effectively absorb UV-radiation with the certain of wavelength, that depends on spectral characteristics of the substance. It makes using exilamps as a source of UV-radiation very perspective to carry out more effectively phototransformation of organic compounds. The exilamps only start to be used in the scientific and applied purposes, including in the problems connected to preservation of the environment. Many aspects connected to their influence, still are not investigated at all.

The aim of present work was studying of efficiency of biodegradation, photoysis and sequential photo- biodegradation of MCPA.

It was shown that under UV-radiation of a KrCl-exilamp MCPA concentrations in water reduced from 2*10⁻³ to 2.2*10⁻⁴ M. Such herbicide concentration reduction was registered after 15-minute radiation and after that under radiation up to 60 minutes significant reduction of concentrations was not observed. Under UV-radiation of a XeBr- exilamp MCPA concentrations in water also reduced to 2.6*10⁻⁷ M, but further radiation caused herbicide concentration reduction to 10⁻¹⁰ M.

MCPA photoysis produced chloride ion and unbound chlorine concentration increase due to herbicide dehalogenation during photo-transformation. The chromatography mass spectrometry analysis showed that in spite of the length of a UV-radiation wave the first stage of MCPA photo-transformation was the formations of 2-methyl-4-chlorophenol. Radiation time increasing it was further transformed into 2-methylphenol, 2-methylhydroquinone and 2-methyl-4-chlorophenol (registered in trace amount). This proved the assumption of herbicide dehalogenation during photolysis. Besides, when MCPA solutions were treated with a KrCl-exilamp and a XeBr-exilamp it was observed that photo-transformations were followed by the break of C-4H8-bound in a carboxylic group, the reparation of a hydrogen proton in the methyl group with the formation of 6-chloro-3-chromann. The ratio analysis of the formed photoproducts revealed that after 60-minute KrCl-exilamp radiation the main products in the solution were chlorroesol and 6-chloro-3-chromann, whereas after XeBr-exilamp radiation 2-methylhydroquinone and 6-chloro-3-chromann showed maximal peak height.

The analysis of respiratory activity of microorganisms of active sludge cultivated on pre-radiated MCPA solutions showed that in case of KrCl-exilamp radiation CO₂ accumulation intensity was decreasing in the first three days, whereas later respiratory activity was increasing compared to clean active sludge and active sludge with a non-radiated herbicide.

In case of XeBr-exilamp radiation significant decrease of respiratory activity in the first cultivation days were not observed. Active sludge respiratory activity in 3-7-day period did not exceed the control. In case of active sludge cultivation with periodic mixing MCPA concentrations decreased 60%, and in 14 days decreased 87%. The analysis after 5 days revealed 2-methyl-4-chlorophenol in the media and after 14 this metabolite was not registered. After 5 days of active sludge cultivation KrCl- and XeBr- exilamp pre-radiated MCPA solutions revealed 4*10⁻⁵ M and 7*10⁻⁶ M concentrations of initial toxicant respectively. After 14 days MCPA and dehalogenated photolysis products were not registered. Moreover, 2-methyl-4-chlorophenol complete decomposition and decrease of chlorinated photo-product concentrations were observed in case of XeBr-exilamp pre-radiation.

Thus, UV-radiation of MCPA solutions allows not only speeding up MCPA utilization and but also transformation of 2-methyl-4-chlorophenol, toxic to many microorganisms, into a compound less resistant to further biodegradation.
Simultaneous decolorization and detoxification of Black Reactive 5 using TiO$_2$ deposited over glass

I. Puentes-Cárdenas1, C. Campos-Pinilla1, A.E. Florido-Cuellar2, J. A. Calderón-Arenas3, O. Zelaya-Angel3, A.M. Pedroza-Rodríguez1

1Environmental and Industrial Biotechnology Group. University Javeriana. Carrera 7 No. 43-82, Bogotá, Colombia.

During the dyeing process about 25% of the dye is not fixed and enters into the environment. Due to their complicated structure most of the dyes are resistant to biodegradation and the by-products are more dangerous than the original dye. Heterogeneous photocatalysis with TiO$_2$ offers an attractive advanced oxidation process for these pollutants. For this reason the Reactive Black 5 (RB5) dye was degraded by using UV-irradiated TiO$_2$ USP coated on glass. The treated effluent showed low toxicity with respect to the RB5 without treatment.

The TiO$_2$ was coated for sedimentation over glass and these films were dried and annealed at (450°C) for one hour twice. Later the films were introduced in a photoctalytic reactor of quartz (UV light 256 nm) with 120 ml of water and dye at 14 h. We used ascendants concentrations of dye (10, 50, 60, 70, 80 and 100 ppm), but the results shows that 70 ppm is the highest concentration that the system is able to degrader at 100% (0 ppm) in 14 h.

The sequencing batch experiments with TiO$_2$ were evaluated for 46 h and the results suggest that the films were able to decolorize 70 ppm of RB5 for 3 continuous cycles (100%).

Finally, a toxicity test with Daphnia magna revealed, that for killing half of the population in 48 h is necessary a minor concentration of BR5 to 70 ppm (CL$_{50}$: 25%) that of water after of 14 h of treatment with heterogeneous photocatalysis (CL$_{50}$: 60%).

These results suggest that UV-irradiated TiO$_2$ coated over glass may be considered as an adequate process for the discoloration and detoxification of the textile wastewater.

Soil microcosms for determination of growth by Streptomyces mirabilis P16B1 in heavy metal contaminated soil

Eileen Schütze1, André Schmidt1, Matthias Kästner2, Erika Kethe1

1Institute for Microbiology - Microbial Phytopathology, Friedrich-Schiller-University, Neugasse 25, D-07745 Jena, Germany.
2Helmholtz Centre for Environmental Research - UFZ, Department of Bioremediation, Permoserstraße 15, D-04318 Leipzig, Germany.

Streptomyces are a dominant group of soil bacteria which belong to the group of Actinobacteria. They are known for their complex life cycle, including mycelial growth and spore production, as well as their production of secondary metabolites, among them a large number of antibiotics. In comparison to pristine soils, heavy metal contaminated soils show much higher numbers of Gram positive bacteria, with bacilli and streptomycetes dominating over Gram negative proteobacteria or firmicutes. The former uranium mining site WISMUT in Eastern Thuringia, Germany, shows extreme environmental conditions, such as scant nutrients, intense salt load and low pH, followed by high metal content. The banks of the creek Gessenbach are characterized by exceedingly high concentrations of heavy metals as a consequence of the permanent inflow of acid mine drainage water over several decades of mining activity. Actinobacteria isolated from this hostile environment show high resistances against a range of heavy metals, including nickel, cobalt, cadmium or zinc. The extremely heavy metal resistant strain *Streptomyces mirabilis* P16B1 shows the ability to grow in highly contaminated soil from sample site K7 without the addition of any media ingredients even though there is a significantly higher content of a range of heavy metals, including mobile and adsorbed fraction metals as determined by sequential extraction methods. Scanning electron microscopy was used to detect the mycelium of the strain and spore-production on the surface and in the interior of the soil. It could be shown that inoculation with the strain has an effect of heavy metal availability in mobile and adsorbed fraction. The superoxide-dismutase-production of *S. mirabilis* P16B1 under natural conditions in microcosms was investigated by SOD-activity-assay and total protein-expression under artificial conditions with and without high nickel content by two dimensional gel-electrophoresis.

Keywords: Actinobacteria, Metal resistance, microcosm, SOD, protein expression,
Soluble Sulfate Removal from Effluent Water by Sulfate Reducing Bacterial Consortia

Poonam Nasipuri1, A. R Thakur2 and Shaon Ray Chaudhuri3
1Department of Biotechnology, West Bengal University of Technology, BF-142, Sector 1, Salt Lake, Kolkata-700064, India
2West Bengal State University, Barasat, North 24 Parganas -700126, India

Sulfate contamination in water causes various environmental and health hazards. High sulfate contamination has a laxative effect on human, cause various skin problems and imparts an unpleasant taste to the water. Sulfate is released mainly as a byproduct of industrial activities like metal smelting, fuel gas scrubbing and mining activities. The techniques for sulfate decontamination are many, like reverse osmosis, distillation, and ion exchange but they have many drawbacks when their efficiency is compared with the cost of technology. The alternative way of combatting the problem is exploiting the technique of bioremediation. Areas like hot water springs, wetlands, and mining sites could be a heterogeneous group of microbes, which use sulfate as terminal electron acceptor. They use simple organic compounds like hydrogen, ethanol, methanol, lactate, propionate, pyruvate etc., as electron donors and reduce the sulfate to hydrogen sulfide as end product by dissimilatory sulfate reduction pathway. This hydrogen sulfide can react with metals and produce insoluble metal sulfides. The sulfate reducing bacteria are of wide technological interest because of their ability to reduce sulfate and form insoluble metal sulfide thus removing sulfate from water.

Here we have focused on (a) Isolation efficient SRB consortia from different parts of India and their characterization to understand their sulfate reduction efficiency (b) Technology transfer i.e. treatment of sulfate contaminated effluent with the most efficient SRB consortia at pilot scale.

Eight different SRB consortia were obtained from twenty different samples screened. The consortia were grown in wide range of pH and temperature in order to understand sulfate reduction from different sulfate contaminated environmental water. Both turbidimetric method and Ion-Exchange chromatography revealed that the most efficient consortium reduced a sulfate load of 2000 ppm in 36 hours. The consortium can tolerate sulfate load of 7500 ppm reducing the sulfate in 96 hours. It can utilize lactic acid as a cheaper source of electron donor apart from sodium D-L lactate. Upon immobilizing the bacteria on corrugated sheet packed bed 10 L bioreactor it reduced sulfate of 2000 ppm in 120 hours where no anaerobicity was generated externally and no temperature was maintained in order to reduce the energy consumption cost at pilot scale study. Molecular characterization of 182 clones from the 8 different consortia revealed that novel SRB along with different non-SRB. These sequences obtained have been submitted to the NCBI Genbank under accession numbers FJ609658 - FJ609678, F3004435 - F3004467, GQ535750 - GQ535878 and GQ98863. The saturation curve clearly indicates that no further screening was needed to understand the population diversity. Shannon diversity index and Equitability index speaks about the less diversity of the population which is due to the specific media used for cultivation specific SRB population.

Thus these microbial consortia with different efficiency of sulfate reduction would have great application in the treatment of soluble sulfate rich effluent water from different environmental sites. The diverse nature of the consortia like the wide pH and temperature tolerance with associated reduction would make them suitable for application at various sites. More over the immobilization of the consortia in 10 L bioreactor without any external energy consumption will reduce the cost per se. But not limiting the study to this point, next step would be searching for a much cheaper substrate of sacrifice for reduction kinetics like using indigenous source of lactic acid instead of commercially available one. Bioaugmentation can also be done where the efficiency of the consortia could be increased either by adding some nutrients or manipulating certain conditions.

Keywords: Sulfate Reducing Bacteria, Bioremediation

Spent mushroom substrate from the industrial cultivation of P. ostreatus for discoloring complex chromo-baths for the textile industry: white rot fungi for a sustainable approach to wastewater treatment

Simona Di Gregorio1, Francesco Blesi1, Maria Basile1, Valentina Mattei2, Maria Grazia Tozzi1, Roberto Lorenzi1, and Riccardo Bassoli2
1DEPARTMENT OF BIOLOGY, University of Pisa, Italy
2DEPARTMENT OF CHEMISTRY, University of Siena, Italy

Synthetic dyes used in textile industry, are recalcitrant to degradation and toxic to different organisms. Physical-chemical treatments of textile wastewaters are not sustainable in terms of costs and produce large amounts of toxic wastes. Biological treatments can be more convenient and the lignin-degrading extracellular enzymatic battery of basidiomycetes have received extensive attention for their capacity to discolor synthetic dyes. Many basidiomycetes are edible mushrooms whose industrial production generates significant amount of spent mushroom substrate (SMS) with residual high levels of lignin-degrading extracellular enzymatic activities. We have demonstrated that the SMS deriving from the cultivation of the basidiomycetes Pleurotus ostreatus (white rot fungus) is able to discolor anthraquinonic, diazo and monoazo-dyes when incubated in dying chromo-reactive and chromo-acid baths. The capacity of the SMS has been tested on industrial chromo-baths, instead of aqueous solution of single dyes. In fact, the formers have a higher similarity to the real industrial wastewaters, since containing auxiliaries of the dying process (mainly surfactants and salts), that actually are also released in wastewaters and can interfere with the discoloring process. Moreover, the chromo-baths here tested for discoloration contained chemicals at concentrations definitely higher than the one recovered in the real wastewaters: dyes and auxiliaries in concentration up to the 20% of the initial chromo-bath mass used in the dying process. It is estimated that the amount of textile dyes released in wastewaters account for the 10% of the total used in the industrial process. A total of 70-90% of discoloration occurred in 24 hrs for all the chromo-bath tested. Lactase was the lignin-degrading extracellular enzyme involved in the discoloring process. The exploitation of the low cost SMS in the treatment of textile was reinforced by a toxicological assessment, based on a cytotoxicity test on a human epithelial cell line (WISH) and the estimation of the germination index (GI%) of Lactuca sativa, Cucumis sativus, and Sorghum bicolor, has been performed, showing the loss of toxicity of the chromo-bath after being discoloured by the SMS.

Keywords: anthraquinonic dye; diazo dye; lactase; monoazo dye; white rot fungi; spent mushroom substrate

<table>
<thead>
<tr>
<th>Chemical composition of the different chromo-baths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Yellow 99</td>
</tr>
<tr>
<td>Black DM 5594</td>
</tr>
<tr>
<td>Blue 5G (anthraquinonic)</td>
</tr>
<tr>
<td>Blue RR (anthraquinonic)</td>
</tr>
<tr>
<td>Blue Black (anthraquinonic)</td>
</tr>
<tr>
<td>Black Red (anthraquinonic)</td>
</tr>
<tr>
<td>Black Red (anthraquinonic)</td>
</tr>
</tbody>
</table>
Stimulation of polycyclic aromatic hydrocarbon biodegradation by nitrate and sulfate amendment to sediment along a natural salinity gradient

Karl Rockne
Department of Civil and Material Engineering, University of Illinois at Chicago, Chicago, IL 60607 USA

Although it has been established that polycyclic aromatic hydrocarbons (PAHs) are biodegradable under anaerobic conditions, it is not clear how widespread this activity is and whether primarily laboratory-based experimental results from marine and estuarine sediments can be extended to the field. Surface and depth-resolved sediment with a range of polycyclic aromatic hydrocarbon (PAH) pollution was collected from field sites spanning a natural salinity gradient from ~20 ppt salinity (near marine) to fully freshwater. Sediment samples were transported to the laboratory for preparation of laboratory and field microcosm incubations. Sediment for laboratory experiments were amended with nitrate or sulfate anaerobic electron acceptors, as well as phenanthrene and naphthalene as bioavailable PAHs to assay the broad scale effectiveness of biosimulating anaerobic respiring bacteria as a remedial strategy for PAHs. Sediment microcosms were prepared by amending the sediment with nitrate or sulfate and packing them in multiple field microcosms (one for each sample time and incubation condition) consisting of polycarbonate tubes with sealed bottoms with the top open and flush with the sediment water interface. The microcosms were placed back in the field and incubated over extended periods with destructive sampling by removal of an entire core at sampling time intervals. Over time, sulfate stimulated biodegradation of both phenanthrene and naphthalene in nearly all sites in the laboratory study. In contrast, high levels of nitrate did not stimulate naphthalene biodegradation in some sites. In contrast, most native PAHs with more than 3 rings were not removed significantly in field experiments, which is likely due to the lower levels of PAH pollution in the test sediments than in the PAH-amended laboratory incubations. Electron acceptor utilization kinetic studies were performed to determine whether amended anaerobic electron acceptors would be rapidly utilized for non-targeted utilization (i.e. by sediment organic matter oxidation via denitrification or sulfate reduction) under different temperatures representing spring/fall, summer and winter temperatures; as well as in the field incubations. Results demonstrate that electron acceptor utilization rates were significantly lower in the sulfate stimulated sediments than those observed in the nitrate stimulated sediments, indicating that more sulfate may be available specifically for PAH biodegradation. Further, Arhenius plots provide activation energies for these activities consistent with those observed in methanogenic conditions in contaminated sediments. These results suggest that sulfate may be a more widely applicable anaerobic electron acceptor for stimulating anaerobic PAH biodegradation in sediments from a variety of salinities. Further, PAH bioavailability is likely a key limiter in contaminated sediments due to the non-targeted oxidation of sediment organic matter and resultant utilization of amended electron acceptor.

Keywords polycyclic aromatic hydrocarbon; PAH; sulfate reducing bacteria; denitrification; bioremediation; sediment

Sustainable remediation of polycyclic aromatic hydrocarbon contaminated soils using a two step bioremediation process.

J. Hall1, R. Stewart1,2, B. Dearman1,2,3, A.S. Ball1,2,4
1 School of Biological Sciences, Flinders University, GPO Box 2010, Adelaide SA 5001, Australia
2 Flinders Bioremediation, Faculty of Science and Engineering, Flinders University, GPO Box 2010, Adelaide SA 5001, Australia
3Current Address: Remediate PO Box 373, Kent Town SA 5051, Australia
4Corresponding author

Concern about the impact of polycyclic aromatic hydrocarbons (PAHs) on human and environmental health has resulted in the listing of sixteen PAHs as priority pollutants on the Environmental Protection Agency’s contaminants list. High molecular weight PAHs are highly recalcitrant contaminants, and therefore effective remediation strategies must be capable of releasing and degrading PAHs in soils to produce readily biodegradable, partially oxidised metabolites with increased bioavailability compared with the parent compound. Various biotic and abiotic remediation techniques have been applied to PAH contaminated soils, including incineration, in-situ washing and Fenton’s oxidation. However all of these techniques effectively destroy soil biological function. Bioremediation offers the potential to sustainably remediate the soil; however the bioremediation of PAH contaminated soil is difficult and time-consuming using current methodologies. In this study the treatment of polycyclic aromatic hydrocarbon contaminated soil using Fenton’s oxidation followed by a 6 week bioremediation field trial involving additions of compost or poultry manure was investigated. The soil was sampled from a disused gas manufacturing facility located in South Australia. The original concentration of PAH was 207 mg kg\(^{-1}\) with the benzopyrene concentration 13 mg kg\(^{-1}\). The effect of Fenton’s oxidation and subsequent compost or manure amendment on PAH concentration and on soil physical and biological parameters including soil respiration rate was assessed. Following Fenton’s oxidation of soil using 1% (v/w) addition of 10% H\(_2\)O\(_2\), no significant reduction in PAH was detected. However 6 weeks following the addition of either spent mushroom compost or poultry manure to the soil immediately after Fenton’s oxidation a reduction in PAH concentration of 63% was observed (77 mg kg\(^{-1}\)), with benzopyrene concentration being reduced by 69% (5 mg kg\(^{-1}\)). These levels fall below the Health Investigation Level for factory and industrial sites according to Schedule B (1)-EPA Guidelines on Investigation Levels for Soils and Groundwater. In the absence of Fenton’s oxidation treatment, the addition of compost or manure resulted in a soil PAH level of 130 mg kg\(^{-1}\) and a benzopyrene concentration of 8 mg kg\(^{-1}\) after 6 weeks incubation. In terms of biological activity, soil respiratory activity, after 6 weeks incubation was greatest in the Fenton’s treated soils amended with compost or manure (76 and 113 mg CO\(_2\) m\(^2\) h\(^{-1}\) respectively). Untreated soils and unamended Fenton’s treated soils showed significantly lower levels of soil respiratory activity (approximately 12 mg CO\(_2\) m\(^2\) h\(^{-1}\) respectively), confirming the restoration of biological activity in these treatments. The results obtained suggest that Fenton’s oxidation of PAH contaminated soils followed by amendment with mushroom compost or poultry manure provides increased reduction of PAH contaminant concentration to below soil investigation level F suggesting the potential of this sustainable remediation technology. This is possibly due to enhanced microbial degradation of desorbed PAHs produced during the oxidation process when compost or manure amendments are present, and also due to increased total microbial numbers, and improved soil physical and chemical properties.

Keywords bioremediation, Fenton’s oxidation, polycyclic aromatic hydrocarbon contaminated soils, sustainable remediation
Synthetic dye degradation by complex pellets of white-rot fungus *Trametes versicolor*

S. Elgueta1,2, R. Cuevas3, O. Rubilar2 and M.C. Diez1

1International Doctorate in "Environmental Resource Science" Universidad de La Frontera, Chile; Universidad de Napolés Federico II, Italy.
2Centro de Biotecnología Ambiental, Scientifical and Technological Bioresource Nucleus, Universidad de La Frontera, Chile.

Effluents containing textile dyes are usually discharged in large quantities worldwide into natural water bodies. The presence of these compounds can cause problems due to the possible entrance into de food chains of humans and animals. Once in the environment, they can show their toxic and genotoxic effects on organisms. Therefore, it is necessary to remove dyes before effluent discharge. Different treatments can be used for dyes removal; however, some of them can cause toxicity to the microorganisms of the biological system.

In recent years several studies have been demonstrated that white-rot fungi are able to decolorize and remove a wide variety of structurally diverse pollutants including synthetic dyes. The fungi present the advantage over other microorganisms due to their extracellular ligninolytic enzyme systems composed by manganese peroxidase (MnP), manganese-independent peroxidase (MIP), lignin peroxidase (LiP) and laccase (Lac). Therefore, the main objective of this study was to evaluate the synthetic dye degradation by pellets of white rot fungus *Trametes versicolor*.

Complex pellets of white-rot fungus *Trametes versicolor* was formulated with mycelium, activated carbon and sawdust (2:1:1) for the synthetic dye degradation. The pellets were formed by a center of activated carbon and sawdust surrounded by fungal mycelium (Figure 1).

The degradation was development in modified Kirk liquid medium with an initial concentration of each dye of 100 mg L−1 of Reactive Black 5 (RB5), Acid Orange 6 (AO6), Reactive Orange 16 (RO16), Basic Violet 4 (BV4) and Blue Remazol Brilliant (BRB). The flasks were incubated at 25 °C, under agitation at 100 rpm, by 15 days. During the incubation period color degradation and ligninolytic enzyme activity (lignin and manganese peroxidase, laccase and manganese-independent peroxidase) were evaluated.

The results obtained showed that the dyes degradation by complex pellets of *Trametes versicolor* was: 93, 82, 95, 16, 75 and 95% for Reactive Black 5, Acid Orange 6, Reactive Orange 16, Basic Violet 4 and Blue Remazol Brilliant (BRB). The faster degradation was for the RB5 and BRB dyes. In conclusion, the application of complex pellets of *Trametes versicolor* can be potentially used for the biodegradation of synthetic dyes.

Figure 1 shows the degradation of acid orange 6 (a), blue remazol brilliant (b), control and reactive black 5 (c) and the *A. discolor* pellets morphology. The faster degradation was for the RB5 and BBF dyes. In conclusion, the application of complex pellets of *Trametes versicolor* can be potentially used for the biodegradation of synthetic dyes.

Acknowledgments: Financed by FONDECYT 1090678 Project and partially by FONDECYT 3080013.

Keywords *Trametes versicolor*, complex pellet, synthetic dye, ligninolytic enzymes

Taxonomically distinct ETBE-degrading communities, originated from the same site, are dominated by novel *Mesorhizobium* and *Hydrogenophaga* species

M. Kydkova1,2,3, J. Falcao Salles1,2,3,4, F. Fayolle-Guichard5, L. Chancerelle6, Y. Benoit5, J.P. Tracol7, A. Dumestre7 and G.L. Grundmann1,2,3

1Université de Lyon, F-69622, Lyon, France
2Université Lyon 1, Villeurbanne; France
3CNRS, UMR5557, Ecologie Microbiomée; Villeurbanne; France
4University of Groningen, CEES, Microbial Ecology Department, Haren, The Netherlands
5IFP, Département "Biotechnologie", 1-4, avenue Bois-Préau, 92852 Rueil-Malmaison Cedex, France
6INERIS, Parc Technologique Alata, BP2, 60550 Verneuil-en –Halatte, France
7SERPOL, Lyon, France

Ethyl tert-butyl ether (ETBE) is a gasoline additive widely used in Europe. The contamination of aquifers by ETBE during accidental petroleum spills is a serious problem since ETBE is an extremely soluble, recalcitrant compound. So far, only few aerobic bacterial isolates were shown to degrade ETBE and the biodegradation possibly involves ETBE oxidation by cytochrome P-450 (EthB). Though important for bioremediation purposes, the information on the potential of natural communities to degrade ETBE is scarce. The aim of this work was to characterize bacterial communities from a gasoline-contaminated aquifer in terms of (i) their capacity to degrade ETBE, (ii) taxonomical composition, and (iii) presence and diversity of the ethB gene.

Groundwater samples from a contaminated site in France, taken from a plume (P) under a petrol station (ETBE being the main pollutant at concentration ~ 200 mg L−1) and upstream the plume (control, C), were used to establish a microcosm experiment. Triplicate microcosms were cultivated aerobically with ETBE as a sole source of carbon and the rates of ETBE degradation were recorded over a year. The taxonomical composition of bacterial communities from the aquifer and the microcosms was assessed with 16S rRNA microarray and cloning/sequencing. The ethB gene was assessed by a specific PCR and cloning/sequencing.

The aquifer bacterial communities differed markedly between the plume (P) and the upstream control sample (C). The ETBE-degradation gene ethB was detected in the P but not in the C water sample. In spite of the different initial conditions, both the P- and C-microcosms degraded ETBE, and ethB could be detected afterwards in both of them. However, the taxonomical composition of microcosm communities did not convert and differed also from the initial aquifer communities. The C-microcosm became strongly dominated by *Mesorhizobium* spp. and the P-microcosm by *Hydrogenophaga* spp., clustering apart from known *Mesorhizobium and Hydrogenophaga* phyotypes. None of the previously described ETBE-degrading species was found within the microcosms, indicating that they harbor novel ETBE-degraders. In conclusion, ETBE degradation may be accomplished by taxonomically different consortia selected under the same conditions (presence of ETBE, aerobic cultivation) from distinct aquifer communities, possibly involving horizontal gene transfer.

Keywords Aquifer, bacterial community, biodegradation, bioremediation, ethyl tert butyl ether (ETBE), pollution.
The remarkable adaptability of *Rhodococcus erythropolis* cells

Carla C.C.R. de Carvalho
IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. E-mail: carvalhoc@ist.utl.pt

Rhodococcus erythropolis cells present a considerable natural tolerance and adaptation ability to compounds usually toxic to other bacterial strains, including terpenes (1), hydrocarbons (2) and aromatic compounds such as toluene and xylene (3). The adaptation mechanisms described in *R. erythropolis* involve: i) alterations at the cell wall and membrane composition; ii) modifications of the physicochemical properties of the cell surface; iii) degradation or bioconversion of the toxic compounds; iv) cell aggregation, and v) production of exopolysaccharides. The tolerance and ability to adapt to organic solvents can be valuable in biocatalytic and bioremediation processes. The cells are able to change their hydrophobicity and surface charge in response to the carbon source when grown in *Rhodococcus erythropolis* cells present a considerable natural tolerance and adaptation ability to compounds usually toxic to other bacterial strains, including terpenes (1), hydrocarbons (2) and aromatic compounds such as toluene and xylene (3). The adaptation mechanisms described in *R. erythropolis* involve: i) alterations at the cell wall and membrane composition; ii) modifications of the physicochemical properties of the cell surface; iii) degradation or bioconversion of the toxic compounds; iv) cell aggregation, and v) production of exopolysaccharides. The tolerance and ability to adapt to organic solvents can be valuable in biocatalytic and bioremediation processes. The cells are able to change their hydrophobicity and surface charge in response to the carbon source when grown in

*The remarkable adaptability of *Rhodococcus erythropolis* cells*

Carla C.C.R. de Carvalho
IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. E-mail: carvalhoc@ist.utl.pt

Rhodococcus erythropolis cells present a considerable natural tolerance and adaptation ability to compounds usually toxic to other bacterial strains, including terpenes (1), hydrocarbons (2) and aromatic compounds such as toluene and xylene (3). The adaptation mechanisms described in *R. erythropolis* involve: i) alterations at the cell wall and membrane composition; ii) modifications of the physicochemical properties of the cell surface; iii) degradation or bioconversion of the toxic compounds; iv) cell aggregation, and v) production of exopolysaccharides. The tolerance and ability to adapt to organic solvents can be valuable in biocatalytic and bioremediation processes. The cells are able to change their hydrophobicity and surface charge in response to the carbon source when grown in *Rhodococcus erythropolis* cells present a considerable natural tolerance and adaptation ability to compounds usually toxic to other bacterial strains, including terpenes (1), hydrocarbons (2) and aromatic compounds such as toluene and xylene (3). The adaptation mechanisms described in *R. erythropolis* involve: i) alterations at the cell wall and membrane composition; ii) modifications of the physicochemical properties of the cell surface; iii) degradation or bioconversion of the toxic compounds; iv) cell aggregation, and v) production of exopolysaccharides. The tolerance and ability to adapt to organic solvents can be valuable in biocatalytic and bioremediation processes. The cells are able to change their hydrophobicity and surface charge in response to the carbon source when grown in

A similar strategy, during which the cells were adapted by doubling the concentration of toluene when the cells had finish the degradation of a certain amount, allowed the cells to metabolise concentrations up to 4.9M toluene in *R. erythropolis* resistance to antibiotics was also observed after adapting the cells to antineoplastic agents. *R. erythropolis* cells adapt the composition in fatty acids of the cellular membrane in response to the carbon source or to the presence of xenobiotics, and can even change the cell surface charge to positive values when grown on *n*-tetradecane and *n*-hexadecane. They can respond to high concentrations of recalcitrant compounds such as toluene and xylene by degrading the compounds or converting them to non-toxic forms. *R. erythropolis* can also, under stressful conditions, aggregate and produce exopolysaccharide substances to protect the cells. These substances can act as biosurfactants, being able to decrease the surface tension of the medium up to 23 mN/m, indicating that they are among the most powerful natural biosurfactants known. Since these cells present a broad array of enzymes with potential for the production of commercially interesting compounds and for the metabolism of recalcitrant organic compounds, the adaptability of the cells can further broaden their application in biocatalysis and bioremediation processes.

Keywords bacterial adaptation; biocatalysis; bioremediation

References

Tolerance and stress response of the saprobe macrofungi *Macrolepiota procera* to nickel

P. Baptista, S. Ferreira, E. Soares and M. L. Bastos

Macrolepiota procera is a saprobe macrofungi that grows naturally in several locations and is known to tolerate high nickel concentrations. The study aimed to investigate the stress response and antioxidant enzymes activity of *M. procera* exposed to different nickel concentrations.

Materials and Methods

The fungus was cultivated on solid medium with different nickel concentrations (0.05, 0.2, 0.8 mM) at pH 4, 6, and 8, and fungicide treatments were applied to evaluate stress response.

Results

- Nickel is an essential element for many organisms; however, it can be toxic at high concentrations.
- The antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD), were evaluated. The antioxidative enzyme activities showed increased levels at higher nickel concentrations.
- The production of hydrogen peroxide (H$_2$O$_2$) also increased, indicating a maximum growth inhibition at 0.2 mM of nickel.

Conclusions

- Nickel tolerance in *M. procera* is associated with the activation of antioxidant enzymes, particularly SOD and CAT.
- The activation of these enzymes plays a crucial role in stress response and survival of the fungus in nickel-contaminated environments.

Keywords

Macrolepiota procura; nickel; stress; Ni-tolerance; Ni-accumulation; antioxidant enzymes

Thermophilic Bacteria Degrading Poly(Vinyl Alcohol)

Mal Nam Kim and Moon Kyung Yoon

Department of Biology, Sangmyung University, Seoul 110-743, South Korea

Poly(vinyl alcohol) (PVA) is water-soluble and recalcitrant against biodegradation, potentially contaminating the aquatic environment. Thermophilic bacteria capable of degrading PVA are a potential solution to this problem.

Materials and Methods

- Thermophilic bacteria were isolated from an activated sludge harvested from a PVA-producing factory.
- The bacteria were enriched and cultivated in the mineral minimum medium containing PVA as the sole source of carbon.
- Identification of the isolated strains was carried out using the Micro Station System (Biolog, Inc. USA).

Results

- The isolated bacteria were identified as *Geobacillus tepidamans* and *Achromobacter cholinophagum*.
- The identification was confirmed by 16S rRNA sequence analysis.
- The biodegradability of PVA was measured using an agar diffusion test, and the effectiveness of PVA degradation by the isolated bacteria was evaluated.

Conclusions

- The isolated bacteria showed high PVA degradation activity at temperatures up to 55ºC, with *G. tepidamans* showing increased activity at higher temperatures.

Keywords

Poly(vinyl alcohol); Thermophilic bacteria; *Geobacillus tepidamans*
Uranium adsorption by *Articulospora tetacladia*: can aquatic hyphomycetes be natural bioremediators of uranium contaminated streams?

V. Ferreira¹, A. L. Gonçalves², J. Prata³, and C. Canhoto³

¹ IMAR-Institute of Marine Research & Dept. Zoologia, Universidade de Coimbra, 3000-517 Largo Marquês de Pombal, Coimbra, Portugal
² Dept. Ciências da Terra, Ministério de Ciência e Tecnologia, 3000-272 Largo Marquês de Pombal, Coimbra, Portugal
³ IMAR-Institute of Marine Research & Dept. Zoologia, Universidade de Coimbra, 3000-517 Largo Marquês de Pombal, Coimbra, Portugal

Uranium is an important environmental contaminator in some areas of the world, including Portugal, where there are several abandoned uranium mine sites. At these locations, the uranium contamination in the water can be as high as 1.8 mg/L, which can potentially affect the aquatic biota. The effect of uranium has been addressed on several organisms, and microorganisms have also been studied for their ability to adsorb and accumulate uranium. However, no such studies have been conducted on aquatic hyphomycetes (freshwater fungi), which are major players in the decomposition of submerged organic matter, a key ecosystem level process in shaded streams.

The kinetics of uranium adsorption by *A. tetacladia* mycelium was relatively fast with 18% (200 μg/U/L) – 50% (2000 μg/U/L) uranium remaining in solution after 15 minutes. The maximum uranium uptake observed in this study (~140 μg/U/gDM at 2000 μg/U/L) was higher than most reported in the literature. The fitting of the uranium uptake data to the Freundlich isotherm indicates monolayer uranium adsorption at the surface of the mycelium. The stability of the uranium monolayer is high (n=1), as well as the adsorption capacity given that at 1 μg/U/L the uranium uptake is 1.73 μg/U/gDM. Since the uranium uptake was not significantly different between live and dead mycelium, the uranium adsorption over the 6h study period probably resulted from a physicochemical process, independent of biological activity. The applicability of the Michaelis-Menten-type model indicates that adsorption at the mycelium surface progresses towards saturation, indicating that the limiting factor for uranium binding is the number of surface sites; maximum uranium uptake rate was 182 μg/U/gDM, and 196 μg/U/L was the half saturating uranium concentration. The distribution coefficient values found for *A. tetacladia* were among the highest reported (Kd=48203 mL/g), which indicates its ability to recover uranium from very dilute solutions (stream water). The extraction factors varied between 28 and 41, which confirms that mycelium of *A. tetacladia* can be a good biosorbent. Aquatic hyphomycetes seem to have the potential to act as natural bioremediators of streams running through uranium contaminated areas. However, given that fungal mycelia constitute food for aquatic invertebrates, the accumulation of uranium might scale up to higher trophic levels.

Keywords adsorption; aquatic hyphomycetes; *Articulospora tetacladia*; uranium contamination

A method for detection of *Rhizomucor miehei* lipase activity

Salvador Rodriguez¹, Cristóbal Verdu², Diego Luna³, Enrique D. Sancho⁴

¹ Department of Microbiology, University of Córdoba, Campus de Rabanales, E-14014 Córdoba (Spain)
² Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, E. M. Curie, E-14014 Córdoba (Spain)
³ Seneca Green Catalyst, S.L. Campus de Rabanales, E-14014 Córdoba (Spain)
⁴ IMAR-Institute of Marine Research & Dept. Zoologia, Universidade de Coimbra, 3000-517 Largo Marquês de Pombal, Coimbra, Portugal

Lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is an enzyme that catalyze the hydrolysis of triacylglycerols to diacylglycerols, monoacylglycerols, fatty acids and glycerol, at the interface between aqueous and the lipid phase [1]. This lipase is region-specific, catalysing reactions at 1,3 positions on the triacylglycerols. As a result, the activity is lost when the triacylglycerols are esterified. There is an increased demand for new sources of lipases. In this work, we report a method for detection of lipase activity in a *Rhizomucor miehei* grown on solid media [2].

Solid media for lipase activity assay was prepared by adding a emulsified solution of 40% (w/w) olive oil, 10 % (w/w) Tween 80 and 50 % (w/w) distilled water to medium containing 2 % (w/w) agar in water. Water agar plates containing a final concentration of 0.05 % (w/w) emulsified olive oil, were used for detection of lipase activity. Mycelium from *R. miehei* was grown in Malt extract agar, heat to boiling with frequent agitation and sterilise by autoclaving at 115 ºC for 15 minutes. Liquid media were tested at different temperatures, agitations, adding olive oil and Tween 80 to produce the enzyme. In conclusion, we report a method to efficiently detect the lipase activity from *R. miehei*. This method could be used to check lipase activity in other fungal species.

References

Keywords: lipase, *Rhizomucor miehei*, triacylglycerol.
A new lipase-catalyzed biodiesel by response surface methodology using\n**Rhizopus oryzae** derived lipase

Cristobal Verdugo¹, Diego Luna², Salvador Rodriguez², Enrique D. Sanchez²

¹Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Ed. M. Curie, E-14014 Cordoba (Spain)
²Seneca Green Catalyst S.L. Campus de Rabanales, E-14014-Cordoba (Spain)

Introduction. Biodiesel has recently become more attractive because of its environmental benefits and the fact that it is made from renewable resources. Currently, biodiesel is commercially made by alkali-catalyzed transesterification of an oil or fat with an alcohol, usually methanol, a process that shifts the glyceride fatty acids from glycerol to methanol, producing fatty acid methyl esters and glycerol [1]. Though efficient in terms of reaction time, the chemical approach to synthesize biodiesels from triglyceride has drawbacks, such as the difficulty in the recovery of glycerol and the energy-intensive costs of the process. In contrast, biocatalysts allow for synthesis of specific alky esters, easy recovery of glycerol or no production, and transesterification of glycerides with high free fatty acid content [2]. Therefore, the production of enzymatic biodiesels by lipase-catalyzed chemical reactions under mild conditions has become of commercial interest. An optimized enzymatic synthesis of biodiesel improves the conversion yield and reduces the cost of production in most favourable conditions. The present work focuses on the reaction parameters that affect lipase from **Rhizopus oryzae** (LR) catalyzing the transesterification of sunflower oil with ethanol in free solvent media. The main objectives of this work were to develop an approach that would enable us to better understand relationships between the variables (reaction time, temperature, pH, enzyme amount, substrate molar ratio, and added water content) and the response (percent weight conversion); and to obtain the optimum conditions for biodiesel synthesis using multi level factorial design.

Results and discussion. Results have been summarised in Figure 1. You can see the great influence of the ratio oil / ethanol (proportion), and to lesser extent of pH, while other parameters did not affect significantly.

Conclusions. Lipase from **Rhizopus oryzae** can be used as biocatalyst at optimum conditions to prepare a new kind of biofuel with composition and properties suitable to use in diesel engines. This method has the advantages of avoiding the generation of glycerol as byproduct in the process and its short reaction time. This process minimizes waste generation and maximizing efficiency of the process.

Acknowledgements. This research has been supported by the Instituto Andaluz de Biotecnología (Junta de Andalucía, Project BIOANDALUS 08/12/L35), Consejería de Educación y Ciencia de la Junta de Andalucía (FQM 0162), (FQM 0191), Ministerio de Educación y Ciencia Project CTQ 2007-65754-PPQ, Ministerio de Ciencia e Innovación CTQ 2008-01330/BQI).

References.

Keywords: Lipase; **Rhizopus oryzae**; Biofuel; Ethanolysis; Fatty Acid Ethyl Ester (FAEE); Monoglyceride

Bacillus popilliae: Detection and Biochemical Characterization of Pectinolytic Activity

Vanessa Vallejo Becerra, Alejandro Santiago Hernández, María Eugenia Hidalgo Lara
Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN. Av. Instituto Politécnico Nacional No. 2508, D. F. CP 07360, México.

Introduction. Pectin is a complex set of polysaccharides that are present in the middle lamella between plant cells where it helps to bind cells together. Pectin degradation involves a complex combination of pectinolitic enzymes, two groups can be observed: pectin esterases which remove methoxy groups and the depolymerizing enzymes (hydrolyases and lyases) which degrade the glycosidic bonds along the polymer backbone. Pectate lyase breaks down polygalacturonic acid (PGA) through a transelimination mechanism. This enzyme is one of the most crucial enzymes in the depolymerization of pectin. (1). Pectate lyase are widely distributed among microbial plant pathogens (2, 3). They have also been found in saprophytic micro-organisms, including the genus *Bacillus* (3). Pectinases are enzymes of industrial interest they are widely used for juice and wine clarification. Alkalophilic pectinases have found immense use in the degumming of ramie fibers. Today the study of pectinases from microbial systems has caused large interest, since they have been found to be effective for scouring of crude cotton fiber (4). So far, there is no report on the pectinolytic activity from *B. popilliae*. The aim of this work is to get knowledge on the pectinolytic activity detected in the culture supernatant of *B. popilliae*.

Materials and Methods. *B. popilliae* was obtained from CINVESTAV-México. Bacteria were cultivated (30°C, 24 h, 200 rpm) in nutritive broth, supplemented with 0.1% glucose, pectin or galacturonic acid as the only carbon source (5). Cells were removed and the culture supernatant was used as a source of pectinase activity. Lyase activity was achieved valuating unsaturated products creation from polygalacturonic acid (pectin lyase activity) at 235 nm by spectrophotometric assay, as described (6). The reaction mixture contained 1.5 ml of 0.1% of substrate into a buffer solution with the convenient pH. Incubation last 1 min at 55°C and then 1.5 ml of water was added. One unit of activity was defined as the necessary amount of enzyme to promote an increment of one unit in absorbance.

Results and discussion. Pectinase activity was detected in the culture supernatant of *B. popilliae* grown on nutritive broth supplemented with 0.1% glucose, pectin or galacturonic acid as the only carbon source. The highest and the lowest enzyme activity were observed when pectin and glucose were used as substrate, respectively (Fig. 1). Two maximum of lyase activity were observed when *B. popilliae* was grown on pectin, at pH values of 8 and 11 (data not shown).

Conclusions. Lipase from *Rhizopus oryzae* can be used as biocatalyst at optimum conditions to prepare a new kind of biofuel with composition and properties suitable to use in diesel engines. This method has the advantages of avoiding the generation of glycerol as byproduct in the process and its short reaction time. This process minimizes waste generation and maximizing efficiency of the process.

Acknowledgements. This research has been supported by the Instituto Andaluz de Biotecnología (Junta de Andalucía, Project BIOANDALUS 08/12/L35), Consejería de Educación y Ciencia de la Junta de Andalucía (FQM 0162), (FQM 0191), Ministerio de Educación y Ciencia Project CTQ 2007-65754-PPQ, Ministerio de Ciencia e Innovación CTQ 2008-01330/BQI).

References.

Keywords: Lipase; *Rhizopus oryzae*; Biofuel; Ethanolysis; Fatty Acid Ethyl Ester (FAEE); Monoglyceride
Conclusions.
- *B. popilliae* presents two maximum of pectinolytic activity, at pH values of 8 and 11. The pectinolytic activity from *B. popilliae* is inducible and the best inductor is pectin; while this activity was negatively affected by glucose as carbon source.
- *B. popilliae* produce and secrete at least two alkaline pectinases. The requirement of Ca suggest that one of pectinolitic enzyme is a pectate lyase.

Keywords: *B. popilliae*, polygalacturonic, pectin, lyases

References

Bacillus subtilis CwIP in the SP-beta prophage comprises two novel cell wall hydrolase domains

1 Putu Sudiarta1, Tatsuya Fukushima1, and Junichi Sekiguchi1,2*
1Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
2Division of Gene Research, Department of Life Sciences, Research Center for Human and Environmental Sciences, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan

Precise cell wall digestion by hydrolases is a very important event for not only bacteria but also bacteriophages. We reported that the *cwlT* gene in *B. subtilis* is located in the conjugal element (ICE*Bs1*) (1) and the gene product, CwlT, comprises two cell wall hydrolase domains. The C-terminal domain defined as a NlpC/P60 exhibits d,l-endopeptidase activity similar to those of LytF, CwlS and CwlO (2-4); however, interestingly the N-terminal domain exhibits only muramidase activity though this domain was previously described as a soluble lytic transglycosidase (SLT). CwlT degraded cell wall very efficiently.

In this conference, we present characterization of the product of *yomI* (renamed *cwlP* [cell wall lytic enzyme related with phage]) which is located in the SP-beta prophage region. CwIP also has SLT domain, which is similar to that of *E. coli* Slt70 (characterized as a lytic transglycosylase). Additionally, CwIP has peptidase M23 domain, which is similar to that of *Staphylococcus aureus* LytM (Gly-Gly endopeptidase). The SLT domain of CwIP exhibits hydrolytic activity toward *B. subtilis* cell wall, however, the products of the enzyme does not include anhydro-N-acetylmuramic acid (anhMurNAc), as found on reverse-phase (RP)-HPLC, mass spectrometry (MS), and MS/MS analyses, indicating CwIP has only muramidase activity. On the other hand, the peptidase M23 domain of CwIP showed hydrolytic activity and cleaved the cross-linkage of d-Ala-diaminopimelic acid as a d,d-endopeptidase, as found on RP-HPLC. Interestingly, the M23 domain of CwIP is a quite unique enzyme as a Zn2+-independent endopeptidase, though all characterized M23 peptidases and enzymes similar to CwIP depend on Zn2+. Moreover, both the two domains of CwIP could hydrolyze only *B. subtilis* cell wall.

Keywords: peptidoglycan, cell wall, prophage, *Bacillus subtilis*, lytic enzymes

References

β-glucosidase and α-rhamnosidase of naringinase immobilized on sol-gel matrices: activity and stability studies in ionic liquids

Helder Vila-Real, António J. Alfaia, Pedro Góis, António R.T. Calado and Maria H. Ribeiro
Faculdade de Farmácia, Research Institute for Medicines and Pharmaceutical Sciences (i-Med-UL), University of Lisbon, Av. Prof. Gama Pinto, 1649 Lisbon, Portugal

Bioconversion is a wide application field for enzymes immobilized in sol-gel materials, including multi-enzyme biocatalysts allowing the occurrence of sequential reactions in a restricted place. Naringinase is an enzyme widely used in food and pharmaceutical industry, providing both alpha-L-rhamnosidase and beta-D-glucosidase activities. There has been a growing interest for the health benefits of glycosides. The flavonoids, naringin and naringenin may be useful against inflammation, neurodegenerative diseases and cancer. The hydrolysis of naringin, a flavonone glycoside, with naringinase leads to reducing sugars (ramnose and glucose), to prunin and to the aglycone, naringenin [1].

Sol-gel, an innovative and economical technique was developed for naringinase immobilization in aqueous media. Higher activity and stability were obtained with naringinase encapsulated in TMOS/Glycerol. Both alpha-L-rhamnosidase and beta-D-glucosidase, expressed by naringinase enzyme complex was evaluated in this study. Specific substrates were used: 4–nitrophenyl–alpha–L–rhamnopyranoside (4-NGluc) and 4–nitrophenyl–beta–D–glucopyranoside (4-NGluc) and naringin. To overcome the low solubility of the substrates in the enzymatic reaction media different ionic liquids were used in bioconversion trials with free and immobilized naringinase.

The activity and operational stability of β-glucosidase and α-rhamnosidase of naringinase immobilized in sol-gel (TMOS/Glycol) was evaluated in ionic liquid systems.

Acknowledgements: Helder Vila Real is grateful to FCT for the financial support of his PhD. Grant (SFRH / BD / 30716 / 2006).

Biotechnological potential of an extracellular peroxidase from Streptomyces albus

A.S. Ball1, C. Kleisiari

1 School of Biological Sciences, Flinders University, GPO Box 2010, Adelaide SA 5001, Australia
2 Department of Biological Sciences, University of Essex, Colchester CO43SQ, UK

Chlorophenols constitute an important group of chemicals used in the synthesis of agroproducts, dyestuffs and pharmaceuticals. This widespread use of these chemicals suggest the likelihood of these compounds being present as contaminants in many environments; for example 2,4 dichlorophenol can be detected in effluents following the chlorination process during tertiary waste water treatment and in effluent following the bleaching of paper pulp. Biodegradation studies have shown that 2,4 dichlorophenol is biodegradable under aerobic and anaerobic conditions. Peroxidases (including horse-radish peroxidase) have been shown to catalyse the oxidation of 2,4 dichlorophenol and may therefore form the basis of an enzyme-based dechlorination process. The aim of this study was to assess the potential of peroxidases from a lignocellulose-degrading actinobacteria, Streptomyces albus for the degradation of chlorinated phenols.

Extracellular peroxidase activity, together with endoxylanase activity were detected during the growth of Streptomyces albus ATCC 3005 at 30°C in minimal salts media containing oat-spelt xylan as the major carbon and energy source. Maximum growth occurred after 48 h incubation with intracellular protein concentrations reaching 0.55 (± 0.06) mg ml⁻¹. Maximum extracellular xylanases activity was recorded after 96 h growth (0.33 ± 0.04 μmoles of reducing sugar ml⁻¹ min⁻¹). Similarly, maximum extracellular peroxidase activity (assessed using 2,4-dichlorophenol as substrate) was recorded after 96 h (0.34 ±0.01 U ml⁻¹), corresponding with the detection of maximum extracellular protein activity (0.43 mg ml⁻¹). Peroxidase activity was also detected when L-3,4-dihydroxyphenylalanine replaced 2,4-dichlorophenol as substrate, although activity was significantly reduced (0.06 ±0.004 U ml⁻¹ after 96 h).

Following concentration of culture supernatant by membrane filtration zymogram analysis using non-denaturing gel electrophoresis identified two major bands when either 2,4 dihydrophenol or L-dihydroxyphenylalanine was used as a substrate.

To assess the biotechnological potential of the extracellular peroxidase activity, enzyme activity was assessed using a range of chlorinated substrates; 4-chlorophenol, 2,4 dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol. Activity against all four substrates was detected, with initial activities of 0.30 (±0.05), 0.43 (±0.01), 0.43 (±0.02) and 0.18 (±0.05) U ml⁻¹ respectively. No activity was detected when heat inactivated culture supernatant was used in the assay.

The results suggest a biotechnological role for the peroxidase from Streptomyces albus in the degradation of chlorinated compounds. Further assessment of the biotechnological potential of this enzyme will require analysis of the stability of this enzyme under a range of environmental conditions.

Keywords Chlorophenols, Streptomyces albus, extracellular peroxidase.
Cardiolipin is important for *Staphylococcus aureus* to sustain the fitness in the high salinity

Melody Tsai and Kazuya Morikawa
Graduate School of Comprehensive Human Sciences, University of Tsukuba

Staphylococcus aureus is an opportunistic human pathogen that naturally inhabits on our nasal cavity and skin surface. *S. aureus* is well known as salt-resistant bacterium and can grow in the presence of up to 10–15% NaCl. In 1970’s, some papers have described that its phospholipids including cardiolipin (CL) are differentially accumulated depending on the growth conditions. However, the mechanism of such phospholipids dynamics remains to be elusive. In this study, we analyzed the phospholipids change in *S. aureus* strain N315 under distinct growth phases and NaCl concentrations, using a series of mutant strains lacking genes predicted to encode CL synthases.

Results

i) High salt condition induced the accumulation of phosphatidylglycerophosphate (PGP). The CL content increased towards the stationary phase.

ii) The genetic analysis of two candidate genes (*cls1, cls2*) revealed that Cls2 is the dominant CL synthase, while the mutation of *cls1* alone had little effect on the CL accumulation.

iii) It was necessary to knockout both of *cls1* and *cls2* genes to abolish the CL synthesis. Our results also suggested that Cls1 has its function specifically under the high salinity.

iv) CL was necessary for full survival under high salinity or the resistance against hypertonic shock.

The possible differential utilization of the two *cls* genes will be discussed regarding their expression profiles or predicted subcellular localizations.

Keywords Cardiolipin, phospholipids, *Staphylococcus aureus*, high salinity
Cloning of fructansucrase gene from Weissella cibaria MBF-CNC2(1) isolated from local foods

A. Malik
Laboratory of Microbiology and Biotechnology, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424 Indonesia

Fructan type of exopolysaccharide (EPS) such as inulin and its oligos (fructooligosaccharide/ FOS), in addition to levan, has been well known to be used and developed in food and pharmaceutical industries. Inulin has been used widely but it is mostly produced from plant, e.g. chicory root. EPS producing-lactic acid bacteria (LAB) have been reported to produce EPS fructan, besides glucan, with characteristic as inulin as well as levan. A collection of EPS-producing LAB, isolated from various sources in Indonesia, e.g. local foods and beverages, were screened for fructansucrase (FS) gene by using degenerated PCR which primers were designed with a tag for specific cloning system. A Weissella cibaria strain MBF-CNC2(1) was shown to be potential to harbor FS gene coding for inulosucrase, an enzyme that synthesize EPS inulin. A 1690 bp DNA fragment was successfully cloned by inversed-PCR (iPCR) technique and sequenced simultaneously. By using blastx the DNA sequences analysis was obtained. Result revealed that this fragment showed DNA sequence similarity to a putative inulosucrase of L. reuteri. The cloning of this FS gene is still in the process to obtain full length gene of FS inulosucrase using iPCR.

Keywords: lactic acid bacteria, Weissella cibaria, fructansucrase, inulosucrase

Comparative study of recombinant versus natural hbFGF in survival and proliferation of primary cultured 3T3 cells

Amir Amanzadeh1, , Mona Alibolandi1, Mojgan Khayat Moghadam2, Hasan Mirzahoseini1*

1Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran, P.C. 1316943551
2Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran, P.C. 1316943551

Reproductive effects of different concentration of recombinant human basic fibroblast growth factor (hbFGF) on 3T3 Mouse embryo fibroblast cells were evaluated by their abilities to promote survival and proliferation of primary cultured cells.

In the molecule of modified hbFGF, two serines are substituted for two cysteins at positions 70 and 88 in the natural hbFGF. Both natural and modified hbFGF markedly increased the survival of primary cultured 3T3 cells. The effects were concentration-dependent, in the range of 50 ng/ml to 200 ng/ml, in similar manners for both modified and natural hbFGF. The time-course of these effects on survival was almost the same between natural and modified protein. As a result, we proved that one of the disulfide bonds that form between cysteins at positions 70 and 88 is not essential for biological activity of the basic growth factor.

Keywords: modified hbFGF; biological activity; 3T3 primary cell culture
DNA sequence-discrimination by PspGI

Keith D. Lunnen, Elizabeth Lang, Richard D. Morgan and Geoffrey G. Wilson

New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA

PspGI is a thermostable restriction enzyme from the archaeon Pyrococcus [1]. PspGI is one of a widespread family of enzymes that recognizes the sequence CCWGG in double-strand DNA and cleaves the two strands to produce fragments with 5-base, 5′-overhangs. The crystal structure of PspGI bound to its substrate DNA has been solved [2]. The enzyme acts as a homodimer, encircling the DNA and contacting the base pairs in both the major- and the minor-grooves. We are investigating the molecular mechanism by which PspGI recognizes the central base pair in its sequence. From the crystal structure, the recognition of the C-G base pairs in each half of the sequence occurs by major-groove contacts with the conserved amino acids Arg164, Glu165, and Arg166 (R-E-R) in each subunit, but the mechanism for recognizing the central base pair—which can be either A:T or T:A (i.e. W:W) but not G:C or C:G (i.e. not S:S)—is unclear and remains the subject of experimentation [3]. We tested whether this discrimination occurs passively, by steric clash in the minor groove. A:T and T:A base pairs are smaller than G:C and C:G base pairs in the minor groove due to the presence of the 2-amino group that protrudes from the ring of Guanine but not from Adenine. If the space in the DNA-binding site of PspGI needed to accommodate this 2-amino group were occupied by an amino acid instead, then G:C and C:G would not fit into the site, whereas A:T and T:A would fit. From the crystal structure, two amino acids that could potentially clash with Guanine in this way were identified: Tyr67 and Phex9. Each was changed to other amino acids by mutagenesis, and the resulting variant enzymes were assayed for cleavage of CCGG in addition to CCWGG. The work is on-going. All of the catalytically active Phex9 mutants examined to date continue to cleave only CCWGG, suggesting that Phex9 is not in fact involved in sequence-discrimination. The Tyr67 mutants also continue to cleave only CCWGG, but many now appear to bind—although not to cleave—CCSGG as well, suggesting that Tyr67 might indeed be a factor in sequence-discrimination,

Keywords Restriction enzyme; PspGI; DNA sequence-specificity; minor groove; base-flipping

Effect of different carbon sources used for Candida guilliermondii precultivation on Xylose reductase and Xylitol dehydrogenase activities during sugarcane bagasse hemicellulosic hydrolysate fermentation

P. Vaz de Arruda, F. Mitsuo Kondo, T. Duque Esteves, M. Ligabo, R. C. Lacerda Brambilla Rodrigues and M. G. Almeida Felipe

Grupo de Microbiologia Aplicada e Bioprocessos, Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Estrada Municipal do Campinho s/n, 12602-810, Lorena – SP, Brazil

Xylitol is a sugar-alcohol used in many clinical applications and it can be obtained from yeast xylose metabolism. The xylose is the main pentose sugar in the hemicellulose hydrolysates, which contains besides sugars, toxic compounds released during the diluted acid hydrolysis of lignocellulosic materials. The enzymes xylose reductase (XR) (EC 1.1.1.21) and xylitol dehydrogenase (XDH) (EC 1.1.1.19) take part in xylitol-to-xyitol bioconversion. In the case of the utilization of hemicellulosic hydrolysates the phenolic are the main inhibitory compounds of the enzymatic activities and detoxification procedures are necessary to reduce the concentration of these compounds. This work evaluated the effect of different carbon sources used for Candida guilliermondii precultivation on xylitol reductase and xylitol dehydrogenase activities during sugarcane bagasse hemicellulosic hydrolysate fermentation. Initially the hydrolysate (pH 1.52) was vacuum evaporated to increase its sugar concentration to 80 g/L. Since phenolic compounds were also increased during this procedure it was necessary the detoxification of the hydrolysate by ion exchange resin (A-860S; A500PS and C-150-Purilite 6). The resin treatment (resin:hydrolysate ratio 1:2 v/v) was carried out in Erlenmeyer flasks (2000 mL) at 200 rpm, 30 °C for 1 h. The xylose production was evaluated by using cells previously grown in different carbon sources (g/L): xylose (30.0), glucose (30.0) and/or a mixture of both sugars (xylose-30.0 and glucose-2.0). All experiments were carried out in Erlemeyer flasks (125 mL) containing 50 mL of medium at 200 rpm, 30 °C. The incubation times for inoculum and fermentation experiments were 24 and 72 h, respectively. In all experiments, the media (g/L) (xylose-75.0; glucose-4.9; arabinose-4.4; acetic acid-1.9 and phenolic compounds -1.0) were supplemented with the following nutrients (g/L): ammonium sulfate (2.0), calcium chloride (0.1) and rice bran extract (20.0). The fermentation was performed in triplicate using 1.0 g/L initial cell concentration and 5.5 pH. The sugars and acetic acid concentrations were determined by liquid chromatography, while total phenolic compounds and enzymatic assays were determined by spectrophotometry. The resin treatment removed about 93% of total phenolic compounds from sugarcane bagasse hemicellulosic hydrolysate. In the experiments with when cells precultured on the glucose and xylose mixture the XR (EC 1.1.1.21) was favored. In the experiments with cells precultivated on the xylose and glucose mixture the XR activity (0.499 U/mg Prot) was favored, while the XDH activity (0.703 U/mgProt) and cell growth (10.6 g/L) were improved when the medium containing only glucose as carbon source. However, in relation to the xylitol yield and volumetric productivity, it was observed that these fermentative parameters were favored when only xylose as carbon source was employed in the medium, which corresponded to the maximum xylose consumption (81%) after 72h of fermentation. Under this condition it was observed that cells were able to consume 100% of the acetic acid present in the medium.

Keywords sugarcane bagasse hemicellulosic hydrolysate; xylose reductase, xylitol dehydrogenase and Candida guilliermondii

Acknowledgments: FAPESP, CNPq and CAPES.
Effect of soy lecithin on the ligninolytic enzymes production by the white-rot fungus *Anthracophyllum discolor*

M. Bustamante López 1, M.E. González 1, A. Cartes 2, and M.C. Diez 2

1Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Temuco, Chile.
2Scientific and Technological Bioresource Nucleus, Universidad de La Frontera PO Box 54-D Temuco, Chile.

Natural and synthetic surfactant has the potential to enhance the bioavailability of hydrophobic organic pollutants in contaminated sites. Interestingly, it has also been proposed that these surfactants can be used as a growth substrate, resulting in an increased microbial biomass, thereby promoting a more efficient bioremediation process. Biosurfactants are less toxic and more environmentally benign than synthetic surfactant. However, some of these compounds can be toxic, recalcitrant and exert inhibitory effects on the biodegrading microorganism. Until now, most studies have been conducted mainly to evaluate the effects of chemical surfactant on bacteria, and some white-rot fungi, as *Phanerochaete chrysosporium* and *Trametes versicolor*. But few researches have addressed to analyze the effects of phytogenic surfactant on the ligninolytic activity of white-rot fungus. In this context, the aim of this study was to evaluate the effect of soy lecithin (SL) on the production of ligninolytic enzymes, laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP), produced by the white-rot fungus *Anthracophyllum discolor*.

Previous Studies have demonstrated that the optimum culture conditions of *A. discolor* for maximizing ligninolytic enzyme production in modified Kirk medium were 26ºC; pH 5.5; and C/N ratio of 250, therefore, this study was done under these optimized conditions. The modified Kirk medium was supplemented with soy lecithin in the range 0 to 1 gL⁻¹. The flasks with 50 ml of medium inoculated with one agar plugs of *A. discolor* previously cultivated on glucose malt extract agar, were incubated for 31 days in stationary cultivation, and the ligninolytic activity in the extracellular fluid was evaluated periodically. The results showed that *A. discolor* predominantly produced MnP in the evaluated concentrations of soy lecithin, with a maximum activity of 30.64 UL⁻¹ ± 4.61 UL⁻¹ when the medium was supplemented with 1 gL⁻¹ of soy lecithin after 23 days of incubation. On the other hand, LiP presents a maximum of 30.11 UL⁻¹ ± 0.13 UL⁻¹ with 30 days of culture, when the medium was supplemented with 0.15 and 0.30 gL⁻¹ of soy lecithin. While the amount of MnP produced did not exceed 5 UL⁻¹.

Keywords: *A. discolor*, soy lecithin, ligninolytic enzymes

Acknowledgements: Investigation financed partially by Fondecyt 1090678

Engineering novel DNA binding specificity in Type II restriction endonucleases.

Richard D. Morgan, Yvette A. Luyten and Geoffrey G. Wilson
New England Biolabs, Inc., 240 County Road, Ipswich MA 01938 USA

Since the binding of proteins to discrete DNA sequences is fundamental to many biological processes, the ability to design and generate proteins that specifically bind at DNA sequences of choice is highly desirable. Here we present a methodology that has enabled us to engineer DNA binding proteins that bind and act at new, rationally chosen recognition sequences (1). This specificity engineering has been performed with a subgroup of the Type II restriction enzymes, proteins that exhibit exquisite sequence specificity. We recently identified and characterized a family of Type II restriction endonucleases that bind and cut at different sequences, yet share highly similar protein sequences. This sequence similarity allows accurate alignment of the protein sequences, while the presence of a common adenine that is methylated by the enzymes allows the recognition sequences to be accurately aligned. Correlations between the aligned amino acid residues and the base pair present at any given position in the aligned recognition sequences are then observed. This bioinformatic approach allowed the identification of the amino acid pairs that specify DNA base recognition at three positions in the recognition sequence. By altering the amino acids at these identified positions to those correlated with recognition of a desired new base, enzymes that recognize and cut at predictable new DNA sequences were created. The enzymes so altered have similar specific activity compared to the wild type enzymes. Using simple and predictable mutagenesis we demonstrate that it is possible to create hundreds of unique new Type II restriction endonuclease specificities. We anticipate that the methodology described should also be applicable to other families of DNA binding proteins.

Keywords DNA binding protein, DNA specificity engineering, restriction endonuclease

Enzymatic characterization of N-terminally truncated dextranase cloned from Leuconostoc citreum HJ-P4

S. R. Lee, M. U. Jang, A. R. Yi, H. G. Lee, J. M. Park, Nam Soo Han, and T. J. Kim

Department of Food Science and Technology, Chungbuk National University, 361-763 Cheongju, Korea

Dextranase (DSase; EC 2.4.1.5) is one of glycosyltransferases, belonging to the glycoside-hydrolase (GH) family 70 that catalyzes synthesis of a high molecular weight polymer, dextran, from sucrose. Commonly DSases have been found from lactic acid bacteria, mainly strains of Leuconostoc mesenteroides. In general, DSases have very huge molecular mass over 160 kDa, which causes extremely low expression level in E. coli system. In previous report, a dextranase (LeD) gene from Leuc. citreum HJ-P4 has been amplified and cloned in E. coli. The LeD gene consists of 4,431 nucleotides encoding 1,477 amino acid residues sharing 63~98% of amino acid sequence identities with other known DSases from Leuc. mesenteroides. Interestingly, 0.1 mM of IPTG induction at 15°C remarkably increased the LeD productivity, which was over 330-fold higher than that induced at 37°C. Same as the native enzyme, recombinant LeD could successfully produce a series of isomaltooligosaccharides from sucrose and maltose, on the basis of its transglycosylation activity. Even though Dsases are very important in dextran synthesis, however, extremely low productivity of DSase can be the great barrier in their industrial applications. Therefore, more compact and minimized Dsases with much lower molecular mass than wild-type enzyme should be developed for the increased productivity and stability. In order to reduce the molecular mass of LeD, its gene was continuously truncated by step-wise degradation using exonuclease III. For the simple detection of the truncated LeD, high-throughput screening techniques should be developed first. To screen the LeD mutant with dextran-forming activity, E. coli transformants were tooth-picked onto LB agar medium containing sucrose. After incubation for 6~8 hours, solid the agar solution with D-cyclodextrin was overlaid on the plate. During incubation at 30°C for 12 hours, positive clones were successfully selected from their capability dextran-forming around the colony on a plate. The high-throughput screening method via direct detection of polymer formation on agar plate developed here has been successfully applied to the screening of various active truncated mutants. N-terminal truncation of LeD has been tried to generate the minimized mutant enzymes with considerable activity. Each positive clone was confirmed by restriction enzyme treatment and DNA sequencing analysis. Primary structure of truncated mutants was analyzed and compared with each other. On the basis of Dsase activity, considerably active 6 clones, LeDΔ42, 880, 929, 953, Δ194, and Δ199, were finally selected and each mutant was characterized. The most compact and minimized mutant, LeDΔ199, truncated its nucleotides of 597 bp (199 amino acids), still has considerable specific activity and transglycosylation activity to produce isomaltooligosaccharides (IMOs) from sucrose and maltose acceptor. LeD can produce IMOs in various length, including mainly panose, on the basis of its transglycosylation activity. Moreover, its expression level and recovery yield was improved compared to LeD wild-type. The resulting truncated mutants, therefore, can be used as more efficient biocatalysts for the industrial synthesis of dextran polymers or transglycosylation of bioactive natural compounds.

Keywords dextranase; N-terminal dextran truncation; enzymatic characterization; transglycosylation

Enzymatic properties and expression levels of various chimeric enzymes between barley alpha-amylase isozyme 1 and 2 in E. coli

S. H. Choi1, H. G. Lee1, M. U. Jang2, J. M. Park2, B. Svensson3, and T. J. Kim1

1Department of Food Science and Technology, Chungbuk National University, 361-763 Cheongju, Korea
2Enzyme and Protein Chemistry, Technical University of Denmark, Copenaghen, Denmark

Alpha-amylases (EC 3.2.1.1) are retaining enzymes of Glycoside Hydrolase Family 13 (GH-13) acting on internal alpha-(1,4)-glycosidic linkages in starch materials and occur widely in bacteria, fungi, animals, and plants. Barley (Hordeum vulgare) malt contains two alpha-amylase isozymes, AMY1 and AMY2, readily distinguished by their isoelectric points of AMY1 (low pI = 4.7~4.9) and AMY2 (high pI = 5.9~6.1). Although barley AMYs share up to 80% amino acid sequence identity and almost identical three-dimensional structure, their enzymatic properties differ remarkably. AMY1 has higher affinity for calcium ions than AMY2 and only AMY2 is strongly inhibited by the endogenous barley alpha-amylase/subtilisin inhibitor (BASI). In addition AMY2 dominates in barley malt, but is poorly expressed in Saccharomyces cerevisiae and Pichia pastoris compared to AMY1. Despite the well-known three-dimensional structure of both AMY isozymes and a large amount of available biochemical data, the features that cause major differences in isozyme properties remain unclear. Therefore, the comparative investigation of these isozymes may be one of the good candidates to elucidate the relationships between structure and function of proteins. To date, however, both AMY genes have been poorly expressed in recombinant E. coli systems, which has been a major barrier in enzyme engineering approaches for barley AMYs. Interestingly, it was revealed that its expression can significantly be affected by induction temperature. The induction of AMYs at 15°C remarkably increased their expression level in E. coli, while extremely low productivity at 37°C. As a result, high amount of recombinant AMYs with C-terminal six-histidines were successfully expressed under the control of inducible T7 RNA polymerase promoter in pET-21a. Even though their expression levels highly increased in E. coli, the productivity of AMY2 still remains much lower than that of AMY1.

According to the previous report, the 42nd alanine residue located within the (β/α)8 barrel domain may be important in the secretion of AMY in S. cerevisiae. In the present study, expression levels of AMY2 mutant A42P and wild-type AMY2 at 15°C were compared under the control of IPTG-inducible T7 RNA polymerase promoter. As a result, about 10-times higher amount of recombinant AMY2 A42P was obtained and simply purified via Ni-NTA chromatography. In order to improve the expression of AMY2, chimeric AMYs between AMY1 and 2 were constructed and their expression levels and enzymatic properties were characterized. Based on the sequence alignment between AMY1 and AMY2, the structural gene regions were finally divided into eight modules encoding the following stretches: (1) A.A. 1-90, (2) A.A. 91-160, (3) A.A. 161-205, (4) A.A. 206-239, (5) A.A. 240-264, (6) A.A. 265-285, (7) A.A. 296-318, (8) A.A. 319-414 in AMY1, and (9) A.A. 401 in AMY2. Recombinant AMYs were purified via Ni-NTA chromatography and its calcium-dependent hydroyzing activities including hydrolysis patterns on various starch-derivatives were comparatively examined with each other. The shuffled chimeric enzymes were categorized into three groups (i) AMY1-type (e.g. AMY11112 and AMY-C6), ii) AMY2-type (e.g. AMY22211, AMY11221, AMY22112, and AMY-E10), and iii) the mixed/intermediate-type (the remaining chimeras). The results indicate that subtle amino acid differences in positions flanking calcium-binding residues elicit striking differences in the calcium dependence of the enzymatic activity.

Keywords barley α-amylase isozymes; chimeric enzymes; expression level; enzymatic characterization
Enzymatic properties of various hemicellulose-hydrolyzing enzymes cloned from a hyperthermophile of Thermotoga neapolitana

H. G. Lee1, J. M. Park2, M. U. Jang1, S. H. Choi1, S. R. Lee1, D. M. Han1, H. C. Shin1, E. H. Kim1, J. H. Cha2, and T. J. Kim1

1Department of Food Science and Technology, Chungbuk National University, Cheongju 361-763, Korea
2Department of Microbiology, Pusan National University, Busan 609-735, Korea

Hemicelluloses are the matrix polysaccharides of the plant cell wall and the most abundant source of renewable polymers on the earth. A number of versatile and specific enzymes are involved in the complete degradation of these polymeric substrates. Especially, the efficient utilization of xylans, especially as sources of bio-fuels and industrial chemicals requires a complete understanding of the enzyme systems for their conversion. Due to the high complexity and structural variability of heteroxylans, their enzymatic hydrolysis can be achieved via the concerted treatment of various hydrolysates that include the main chain-cleaving enzymes, endo-β-(1,4)-xylanases (EC 3.2.1.8) and β-xylanases (EC 3.2.1.37), and the side chain-active enzymes, acetyl-xylan esterases (EC 3.1.1.72), α-glucuronidases (EC 3.2.1.139), and l-arabinofuranosidases (EC 3.2.1.55).

For high conversion yield of cellulosic biomasses to ethanol, more efficient enzymatic saccharification should be followed by alcohol fermentation. The hydrolysis reactions at high temperature generally increase the saccharification yield, compared to those by mesophilic hydrolyses. Development of highly thermostable hemicellulose-degrading enzyme systems will be one of the best ways to improve the bioethanol productivity.

Thermotoga neapolitana, a hyperthermophile, is known as a vegetarian bacterium, because it possesses a number of carbohydrate-active enzymes in its genome. Except ferulic acid esterase, a variety of hemicellulose-hydrolyase genes and some cellulolytic enzyme genes including β-glucosidases have been found. In this study, five core enzyme genes including endo-β-(1,4)-xylanase (TnXn), β-xylanohydrolase (TnXn), acetyl-xylan esterases (TnXn), α-glucuronidases (TnXn), and l-arabinofuranosidase (TnXn) have been successfully cloned from T. neapolitana D3/435. PCR-amplified DNA fragment containing each gene was cleaved with combination of appropriate restriction enzymes and ligated into a constitutive expression vector of pHCXHD with a C-terminal six-histidine fusion tag. The enzymatic properties of purified enzymes were characterized and their optimal reaction conditions were determined. Optimal temperature of the enzymes from 80 to 90°C was much higher than that of common mesophilic enzymes, while their optimal pH varied from 5.0 to 7.0. In addition, their substrate specificities were investigated for the development of mixed hemicellulose-degrading enzyme systems. The combinatorial use of these enzymes will be applicable to improvement of more efficient bioenergy processes, including the hemicellulose biocconversion processes into bioenergy or industrially valuable natural products.

Keywords Thermotoga neapolitana, α-L-arabinofuranosidase; acetyl xylan esterase; α-glucuronidase; β-xylanase; β-xylosidase

Exploring the biotechnological applications of an halotolerant pH-versatile laccase produced by Streptomyces ipomoeae CECT 3341

M. Hernández, R. Moya, J.M. Molina-Guijarro, F. Guillén, and M.E. Arias

Laccases (EC 1.10.3.2) are multicopper oxidases with a large catalytic versatility due to their low substrate specificity characteristic of most of the fungal laccases [5-8]. This pH versatility could fulfill the industrial requirements for full application of these enzymes in biotechnological processes. In our group, the oxidative enzymatic mechanisms involved in lignocellulose degradation by other ligninolytic microorganisms such as Streptomyces have been studied. The oxidative capability of these actinobacteria lays mainly in the production of laccases. One of them produced by Streptomyces cyaneus CECT 3335 has shown its suitability for the biobleaching of eucalyptus kraft pulp [5]. More recently, a new laccase produced by S. ipomoeae CECT 3341 has been purified and characterized showing some different physico-chemical characteristics from that produced by S. cyaneus. In fact, substrate specificity of this laccase depends on the pH, (i.e. optimal pH for ABTS or phenolic compounds are 4.5 or 8, respectively).

In the present work we screen the potential application of the laccase produced by S. ipomoeae and different mediators (Laccase-Mediator System or LMS) for the biobleaching of eucalyptus kraft pulp and for decolourisation and detoxification of a textile azo-type dye. The treatment of eucalyptus kraft pulp was carried out with 300 mU laccase per gram of pulp in the presence of 1 mM ABTS as mediator in acetate buffer pH 4.5 to get a 10% (w/v) consistency. Enzyme treatment was maintained at 60°C for 1 hour followed by a bleaching step with 2% H2O2. The treatment of textile azo dye was carried out with 300 mU laccase per gram of dye in the presence of 1 mM ABTS as mediator in acetate buffer pH 4.5 to get a 10% (w/v) consistency. Enzyme treatment was maintained at 60°C for 1 hour followed by a bleaching step with 2% H2O2. Results obtained showed a 10% decrease in Kappa number, a 3.5% increase in ISO brightness and a remarkable saving in H2O2 consumption.

On the other hand, application of LMS to decolourise textile dyes requires non-chromogenic mediators and up to date best results were obtained with phenolic compounds related with lignin. For this study, we found that 0.1 mM acetoxyringone was the best mediator to decolourise the azo-type dye Reactive Green acting together with 300 mU laccase. With this LMS, a 90% decolourant was achieved. Moreover, this enzyme retains much of the activity in the presence of high concentrations of different salts and specific inhibitors such as sodium azide. Finally, analysis of toxicity after the treatment (Microtox® System) also showed a high degree of detoxification (increase in EC of 100% compared with control).

Keywords Laccase, Streptomyces, Biobleaching kraft pulp, Detoxification, Decolorisation azo dye

References

Keywords Laccase, Streptomyces, Biobleaching kraft pulp, Detoxification, Decolourisation azo dye
Expression of keratinase gene in *Bacillus megaterium* using an expression vector of pHIS1525.SPlipA and utilization of the resulting recombinant strain for chicken feather degradation prior to biogas production

S. Alinezhad1, A. Mirabdollahi, G. Forgács1,2, E. Feuk-Lagerstedt1, and I. Sárvári Horváth1

1 School of Engineering, University of Borås 501 90 Borås, Sweden
2 Department of Chemical and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden

An increasing quantity of chickens is being utilized annually in the poultry industry, producing a huge volume of chicken feather waste which presents a high quality supply of keratin. Keratinases possessing high level of keratinolytic activity on insoluble keratin play a crucial role in hydrolyzing chicken feathers. Ever since the discovery of proteolytic ability as well as water solubility of keratinase, many industrial processes regarding keratinase application have been developed. A recently invented application to handle poultry waste is to utilize feathers for biogas production. Obviously, large amount of keratinase is required to break down the keratin prior to further conversion to biogas. Previously, several researches have shown that certain bacteria are able to produce keratinase but it is still a challenge to find out which bacteria is the most reliable source for the production with high efficiency. These challenges gave rise to the molecular biologists to bring the focus on gene cloning to develop recombinant strains resulting in overproduction of keratinase. Over the course of various cloning and expression experiments of similar proteins, it was found that *Bacillus megaterium* could be a susceptible host cell for keratinase production.

In our study, the keratinase gene from the chromosomal DNA of *Bacillus licheniformis* ATCC®53757 was PCR amplified and subsequently cloned into *Bacillus megaterium* expression vector, pHIS1525.SPlipA. *Bacillus megaterium* ATCC®14945 strain was transformed with the recombinant plasmid, pKERRSIS1525.SPlipA. The KER gene was expressed under xylose inducible promoter, and the product was then purified using Ni-NTA affinity chromatography. After 18 h of incubation an extracellular keratinase activity of 29U ml⁻¹ was achieved (one unit of activity was determined as the amount of enzyme required to an increase of 0.01 in A₄₂₀ after 30 min of incubation at 37°C). The recombinant strain was further examined for feather degradation using intact chicken feather waste as carbon source. The chopped chicken feathers were partially degraded by the recombinant strain after three days of incubation and the total macroscopic digestion was ultimately observed after seven days resulting in a yellowish peptide rich fermentation broth. The biogas potential of the hydrolysate will be compared with that of untreated feathers by performing anaerobic batch digestion experiments.

Keywords: *Bacillus licheniformis*, *Bacillus megaterium*, Gene expression, Keratinase, Feather degradation, Biogas production

Fed-batch fermentation for heterologous protein production by recombinant *Pichia pastoris*

M. S. O. Wanderley1,2,3, C. Oliveira1, S. I. Mussatto1, D. Bruneska1, J. L. Lima Filho1,4, L. Domingues1 and J. A. Teixeira1

1IBB – Institute of Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
2Grupo de Prospeção Molecular e Bioinformática (ProspecMo), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, n°1235, 50670-901, Recife-PE, Brazil
3Lab. de Imunopatologia Keizo Asami (LIKA), UFPE, Av. Prof. Moraes Rego, n°1235, 50670-901, Recife-PE, Brazil.
4Programa de Pós-graduação em Ciências biológicas, UFPE, Av. Prof. Moraes Rego, s/n, 50670-901, Recife-PE, Brazil.

Pichia pastoris is a methylo trophic yeast widely used for heterologous recombinant protein production. This yeast has potential for high level expression, efficient secretion and growth to very high cell densities. Fed-batch fermentation has been widely used to enhance protein production by *P. pastoris*. Frutalin is a α-D-galactose-binding lectin isolated from *Artocarpus incisa* seeds, successfully used as a cancer diagnostic tool and thus its large-scale production is aimed. This lectin has been previously expressed and produced in *P. pastoris* using a batch process. Therefore, the present work aims at evaluating a fed-batch fermentation process as an alternative to improve the production of recombinant frutalin by *P. pastoris* KM71H.

Cultivations were carried out in a 1.6 L reactor, in three distinct phases: 1) initial batch fermentation for cells growth in BMGH medium; 2) a fed-batch phase with 50% glycerol and 12 mL/L of trace metal solution; 3) a fed-batch phase where cells were induced by 0.5% methanol and 12 mL/L of trace metal solution. During the fermentation, the dissolved oxygen was kept above 30% saturation, aeration ratio was fixed at 1.5 vvm and pH values were controlled at 5.0. In the first and second fermentation phases, the temperature was maintained at 30 °C, being decreased to 21 °C at the end of second stage. Total cell concentration was determined by measuring the absorbance of the broth at 600 nm, while glycerol consumption and methanol concentrations were detected by HPLC. The recombinant frutalin production was detected by denaturing SDS–PAGE, being the bands visualized by staining with Coomassie Brilliant Blue R250. The lectin activity was checked by hemagglutination assays toward rabbit red blood cells.

High cell density (98.8 g/L dry weight) was obtained during the fed-batch process (Fig. 1A), which is generally desirable since the concentration of secreted protein in the medium often increases proportionally to the cell density. Analysis by SDS–PAGE showed frutalin production at 120, 132 and 144 h. Native frutalin migrates in SDS–PAGE as a double band, where the upper band corresponds to the glycosylated isoforms and the lower band to the non-glycosylated isoforms. Recombinant frutalin migrated in gel as a single band (Fig. 1B) and exhibited hemagglutinating activity towards rabbit erythrocytes. Optimization of the induction phase is still on course. Nevertheless the results obtained so far show the feasibility of the fed-batch process for large-scale recombinant frutalin production by *P. pastoris* KM71H. Supported by: CNpq, ISAC- ERASMUS.

Fig. 1. Production of recombinant frutalin in fed-batch fermentation process by *P. pastoris* KM71H. A) Yeast growth profile and time course of batch, fed-batch and induction phases. B) SDS–PAGE analysis of the supernatant at induction phase.
Gene cloning, Expression and Characterization of Thermo-Acid Stable Recombinant Phytase from Mycobacterium smegmatis

Tamrin Nuge1,2 and Hamzah M. Salleh1,2

1 Department of Biotechnology Engineering, Kulliyah of Engineering, International Islamic University Malaysia, Jalan Gombak 53100 Kuala Lumpur.
2 Biomolecular Engineering Research Unit, International Islamic University Malaysia, Jalan Gombak 53100 Kuala Lumpur

Phytase, also known as phytate-degrading enzyme, catalyzes the hydrolysis of phytate (inositol hexakisphosphate) with sequential release of phosphate and lower inositol phosphates. Non-ruminant animals such as chickens cannot effectively use the 6 phosphates esterified to inositol and phytate-bound nutrients present in their diet because there is little or no phytase activity in their digestive tract. Inorganic phosphates, if supplemented in the animal feed formulation, result in excess excretion of phosphorus to the environment which will eventually lead to environmental pollution. The addition of phytase into animal feed formulation is the best strategy to cater this problem. Recently, microbes become the potential and more feasible sources of phytase. In the present work, the gene encoding for the novel phytase from Mycobacterium smegmatis has been amplified from the genomic DNA by the polymerase chain reaction (PCR) methodology. The purified amplified gene cloned into pBAD-TOPO and transformed into Escherichia coli for protein expression. The recombinant phytase was purified to homogeneity and biochemically characterized with respect to its molecular characterization, specific activity, pH activity profile and substrate specificity. The characterization shows the recombinant phytase from M. smegmatis is highly thermostable and resistant to the extreme pH conditions. These properties give it a potential application in animal feed industry.

Keywords: Phytase; Phytate; Mycobacterium smegmatis; Thermostable; pH resistant

Hemicellulolytic and cellulolytic activities in the culture filtrate of Thermoascus aurantiacus ATCC 204492 induced by products of xylan hydrolysis

Brienzo, M., Monte, J.R., Milagres, A.M.F
Department of Biotechnology, School of Engineering of Lorena, University of São Paulo – USP Estrada Municipal do Caminho, s/n° – CP 116, 12602-810 Lorena/SP, Brazil

Thermoascus aurantiacus can secrete most of the hemicellulolytic and cellulolytic enzymes, however, endo-xylanase is the main enzyme detected in its culture. Significant levels of xylanase were detected with various lignocellulose materials. In order to establish the inducers of xylanase in T. aurantiacus the mycelia was grown in glucose up to the late exponential phase of growth, washed and suspended in fresh medium not supplied with a carbon source. Pre-weighted amounts of xylose (final concentration of 3.5 mg/ml), xylobiose (7 mg/ml) and hydroxylized xylan from sugarcane bagasse containing xylitol, xylobiose and xylotriose (HXSB) (6.8 mg/ml) were tested as inducers of xylanase. The mixtures were incubated on a rotary shaker at 45 °C and at various times, aliquots were taken and centrifuged and activity of hemicellulases and cellulases were determined in the supernatant. Xylanase was induced by all the three carbon sources tested. Xylobiose showed the faster induction with the enzyme production stopping after ten hours, even at low carbon source consumption; therefore xylobiose appears to be the natural inducer of xylanase. The xylanase induction in xylose continued until 25 h, even after xylose exhaustion. Only negligible xylanase activity was determined in the mixtures supplied with HXSB. Xylose present in HXSB was consumed in the first ten hours and xylobiose or xylotriose were hydrolyzed very slowly. B-xylosidase was not induced by xylose, and hence no transxylosidase activity must exist, which enables to form products of higher molecular weight than xylose. Arabinofuranosidase were also induced by all the inducers tested. The profile of arabinofuranosidase induction was very similar in xylose or HXSB, but xylose showed some positive effects also. The production of xylanases seems to be accompanied by production of cellulolytic enzymes independently on the carbon source used as the growth support; however we can also speculate that xylanase acts as endoglucanase. These results evidence that these enzymes possess certain substrate cross-specificity.

Keywords: xylanase, cellulase, Thermoascus aurantiacus, induction, xylobiose.
Heterologous expression of biotechnologically important enzymes from basidiomycetes

K. Zelena, S. Krügener, S. Lunkenbein, and R. G. Berger
Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstraße 5, D-30167 Hannover

White-rot fungi as a potent source of unique hydrolases and oxidoreductases are currently of special interest for different areas such as feed, food, pharmaceutical, and cosmetics industries. The lipase Lip2 from Pleurotus sapidus is one of few enzymes catalysing the hydrolysis of xanthophyll esters to free xanthophylls (Fig. 1A) which are widely used as colorants and antioxidants. Free xanthophylls are currently liberated from their ester precursors using hot (80°C) and concentrated sodium hydroxide solution which results in the formation of side products and imposes high requirements concerning safety issues and waste disposal. This has stimulated the search for biotechnological options.

The new extracellular peroxidase MsP2 from Marasmius scorodonius catalyses the degradation of carotenoids (Fig. 1B) and belongs to the rare group of the dye-decolorizing peroxidases produced by higher fungi. The low expression levels of such lignolytic enzymes limit their isolation, characterisation, and technical application.

The genes encoding Lip2 from P. sapidus and MsP2 from M. scorodonius were expressed in different Escherichia coli strains using pET (cytoplasmic expression), pBAD (periplasmic expression) and pCold (cold shock induced expression) vectors. A fusion with a C-terminal His-tag was used for purification and immunochromical detection of the target proteins. The expression of Lip2 and MsP2 led to the production of recombinant proteins, mainly as inclusion bodies. Refolding strategies and periplasmic (Lip2) or cold shock induced (MsP2) expression have delivered the catalytic active enzymes.

Keywords: basidiomycete; Escherichia coli; heterologous expression; in vitro refolding; lipase; peroxidase.

Hydrolysis of pretreated bagasse with the thermophilic enzyme mixture of Thermoaeras aurantiacus

Monte, J.R., Brienzo, M., Carvalho, W., Milagres, A.M.F
Department of Biotechnology, School of Engineering of Lorena, University of São Paulo – USP Estrada Municipal do Campinho, s/n – CP 116, 12602-810 Lorena/SP, Brazil

The thermophilic fungus Thermoaeras aurantiacus has shown the capacity to grow on a wide variety of substrates producing cellulolytic and hemicellulolytic enzymes which present potential advantages in lignocellulose hydrolysis. Thermotolerant enzymes are produced with high specific activity and stability. T. aurantiacus was cultivated on four different types of milled agricultural residues: sugarcane bagasse, sugarcane straw, wheat straw and corn cob. After determined periods of time xylanase, endoglucanase, exoglucanase, /g533-glucosidase and /g533-xylosidase activities were evaluated. Xylanase was produced in all substrates, with much more expressive activity than cellulases, indicating that this fungus presents more xylanolytic than cellulolytic profile. The highest level of xylanase was determined in the medium containing sugarcane straw at 9 days (1679.8 UI/g) and the /g533-glucosidase (29.9 UI/g) at 6 days. The highest endoglucanase was produced on sugarcane bagasse (108.9 UI/g) at 9 days. With inoculum load of 10⁸ ascospores/g the amount of exoglucanase activity exceeds 10 times that produced with 10⁴ ascospores/g of dry sugarcane bagasse. The activities of the other enzymes did not change. The purification and characterization of candidate enzymes for sugarcane bagasse hydrolysis were performed in an ion exchange column, DEAE Sepharose CL6B, and a xylanase of 31.5 kDa, an endoglucanase of 32.4 kDa and a /g533-glucosidase of 76.3 kDa were isolated. Evaluation of the most interesting protein using characterized mixtures of purified proteins on pretreated alkaline sugar cane bagasse showed that the raw material and pretreatment affected the enzymatic hydrolysis.

Keywords: xylanase, cellulase, Thermoaeras aurantiacus, purification, enzymatic hydrolysis
Lignin degradation by complex pellets of white-rot fungus *Anthracophyllum discolor* in airlift reactor

O. Rubilar 1, G. Tortella 1, S. Elgueta 1, F. Acevedo 1 and MC. Diez 1, 2

1 Scientific & Technological Bioresource Nucleus, 2Chemical Engineering Department, Universidad de La Frontera, PO Box 54-D Temuco, Chile.

The white-rot fungi (WRF) have been studied because are organisms able to tolerate and degrade higher concentrations of diverse persistent organic compounds. The ability of WRF to degrade pollutants has been attributed to the action of non-specific extracellular ligninolytic enzyme system, composed principally of laccases, lignin peroxidases (LiP) and manganese peroxidases (MnP).

The WRF can be grown in submerged cultures by several different morphological forms: suspended mycelia, clumps or pellets. However, pellet form becomes the desirable morphology for industrial process, because this form not only increases the specific surface area of the mycelial mass, but also makes it possible to recover the enzymes produced by the fungus. Many studies have shown that different types of organic and inorganic supports allow the fungi pellets formation providing a structural and nutritional function.

In this context, pellets of white-rot fungus *Anthracophyllum discolor* (AD) were formulated for the lignin degradation. The lignin degradation was development in an airlift reactor at initial concentration of 1000 mg/L and the pellets were re-used for two times in batch operations.

The complex pellets were formed by a center of activated carbon and sawdust surrounded by fungal mycelium, at difference of simple pellets (only mycelium), that are hollow sphere (Figure 1).

![Figure 1. Structure of simple (a) and complex (b) pellets of *A. discolor*](image)

The lignin degradation by complex pellets were 87 and 72% in the first and second cycle, respectively, being significantly more effective than simple pellets where the lignin removal was 60 and 52%, respectively. Also, the complex pellet showed higher MnP activity in the reactor with 140 U/L.

Therefore, sadwust and activated carbon are suitable carriers for *A. discolor* in degradation of organic pollutant in wastewater and soil.

Keywords White-rot fungi, pellet, lignin, airlift reactor

Acknowledgments: The authors would like to thank FONDECYT Project No. 3080013 and 1090678.
Microbial lipase purification using aqueous two-phase system

J. M. P. Barbosa¹, R. L. Souza¹, A. Fricks¹, C. M. F. Soares¹,² and Á. S. Lima¹,²

¹ UNIT, Tiradentes University, Avenida Murilo Dantas, 300- Farolândia–49032-490, Aracaju-SE, Brazil
² ITP, Institute of Technology and Research, Building ITP Avenida Murilo Dantas, 300- Farolândia–49032-490, Aracaju-SE, Brazil

Lipases (triacylglycerol acylhydrolases, EC 3.1.1.3) catalyze different reaction such as hydrolysis, inter-esterification, esterification, alcoholysis, acidolysis, and amiolysis. Many microorganisms are able to produced lipolytic enzymes commercially significant. However, the industrial use requires the application of purification methods for the separation of enzyme. Aqueous two-phase system is a great alternative to purification because is few aggressive for enzymatic process. This work discuss the application of aqueous two-phase system in purification of lipases (6351.91 U/mL) by microorganism isolated from Brazilian soil contaminated with petroleum using polyethylene glycol (PEG) and potassium phosphate salt. At first step, the lipase was precipitated with ammonium sulfate, however only the protein contaminated was precipitated with 80% of saturation (purification factor – PF=155.98 fold for aqueous phase). The enzyme, that remained at the aqueous solution was dialyzed against distilled water for 18h, the PF presented a decrease (32.17 fold). The enzymatic solution dialyzed was used to prepare an aqueous two-phase system (PEG/potassium phosphate). It was investigated different molecular weight of PEG to purify the lipase, and the best PF was obtained using PEG-8000 (123.89 fold), then it was studied the influence of PEG and potassium phosphate concentrations in the enzyme purification, the highest PF (123.89) was verified with 20% of PEG and 18% of potassium phosphate. It was added NaCl for increased the hydrophobicity between the phases, this addition increased the purification factor (141.65 fold). The pH value and temperature affected the partition of enzyme, the best purify condition was reached at pH 6.0 and 4°C (201.53 fold). According the results the best condition to purify the enzyme is PEG-8000/potassium phosphate (20/18%) with 6% of NaCl at pH 6.0 and 4°C.

Keywords: lipolytic enzyme, purification, aqueous two-phase system

Optimisation of production of therapeutic peptides in Escherichia coli

M. Hladikova¹, O. Degtjarik¹, Z. Antosova²,³, Vladimir Král²,³, D. Stys⁴ and J. Ludwig⁴,⁵

¹ UNIVERSITY OF SOUTH BOHEMIA, Institute of Physical Biology, Zámek 136, 373 33 Nový Hradec, Czech Republic
² INSTITUTE OF CHEMICAL TECHNOLOGY, Faculty of Food and Biobehematic Technology, Department of Biochemistry and Microbiology, Technická 3, 166 28 Praha 6, Czech Republic
³ ZENTIVA, K.S., U Kabelovny 130, 102 37 Praha 10, Czech Republic
⁴ UNIVERSITY OF BONN, IMBB / MolekulareBioenergetik, Kirschallee 1, D-53115 Bonn, Germany

Biopharmaceuticals, biotechnologically produced therapeutic proteins (antibodies) and peptides, play an increasing role in pharmaceutical industry. They are used for the treatment of a wide range of human diseases such as autoimmune diseases, diabetes, anemia, disorders associated with lack of certain proteins (e.g. human growth hormone) and others.

For the expression and purification of pharmaceutically active peptides fused to maltose binding protein (MBP) and additionally carrying a 6 x His tag, a small (laboratory) scale procedure has been developed (see accompanying poster by Antosova et al.). This procedure enabled the production of small amounts of purified therapeutically active peptides and thus served as proof of principle. It is however not suited for the production of the (large) amounts needed for the production of drugs. The aim of this work was thus to develop a procedure that allows upscaing of expression/production and purification of peptide-fusion protein.

To identify suitable growth conditions for peptide fusion protein E. coli cultures were grown in a PC-controlled fermenter. First, different growth media were tested. Due to better aeration, cell densities in fermenter were ~ 1.5-fold as high as those obtained in Erlenmeyer flasks when standard complex (LB) growth medium was used in a batch procedure. By using a rich complex medium (TB) the obtained cell density could be increased additionally ~ 4-fold. However, it turned out that due to limitations in aeration the obtained yield was still lower than expected. To obtain higher cell densities, we thus switched to a fed-batch procedure in synthetic minimal medium. After the initial batch phase, growth was controlled by keeping aerobic conditions through controlling the supply of feeding solution in response to oxygen availability. This proceeding led to reduced growth rates, but to a significantly increased yield.

For the small (lab-scale) purification of peptide-fusion protein affinity chromatography using either batch procedures or gravity flow columns was carried out. It turned out that both, affinity chromatography using amyllose resin, binding the MBP, or Ni⁺⁺ resin, binding the 6 x His tag, allowed a one step purification to >90 % purity. However, whereas amyllose resin is too expensive for production scale purification, the imidazole that is used to elute protein from Ni⁺⁺ resin, lead to precipitation at higher protein concentrations. Thus, we developed a FPLC-based purification protocol consisting of an ion exchange chromatography (cation exchanger) step for pre-purification, the affinity chromatography step followed by a second ion-exchange column (anion exchanger) for removal of imidazole and buffer exchange. This protocol allowed the purification of peptide fusion protein without precipitation at a concentration of 0.7 mg/mL without precipitation.

In summary, we have successfully developed a scalable strategy for the production and purification of peptide-fusion proteins. Future work will be directed to the development of a most efficient procedure to separate the therapeutically active peptide from the fusion part and its final purification.

Keywords: biopharmaceuticals; therapeutic peptide; bioreactor

Acknowledgement: This work is supported by grant MPO 2A-2TP1/030.
Optimization of growth media for economical β-glucanase production by

Bacillus sp.

N. G. Avcı1, H. Mangaoglu1, D. Kazan1,2, B. S. Akbulut1

1 Marmara University, Engineering Faculty, Bioengineering Department, Gırtpepe Campus, 34722, İstanbul, Türkiye
2 TUHITAK, Gene Engineering and Biotechnology Research Center, 41470, Gebze-Kocaeli, Türkiye

In nutrition of poultry, barley and wheat are commonly used for economical reasons but their efficiency as feed depends on various enzyme additives to better make use of the available nutrients. Beta-glucanase is one of these additives used for the complete utilization of feed component, β-glucan, found in barley and wheat. Unfortunately if beta-glucan remains undigested, it causes the viscosity of intestine to increase. In addition to its significance in animal breeding, especially for poultry and pigs, beta-glucanase enzyme has different roles in other fields. In plants, acting as an endoacting enzyme, β-1,3-1,4-glucanase hydrolyses the β-1,3-1,4-glucan bond found in the cell wall of cereal endosperm. It is also involved in the utilization of glucose as an energy source for the young seedlings. In winemaking, it is used to improve the filterability of wine. In fungi, the enzyme is involved in biological processes such as cell expansion and cell-cell fusion. Microorganisms such as Bacillus subtilis, Bacillus macerans, Bacillus licheniformis, Clostridium thermocellum can produce high amounts of beta-glucanase. Catalytic features, stability, and activity under extreme conditions make beta-glucanases of microbial origin favorable for large scale production.

The purpose of this study was optimize the economical production of a beta-glucanase enzyme from a newly isolated Bacillus strain to be used as an additive in poultry feed. Among the different carbon sources used (barley flour, wheat flour, and CMC), enzyme production with wheat flour was the highest. Then different organic (yeast extract and peptone) and inorganic (NaNO₃, (NH₄)₂SO₄) nitrogen sources were examined for enhanced beta-glucanase production. Higher enzyme yield was obtained with yeast extract as the nitrogen source whereas the Bacillus strain used in this work could not utilize inorganic nitrogen sources for beta-glucanase production. The best enzyme yield, was obtained when wheat was used as the carbon source and yeast extract was used as the nitrogen source.

Keyword: Bacillus sp, β-glucanase, β-glucan

Introduction and Experimental Procedures. Triglycerides (TG) of vegetable oils and fats are becoming increasingly important as alternative fuels for diesel engines due to the diminishing petroleum reserves [1]. However, their high viscosities and low volatilities do not permit their direct use either in oil/petrol blends or in any diesel engine type. Recently, several reports can be found on the production of biodiesel involving enzymatic catalytic protocols as greener alternatives [2]. We report here the preparation of a novel biofuel by integrating glycerol into its structure via 1,3-selective esterification using a pig pancreatic lipase (PPL). The esterification reaction was performed in an stirred tank reactor (Batch), at atmospheric pressure and a temperature range from 40-60 °C, at pH = 11-13 and reaction times typically between 30 minutes and 24 hours. The effect of the temperature, oil/alcohol ratios and quantity of catalyst have also been investigated.

Results and discussion. Results have been summarised in Table 1. Quantitative conversions in the systems were found after 50 min. reaction, with increasing selectivities to FAEE (Fatty Acid Ethyl Ester). The formation of the maximum quantities of FAEE allowed by the action of the 1,3-stereoselective PPL were observed at very short times of reaction (5 min). With time, the DG are converted into MG until achieving the maximum MG content (33.3%).

Table 1. Composition, conversion and TOF, of the biofuel produced in the transesterification of 0.01 mol (12 mL) of sunflower oil, using 0.01 g of PPL (free form) and 6 mL of ethanol, at pH = 12 to 50 °C for one hour.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>FAEE %</th>
<th>MG+DG %</th>
<th>TG %</th>
<th>Conv. %</th>
<th>TOF (mmol/h gPPL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>66</td>
<td>16</td>
<td>17</td>
<td>83</td>
<td>7968</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
<td>16</td>
<td>14</td>
<td>86</td>
<td>4194</td>
</tr>
<tr>
<td>15</td>
<td>74</td>
<td>14</td>
<td>12</td>
<td>88</td>
<td>2944</td>
</tr>
<tr>
<td>20</td>
<td>70</td>
<td>14</td>
<td>16</td>
<td>85</td>
<td>2112</td>
</tr>
<tr>
<td>25</td>
<td>72</td>
<td>15</td>
<td>13</td>
<td>87</td>
<td>1735</td>
</tr>
<tr>
<td>30</td>
<td>72</td>
<td>14</td>
<td>14</td>
<td>86</td>
<td>1438</td>
</tr>
<tr>
<td>40</td>
<td>73</td>
<td>17</td>
<td>10</td>
<td>90</td>
<td>1098</td>
</tr>
<tr>
<td>50</td>
<td>81</td>
<td>23</td>
<td>0</td>
<td>>99</td>
<td>968</td>
</tr>
<tr>
<td>60</td>
<td>74</td>
<td>27</td>
<td>0</td>
<td>>99</td>
<td>739</td>
</tr>
</tbody>
</table>

Interestingly, an increase in the quantity of PPL led to a decrease of the activity in the systems that might be related to the formation of agglomerates of enzymes, which prevented the access of the substrate to the active sites of the enzyme. A reduction in the conversion was also found with decreasing the alcohol/oil ratios in the reaction.

Conclusions. PPL can be used as biocatalyst to prepare a novel biofuel with composition and properties suitable to use in diesel engines, with the advantage of avoiding the generation of glycerol as byproduct in the process. This methodology can offer advantages compared to the conventional base catalysed process, in the search for new biofuels by incorporating glycerine that minimizes the waste production and improves the reaction conversion under greener conditions.

Acknowledgements

This research has been supported by the Instituto Andaluz de Biotecnología (Junta de Andalucia, Project BROANDALUS 08/13/L3), Consejería de Educación y Ciencia de la Junta de Andalucía (FQM 8162, FQM 0191), Ministerio de Educación y Ciencia Project CTQ 2007-67574-PPQ, Ministerio de Ciencia e Innovación CTQ 2008-01330/BQU).

References

Keywords: Pig Pancreatic Lipase (PPL); Biofuel; Esterification; Fatty Acid Ethyl Ester (FAEE); Monoglyceride
Partial purification and characterization of five alpha amylases from a wheat local variety (Balady) during germination

Taha Abdullah Kumosani, AbdulRahman L. Al-Malki, and Saleh A. Mohamed
Dept. of Biochemistry, King Abdul Aziz University, Jeddah, Saudi Arabia

A local Saudi Arabian wheat (Triticum aestivum) variety (Balady) showed high levels of amylolytic activities at different stages of germination. The activity of α-amylase increased from day 0 to day 6 of germination, where it exhibited its highest level (2300 units/g seeds), followed by decrease of activity till day 16. Chromatography of 6 days old wheat seedlings of germination on DEAE-Sepharose column showed five forms of α-amylase activities (α-amylases AI, AII, AIII, AIV and AV). The apparent K values of isoenzymes for hydrolyzing starch were 1.42 mg, 2.0 mg, 1.1 mg, 2.5 mg and 1.7 mg, respectively. α-Amylases AI, AII, AIII, AIV and AV were found to have sharp and broad pH optima of 5.5, 5.5-6.5, 5.0-6.0, 5.0-6.0 and 7.0, respectively. The temperature optima of wheat amylases are the same at 50ºC. Thermal stability study showed that α-amylases AI, AIV and AV were stable up to 50ºC after incubation for 15 min, while α-amylases AII and AIII were stable up to 40ºC. The affinity between substrate and enzyme was detected only for glycogen and starch compared with other carbohydrates tested, where glycogen had more affinity than starch. Various metal ions such as Ca²⁺, Zn²⁺, Ni²⁺, Hg²⁺ and Cd²⁺ at 2 mM were tested for amylase activation/inhibition effect. Ca²⁺ is found to has activating effect as indicated by increased activity for all isoenzymes except of AII which is inhibited. In conclusion, these α-amylases from wheat have interesting characteristics such as low Km value, broad pH optimum, high optimum temperature, high affinity toward starch and glycogen and activation by some metal as calcium. Therefore, these characterization meet the prerequisites need for food industry.

Phosphoglucomutase GlnM of Streptococcus pneumoniae is activated by endogenous eukaryotic-type protein kinase StkP

Petra Pallová¹*, Tomáš Obšil ², Mireille Hérve ³, Dominique Mengin-Lecreulx ³, and Pavel Branny ⁴
From the Cell and Molecular Microbiology Division ¹, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; Department of Physical and Macromolecular Chemistry ², Faculty of Science, Charles University, Hlavova 2850/9, 128 43 Prague, Czech Republic; Enveloppes Bactériennes et Antibiotiques ³, IBMMC, UMR 8619 CNRS, Université Paris-Sud, 91405 Orsay, France

Phosphoglucomutase mutase (GlnM) is an essential enzyme catalyzing interconversion of glucosamine-6-phosphate and glucosamine-1-phosphate isomers, the first step in the biosynthetic pathway leading to the formation of UDP-N-acetylglucosamine. To be active, this enzyme must be phosphorylated. The initial phosphorylation of purified E. coli GlnM is achieved in vitro during an autophosphorylation process. We recently showed that phosphoglucomutase mutase of Streptococcus pneumoniae is an endogenous substrate of eukaryotic-type serine/threonine protein kinase StkP. Therefore, we hypothesized, that phosphorylation of GlnM by protein kinase StkP in S. pneumoniae could be a factor regulating the activation of GlnM.

By using recombinant proteins in coupled enzymatic assay, we analyzed the effect of GlnM phosphorylation on its activity. Our results showed that the specific activity of GlnM reached the maximum after phosphorylation mediated by protein kinase StkP. Mutant protein was prepared by site directed mutagenesis and both the wild type and mutant forms were analyzed for their enzymatic activity. In contrast to the wild type protein, mutant form with Ser99 to Ala exchange showed no enzymatic activity.

In conclusion, our results showed that phosphorylation of GlnM by protein kinase StkP in S. pneumoniae could be a factor regulating the activation of GlnM and consequently the flow of metabolites in the cell wall biosynthetic pathways.
Production and characterization of thermostable phytase from Bacillus strain isolated from rhizosphere of Acacia cyanophylla Lindley

H.U. Ozturk1, A.A. Denizci1, S. Dincer2, A. Ogan3, A. Erarslan4, D. Kazan1,5

1Tubitak Marmara Research Center, Genetic Engineering and Biotechnology Institute, Enzyme and Microbial Biotechnology Group, Kocaeli, Turkey
2Çukurova University, Faculty of Science and Letters, Department of Biology, Adana, Turkey
3Marmara University, Institute for Graduate Studies in Pure and Applied Sciences, Department of Chemistry, Istanbul, Turkey
4Kocaeli University, Faculty of Arts and Sciences, Department of Chemistry, Kocaeli, Turkey
5Marmara University, Faculty of Engineering, Bioengineering Department, Istanbul, Turkey

Phytases (myo-inositol hexakisphosphate phosphohydrolase) are a special class of phosphatase that catalyze the sequential hydrolysis of phytates, the major storage form of phosphate in grains and oil seed, to myo-inositol pentakisphosphate (IP5) or to less phosphorylated myo-inositol phosphates (IPn) (Kerovou, Rouvinen and Hatzack, 2000; Quan et al., 2004) or inorganic phosphate (IP) (Wyss et al., 1999). In recent years, phytases have been studied intensively, because of the great interest in its application as feed additive, processing of human food, synthesis of lower inositol phosphates, and ecological importance.

Bacillus phytases have considerable potential in commercial and environmental applications, because of their desirable activity profile under neutral pH, strict substrate specificity and higher thermal stability during animal feed-pelleting process in which temperature can reach to 80-100°C.

Isolate SDP1 from Bacillus genus, producing a thermostable phytase was isolated from the rhizosphere of Acacia cyanophylla Lindley from Cukurova region in Turkey. An extracellular phytase activity increased markedly in late stationary phase. The highest enzyme activity was observed after the 4th day of cultivation. Medium composition were optimized for an efficient phytase production. The crude phytase showed good activity at broad pH and temperature range. Almost ~ 10% and ~ 20% activity losses were observed on enzyme activity at 70°C and 80°C, respectively after 2 hours incubation at pH 7.0. According to our preliminary results, isolate SDP1, member of Bacillus subtilis group, can be proposed as a good phytase producer.

This research was supported by Marmara University (BAPKO) by the project number BAPKO FEN-C-DRP-171108-0267.

Keywords Phytase, feed additive, myo-inositol, thermostable

Production of a new biodiesel by using a low cost lipase derived from Thermomyces lanuginosus and a response surface methodology

Cristóbal Verdugo1, Diego Luna2,*, Stephan Shilev3, Salvador Rodríguez4, Enrique D. Sancho5

1Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Ed. M. Curie, E-14014 Córdoba (Spain)
2Seneca Green Catalyst S.L., Campus de Rabanales, E-14014-Córdoba (Spain)
3Department of Microbiology, University of Córdoba, Ed. S. Ochoa, E-14004, Córdoba (Spain)

Introduction. Biodiesel production has received considerable attention in the recent years as a biodegradable and non polluting fuel [1–4]. Utilizing soluble lipase biocatalyst presented an alternative approach to lipase-mediated biodiesel production. This new biodiesel integrates the glycerine as a monoglyceride, avoiding in this way its elimination. The multi factorial design of the response surface methodology (RSM) was employed to evaluate the effects on the conversion of oil into FAEE (Fatty Acid Ethyl Esters) and Mg (Monoglycerides) of several conditions as temperature, molar ratio of ethanol to oil and pH. Water amount and concentration of lipase were also investigated. Soluble lipase Lipopan 50 BG, produced by submerged fermentation of genetically modified Thermomyces lanuginosus/Aspergillus oryzae microorganism, was proposed here as a low cost biocatalyst for a new biodiesel production with sunflower oil. The results indicated that pH, molar ratio of ethanol to oil and water content were significant factors on the conversion.

Results and discussion. In Figure 1 it is shown the great influence of pH, and to lesser extent of the ratio oil / ethanol (proportion) in the conversion, while temperature did not affect significantly. In another graph it is shown the influence of the water content, which presents a maximum at 15 μL of added water.

Conclusions. Lipopan 50 BG can be used as biocatalyst in the production of a new kind of biodiesel that integrates glycerin as monoglycerides. It is possible to optimize conditions to prepare a new kind of biodiesel with composition and properties suitable to use in diesel engines. This method has the advantages of avoiding the generation of glycerol as byproduct in the process and its short reaction time. This process minimizes waste generation and maximizing efficiency of the process.

Acknowledgements. This research has been supported by the Instituto Andaluz de Biotecnología (Junta de Andalucía, Project BIOANDALUS 08/15/L35), Consejería de Educación y Ciencia de la Junta de Andalucía (PQM 0162), (PQM 5919), Ministerio de Educación y Ciencia Project CTQ 2007-65754-PPQ, Ministerio de Ciencia e Innovación CTQ 2008-01330/BQU).

References

Keywords: Lipase; Thermomyces lanuginosus; Biofuel; Ethanolysis; Fatty Acid Ethyl Ester (FAEE); Monoglyceride
Production of Amylases, CMCases, Xylanases and Ligninolytic Enzymes by White-rot Fungi in Solid and Liquid Fermentation

Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Pedro de Alba esq. Manuel L. Barragán S/N. Ciudad Universitaria, San Nicolás de los Garza, N. L. 66451 México

The most abundant polysacharides in the environment are Cellulose and Hemicellulose as well as Lignin, present in the forestry by-products. The white-rot fungi are capable of transforming Lignin, present in the agroforestry waste, due to their ample enzymatic system made up of ligninolytic enzymes like Laccase and Manganese Peroxidase, as well as Endoglucanases and Xylanases. The degradation of such lignocellulosic material has an enormous potential for the production of biofuels. For such reasons the objective of this work was to determine the capacity that the white-rot fungi, isolated from Nuevo Leon, Mexico, exhibit in the production of CMCases, Xylanases, Laccase and MnP in solid as well as in liquid fermentation, using wheat bran as substrate. Nineteen white-rot fungi were utilized. Sixteen of them isolated in Nuevo Leon, Mexico, and three reference strains, Pleurotus ostreatus (Po) ATCC 58053, Bjerkandera adusta (Ba) and Phanerochaete chrysosporium (Pch). For the fermentation in solid, 4 g wheat bran, saturated with 20 mL of salts (2 g KH2PO4, 0.5 g de MgSO4·7H2O, 0.5 g CaCl2 y 0.5 g KCl, all per litre), was used. The fermentation in liquid was conducted in 250 mL ErlenMeyer flasks, with 90 mL of mineral solution and 45 g/L wheat bran, pH was adjusted to 5.0. Each flask was inoculated with three fragments of mycelium and incubated for ten days at 30 °C. The production of hydrolytic, ligninolytic and cellulolytic enzymes was greater in liquid fermentation than in solid, where amylase activity was detected in 14 of the 19 strains with Cu1 showing the greatest activity (16.52 U/g de substrate). In contrast, Trametes villosa presented an activity of 45.12 U/g of substrate in liquid media. The maximum CMCases activity obtained in solid media were 24.22 U/g (Cu1) followed by 17.37 U/g (P. chrysosporium), whereas in liquid media the greatest activity was present in Cu1 at 61.82 U/g. The activity of xylanases was detected in five strains under solid fermentation. Again, the maximum activity of xylanases in solid fermentation was detected in the strain Cu1 with 231 U/g of substrate. The maximum CMCases activity obtained in solid media were 24.22 U/g (Cu1) followed by 17.37 U/g (P. chrysosporium), whereas in liquid media the greatest activity was present in Cu1 at 61.82 U/g. The activity of xylanases was detected in five strains under solid fermentation. Again, the maximum activity of xylanases in solid fermentation was detected in the strain Cu1 with 231 U/g of substrate. The results indicate that the amylase activity founded in the assays strains was the highest activity followed by CMCases and Xylanases. These native strains are potential candidates to future studies for their application in the production of fermentable sugars without leaving out other areas of environmental interest. However, more specific studies, which will allow the optimization of the production of the studied enzymes in the present work, are necessary.

Keywords: Solid state fermentation, native fungi, ligninolytic enzymes.

Production of lipase and esterase by Aspergillus tubingenensis capable of degrading polyurethane

F. Hasan, S. Khan, A. A. Shah, A. Hameed
Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan

Polyurethane is a synthetic polymer derived from the condensation of toxic polyisocyanates (derived from even more toxic phosgene) and polyols. Polyurethane is toxic and hazardous for environment and ecology, therefore, its degradation is necessary for clean and green environment. In the present study, soil samples were collected from a local garbage dump. This soil was used for the isolation of polyurethane (PU) degrading fungi. For this purpose the PU films were buried in soil for two months and then checked the film for any adherence of the fungal isolate on it surface. A fungal strain was isolated and identified as Aspergillus tubingenensis on the basis of colony morphology and microscopic examination. The activity of polyurethane-hydrolase enzymes i.e. esterase and lipase was optimized under different culture conditions such as temperature, pH, carbon sources (glucose, galactose, glycerol, maltose and sucrose, 2% each) and in the presence of surfactant i.e. Tween 20 and Tween 80. Polyurethane degradation was found more pronounced at 37ºC (lipase and esterase activities were 0.181 and 0.128 U/ml respectively), pH 5 (lipase and esterase activities were 0.99 and 1.98 U/ml, respectively) and in the presence of 2% sucrose (lipase and esterase activities were 2.23 and 1.69 U/ml, respectively) and in the presence of 2% sucrose (lipase and esterase activities were 0.99 and 1.98 U/ml, respectively).

Keywords: polyurethane; biodegradation; Aspergillus tubingenensis
Role of valine residue conserved at extra-sugar binding space in hydrolysis and transglycosylation activities of cyclomaltodextrinase-family enzymes

Department of Food Science and Technology, Chungbuk National University, 361-763 Cheongju, Korea

Glycoside hydrolase family 13 (GH-13) is the largest family of α-glycosidases characterized to date and the members of this family display a variety of catalytic properties. Therefore, many GH-13 glycosidases have been studied to identify key residues required for their function and to determine their mechanisms of action.

Cyclomaltodextrins (CD)-degrading enzymes belong to GH-13, but they have unique catalytic characteristics compared to other GH-13 enzymes. There are three subclasses of CD-degrading enzymes: cyclodextrinases (CDases; EC 3.2.1.54), maltogenic amylases (MAases; EC 3.2.1.133), and neopullulanases (NPases; EC 3.2.1.135). Based on their catalytic properties and structural similarities, these three subclasses can be reclassified into a unified class of CDase-family enzymes. Most enzymes in CDase-family are known to be capable of hydrolyzing various substrates such as cyclodextrins, starch, pullulan, and maltotriosaccharides. Especially, CDases and MAases can hydrolyze acarbose, a potent α-glucosidase inhibitor, to glucose and acarviosine-glucose (AG) and transfer AG to various sugar acceptors. Additionally, CDase-family enzymes can simultaneously catalyze both cleavage of α-(1,4)-glycosidic linkages and transglycosylation of the resulting products to C3-, C4-, or C6-hydroxyl groups of various acceptor sugar molecules.

Thermus MAase (ThMA; a typical MAase) mutant K-33, showing quite different acarbose hydrolysis pattern, has been found via combinatorial saturation mutagenesis of V329-A330-N331-E332 (VANE) residues placed in extra sugar-binding space (ESBS). While ThMA wild-type (VANE) hydrolyzes acarbose to glucose and AG, ThMA K-33 (altered to SGDE) produced glucose, maltose, and acarviosine instead of AG. In addition, ThMA K-33 showed remarkable reduction of transglycosylation activity compared to ThMA wild-type. In order to examine the roles of each residue, V329-A330-N331 residues in ThMA were replaced with SAN, VGN, VAD, SGN, SAD, and VGD residues by site-directed mutagenesis. Substrate specificity and transferring activity of ThMA and its mutants were comparatively investigated. As a result, only ThMA mutants, containing SAN, SGN, and SAD residues, showed some acarbose hydrolysis patterns as ThMA mutant K-33, which means V329 residue can play important roles in acarbose hydrolysis of ThMA. Saturation mutagenesis of the valine residue substituted by the other amino acid residue confirmed that the valine 329 can be a key residue for the unique acarbose-hydrolyzing patterns found from ThMA mutant K-33.

In order to confirm these findings to be generalized in the other CDase-family enzymes, the corresponding residue of other CDase from Bacillus halodurans C-125 (BHC) or Listeria innocua CLIP11262 (LICD) was replaced with a serine residue by site-directed mutagenesis. Characterization of BHC V327S and LICD V340S verified that the corresponding substitution of valine residue to serine resulted in similar changes in acarbose hydrolysis pattern of each CDases. In addition to acarbose hydrolysis, the substrate specificity and transglycosylation activity of CDases and their mutants were comparatively analyzed. In this work, it has been suggested that substrate specificities, hydrolyzing activity, and transferring activity of CDase-family enzymes can be modulated by changing amino acid residues near ESBS, including V329 (in ThMA). These results will be applicable to develop novel carbohydrate-active enzymes engineered for the production of functional carbohydrate materials.

Keywords cyclomaltodextrinases; site-directed mutagenesis; conserved valine residue; acarbose hydrolysis; transglycosylation

Structural characterization of the propeptide NH2-terminal of the precursor of pulmonary surfactant protein B (SP-B)

A. Bañares-Hidalgo, A. Bolaños, G. López, J. Pérez-Gil and P. Estrada
Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Juan Antonio Novais 2, 28040 Madrid, Spain

Pulmonary surfactant is a complex mixture of lipids and proteins necessary to prevent the alveolar collapse during expiration. Among the hydrophobic proteins of the system surfactant protein B (SP-B) is produced from the proteolytic processing of a precursor along the secretory pathway in pneumocytes. The NH2-terminal flanking propeptide (SP-Bn) is thought to act as chaperone of SP-B [1].

Previously, we have produced a recombinant form of SP-Bn as fusion protein with MBP in Escherichia coli, processed the fusion protein by proteolytic cleavage with Factor Xa and purified SP-Bn through ion-exchange chromatography followed by mass spectrometry and tryptic digestion characterization and amino terminal elucidation through Edman sequencing [2]. Also, we have studied the aggregation of SP-Bn when the pH of the medium was acidified to mimic changes in pH occurring along the exocytic pathway, as well as the effect that stabilizers and crowding agents such as arginine and Ficoll 70 respectively have on the secondary and tertiary structure of the protein as it suffers acid aggregation [3].

The secondary structure of SP-Bn is sensitive to pH changes of the medium and we have studied the influence that the reversion of acid to neutral pH has on its circular dichroism signal as well as the effect of the ionic strength. Moreover, the structural stability of the protein to high temperature has also been analyzed by checking the dichroic signal of the protein at 20 °C after being heated up to 85 °C. The effect that urea and guanidinium chloride have on the structural stability of the protein has also been determined by means of circular dichroism and fluorescence spectroscopy measurements.

References
Structural characterization of Xylanase II from Trichoderma reesei QM9414

G. López, A. Bañares-Hidalgo and P. Estrada

Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Jose Antonio Novais 2, 28040 Madrid, Spain

Xylan is the major hemicellulase component in plant cell walls and its hydrolysis plays an important role in the breakdown process of plant material in nature [1]. The filamentous mesophilic fungus Trichoderma reesei (anamorph of the pantropical ascomycete Hypocrea jecorina) is known to produce several xylanases (EC 3.2.1.8, named XYNI, XYNII, XYNIII and XYNIV) which show differences in molecular weight, pI, and optimum pH [2] and hydrolyses the β-1, 4 bonds in the main xylan chain generating a mixture of xylo-oligosaccharides and a β-xylosidase (EC 3.2.1.37) which cleaves off the terminal xylose unit from the non-reducing end of xylo-oligosaccharides. Nowadays, the wide interest in xylan removal from food, feed, textile and pulp paper industries makes the study of xylan degrading enzymes stability a major goal in biotechnology [3].

Previously, we have grown Trichoderma reesei QM9414 on wheat straw as sole carbon source and we have optimized the conditions of the fungus growth and of cellulases and hemicellulases production. Besides our work with cellulases, we have purified two hemicellulases following ammonium sulphate precipitation, DEAE-sephrose CL-6B and Ultragel AcA 44 chromatographies. Moreover, we have characterized and determined the mechanism of catalysis of β-xylosidase. Also, we have immobilized β-xylosidase on nylon powder, designed a bioreactor to hold the immobilized enzyme and study its thermostability. Regarding enzymes with activity towards xylan, the alkaline XYNII has been purified and studies dealing with the thermal stability of XYNII and the protective role of polyhydroxylic cosolvents were carried out [4].

Now, we have studied the effect of XYNII of several compounds, including protectors and inhibitors by means of determining its enzymatic activity, thermostability and structure. Several techniques such as circular dichroism and fluorescence spectroscopy of intrinsic fluorophores have been employed to determine the Tm of the enzyme.

References

The NiFeSe hydrogenase from Desulfovibrio vulgaris Hildenborough shows tolerance to oxygen inactivation

M. Coimbra Marques¹, A. De Lacey¹, P. M. Matias¹ and I. A. C. Pereira¹

¹ ITQB - Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
² Instituto de Catalyisis y Petroleoquimica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain

Hydrogen is a good energy vector and its production from renewable sources is a necessity for its widespread use. The [NiFeSe] hydrogenases belong to a subgroup of the [NiFe] proteins in which a selenocysteine is a ligand of the Ni. These enzymes are attractive candidates for the biological production of hydrogen, since they display very interesting catalytic properties, showing a very high H2-producing activity that is sustained in the presence of low O2 concentrations. The [NiFeSe] hydrogenases are isolated aerobically in a Ni(II) oxidation state, and do not form the inactive Ni-A or Ni-B species even after reduction and exposure to oxygen. In the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, the [NiFeSe] hydrogenase becomes the major hydrogenase expressed when Se is available (1). This hydrogenase contains an N-terminal hydrophilic group in the large subunit that attaches it to the membrane(2), a property that may be exploited for its immobilization in bio-nanostructured electrodes. In this report we describe biochemical and spectroscopic studies of the D. vulgaris [NiFeSe] hydrogenase aimed at further understanding its remarkable catalytic properties, as well as its crystallization and preliminary X-ray diffraction analysis (3).

Keywords [NiFeSe] hydrogenase; crystallization

References
The ratio laccase/Mn peroxidase in solid state cultures of *Pleurotus pulmonarius* affects the ability to decolourize industrial dyes.

A. Zilly, A. L. Oliveira, A. Bracht, C. G. M. Souza, D.F. Souza and R. M. Peralta

Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil

White rot fungus (WRF) are the only microorganisms known to be able to degrade the highly recalcitrant natural polymer lignin because they possess a powerful enzymatic system formed mainly by peroxidases and laccases. Due to high in specificity of its oxidative enzymes, many studies have focused the WRF as useful to degrade dyes, suggesting the bioremediation as an environment-friendly and cost-competitive alternative for dyed wastewater treatment. The WRF *Pleurotus pulmonarius* is easily cultivated in various lignocellulosic substrates such as wood chips, corn wheat, rice straw, cotton stalks and waste hulls. More recently, several food wastes have been used as substrate mainly in solid state cultures of WRF. *P. pulmonarius* when cultured under submerged and solid state conditions using wheat bran as substrate produces high levels of laccase and very low levels of Mn peroxidase activity. For this reason, the capability of *P. pulmonarius* to decolourise textile dyes is associated with the laccase activity. More recently, however, it has been described that when *P. pulmonarius* was cultured in wheat bran solid state medium at low initial moisture content, it produced elevated amounts of both enzymes, Mn peroxidase and laccase. The objectives of this study were to compare the production of laccase and Mn peroxidase by *P. pulmonarius* in solid state cultures using three different substrates, wheat bran, corn cob and pineapple peel at different initial moisture contents and to evaluate the capability of these cultures to decolourize some industrial dyes. The fungus was cultured on potato dextrose agar Petri dishes (PDA) for up to 2 weeks at 28 °C. When the Petri dish was fully covered with mycelia, mycelial plugs measuring 10 mm in diameter were made and used as inoculum. *P. pulmonarius* was cultivated under solid state conditions at 28 °C in the dark. Three disks with 10 mm of diameter from the growing edge of the mycelium on PDA plates were transferred to 250 ml Erlenmeyer flasks containing 5 g of each substrate at different initial moisture content. Five to 50 ml of distilled water was added to adjust the moisture content. To extract the enzymes, cold water was added to each culture flask and the mixtures were maintained in a incubator shaker at 4°C and 150 rpm for 2 h. To test the ability of cultures to decolourise industrial dyes (*Remazol* brilliant blue, RBBR; Ethyl violet, Methylene blue, Poly R478 and congo red), each dye was membrane-filtered through a 0.45 μm cellulose nitrate filter and mixed with the corn cob medium, previously autoclaved, to a final concentration of 200 ppm. After 15 days, the residual dyes in the cultures were extracted firstly with 50 ml of water followed by 50 ml of a mixture of methanol:acetone:water (1:1:1). Dye disappearance was determined spectrophotometrically by monitoring the absorbance at the wavelength of maximum absorbance for each dye. In control cultures, either dye or the fungus (abiotic control) was omitted. To calculate the residual dye in the cultures, the total dye extracted with water and organic mixture in the abiotic control was considered as 100%. The amount of adsorbed dye on corn cob medium after growth of the fungus was always less than 10%. Laccase activity was determined with ABTS as the substrate. Oxidation of ABTS was monitored as absorbance increase at 420 nm. The Mn peroxidase activity was assayed by following the oxidation of MnO₂ in malonate buffer in the presence of H₂O₂. Manganese ions form a complex with malonate, which absorbs at 270 nm. One unit (U) of enzymatic activity was defined as the amount of enzyme required to produce 1 μmol product per min and was expressed as U/L. Laccase was the main ligninolytic enzyme produced by the fungus in wheat bran cultures (maximum laccase activity of 2,800 U/L and Mn peroxidase inferior to 50 U/L) and its production was positively affected by increases in initial moisture content (IMC). In pineapple peel cultures both enzymes were produced at high amounts, being high initial moisture content (80-90%) the best condition to produce laccase (2,500 U/L), and low initial moisture content (70-75%), the best condition to produce Mn peroxidase (2,000 U/L). The substrate where the initial moisture content had the strongest effect in the production of enzymes was corn cob. Initial moisture content of 85-90% was the best condition to produce Mn peroxidase (2,000 U/L), and very low Mn peroxidase activity was detected in these filtrates (less than 5 U/L). The best initial moisture contents to produce Mn peroxidase changed from 50 to 65% (500 U/L), a condition where the production of laccase was very low (less than 20 U/L). The capability of fungus to decolourize industrial dyes was studied using corn cob cultures at 60 and 85% of initial moisture content. Both cultures efficiently decolourized RBRR and barely decolourised Poly R478. The cultures with 60% of initial moisture content were more efficient (p=0.05) in the dye decolorization of congo red, methylene blue and ethyl violet. In the present work, we showed that the cultivation of *P. pulmonarius* under solid state conditions using corn cob and pineapple peel as substrates resulted in a convenient condition to produce also high amounts of Mn peroxidase. By varying only the initial moisture content, the use of corn cob as substrate allowed the obtainment of cell free extracts rich either in laccase either in Mn peroxidase. Our data suggest that both enzymes laccase and Mn peroxidase from *P. pulmonarius* are equally efficient in decolorize RBRR. However, Mn peroxidase appear as the main responsible for the decolourisation of congo red, ethyl violet and methylene blue by *P. pulmonarius*.

Keywords: dye decolourisation; ligninolytic enzymes; *Pleurotus pulmonarius*; solid state cultures.
Utilization of agroindustrial residues as substrates for production of pectinolytic enzymes by biological agent “G088”.

Carlos José Pimenta (1), Lívia Martinez Abreu Soares Costa (2), Sára Maria Chalfoun Pereira (3), Sabrina Carvalho Bastos (4), and Lucas Silveira Tavares (5)

1. Teacher of the Department of Food Science, Federal University of Lavras, Minas Gerais State, P.O. Box 3837, Zip Code: 37200-000, Lavras – MG, Brazil
2. Agronomy engineer DSc - Department of Food Science, Federal University of Lavras, Minas Gerais State, P.O. Box 3057, Zip Code: 37200-000, Lavras – MG, Brazil
3. Agriculture and Livestock Research Institute of Minas Gerais State/CERSM, P. O. Box 176, Federal University of Lavras, Minas Gerais State, Zip Code: 37200-400, Lavras – MG, Brazil
4. Agriculture and Livestock Research Institute of Minas Gerais State/CERSM, P.O. Box 176, Federal University of Lavras, Minas Gerais State, Zip Code: 37200-080, Lavras – MG, Brazil
5. Nutritionist – DSc on DCA/UFLA, teacher UFLA - Department of Food Science (DCA), Mailbox 3837, CEP 37200008, Lavras MG
6. Food Engineer – MSc on DCA/UFLA

Recently, a great number of microorganisms, isolated from different materials have been screened, for their capabilities of degrading the polysaccharides present in the plant biomass producing pectinases (pectinolytic enzymes) in solid substrates. A number of agroindustrial residues and by-products such as orange bagasse, sugar cane bagasse, wheat meal, coffee hull and other food processing residues are effective substrates for the production of pectinolytic enzymes. The application of residues is a way to utilize alternative substrates and solving pollution problems for the industries and of cost in enzyme production. Pectinolytic enzymes, which degrade the pectin present in the medium lamella and primary cell wall, have a great commercial importance for several industrial applications, such as to improve the juice yields and clarification in the industry of food, beer-making and pharmaceutical and textile industry. It was intended with this work to evaluate the potential of producing pectinolytic enzymes by biological agent “G088” in plant residues utilized as substrates. The first step was inculcating the biologic agent in the different substrates: orange bagasse, sugar cane bagasse, grape skin, passion fruit skin, coffee and rice hull. The enzymatic activities of polygalacturonase (PG) and pectin methyl esterase (PME) of the substrates were evaluated; the best result for each enzyme was related with cropping time and type of substrate. Analyses of pectin quantification, pH, moisture and titrable acidity of the substrates with inoculum and of the centesimal composition of the substrates without any inoculum were done. The different substrates showed activity of the pectinases, polgalacturonase (PG) and pectin methyl esterase (PME), standing out grape skin and rice hull. But, the best substrate for production of PG (117.35 U/g) and PME (1760 U/g) at 14 days was grape skin. The composition of the substrate has a direct influence on the production of both PG and PME.

Keywords: pectinametilesterase – polgalacturonase – solid substrate.

A novel epoxide antibiotic isolated from Pantoea agglomerans 48b/90 inhibits economically important plant pathogens and the human pathogen Candida albicans

Ulrike F. Sammer,1 Beate Völksch,1 and Dieter Spitteler2

1 Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany,
2 Bioorganic Chemistry, Max Planck Institute for Chemical Ecology D-07745 Jena, Germany

Microbial pathogens pose a major threat to many plants and can cause enormous losses in agriculture. Microorganisms that antagonize pathogens can offer a way to fight plant diseases that is more environmentally friendly than chemical treatment; such diseases include fire blight, which is caused by Erwinia amylovora and affects many rosaceous plants, e.g. apple and pear.

Suitable strains for biocontrol agents are often plant-associated microorganisms that are forced under natural conditions to defend their ecological niches and thus adapted to compete with plant pathogens. The species Pantoea agglomerans (formerly Erwinia herbicola) comprises many strains that are promising sources for biocontrol agents. P. agglomerans are ubiquitous in nature, inhabiting plant surfaces, water, soil, animals and humans. Several Pantoea isolates are known to efficiently inhibit E. amylovora in planta. In vitro experiments have revealed some antibiotics from P. agglomerans and uncovered how they act against E. amylovora. The known antibiotics produced by P. agglomerans strains, which belong to diverse chemical classes and affect different molecular targets, exhibit both narrow and broad spectrum activity.

P. agglomerans 48b/90 (Pa48b), an epiphyte from soybean leaves, attracted our attention because it strongly inhibits the growth of plant pathogens E. amylovora and Pseudomonas syringae pv. glycinea (Psg), as well as the opportunistic fungal pathogen Candida albicans. Since the mode of action of Pa48b against plant and human pathogens, is elusive, we looked for the molecular basis for the biocontrol potential of Pa48b.

The epiphyte Pa48b has been isolated from soybean leaves and found to be well adapted to its niche. Pa48b produces an antibiotic with broad activity against Gram-negative bacteria e.g. Erwinia amylovora, Agrobacterium tumefaciens, Escherichia coli, several Pseudomonas syringae pathovars, Serratia marcescens, the Gram-positive Bacillus subtilis and the yeasts Candida albicans and Yarrowia lipolytica. Consequently, Pa48b is a promising biocontrol agent against various microbial plant diseases and offering possibilities of therapeutic intervention directed against Candida albicans, the causative agent of invasive mycoses that increased significantly over the past two decades.

In order to characterize the compound with high activity against plant pathogens and Candida albicans, a bioassay-guided isolation approach was used. A highly polar antibiotic was obtained after anion exchange chromatography and HILIC-HPLC purification. The purified antibiotic turned out to be stable at extreme pH, in addition, it was resistant to heat and treatment with proteinase K and β-lactamase. Its formation is associated with growth and it is temperature dependent: its rate of production is optimal between 8 °C and 12 °C.

Using HR-ESI-MS and NMR experiments, the structure of the compound was identified as 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine (1). This compound has already been isolated by Shoji et al. (1989) from Serratia plymuthica CB-25. However, it has been neither isolated from P. agglomerans nor characterized as highly active against plant pathogens such as E. amylovora and P. syringae pathovars.

In contrast to the impact of many antibiotics from P. agglomerans such as pantocin A and B or herbicolin O, the impact of 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine cannot be compensated for by supplementing the medium with amino acids or casein hydrolysate. Therefore, it is different than most other antibiotics from P. agglomerans strains.

Keywords: Pantoea agglomerans, antibiotic, Candida albicans, biocontrol, plant pathogens.
Amine Derivatives of Fungal Monascus Pigment Inhibiting the Adipogenesis of 3T3-L1 Cells

Dae Hwan Kim, Soo Hyun Woo, Sung Hun Youn, and Chul Soo Shin
Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea

We have reported that amino acid derivatives of monascus pigment have antimicrobial, cholesterol-lowering, and lipase-inhibitory activities. Still, it remains a challenge to create various derivatives with biological activities. In this study, after orange monascus pigment was produced by fungal *Monascus* cultivation in a 5 L jar fermenter, various derivatives were synthesized by reaction of the pigment with forty-seven amines. These compounds were tested to have an inhibitory activity for the differentiation of preadipocyte 3T3-L1 cells to adipocyte cells. Among them, nine compounds showed significant activities and three derivatives of (R)-(+)-1-(1-naphtyl) ethylamine, 2-(p-toyly)-ethylamine, and 4-phenylbutylamine having exhibited high activities were chosen for next experiments. The preadipocyte 3T3-L1 cells were cultured in the differentiation medium containing a pigment derivative for 6 days. Then, the cells were stained with Oli red O to identify exogenous or endogenous lipid deposits. The addition of amine derivatives apparently reduced the lipid content of cells in a dose-dependent manner, resulting in decrease of triglyceride (TG) droplets as well as inhibition of TG formation. The derivatives of 4-phenylbutylamine and 2-(p-toyly)-ethylamine showed inhibitory activities of 41.5% at 10 μM and 46.2% at 25 μM, respectively. The derivatives down-regulated the transcription factors PPARγ and C/EBPα, which are known to be strongly related to adipocyte differentiation. The derivatives significantly reduced expression of the transcription factors and inhibited normal development from preadipocytes to adipocytes. The derivative-associated attenuation of PPARγ and C/EBPα was accompanied by a decrease in abundance of the proteins. These results indicate that the derivatives can inhibit the expression/activation steps of PPARγ and C/EBPα, resulting in blocking of adipogenesis.

Keywords monascus pigment, fungal cultivation, 3T3-L1 cell, adipogenesis

Bacillus cereus hemolysin II and its various applications

Zhanna I. Andreeva-Kovalyshyna 1, Elena V. Sineva 1, Vadim I. Ternovsky 2, Andrey M. Shadrin 1, Yury L. Gerasimov 2, Vera V. Teplova 3, Vladimir F. Nesterenko 1, and Alexander S. Solonin 1

1Laboratory of Molecular Microbiology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia; 2Institute of Cell Biophysics RAS, Pushchino, Russia; 3Samara State University, Samara, Russia; Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Russia.

One of several cytolytic proteins produced by opportunistic pathogen *B. cereus* is hemolysin II (HlyII). The *hlyII* gene is widely spread among bacteria, which belong to the *B. cereus* group, including *B. thuringiensis*, some subspecies of which are used as insecticide, and *B. anthracis* is an agent of anthrax, a mortal disease of man and animals. HlyII is a secreted microbial protein, which belong to the oligomeric β-barrel pore-forming toxins family that includes the *Staphylococcus aureus* α-toxin. HlyII can disrupt membranes of erythrocytes and other eukaryotic cells *in vitro* by forming membrane ionic oligomeric pores. Pore formation leads to perturbation of cell ion–osmotic homeostasis and to cell death and lysis. The *hlyII* expression in *B. subtilis* renders bacteria hemolytic. Expression of HlyII (recombinant *B. subtilis::hlyII*) in the crustacean gut leads to destruction of intestine cells, followed by a gradual disruption of other tissues. Fluorescent microscopy reveals post-infection changes in mitochondrial potential of intestine tissues during the first 24 h of infection, suggesting that formation of ionic pores leads to cell lysis and finally, to the host death. The hemolytic activity of *hlyII*-encoded *B. subtilis* strains in culture medium are positively correlated with virulence in *D. magna*. Expression of *hlyII* in *B. subtilis::hlyII-hlyIIR* is strongly suppressed by HlyIIR regulator and this recombinant is not pathogenic to the crustacean. HlyII expression and pathogenicity of bacteria is controlled by a negative transcriptional regulator. Hemolysin II can lead to death of macroorganisms. So, the search of drug that inhibited the activity of HlyII (for example cycloheximins) is needed. The data presented show that hemolysin II, when acts alone, is sufficient virulence factor, and the regulation of *hlyII* expression could be an important step in the adaptation of bacteria to different environmental niches. Potential applications of protein pores in medical biotechnology are discussed.
Bacteriocin Production by Bean Root Bacteria

Çiğdem Küçük1, Merih Kvanç2

1Harran University, Faculty of Arts and Science, Department of Biology, Şanlıurfa, Turkey
2Anadolu University, Faculty of Science, Department of Biology, 26470 Eskisehir, Turkey

Bacteriocin production of native isolates of *Rhizobium* was investigated. Six isolates of bacteriocin producing *Rhizobium* bacteria were isolated from bean root nodules in Turkey. Isolate Y39 characterized in this study was one of the most effective isolates. The possible bacteriocin from produced by *Rhizobium* spp. isolate Y39 was inhibitory to a broad range of indicator microorganisms, including *Micrococcus sp.*, *Bacillus* isolates CB and CB1, *Actinomyces* isolates A1 and A5, *Azotobacter* spp. isolates C12 and C35, *Pseudomonas phaseolicola*, *Xanthomonas phaseolicola*, *Fusarium culmorum*, *F. moniliforme*, *F. isolani*, *F. axygosporum*, *Cladosporium herbarum* and *Rhizoctonia solani*. Bacteriocin was stable at 60 oC but the activity was lost when the temperature used at bacteriocins. It was resistant to RNAase and lysozyme but sensitive to proteinase K and trypsin. Some of properties of the compound showed suggest a proteinaceous nature.

Keywords: *Rhizobium* isolates, bacteriocin, antimicrobial activity

Biopolymerization of Carvacrol and Optimization of Reaction Conditions Through Surface Response Methodology (RSM)

Özlem Özmen1, Nahit Aktaş1, Fahit Demirci1, K. Hüsnü Can Başer1, Abdurrahman Tanylı1,2

1Chemical Engineering Department, Hacettepe University, Beytepe 06800, Ankara, Turkey
2Chemical Engineering Department, 100. Yıl University, 06580, Van, Turkey

Pharmacognosy Department, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey

In recent decades, the enzyme-catalyzed polymerization, shortly enzymatic polymerization or biopolymerization, has been of increasing importance as a new trend in macromolecular science. Enzyme catalysis has provided new synthetic strategy for useful polymers, most of which are difficult to produce by conventional chemical catalysts. In enzymatic polymerization, the polymer can be obtained under mild reaction conditions without using toxic reagents. Therefore, the enzymatic polymerization has a large potential as an environmental-friendly synthetic process of polymeric materials, providing a good example to achieve "green polymer chemistry."

The enzymatic synthesis of phenolic polymers has been extensively investigated due to their special features such as antioxidant, analgesic, fragrance and flavour and usage in food, cosmetics and pharmaceutical industries at large. Phenolic terpenes, which are ingredients of many essential oils found in plants used as flavouring and fragrance agents in perfumery, cosmetics, food and pharmaceutical industries. The concept of forming more functional structures upon biopolymerization with unusual properties experienced in other phenolic substances can lead to the opportunity of creating novel film forming agents, stabilizers, coagulants, dispersants, antioxidants, glues, binders, deodorizers, flavours and fragrances, agrochemicals, antimicrobials, wound healing preparations, insecticides, pesticides, drugs or drug carriers, transdermal preparations, as flavour and aroma binding, slow-release agents in cosmetics and foods, bio-nano-technological products or productions for electrical as well as electronic applications.

In this respect, carvacrol as the main constituent of oregano oil, which is an important essential oil exported from Turkey was selected as the model phenolic terpene and the laccase was employed as the model enzyme in this study. The study involved the realization of the biopolymerization of carvacrol monomer, the determination of the optimum reaction conditions in order to establish the maximum yield, statistical investigation/assessment of the effects of operational conditions such as solvent type and concentration, monomer concentration, enzyme activity and pH on the product amount and yield. All biopolymerization experiments were conducted batchwise in a closed, temperature controlled system containing solvent, monomer, enzyme and the buffer for pH control. 14 Different polar and nonpolar solvents were attempted to synthesize the carvacrol biopolymers. As a result, overall 93% (w/w) polymer yield was obtained by using ethanol as a solvent under optimized conditions.

Batch experiments with four reactions parameters were planned by using Design Expert 6.0 (trial version) programme. The intervals of reaction parameters were selected as 3–8 units for pH, 0.1-7U/mL for enzyme activity concentration, 0.5-65 g/L for carvacrol concentration and 45-90 (v/v) for ethanol concentration, respectively. Maximum polymer amount was attained with 45% (v/v) ethanol–sodium acetate buffer at pH 5.5, 25°C, 3.55 U/mL enzyme and 32.75 g/L initial carvacrol concentrations.

Chemical structure of the carvacrol biopolymer was characterized by using spectroscopic techniques such as 1H- and 13C-NMR, FT-IR and UV. Although the carvacrol monomer is soluble in all organic solvents except partially in water, the carvacrol biopolymer - a white powder- is water insoluble but soluble in organic solvents such as diethyl ether, chloroform and dichloromethane. Furthermore the biological properties of the biopolymer was evaluated in various bioassays. It was determined that the carvacrol polymer showed good antimicrobial and antioxidant properties same as carvacrol by using in vitro microdilution assays. By using the in vivo Chorioallantoic membrane assay, it was found that both carvacrol and its biopolymer were non-toxic and non-irritant at the tested concentration of 50 mg/mL.

The results of this study proved that the laccase catalyzed carvacrol provided the formation of a novel product with biologicall acitivities.

Keywords Enzyme catalysis, Biopolymerization, Terpenes, Laccase, Carvacrol

* This work was financially supported by TÜBİTAK 108M015 project.
Biosurfactant Production by *Candida pelliculosa* and *C. sphaerica* Isolated from Soil Contaminated with Lead

L. V. C. Brandão1, G. M. Campos-Takaki2 and S. M. Tornisielo3

1Instituto de Ciências Biológicas, Universidade de Pernambuco, UPE, Rua Arnóbio Marques 310, 51000-100 – Recife, PE – Brasil; 2Núcleo de Pesquisas em ciências Ambientais, Universidade Católica de Pernambuco, Rua do Príncipe, 526–50.050-900 Recife, PE, Brazil; 3Universidade Estadual Paulista Júlio de Mesquita Filho, Centro de Estudos Ambientais, AV. 24-A, 1515 Bela Vista 13586-900 – Rio Claro, SP – Brasil – Caixa Postal: 199

Surfactants are amphiphatic molecules, which contain a hydrophobic and a hydrophilic group. Due to the presence of these two groups in the same molecule, surfactants can decrease surface and interfacial tension in water/hydrocarbon systems. The surfactants in current use are chemically derived from petroleum, however, interest in microbial surfactants has been steadily, are surface-active biomolecules that are produced by a variety of microorganisms, have gained importance in the fields of enhanced oil recovery, environmental bioremediation, food processing and pharmaceuticals owing to their unique properties such as higher biodegradability and lower toxicity. The aim of this work was isolation and identification of yeasts from contaminated soil with lead from Belo Jardim, Pernambuco State, Brazil. The potential of biosurfactant production was investigated. The results indicated the presence of *Candida tropicalis* and *C. sphaerica*. The biosurfactant production was carried out evaluating the emulsification activity using low cost regional substrate babasu oil, as carbon source. The cultures were grown by the continuous batch process. The strains inocula size were also evaluated. The strains were grown in the presence of babasu oil and D-glucose, and inocula of 1% and 5% showed higher emulsification activity during the stationary growth phase, corresponding to 96 h of cultivation, and the highest biopolymer production was occurred. In that period of growth was observed highest cell concentrations. The biochemical analysis revealed that the purified biopolymer was constituted by high amount of protein, and low content of lipids and carbohydrates, respectively. Qualitative enzymatic assays demonstrated that *C. tropicalis* exhibited esterase production, and *C. sphaerica* exhibited esterase and urease activities. The results indicated that *C. sphaerica* isolated from lead polluted soil demonstrated a high potential of the emulsifier activity, and suggesting that the presence of lead is not a limitation factor for biosurfactant production.

Keywords: Biosurfactant, *Candida sphaerica*, emulsifier activity, Lead

Supported by CNPq, CAPES, UPE, and UNICAP.

Biosurfactant production by *Chromobacterium violaceum* using alternative sources: corn steep liquor (industrial waste), lactose and corn oil

Adriana A. Antunes1,2 Helvia W. C. Araújo2,3, Carlos A. Alves-Silva2, Clarissa D. C. Albuquerque2, and Galba M. Campos-Takaki2

1Doutoranda em Ciências Biológicas – UFPE, Recife, Brasil; 2Doutoranda Rede Nordeste de Biotecnologia-Renorbio, Recife, Brasil; 3Núcleo de Pesquisas em Ciências Ambientais, (NPCIAMB), Universidade Católica de Pernambuco – UNICAP, Rua Nunes Machado, nº 42,Bloco J, térreo, Boa Vista, Recife, PE, Brasil, CEP: 50050-590.

Interest in microbial surfactants has increased considerably in recent years, especially due to their potential of application. Recently, research related to optimizing the production of biosurfactants from substrates and regional sources glucose demonstrated the production of these compounds. The biosurfactants have been tested in many environmental applications, such as in bioremediation, dispersion of oily stains and oil recovery, replacing the chemical surfactants. It also can be used in food, cosmetics, and detergents, and agricultural. These properties make surfactants suitable for a wide range of industrial applications involving: detergency, emulsification, lubrication, foaming capacity, wetting, solubilizing and dispersion phases. The vast majority of commercially available surfactant is synthesized from petroleum products. However, increasing environmental awareness among consumers, combined with new legislation to control the environment led to the search for natural surfactants as alternatives to existing products. This paper aims to biosurfactant production by *Chromobacterium violaceum* –Violsun, using industrial waste as well as evaluating the surface tension, index and activity of emulsification. The surface tension by *C. violaceum* showed values between 28 and 40 mN/m. However, the best result was observed in the assay 8 and 12 used in the factorial design carried out with greater amounts of corn oil, reducing the water tension of 71 mN/m to 28.98 mN/m, respectively. The best results of the emulsification index were determined in the assay 10 and 11 resulting in 70.8% of emulsification using the corn oil in the period of 72 h. Emulsifying activity shows excellent results in used oils (soybean and corn), obtaining values above 6 UAE (Units Emulsification Activity) using corn oil in all conditions of the factorial design. The n-hexadecane emulsion also formed in all conditions ranging between 0.9 and values above 6 UAE. These results indicate that the *C. violaceum* has higher potential for biosurfactant-Violsun production.

Keywords: *Chromobacterium violaceum*, alternative sources, biosurfactant

Research supported by CAPES, CNPq and FINEP.
Biosynthesis of amino acids sulfur in *Saccharomyces cerevisiae* is affected by fermentation conditions in beer production

C. S. Leal-Guerra¹, E. Pérez-Ortega¹, L. Damas-Buenrostro², J. C. Cabada², L. Galán-Wong¹ and B. Pereyra-Alférez²

To whom correspondence should be addressed. Email: bpereyra@gmail.com

Beer elaboration process is still considered, at least in part, an art. It is well known that both yeast and wort play an important role in the quality of final product, because several wort-compounds have influence in aroma and taste. In response to wort composition, the metabolic pathways can be modified in the yeast, and final product could result with high concentration of undesirable volatile sulfur compounds (VSC), mainly H₂S and SO₂. In this work we analyzed the expression of genes involved in the biosynthesis of VSC in *Saccharomyces cerevisiae* growing under different fermentation conditions. We designed two kinds of wort: one produced with high content of malt (above 50%) and other with low content of malt (below 50%), and were inoculated with yeast previously maintained at 4°C and 18°C, respectively. Fermentations were conducted at 16°C for seven days. In order to evaluate genetic expression, the yeast was collected at second day and gene expression analysis was done using DNA microarrays. Results demonstrated that the wort composition plays an important role in the biosynthesis of sulfur amino acids and it could impact in the generation of VSC.

Keywords: *Saccharomyces cerevisiae*, MET2, MET3, Microarray, VSC

Characterisation of Polyhydroxyalkanoate Produced by Haloarchaea Isolated from Saltpans of Goa-India.

I. Furtado¹ and Esther-Maria Braganca

¹ GOA UNIVERSITY Department of Microbiology, Taleigao Plateau, Goa – India. 403203
Present address Esther-Maria Antão, Institut für Mikrobiologie und Tierseuchen Freie Universität Berlin
Philippstr. 13 10115 Berlin, Germany

Several halophilic Archaea, isolated from salt pans of Goa – India produced polymer in nutrient rich medium with 25% crude salt and/or in mineral salt medium with 20% NaCl at pH 7, ambient temperature (23-28°C), which were detectable by Nile blue staining. Accumulation of polymer in cells was in the order of genus *Haloferax > Haloarcula > Halobacterium > Halococcus*. Further, the amount of polymer produced by individual isolate of a genus varied with: the type of media used; sugars, acids and natural product of agriculture used, as sole source of carbon; condition of growth, as batch or in fermentor system. For production and isolation of polymer, the individual isolates were grown in mineral salts medium with 2 % starch without any growth factors. *Haloferax volcanii* (GUFLF 7), *Haloarcula* (ATCC BAA 652, GUBF9), and *Halobacterium* strain R1 (MTCC 3265, GUSF) gave 12%, 7.5% and 6% polymer per gram cell wet weight. Yield per cent of polymer was twice more in cells grown as batch cultures than in cells grown in 5.0L stirred fermentor a further increase in accumulation of 0.75 times was noted with increase of growth temperature to 42°C. The accumulated polymer was extractable in chloroform and/or by simple, rapid, physico-chemical-lysis method, developed in laboratory. Physicochemical and thermal analysis of polymer, isolated from GUSF, GUBF9, GUBF19, GUBF1 and GUF LF7 revealed the polyhydroxyalkanoate nature of the polymer.

The presentation will discuss these and other findings related to the biodegradability of the polymer produced and the potential of Haloarchaea for production of biodegradable bio-plastics from microbes.

Key words: PHA, Polyhydroxyalkanoate, Haloarchaea, Biopolymers, Biodegradation.
Characterization of marine isolates with extracellular protease production and their commercial application

Sumana Das1, Ashoke Ranjan Thakur2, and Shaon Ray Chaudhuri.

1Department of Biotechnology, West Bengal University of Technology, BF-142, Sector 1, Salt Lake, Calcutta-700064, India
2West Bengal State University (Barasat, North 24 Parganas), Barasat Government College (Amnes Building), 19 KNC Road, Kolkata-700124, India

Protease has an immense application in industrial and commercial field, keeping it in mind, we choose marine coastal ecosystem (support ~3.67x 10^30 microorganisms) to isolate protease producing bacteria. Seven extracellular protease producing pure bacteria were isolated from the two sites of the marine coast of West Bengal; Digha and Mandarmani and one site of Andhra Pradesh; Vijay. It was characterized morphologically, physiologically and at the biochemical level. Molecular characterization was done by 16S rDNA based sequence analysis. All were observed to be Gram positive bacilli. It was further confirmed by Real time PCR analysis. Presence of endospore in all indicated their survivability under stressful condition. Except one of the bacterium, all of them showed presence of catalase and oxidase. The isolates were considered to be non-pathogenic, as they either showed negative result to lecinthinase, or did not grow in the medium. These results were reconfirmed through Real time PCR pathogenicity detection test from AB1. Optimum pH and temperature range were pH 6 -12 and 20°C-40°C reflecting their range of adaptability. Jaggery and tamarind were proved to be better carbon source for all, than other prescribed carbon sources. Tolerance of higher concentration of heavy metal salts namely Al, Fe, Ni, Pb, Zn, could make them potent bioremedial candidate to clean the environment. Extracellular protease secreted by all of the pure isolates reflect more or less same efficiency to destain the cloth Beside the protease, two of the strains were also found to produce extracellular lipase.

Keywords: marine; protease; bioremedial; degumming; additive to detergent.

Chitin and chitosan produced by Mucoralean fungi using a new economic medium- Corn Steep

T.C.M. Stamford1,2; M.C. Silva1,3; L. R. R. Berger1; F. S. C. Anjos4; N. P. Stamford5; G.M. Campos-Takaki1,2,6

1 UFPB Dept Fisiology and Pathology, Cidade Universitaria s/n CEP 58059-900, João Pessoa- PB, Brazil
2 RPCIAMB. Nucleus of Research in Environmental Science, Rua Nunes Machado nº42, CEP. 50050-590, Recife, PE, Brazil.
3 UPEE. Post-graduation in Fungi Biology, Av. Prof. Morais Reis, 1235 - Cidade Universitária, CEP: 59070-901, Recife - PE, Brazil.
4 UFPE: Dept of Agronomy Rua Dom Manuel Medeiros,s/n Dois Irmãos, CEP 52171-900, Recife, PE, Brazil
5 UFPE: Dept of Agronomy Rua Dom Manuel Medeiros,s/n Dois Irmãos, CEP 52171-900, Recife, PE, Brazil.
6 UNICAP, Dept of Science and Technology Rua Nunes Machado nº42, CEP. 50050-590, Recife, PE, Brazil.

Chitin and chitosan hold a great economic value as due to their versatile biological activities and chemical applications, mainly in medical. Recent advances in fermentation technologies suggest that the cultivation of selected fungi can provide an alternative source of chitin and chitosan. The amount of these polysaccharides depends of the fungi species and culture conditions. Filamentous fungi have been considered an attractive source of chitin and chitosan for industrial applications because their specific products can be manufactured under standardized conditions. However, to optimize the production of chitin and chitosan from fungi, it's usually used complex or synthetics cultures media, which are expensive. It’s becomes necessary to obtain economic culture media that promote the growth of fungi and stimulate the production of the polymers. Ecomirobic microbial culture media normally use vegetables components. Microbiological process were studied for production of chitin and chitosan by Mucoralean fungi grown in a new economic medium, Corn Steep. A laboratory assay were carried out to evaluate the Cunninghamella elegans, Rhizopus arrhizus, Absidia corymbifera and Mucor javanicus growth using Corn Steep medium during 96 hours, under agitation (125 rpm) at 28°C. The mycelial biomass were determined following lyophilization. Among all of the strain two of them had amylase activity, which help them to use as a additive with detergent as they showed better efficiency to destain the cloth. Beside the proteose, two of the strains were also found to produce extracellar lipase.

Keywords: Corn Steep, biopolymers, polysacharides
Compared production of lutein-enriched biomass from a new strain of microalgae in different photobioreactors

Benito Mogedas¹, Mayca Márquez², M.Carmen Ruiz¹, Isabel Vaquero¹ and Carlos Vilchez²

¹ International Center for Environmental Research (CIECEM-UHU), Matalascañas – Huelva, Spain.
² Biotechnology of Algae Group (BITAL). Dept. Chemistry and Material Sciences, University of Huelva, 21071, Huelva, Spain.

Microalgal biomass has gained importance due to the commercial interest of its applications, ranging from vitamins, pigments or biofuel production to CO₂ fixation. In order to reduce biomass production costs, it is necessary to optimize the microalgal biomass production process, using efficient photobioreactors and optimizing process engineering parameters, as well as identifying new strains of rapid growth and commercial interest of further applications.

In the present work, a compared study of the productivity of the microalgae *Chlamydomonas acidophila*, a new strain isolated by our group from the Tinto river (an acidic river with extreme conditions for life in the southwest of Spain) what has been found to be promising for the industrial production of high commercial value antioxidants as lutein, was carried out. Microalgal growth and productivity of lutein-enriched biomass was assessed in three types of 5 liters photobioreactors: fluidized-bed column, tubular reactor and flat panel reactor.

The results of preliminary experiments show the 1.5cm light path flat panel photobioreactor, to be the most efficient culture system, with top growth rates of 0.8d⁻¹ and volumetric biomass productivities of 0.3 g l⁻¹ d⁻¹, with the highest lutein content published up to now.

Acknowledgements: This work was supported by grant AGL2006-12741 (Ministerio de Ciencia e Innovación, España), grant AGR-4337 (Junta de Andalucía, España) and grant BIOANDALUS 08/14/L3.6 (Universidad de Málaga y Consejería de Innovación, Ciencia y Empresa, España).

Keywords: Microalgae, photobioreactor, biomass.

Development of a carob based medium for mannitol production by *Leuconostoc fructosum* NRRL B-2041

Patricia Moniz, Florbela Carvalheiro, Luis C. Duarte, Patricia Moura, M. Paula Esteves, and Francisco M. Girio

Unidade de Bioenergia, LNEG-Laboratório Nacional de Energia e Geologia, Estrada da Paço do Lumiar, 22, 1649-038 Lisboa, Portugal

Mannitol obtained by microbial fermentation was approved by FDA in 2004 and its production at industrial scale has already been implemented. Microbial production of mannitol currently competes with the chemical process as it presents numerous advantages over the chemical hydrogenation and still has great improvement possibilities. The medium formulation cost is a significant contributor to the overall mannitol production cost [1] and therefore the evaluation of alternative economic feedstocks for carbon sources and low-cost supplements are currently a major concern.

Carob (Ceratonia siliqua) is a Mediterranean perennial tree producing pods that contain seeds (10%) and sugar-rich pulp (90%), which exhibits higher sugar content than sugar cane. The pulp is currently an under-utilized by-product of the locust bean gum production, as its main application is as animal feed.

Leuconostoc fructosum NRRL B-2041 has been found to be a mannitol overproducer when grown in supplemented carob syrup based medium [2]. In order to minimize media formulation costs, the composition of carob based culture medium was evaluated using a Plackett-Burman statistical design. The studied factors were the type of hydrolysis (acid/enzymatic), hydrolyzate concentration (carob syrup volume: supplements volume, 1:1/3:1), and supplementation (beef extract, corn steep liquor - CSL, peptone and yeast extract). The studied variables impact differently on bioprocess performance. Supplementation negatively affected products yields, but increases productivities. Specifically, mannitol production was positively influenced by beef extract. This supplement also positively affected both lactic acid and glycerol production. The later was also positively affected by peptone supplementation and by enzymatic hydrolysate type. Beef extract together with the low-cost CSL, strongly influenced substrate uptake. On the light of these results, yeast extract and peptone can possibly be omitted leading to considerable savings in medium costs. Beef extract and CSL were identified as the most relevant supplements that should be further studied.

It was also demonstrated that the hydrolysate concentration and hydrolysis type might also have a role on bioprocess efficiency, as it significantly affected products profile. On the best conditions *Lc. fructosum* NRRL B-2041 can produce 42 g/l of mannitol which corresponds to a volumetric productivity of 1.75 g/l.h and a yield on fructose of 1.48 g/g.

The prospects and drawbacks arising from the use of a carob syrup based medium for mannitol production at industrial scale are presented and discussed.

Keywords: Carob, *Leuconostoc fructosum*, mannitol, Plackett-Burman statistical design, supplementation

This work was supported by AdI, Project ValorAlfa (70/00326). ARS Culture Collection (National Centre for Agricultural Utilization Research, Peoria, IL, USA) is gratefully acknowledged for supplying *Leuconostoc fructosum*.
Effect of culture conditions on the production of an extracellular protease by a Bacillus sp isolated from soil samples of Tehran park

Leila jabalameli 1, Abbas Akhavan Sepahy 2

1 Science and Research Branch Islamic Azad University, Department of biology, Tehran, Iran.
2 North Tehran Branch Of Islamic Azad University, Department of microbiology, Tehran, Iran.

Proteases are one of the most important industrial enzymes and used in a variety of industrial applications, such as laundry detergents, pharmaceutical industry, leather industry in dehairing and bating of hides, manufacture of protein hydrolyzates, food industry, silver recovery from X-ray films, and even in waste processing industry. These enzymes account for about 60% of the total enzyme market.

Soil samples of Tehran parks were screened for proteolytic Bacilli. Among eighteen protease producers one of the isolates obtained from north east of Tehran, was selected for further experimental studies. This isolate was identified as Bacillus subtilis isolate D13AO7 based on partial sequencing of 16S rRNA. Various nutritional and environmental parameters affected protease production by this Bacillus. Protease production by Bacillus subtilis isolate D13AO7 cultivated in liquid cultures containing 1% starch as a carbon source and 0.4% corn steep liquor as a nitrogen source reached a maximum at 24 h, with levels of 340.908 U/mL. Starch and maltose were the best substrates for enzyme production while some pure sugars such as fructose, glucose and sucrose could not influence production of protease. Among various organic nitrogen sources corn steep liquor, which is commercial, was found as the best substrate followed by yeast extract, whey protein and beef extract. Bacillus subtilis isolate D13AO7 could not utilize urea as an inorganic nitrogen source to grow and produce protease. The optimal pH and optimal temperature of enzyme production were 8.0 and 45°C, respectively. Studies on enzymatic characterization revealed that crude protease showed maximum activity at pH 9.0 and 60°C, which it is indicating the enzyme to be thermoalkaline protease. These properties indicate the potential use of this bacterium and its protease for various industrial applications.

Effect of different nitrogen sources on the growth and production of canthaxanthin by Dietzia natronolimnaea in batch culture

M. Mousavi 1, M. Samani1, and H. Razavi2

1 Department of Food Science and Engineering, Faculty of Biosystem Engineering, College of Agriculture, University of Tehran, P.O. Box 31587–78659, Karaj, I.R. Iran
2 Department of Food Science and Engineering, Faculty of Biosystem Engineering, College of Agriculture, University of Tehran, P.O. Box 31587–78659, Karaj, I.R. Iran

Canthaxanthin production by Dietzia natronolimnaea depends on available nutrients in its media. At this study five organic and mineral nitrogen sources were considered to investigate about the most important nitrogen source and its effect on microorganism growth rate and pigment production. To investigate the effect of ammonium sulfate, batch cultures were performed in a 1 l baffled Erlenmeyer flask that contained 250 ml of the following nitrogen sources (10gr/1): NaNO3, KNO3, NH4H2PO4, NH4NO3, (NH4)2SO4, Glutamic acid, Yeast extract, Tryptone, Peptone and Valine. The maximum biomass and canthaxanthin were obtained using peptone and yeast extract together in culture medium.

Keywords: Canthaxanthin, Dietzia natronolimnaea, Nitrogen sources
Enhanced growth and lipid anabolism in iron exposed cultures of Chlamydomonas acidophila isolated from an acidic environment.

M. Cuaresma1, I. Garbayo1, E. Forján1, M.J. Domínguez1, A.C. Gálvez1, J.M. Vega2 and C. Vílchez1

1 Biotechnology of Algae Group (BITAL), Department of Chemistry and Material Sciences, Faculty of Experimental Sciences, University of Huelva, Spain
2 Department of Plant Biochemistry and Molecular Biology, Faculty of Chemistry, University of Seville, Spain

Tinto River, in the southwest region of Spain, is one of the most extensive examples of extreme acidic environments, exhibiting very low pH (ranging from 0.8 to 2.5) buffered by ferric iron, which dissolves other cationic metals including Zn, Mg, Al, As, and some anions as sulphate, up to high concentrations. Photosynthetic microalgae as Chlamydomonas acidophila, natural inhabitant of this environment, has adapted to acidic stress by expressing metal tolerance mechanisms. However, little is known about biochemical changes induced in C. acidophila by exposure to sublethal heavy metal concentrations. That information should be highly helpful to assessing the use of C. acidophila in biomass production and metal removal processes. The aim of this work was to assess the effect of Fe3+, the most abundant metal ion in Tinto River, on growth and biochemical profile (protein, carbohydrate and lipid contents) of C. acidophila.

The presence of Fe3+ enhanced the growth of C. acidophila significantly. Iron concentration critically influences cell growth of C. acidophila, which may account for 35% higher than iron-free microalgal cultures in terms of cell density. Maximum growth rate obtained for C. acidophila cultivated in iron-added culture medium hardly differs from those of non-extremophile microalgae, making C. acidophila suitable for microalgal biomass outdoor production process in selective acidic culture medium. Accumulation of carbohydrates and decrease in protein content at increasing iron concentrations were also observed in our results. Furthermore, Fe3+ redirected carbon metabolism toward lipid accumulation as observed in terms of total lipid content which might be a useful tool for production of lipid enriched microalgal biomass.

Acknowledgements: This work has been supported by the Ministerio de Educación y Cultura (Grant AGL.2006-12741), Junta de Andalucía (Proyectos de Excelencia, AGR-4337) and Universidad de Málaga and Consejería de Innovación, Ciencia y Empresa (Grant BIRDANALUS 08/14/L3.6).

Keywords: extremophiles, Chlamydomonas acidophila, iron, biochemical composition

Extraction of clavulanic acid in aqueous two-phase systems followed by separation through ultrafiltration

G. Yousef Rodriguez, C. Osamu Hokka, and M. Barboza

Federal University of São Carlos, Department of Chemical Engineering, São Carlos, Brazil

Clavulanic acid (CA) is an important beta-lactam antibiotic that acts as an inhibitor of beta-lactamase enzymes produced by pathogenic bacteria. The CA is produced by strains of Streptomyces clavuligerus by submerged and aerated crops of S. clavuligerus. In the extraction step have been studied processes with ultrafiltration membranes, and developed extraction processes through organic solvent and aqueous two-phase systems (ATPS), while the purification has been studied by a process involving adsorption by ion exchange. The ATPS, usually composed by polyethylene glycol (PEG) and a salt (eg phosphate) are used in the most of biotechnological process. This work aims to: 1) Get the extraction and ultrafiltration parameters of PEG/CA system, such as partition coefficient of CA (Kp) and resistivity of layer gel (I), for PEG’s of several molecular weights; 2) Evaluate the ultrafiltration performance on PEG rejection (σPEG) with and without ethanol. It is hoped with this work assess the feasibility of implementing the proposed process which will contribute to the development of a CA continuous process extraction.

It was found that the partition coefficient of clavulanic acid was around 4, while with the use of PEG-400 rose to 28, indicating good extraction. The results showed that the PEG rejection in ultrafiltration ranged between 13 and 84%, and the solutions PEG/CA containing ethanol had a lower rejection when compared with the initial solutions. High rejections of PEG indicate that a good part of this one has been retained by the ultrafiltration membrane, very interesting fact for subsequent purification processes in which the polymer is the main contaminant. Moreover, the resistivity values of the gel layer were little influenced by the molecular weight of PEG used, showing that the main agents responsible for the gel layer in the ultrafiltration are macromolecules, such as proteins.

Keywords: membrane; gel layer; resistivity, partition coefficient
Fermentation of grape marc for production of bioactive phenolic compounds

G. C. G. Martínez-Ávila1, A. F. Aguilera-Carbó2 and C. N. Aguilar3

1DBio-UAdeC. Department of Biotechnology. School of Chemistry. Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza S/N Col. República Oriente. 25280, Saltillo, Coahuila, México.
2UAAAN. Universidad Autónoma Agraria “Antonio Narro” Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila, México.
3DIA-UAdeC. Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza S/N Col. República Oriente. 25280, Saltillo, Coahuila, México.

Agro-industrial by-products are important sources of remarkable bioactive phenolic compounds, these compounds are of extreme relevance for food and pharmacological industries due to their great variety of biological activities. Fermentation of grape marc (Vitis vinifera) represents an environmentally clean technology for the production and extraction of bioactive phenolic compounds, providing high quality and high activity extracts.

In this work, the importance and benefits of solid state fermentation (SSF) is presented, pointing out this bioprocess as an alternative technology for the use of agro-industrial residues as substrates to produce valuable secondary metabolites. Physicochemical characterization of grape marc was carried out to assess its properties as support for SSF. Furthermore, eight different fungal strains were tested in order to evaluate their capacity to release phenolic compounds and invasiveness on grape marc.

In addition, High Performance Liquid Chromatography was employed for phenolic compounds determination. Results showed that grape marc has the qualities to be a good support for SSF. Members of Aspergillus group had higher invasive capacity than Penicillium strains on grape marc. A. niger PSH, A. niger PSH and A. niger Aa 20 increased the level of gallic acid present in grape marc after 12h of culture of which A. niger PSH released the highest amount of pyrocatechol at 48h.

Keywords: grape marc, solid state fermentation, bioactive phenolic compounds

Green microalgae: source for healthy foods, novel biofuels and CO2 abatement

M. Cuaresma1, I. Garbayo1, E. Forján1, F. Bédmar2, B. Mogedas1, C. Casal1, C. Vílchez1.

1 Biotechnology of Algae Group, Department of Chemistry and Material Sciences, University of Huelva, Spain
2 Department of Business Administration and Marketing, University of Huelva, Spain.

Microalgae are definitely in the way to become a sustainable, easily reproducible natural green source for highly demanded market products. Within the current most outstanding applications of microalgae, the following can be cited: (1) production of functional foods, enriched in healthy bioactive molecules; (2) novel fuels, produced from microalgal fatty acids and (3) greenhouse gas abatement (CO2 mitigation), based on high cell density microalgal cultures technology. Besides, other traditional microalgal applications are currently increasing in competitiveness in a growing market demand for natural products, in which microalgae are widely recognized as a healthy, sustainable and biological renewable resource. Among these traditional applications, microalgae are being used (4) to improve the nutritional quality of animal feed, specially in aquaculture, (5) to produce enhanced fertilizers -in combination with other active components-, (6) to remove heavy metals from waste effluents and (7) to produce stable isotope biomolecules, very useful in metabolic engineering studies. Many of the relevant microalgae for the above applications can grow in extreme environments which at least meet any of those conditions considered not suitable for life: among them, high concentration of salt and/or metals, high temperature, high radiation and high low pH. Moreover, the biosynthesis of many of the microalgal bioactive molecules of commercial importance takes place in conditions under which life is hardly possible. This work reviews recent advances in the field of biotechnological production of highly market demanded microalgal products.

Acknowledgements: This work has been supported by the Ministerio de Educación y Cultura (Proyecto AGL2006-12741) and Junta de Andalucía (Proyecto de Excelencia, AGR-4337).

Keywords: microalgae, healthy foods, biofuels, CO2 abatement, microalgal biotechnology, market.
Growing kinetics of antimicrobial activity of *Streptomyces tubercidicus* brute extracts

R. Priscila Ratti1,2, A.C.M. Toledo Piza1,2, A.C.G. Malpass2, C.O. Hokka1,2, J.D. Dubreuil3 and C. Paiva de Sousa1,2

1 Federal University of Sao Carlos, DMP, CBQ, UFSCar Rodovia Washington Luis Km 255, Sao Carlos SP, Brazil
2 Biotechnology Post Graduates Program, UFSCarRodovia Washington Luis Km 235, Sao Carlos SP, Brazil
3 Université de Montréal, campus Saint-Hyacinthe, UMontreal, 3200 Rue Sicotte Quebec, J2S 7C6 Canada

Streptomyces spp. is studied in function of its antibiotic production with industrial and pharmaceutical applications (Challis, 2008). The irregular use of antibiotics can lead to the development of resistant strains and the search for new antimicrobials is interesting (Jain & Jain, 2007) and encouraged. This work aims to evaluate the growing kinetics of *S. tubercidicus* and compares the data with its bioactivity against *Staphylococcus aureus* ATCC 29213 and *Escherichia coli* ATCC 25922.

S. tubercidicus was cultivated in ISP2 broth and incubated in 28°C with agitation (250 g). Microbial quantification, was done utilizing decimal dilutions in salin solution. A volume of 100 μL of each dilution were seeded on ISP2 agar and plates were incubated for 28°C for 48 to 72 h. Quantifications were done in triplicate and results expressed as log UFC mL⁻¹. The antimicrobial activity was done on 4 mL of the media to obtain the crude extract. The culture was centrifuged (15000 g/15 min in 20°C). Supernatant was filtered in 0,22 um membrane. 100 μL aliquots of crude extract were tested as doubling dilution. The crude extract was tested in a well diffusion assay in Müller-Hinton previously seeded with indicator microorganisms (10⁶ cells/mL). Plates were incubated at 37°C overnight in order to see the inhibition halos. Bioassays were evaluated in triplicate. Antimicrobial activities were expressed in arbitrary units/mL (UA/mL⁻¹).

Growing kinetics of *S. tubercidicus* was evaluated during 21 days. The major quantification was 7.88 log UFC mL⁻¹ seen the second day of incubation. The bioactive substances production was seen at the end of the exponential phase and the beginning of the stationary phase of growth (day two).

The fresh crude extract of *S. tubercidicus* showed a maximum antimicrobial potential of 200 UA mL⁻¹ against *Escherichia coli* and *Staphylococcus aureus*. The crude extract was active during 21 days, without alteration of the antimicrobial potential. The crude extract revealed three compounds (Figure 1) using Thin Layer Chromatography and UV illumination. Two compounds are less polar (seen with 254 nm) and the third is more polar (365 nm). The extract presented polar amino acids and one compound with minor oxygenated function (254 nm). Data presented here are important and the isolated microorganism is a valuable source of bioactive compounds against important Public Health-relevant microorganisms.

Keywords; antimicrobial activity; growing kinetics; brute extract; thin layer chromatography

Figure 1: Crude extract of *Streptomyces tubercidicus* with different compounds revealed by Thin Layer Chromatography

High concentration production of L-cysteine from the precursor D.L-ATC using the enzymes of *Shinella zoogloeoides*

Deokyeong Choe, Sung Hun Youn, and Chul Soo Shin

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea

L-Cysteine, a sulfur-containing amino acid, has been often used in drug, cosmetics, fertilizer, and food industries. This amino acid has been usually produced by acid-hydrolysis of hairs from animals or human. However, there exist some problems such as avoidance of animal matter, security difficulty of raw material, causing of environmental pollution, and low conversion yield. As an alternative, the enzymatic conversion of D,L-2-amino-Δ2-thiazoline-4-carboxylic acid (D,L-ATC) to L-cystein has previously been reported. However, the substrate concentration levels of reactions were too low (around 30 mM) to be used in industry. In this study, the enzymatic production of L-cysteine at high substrate concentrations using the bacterium *Shinella zoogloeoides* was considered. Firstly, a strategy for dissolving very high concentrations of D,L-ATC was sought. Although various kinds of solvents including water were employed for excessive dissolution of the substrate D,L-ATC, they were not suitable. On the other hand, it was found that the pH of D,L-ATC solution and the type of salts is an important factor for solubility enhancement. As the pH of D,L-ATC mixture solutions increased from 8.0 to 10.0, the solubility of D,L-ATC increased from 85 to 200 mM. Especially, carbonate salts showed a great enhancing effect. Sodium carbonate and potassium carbonate were very effective for dissolution of D,L-ATC and the pH of the mixture was maintained around 9.0 which is capable of enzymatic reactions. The solubility of D,L-ATC was increased to 700 mM by adding 15% sodium carbonate. Under this condition, the conversion yield of D,L-ATC to L-cysteine was nearly 100%.

The crude extract of *Streptomyces tubercidicus* showed a maximum antimicrobial potential of 200 UA mL⁻¹ against *Escherichia coli* and *Staphylococcus aureus*. The crude extract was active during 21 days, without alteration of the antimicrobial potential. The crude extract revealed three compounds using Thin Layer Chromatography and UV illumination. Two compounds are less polar (seen with 254 nm) and the third is more polar (365 nm). The extract presented polar amino acids and one compound with minor oxygenated function (254 nm). Data presented here are important and the isolated microorganism is a valuable source of bioactive compounds against important Public Health-relevant microorganisms.

Keywords; L-cysteine; D,L-ATC; enzymatic conversion; high substrate concentration

![Compound revealing UV 254 nm with phosphomolybdic acid](image1)

Revelators: ninhydrin phosphomolybdic acid Dragendorff reagent

![Figure 1: Crude extract of *Streptomyces tubercidicus* with different compounds revealed by Thin Layer Chromatography](image2)
Identification and Emulsification Properties of a Biosurfactant Produced by Bacteria from Soil, Chiang Mai, Thailand

S. Techaoei1, P. Leelapornpisid1, W. Prathumpai2, S. Lumyong3, H. Viernstein4 and F.M. Unger4

1 Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University 50200, Thailand
2 BIOTEC, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Klong 1, Klong Luang, Pathumthani, 12120, Thailand
3 Division of Microbiology, Department of Science, Chiang Mai University 50200, Thailand
4 Institute of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna

Biosurfactants are valuable microbial amphiphilic molecules with effective surface-active and biological properties. One hundred and ninety-seven bacterial soil strains were screened for extracellular biosurfactant activity by an oil spreading technique. It was found that bacterial isolate SCMU 106 was capable of excellent biosurfactant production. Analysis of the morphological and biochemical characteristics revealed that this isolate is a member of the genus *Pseudomonas*. Phylogenetic analysis using 16S rDNA indicated that the isolated SCMU 106, at 99% similarity, is closely related to *Pseudomonas aeruginosa*. We measured the emulsification properties of the biosurfactant in terms of emulsification index (E24) and emulsion stability at high temperature. It was found that kerosene, at about 60%, was the best substrate when treated at 100 °C for 90 minutes. The biosurfactant will be further investigated for potential use in health and cosmetics applications.

Keywords: biosurfactant, emulsification index, *Pseudomonas aeruginosa*.

Isolation and antimicrobial activity of *Streptomyces tubercidicus* against pathogenic bacteria and fungi

R. Priscila Ratti1,2, A. C. M. Toledo Piza1,2, C. O. Hokka1,2, A.C.G. Malpass2 and C. Paiva de Sousa1,2

1 Federal University of Sao Carlos, DMP, CCB, UFSCar Rodovia Washington Luis Km 253, Sao Carlos SP, Brazil
2 Biotechnology Post Graduate Program, UFSCar Rodovia Washington Luis Km 253, Sao Carlos SP, Brazil

Streptomyces spp. produces many secondary metabolites, including antibiotics. The substances formation is coupled with the onset of development of the microorganism and the search of new substances is important. The aim of this work was to evaluate the bioactivity of *Streptomyces tubercidicus* isolated from *Solanum lycocarpum* St. Hill, a typical Brazilian tropical savanna tree in order to test its inhibitory capability against pathogenic bacteria and fungi. Typical colonies were purified in ISP2A slants and incubated 28°C/10 days. Selected colonies were evaluated regarding its morphological cultural and biochemical properties. The endophytic microorganism was identified using rRNA 16S. *S. tubercidicus* was cultivated in ISP2A and submitted to antibiosis test. After growing, microorganisms were inactivated with chloroform. The indicator microorganisms utilized were *S. aureus* (ATCC 29213), *P. aeruginosa* (ATCC 27853), *E. coli* (ATCC 25922) and *C. albicans* (ATCC 10231). The strains were reactivated in BHI broth and after 24 h, 200 μL of the cultures were put in tubes with 10 mL semi solid BHI. Tubes were shaken and solution was deposited in plates surface with the inactivated microorganism. Plates were incubated at 37º C/48 h to verify the occurrence of halos. *S. tubercidicus* presented inhibition against *S. aureus* and *E. coli* (Figure 1), and the substances are being purified using Sep Pak C18 chromatography. The strain had the potential to inhibit *C. albicans* with halos de 1,94 cm, but failed to inhibit *P. aeruginosa*. These results allowed us to devise and consider the isolated microorganism as a valuable source to the discovery of new bioactive compounds against important Public Health microorganisms.

Figure 1. Brut extract of *Streptomyces tubercidicus* and bioactivity using SepPak C18 chromatography

Key words: *Streptomyces tubercidicus*; antimicrobial activity; pathogenic bacteria; pathogenic fungi.
Isolation, phenogenotypic identification and bioactivity of endophytic microorganisms intrinsically associated with *Miconia albicans* in Brazilian tropical savannah tree in Sao Carlos - SP

A.C.M. Toledo Piza1,2, R. Priscila Ratti1,2, N.F.G. Serrano1,2, C.O. Hokka1,2 and C. Paiva de Sousa1,2

1 Federal University of Sao Carlos, DFFC, UFSCar Rodovia Washington Luis Km 235, Sao Carlos SP, Brazil
2 Biotechnology Post Graduate Program, UFSCar Rodovia Washington Luis Km 235, Sao Carlos SP, Brazil

Endophytic microorganisms lives in symbiotic association with plants, has unique biological niche, and are potential producers of natural bioactive substances. This study aimed to isolate and characterize endophytic microorganisms from *Miconia albicans* from Brazilian tropical savannah of Sao Carlos - SP. Samples were characterized phenotypically from typical features of colony morphology and macroscopic measurements, physiological, biochemical and morpho-staining and genetically by 16S rRNA analysis. We evaluated the antagonistic potential of the isolates against *Staphylococcus aureus* ATCC 25923, *Escherichia coli* ATCC 25922, *Serratia marcescens* IAL 1475, *Enterococcus faecalis* ATCC 29212, *Streptomyces somerri* ATCC 10231 and Candida albicans ATCC 10231. Two samples (1 and 3) showed (Table 1) bioactivity against *E. faecalis*, with inhibition halos of 1.30 and 1.90 cm in diameter, respectively. A single sample (2) showed activity against *S. marcescens* (3.60 cm) with no significant bioactivity against the other microorganisms tested. Sample (4) showed activity against four of the six microorganisms tested: *E. faecalis* (3.15 cm), *E. coli* (3.50 cm), *C. albicans* (3.35 cm) and *S. somerri* (2.20 cm). In another sample (6) was detected bioactivity against *E. faecalis* and *S. aureus*, with inhibition zones of 1.80 and 1.50 cm, respectively. One of the samples (8) showed bioactivity against the greatest number of indicator microorganisms with inhibitory halos of 2.60 cm against *E. faecalis*, 1.50 cm against *S. aureus*, 2.40 cm against *C. albicans*, 2.10 cm against *E. coli* and 2.50 cm against *S. somerri*. In two samples (5 and 7) there was no evidence of the bioactive ability against indicator microorganisms tested. Phenotypic analysis of 8 endophytic microorganisms isolated allowed us to classify 50% of these (samples 4, 6, 7 and 8) in the *Streptomyces* group and the others were classified in the genus *Nocardiopsis* (samples 1, 2, 3 and 5). In the genotypic analysis of two isolates with bioactivity were identified as *Nocardiopsis dussoreille* (sample 3) and *Amycolatopsis orientalis* (sample 8), reporting for the first time its association with endophytic aerial parts of *Miconia albicans* from Brazilian tropical savannah in Sao Carlos, SP.

<table>
<thead>
<tr>
<th>Samples</th>
<th>E. faecalis</th>
<th>S. aureus</th>
<th>S. marcescens</th>
<th>C. albicans</th>
<th>E. coli</th>
<th>S. somerri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.60</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.15</td>
<td>3.50</td>
<td></td>
<td></td>
<td>3.35</td>
<td>3.20</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.30</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.60</td>
<td>1.50</td>
<td></td>
<td></td>
<td>2.40</td>
<td>2.10</td>
</tr>
</tbody>
</table>

Table 1: Antibiosis obtained with endophytic microorganisms isolated from *M. albicans* against indicator microorganisms.

Keywords endophytic microorganisms, *Miconia albicans*, Brazilian tropical savannah, bioactivity

Phosphate solubilization of low solubility sources in liquid medium by an isolate of *Aspergillus niger*

S.M. Chalfoun1, L.M.A.S. Costa1, M.C. Pereira1, C.J. Pimenta1

1 Agricultural and Livestock Research Institute of Minas Gerais State – Brazil
2 Federal University of Lavras, Minas Gerais State – Brazil

Brazil is a major producer of grains with a annual four million tonnes of phosphate fertilizers consumption which 50% are imported. Essential to plants, phosphorus is considered to be nutrient limiting crop production and is in limited availability in tropical soils. So high doses of phosphate fertilizers are need for the crops to obtain good productivity. Should be considered, therefore, that fertilization is one of the most pressing production costs by reducing the profit margin received by producers. Many microorganisms solubilize different forms of inorganic phosphates. The inoculation of phosphate solubilizing micro-organisms or the management of their populations have been suggested as a way to replace or reduce the use of soluble phosphorus fertilizers, through better use of existing or phosphates added to the soil and formed by the application of soluble fertilizers. The objective of this study was to evaluate the efficiency of the M22 isolate the fungus *Aspergillus niger* in phosphate solubilization in liquid medium. The assessment of capacity for phosphate solubilization in liquid medium by the strain of Aspergillus M22, was held at the Microbiology Laboratory of EPAMIG the Federal University of Lavras-MG, Brazil. The Araxá phosphate (14 g kg⁻¹ of P) and a residue of phosphate rock (9.15% P) were added in 3g dose directly to 100 mL of culture medium GL (glucose, yeast extract and agar). In each flask (250 mL) with 100 ml of culture medium with the phosphate treatments, we inoculated 1 mL of fungal culture, which contained 10⁷ CFU mL⁻¹ and so we incubated them at 28 °C, under agitation at 190 rpm for eight days. The efficiency of solubilization was determined and it was evaluated the pH and P content at the end of the incubation period. The data were submitted to analysis of variance and means compared by Tukey test at 5% probability, using the program Sisvar. In liquid medium, the isolate of *Aspergillus niger* showed higher amount of soluble P in Araxá phosphate than with the residue of phosphate rock. The isolate M22, on average, increased about four times the amount of soluble P in the middle with Araxá phosphate, compared to control, and about three times that of soluble P in the middle with the residue of phosphate rock. Isolate M22 demonstrated the ability to solublize phosphates. Mechanisms in plants and microorganisms can be low-cost technologies and appropriate to stimulate the solubilization and increase the agronomic effectiveness of phosphate rock.
Polyhydroxybutyrate production from cheese whey by recombinant E. coli

J. Paio1, L.S. Serafim2, L. Farinha1, M.A. Pietro1, M. Arévalo-Rodríguez3, M.A.M. Reis1

1CQFB-Requimte, Chemistry Department, FCT/Universidade Nova de Lisboa,2829-516 Caparica, Portugal,
2University of Aveiro, Departamento de Química, P-3810-193 Aveiro, Portugal
3Department of Molecular Microbiology, Biological Research Center, CSIC, Madrid, Spain

Biomedical, SL, E41092-Seville, Spain

Cheese whey containing 4.5% of lactose is the main by-product of dairy industry and represents an important environmental problem due to the large volumes produced and its high organic matter content [1]. Polyhydroxyalkanoates (PHA) can replace petroleum-derived synthetic plastics because of their similar material properties and complete biodegradability after disposal. The major problems in commercializing microbial PHA are related to the high costs of carbon source and downstream process involved. Only a few microorganisms are able to convert lactose into PHA, e.g. recombinant Escherichia coli strains harboring PHA biosynthesis genes. This recombinant microorganism offers several advantages: high cell densities and polyesters cell contents. (near 90% of total cell dry weight); ability to utilize several inexpensive carbon sources; relatively easy downstream processing of PHAs and lack of intracellular depolymerases [2].

Recombinant Escherichia coli strain MG1655 was modified through the inclusion of p(3HB)-synthesis genes of Cupriavidus necator into the chromosome of each bacterial strain. Seed cultures were prepared in a 500-ml flask containing 100 ml of mineral medium supplemented with whey [3]. Fed-batch cultivation, with the selected strain was carried out at 37ºC in a 2-l fermentor. Feeding mode was pulse-wise, (20 g/l) or continuous (30 g/l/h). The oxygen supplying and carbon source feeding strategies influence on growth and storage was studied.

Preliminary results showed that the recombinant E. coli strain CML3-1 was able to accumulate the highest P(3HB) content (60% of dry weight). This strain was tested in a fed batch reactor with different feeding strategies (pulses and continuously). The best result achieved was 138 g/l of cell dry weight and 63% of P(3HB) content (Table 1).

The carbon feeding strategy, in test A and B, was coupled to the pH control [3], with whey addition when pH increased above 7.2, however when the pH reached that value the lactose was already zero. The genes of PHB-synthesis became inactive when lactose reached zero, what damaged the PHB productivity. This is the reason that the feeding strategy implemented by Lee [3] can not be applied with this strain.

Table 1. Performance of recombinant E. coli strain CML3-1 in a fed-batch reactor

<table>
<thead>
<tr>
<th>Test</th>
<th>Feeding</th>
<th>Aeration</th>
<th>CDW (g/l)</th>
<th>%PHB</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pulsed when pH reaches 7.2</td>
<td>O2 30% →O2 10% when OD = 60</td>
<td>99</td>
<td>45</td>
</tr>
<tr>
<td>B</td>
<td>Pulsed when [lactose] reaches 0.5</td>
<td>O2 60% →O2 20% when OD = 100</td>
<td>138</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>Continuous feeding</td>
<td>O2 60%</td>
<td>32</td>
<td>63</td>
</tr>
</tbody>
</table>

In tests A and B, the oxygen limitation, after growth phase, caused a deviation of carbon to the anaerobic fermentation, resulting in organic acids production. The %PHB of test B was lower than in test A: the limitation 20% of O2 seemed to be not as efficient as the limitation 10% applied in test A. The feeding strategy used in test C was inhibitory for cellular growth but the PHB content reached 63%. The high lactose concentration privileged the PHB-synthesis. The low value of CDW, related with the high pyruvate production detected, probably resulted from the high lactose concentration. In test C, cell disruption was observed, which could be a consequence of high polymer content, high external solute concentration or internal metabolites accumulation. The cell membrane disruption, at the end of the process, is extremely advantageous for the downstream process, since the extraction of polymer from cells is the most expensive step of the process. The experimental results showed that is possible to use whey cheese as a carbon source, with a microbial strain showing high storage content, high cell density and allowing for a simple downstream processing.

Keywords Polyhydroxybutyrate; cheese whey; recombinant Escherichia coli

Prevention of L-tyrosine by-production and improved performance of an Escherichia coli L-phenylalanine-producing strain using tyrA ssrA-like tagged alleles

Vera G. Dororeshenk1, Rustem S. Shakulov1, Svetlana M. Kazakova1, Tatjana A. Yampolskaya1, and Sergey V. Marskov1

1Ajinomoto-Genetika Research Institute, Moscow, 113545 Russia
2State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, 113545 Russia

Currently, the construction of L-Phe producers usually begins from tyrosine-auxotrophic mutants containing a disruption of the tyrA gene, which codes for chorismate mutase (CM, EC 5.4.99.5) (Prendergast et al., 2007). CM is the common precursor of the aromatic biosynthetic pathway, and the accumulation of L-Tyr as a by-product, the removal of which creates problems in downstream processing. Conversely, application of Tyr- and Auxotrophic mutants requires the addition of L-Tyr to a fermentation medium, thereby increasing the cost of L-Phe. We constructed a L-Phe-producing strain that does not require L-Tyr for growth and does not allow L-Tyr accumulation as a byproduct in an S-Jar fermentor.

To choose the appropriate level of TyrA activity, we tested the sensitivity of TyrA to proteolysis using ssrA-mediated tagging (Keiler et al., 1996). The ssrA tag, an 11-aa peptide (AANDENYALAA (A-LAA)) added to the C-terminus of proteins that is stalled during translation, targets proteins for degradation by cytoplasmic proteases ClpXP and ClpAP (Flynn et al., 2001). To weaken the binding of ClpX, we modified residues 9-11 using the custom ssrA-like tagged tyrA (EC 1.3.1.12) (reviewed by Sprenger (2007)). This is done to prevent branching of the chorismate, the common precursor of the aromatic biosynthetic pathway, and the accumulation of L-Tyr as a by-product, the removal of which creates problems in downstream processing. Conversely, application of Tyr- and Auxotrophic mutants requires the addition of L-Tyr to a fermentation medium, thereby increasing the cost of L-Phe. We constructed a L-Phe-producing strain that does not require L-Tyr for growth and does not allow L-Tyr accumulation as a byproduct in an S-Jar fermentor.

Test Feeding Aeration CDW (g/l) %PHB
A Pulses when pH reaches 7.2 _O2 30%_ →_O2 10% when OD = 60_ 99 45
B Pulses when [lactose] reaches 0.5 _O2 60%_ →_O2 20% when OD = 100_ 138 20
C Continuous feeding _O2 60%_ 32 63

In tests A and B, the oxygen limitation, after growth phase, caused a deviation of carbon to the anaerobic fermentation, resulting in organic acids production. The %PHB of test B was lower than in test A: the limitation 20% of O2 seemed to be not as efficient as the limitation 10% applied in test A. The feeding strategy used in test C was inhibitory for cellular growth but the PHB content reached 63%. The high lactose concentration privileged the PHB-synthesis. The low value of CDW, related with the high pyruvate production detected, probably resulted from the high lactose concentration. In test C, cell disruption was observed, which could be a consequence of high polymer content, high external solute concentration or internal metabolites accumulation. The cell membrane disruption, at the end of the process, is extremely advantageous for the downstream process, since the extraction of polymer from cells is the most expensive step of the process. The experimental results showed that is possible to use whey cheese as a carbon source, with a microbial strain showing high storage content, high cell density and allowing for a simple downstream processing.

A novel approach that included the engineering of controllable protein degradation was therefore successfully applied to the improvement of an amino acid-producing strain.

Keywords L-Phe production, tyrA-tag, tyrosine prototrophic strain

Production of mycotoxins Zearalenones and Aflatoxins by selected strains of *Fusarium* sp. and *Aspergillus flavus*

R. Facchin-Magnani1,2, G. Donizetti de Souza1,2, D. R. Bairros de Pilgert1, C. Hayumi Taniguti1, B. E. Hercules Schiavon1, M. Trapp2, and E. Rodrigues-Filho1

1 ACCERT R&D in Chemistry and Biotechnology, Rua Alfredo Lopes, 1717, sala 8E, 13360-460, São Carlos-SP, Brazil.

2 Chemistry Department – Federal University of São Carlos (DQ-UFSCar), São Carlos-SP, Brazil.

3 Biotechnology Department – Federal University of São Carlos (UFSCar), São Carlos-SP, Brazil.

In this work it will be discussed some important aspects and experiments involving HPLC-MS and HPLC-MS/MS for monitoring both simple and complex fungal metabolites and other natural products as well. The main focus will be in the usage of MS/MS experiments (CID-MS) and other specific experiments, such as Selected Reaction Monitoring (SRM), during mycotoxins production. Mycotoxins are secondary metabolites produced by fungi which are capable of causing disease and death in humans and other animals. Because of their pharmacological activity, some mycotoxins and many of their derivatives have been using as antibiotics, growth promoters, and other kinds of drugs for many years. Herein, we report the production of Zearalenones and Aflatoxins, two important type of active mycotoxins by means of fungal fermentation technology. Both compounds were obtained using solid state fermentation (SSF) and submerged fermentation (SmF) from selected strains of *Fusarium* sp. and *Aspergillus flavus*.

Using SSF it was possible to reach production levels over than 51.1 mg/Kg. Currently, we are improving our production capability in order to raise up such levels since the production of high-quality mycotoxins is a key issue for industrial and academic-related fields.

Keywords Zearalenones; Aflatoxins; *Fusarium* sp.; *Aspergillus flavus*; HPLC-MS/MS
Production of lipids in different operational conditions by several marine and freshwater microalgae

M. Vila, E. Díaz, M. de la Vega, A. Simaitė and R. León

Microalgae are able to harvest solar energy and convert it into chemical-bond energy with high efficiency thanks to the photosynthetic process. The potential of this ability for sequestration of undesirable CO2 emissions and to produce high added value lipids is being widely studied, but to achieve outdoors large scale economically feasible production of microalgal lipids a careful selection of microalgal strains is necessary. The chosen strains have to grow at high rate over a wide range of temperatures and irradiances and accumulate a high percentage of lipids to ensure high lipids productivities at the local climatological conditions. We were interested in two classes of lipids, the carotenoids, lypophylic terpenoids involved in light-harvesting and photoprotection against photodestructive damage, and the triacyl glycerides. Commercial carotenoids production is particularly interesting due to their antioxidant, colorant, provitamin and therapeutic abilities. While Microalgal TAGs, which after trans-esterification in the presence of methanol can be transformed into methyl esters of the corresponding fatty acids, are receiving increasing attention due to their potential as a source of biodiesel.

After a preliminary screening, two saline and two freshwater new microalgal strains were isolated from the Odiel river marshlands sited in Huelva (Southwest Spain) and their growth rate and their ability to accumulate lipids in response to different environmental conditions were studied. First we determined the growth rate of the new isolated strains at extreme temperature and light regimes to find the periods of the year at which the open door culture of these strains could be carried out with optimal growth rate. The quantity and quality of the lipids accumulated by the microalgal at different light intensities, temperatures, and concentrations of nitrogen source was analyzed. We found specific growth rates ranging between 0.02 and 0.5 h⁻¹ and lipid percentages between 18% and 55%. In general those conditions unfavorable for growth were observed to stimulate the accumulation of total lipids.

Keywords: lipids; microalgae; stress conditions;

Acknowledgements: We thank the Spanish Ministry of Education for financial support (AGL2007-65303-C02-01)

Production of micro-organisms and metabolites for the food industry and agribusiness in a bio-factory in Brazil

S.M. Chalfoun¹, M.C. Pereira¹ and C.J. Pimenta²
¹ Agricultural and Livestock Research Institution of Minas Gerais State – Brazil
² Federal University of Lavras, Minas Gerais State – Brazil

The great biodiversity turns Brazil in an open laboratory however it hasn’t been very much studied. A bio-factory with a technological base was born after obtaining positive results during twenty years of researches developed by its creators. It develops products from selected microorganisms that are able to promote yield protection, pest and diseases control, water purification and the improvement of phosphate fertilizer process solubilization, among others. The bio-factory came in like a small company, supported in its origin by Lavras Federal University Innovation Nucleus (NINTEC-UFLA), but with a great grown potential based in its affinity with the world demands by sustainable yield systems, safe products, under the food safe and environmental protection view points. The bio-factory has as mission to supply food industries and agribusiness with products and services of high quality aiming to be the first producers of innovative inputs in Brazil. The bio-factory sector has maintained a constant responsible for the collection, identification and assessment of micro-organisms and their capacity for direct use or its metabolites in different processes. The selected microorganisms are properly preserved until they are used.

Acknowledgements: We thank the Spanish Ministry of Education for financial support (AGL2007-65303-C02-01)
Productivity of *Chlorella sorokiniana* in a short light-path (SLP) panel photobioreactor under high irradiance

M. Cuaresma1,2, M. Janssen1, C. Vílchez1, R.H. Wijffels1.
1Biotechnology of Algae Group, Department of Chemistry and Material Sciences, University of Huelva, Spain
2Wageningen University, Bioprocess Engineering Group, P.O. Box 8129, 6700 EV, Wageningen, the Netherlands.

Maximal productivity of a 14 mm light-path panel photobioreactor under high irradiance was determined. Under continuous illumination of 2100 μmol photons m⁻² s⁻¹ with red LEDs (light emitting diodes) the effect of dilution rate on photobioreactor productivity was studied. The light intensity used in this work is similar to the maximal irradiance on a horizontal surface at latitudes lower than 37º. *Chlorella sorokiniana*, a fast-growing green microalga, was used as a reference strain in this study. The dilution rate was varied from 0.06 h⁻¹ to 0.26 h⁻¹. The maximal productivity was reached at a dilution rate of 0.24 h⁻¹, with a value of 7.7 g of dry weight m⁻² h⁻¹ and a volumetric productivity of 0.5 g of dry weight L⁻¹ h⁻¹. At this dilution rate the biomass concentration inside the reactor was 2.1 g L⁻¹ and the photosynthetic efficiency was 1.0 g dry weight per mol photons which must be related to photosaturation and thermal dissipation of absorbed light energy.

Keywords: panel photobioreactor, high irradiance, productivity, photosynthetic efficiency, *Chlorella sorokiniana*.

Acknowledgements: This work was financially supported by the University of Huelva and MEC (Grant AGL2006-12741) in Spain, and a SenterNovem subsidy (the Netherlands) in the frame of the “Unieke Kans Regeling” program, grant number 02013 with Technogrow BV as industrial partner.

Screening of Algerian lactic acid bacteria on their antilisterial activity

Farida BENDALI1* Régine TALON2 and Djamila SADOUN1
1Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université A. Mira de Bejaia, Algeria. Tel. +(213) 34 21 43 33-35, Fax. +(213) 34 21 47 62
2INRA centre Clermont Ferrand-Theix, Unité Microbiologie, 63122 Saint-Genès Champanelle, France.

Forty six samples from dairy and faecal origins were analysed for the presence of bacteriocin-producing lactic acid bacteria by the spot on lawn test. From these samples, thirty eight strains of lactic acid bacteria (LAB) were isolated with fifteen strains able to inhibit the growth of *Listeria monocytogenes*. When these isolates were evaluated by the well diffusion assay, five of these strains produced a proteinaceous substances active against *L. monocytogenes* EGDe. These isolates were identified phenotypically and genotypically by sequencing the gene coding the 16S rRNA. Two isolates were identified respectively as *Lactobacillus paracasei* subsp. *paracasei* and *Lactococcus lactis* subsp. *lactis*; the others are belonging to *Enterococcus* genus with two isolates identified as *Ec. faecalis* and the other as *Enterococcus* sp. Closely related to *Ec. faecalis*. The spectrum of inhibitory activity of the isolates was evaluated against a range of Gram-positive and Gram-negative test bacteria. *Staphylococcus aureus* was the most sensitive indicator tested, whereas *Lactococcus lactis* and *Lactobacillus paracasei* subsp. *paracasei* were the most resistant ones. *Lb. paracasei* subsp. *paracasei* was the unique isolate active against Gram-negative bacteria (*E. coli* and *Salmonella* sp.). The antimicrobial activity of the bacteriocins produced by the isolates in this work could act as a potential barrier to inhibit the growth of spoilage bacteria (*E. coli* and LAB) and food-borne pathogens (*Listeria* sp., *Staphylococcus aureus*, and *Salmonella* sp.).

Keywords: lactic acid bacteria, *L. monocytogenes*, bacteriocins
Screening of polyhydroxyalkanoates-producing bacteria from different environments

Sara Rasoul-Amini1,2*, Yones Ghasemi2, and Khaterheb Parsaei-Ghaderehbad1

1Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 71345-1083, Shiraz, Iran
2Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 71345-1383, Shiraz, Iran

Bioplastics are natural biopolymers that are synthesized and catabolized by various organisms and have certain advantages over petroleum-derived plastic. Bioplastics are lipid in nature and accumulated as storage materials in the form of polyesters of hydroxyalkanoates (PHAs). In this investigation we screened different environments for PHA producing bacteria. Bacterial isolates were obtained by dilution-streaking of nutrient agar (NA) plates. All the bacterial isolates were subjected to an initial Sudan Black B staining to detect the presence of lipid granules in the bacteria. Lipid-positive isolates were then grown in a modified E2 medium to promote accumulation of PHA before the subsequent staining with Nile blue A. The positive isolates were quantified by crotonic acid assay using UV spectrophotometer. High PHA-producing isolates were selected and were confirmed by GC/MS chromatographic analysis. A total of 132 bacterial strains were screened for isolation of PHA-producing bacteria by Sudan Black B staining. Twenty PHA positive isolates were selected by Nile blue staining from different samples. The selection of the final 20 isolates was based on the highest amount of PHA produced by these isolates in E3 medium with 2% glucose and as measured by U.V. spectrophotometer. Initially, these isolate produced PHA from 0.5 to 1.5 g/l, amounting to about 10-60% of cell dry weight. Among them, the bacterium Bacillus endophyticus BCCS 011 was selected with highest capability for production of PHA (1.5 g/l) and confirmed by GC/MS chromatographic analysis. The GC/MS analysis showed the polymers produced by the selected isolates were polyhydroxybutyrate (PHB).

Solar UV radiation quality and nitrogen starvation induce changes in the commercial carotenoid profile of a Dunaliella bardawil mutant

C. Casal1, B.A. De la Morena2, J.M. Vega3 and C. Vílchez1

1Biotechnology of Algae Group, Department of Chemistry and Material Sciences, University of Huelva, Spain
2Atmospheric Sounding Station “El Arenosillo”, Earth Observation, Remote Sensing and Atmosphere Department, National Institute for Aerospace Technology (INTA), Huelva, Spain
3Department of Plant Biochemistry and Molecular Biology, Faculty of Chemistry, Sevilla, Spain

Nowadays, it is well-known there is plenty of factors affecting productivity and accumulation of carotenoids in Dunaliella microalgae cultures. Among these factors, optimal photobioreactor design (e.g. open ponds or closed photobioreactors), variations in temperature, nutrients and light conditions are included. Many studies have been focused on the effects that different light intensities incoming microalgae cultures at both pilot or lab scale can produce. However, there is still lack of information about how light quality could modify the carotenoid profile of Dunaliella under natural conditions.

In the present work we show the results obtained after modifying the solar natural UV-radiation spectrum received by batch cultures of a Dunaliella bardawil mutant growing in small closed systems. Cultures were exposed to natural solar radiation conditions in Spain’s southwest coast during May and June. In this period, where productivities are maximal, irradiances are quite high (>1500 μmol/m²·s of photosynthetic active radiation and almost 50 μmol/m²·s of ultraviolet radiation) and the temperature does still not affect culture viability negatively. Under such conditions, lutein content per unit of biomass in the absence of UV-radiation (PAR only) was higher (ca. 10%) than that for those cultures which received the entire solar spectrum (PAR plus UV). On the contrary, Dunaliella cultures growing without limitations in light quality (i.e. PAR plus UV) also showed a higher beta-carotene content (ca. 30%); mainly due to the presence of the most energetic UV radiation, i.e., UV-B (280 – 315 nm). Probably, the microalgae activates mechanisms to increase the level of this carotenoid in order to dissipate that excess energy.

In addition, another stress factor as nitrogen starvation, normally used to stimulate carotenoids synthesis, was assayed to evaluate possible combined effects on carotenoid production linked to the presence or absence of UV-radiation. In that sense, cultures incubated under nitrogen starvation and UV-radiation showed a specific accumulation of β-carotene up to 15 times higher compared to cultures growing in full culture medium. However, the specific accumulation of lutein in the presence of UV-radiation and nitrogen was 5-fold higher.

Thus, in this context, a possible process strategy to address the specific accumulation of either β-carotene or lutein from the Dunaliella mutant depending on market demands is discussed.

Keywords: Dunaliella; UV-Radiation; lutein; β-carotene; nitrogen starvation; natural conditions

Acknowledgements: This work has been supported by the Ministerio de Educación y Cultura (Proyecto AGL2006-12741) and Junta de Andalucía (Proyecto de Excelencia, AGR-4337).
Synthesis of small RNA-bacteriophage coat protein derived rod-like and spherical mosaic nanoparticles in Escherichia coli

A. Strods, J. Rūmnieks and R. Renhofa
Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV-1067, Latvia

The small RNA bacteriophages are among the simplest known viruses. Their capsid is composed of a single type of coat protein together with one copy of the maturation protein that is required for infectivity. The coat protein alone, when expressed from a plasmid in E.coli, assembles into virus-like particles (VLPs) about 25-30 nm in diameter that are morphologically indistinguishable from native virions. The coat protein can be modified by genetically fusing foreign amino acid sequences to it and result in VLPs that display the sequence of interest on their surface. Such nanoparticles can serve as exposition vectors to promote effective antibody response against the introduced sequences, or they can be used to encapsulate different substances and directed to particular types of cells by engineering cell-specific sequences on their surface.

In cases when insertions of foreign sequences in coat proteins cause their inability to assemble into VLPs, the presence of a “helper” wild-type protein can promote assembly into mosaic particles that contain both proteins – natural and fused. In our laboratory, we are primarily working with VLPs derived from coat proteins of RNA phages GA and fr. By using either co-expression of both proteins – natural and fused – or, in the case of C-terminal fusions, translational read-through, we have created a number of mosaic particles, for instance, GA VLPs carrying the N-terminal fragment of stromal cell-derived factor 1 (SDF-1) or fr VLPs carrying a fragment of hepatitis B virus (HBV) preS1 protein on their surface.

The wild-type coat proteins of fr and GA can also co-assemble into mosaic particles of another kind, which are built from two natural coat proteins. Interestingly, in this case in addition to spherical particles, rod-like structures are formed that have the same diameter as the spherical ones but can exceed 1 μm in length. Although this was initially done by in vitro co-assembly of coat proteins, the rod-like structures also form by co-expressing fr and GA coat proteins from a plasmid in E.coli. The rods could also be formed from a mixture of wild-type GA coat protein and fr coat protein carrying the HBV preS1 sequence. Therefore besides purely scientific interest, such rod-like nanoparticles have a prospect to be used for engineering new types of nanowires with desired properties.

Keywords: VLP; mosaic nanoparticles; rods

The catalytic potential of bacterial multicomponent monoxygenases ToMO and PH for the synthesis of antioxidants tyrosol and hydroxytyrosol

V. Izzo1, E. Notomista1, R. Scognamiglio1, A. Pezzella2, M. D’Auria, G. Donadio1, and A. Di Donato1
1 Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Via Cintia, I-80126 Napoli and CEINGE-Biotecnologie Avanzate S.c.ar.l., Napoli, Italy.
2 Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, via Cintia, I-80126 Napoli, Italy.

Olive oil is the main fat source in the Mediterranean diet and a growing experimental evidence has been accumulated in the last decades highlighting a connection between the regular incorporation in the diet of this natural product and several health benefits such as a lower incidence of coronary heart disease and of certain cancers. Among natural phenolic compounds found in olive fruits and in virgin olive oil, hydroxytyrosol is certainly one of the most attractive due to several properties such as its antibacterial activity, scavenging of free radicals, protection against oxidative DNA damage and LDL oxidation, prevention of platelet aggregation and inhibition of 5- and 12-lipooxygenases.

As this α-diphenol is not commercially available, much attention has been recently devoted to develop methods aimed at obtaining this compound either from natural sources like vegetative waters or through chemical synthesis. However, both these methodologies show several limitations due to their low yields and the use of toxic reagents.

As a consequence much effort has been dedicated in the last years to the development of bioconversion processes which make use of the metabolic versatility of either purified enzymes or whole microorganisms to perform enzymatic syntheses of industrial interest, with high regioselectivity and stereoselectivity and under mild experimental conditions. In this perspective, the utilization of bacterial multicomponent monoxygenases (BMMs) is of particular interest given the fact that these enzymes catalyze a variety of complex oxidations including monohydroxylation and dihydroxylation reactions of aromatic compounds, which could represent the starting material for the biosynthesis of phenolic antioxidants usually found in olive oil such as tyrosol and hydroxytyrosol.

Among others, the multi-enzymatic systems ToMO (toluene-α-xylene monooxygenase) and PH (phenol hydroxylase) isolated from Pseudomonas sp. OX1 are responsible in vivo for the hydroxylation of toxic aromatic molecules which, once activated, are further processed to give molecules that can eventually enter the citric acid cycle. Both ToMO and PH have been extensively studied for the analysis of the molecular determinants responsible for their regioselectivity in the hydroxylation reaction. Recently, a computational model has been developed that quantitatively predicts the effects on regioselectivity of mutations in the active site pocket of the hydroxylase moiety of ToMO, thus allowing the rational design of variants of the enzyme to be used in biosynthesis and bioremediation procedures.

In this work, 2-phenylethanol, a cheap and commercially available substrate, has been chosen as the starting material of a biosynthetic pathway which uses ToMO and PH for the catalysis of two steps of hydroxylation to obtain both tyrosol and hydroxytyrosol (see Scheme). Moreover, an improved computational model was developed, and several variants of ToMO were tested for their ability to convert 2-phenylethanol in tyrosol. ToMO variants E103G-F176V and E103G-F176S were separately cloned in a PH-containing plasmid to develop an E.coli cell-based system, endowed with the ability to perform a first and a second hydroxylation reaction on the aromatic ring of 2-phenylethanol to obtain tyrosol and hydroxytyrosol, respectively, as shown in the following scheme.

Keywords: monoxygenase; hydroxytyrosol; bioconversion
The potential of thermophilic Fe(III)-reducing prokaryotes to produce novel types of proteinaceous nanowires.

S.N. Gavrilov, G.B. Slobodkina, N.A. Kostrikina, and A.I. Slobodkin

1 Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prosppekt 60 let Oktyabrya, 7/2, 117312 Moscow, Russia

Metal-microbe interactions constitute one of the most intriguing problems in modern geomicrobiology. Among them dissimilatory reduction of insoluble Fe(III) oxides to Fe(II)-containing minerals, coupled to energy generation in prokaryotic microorganisms, attracts special attention of investigators worldwide. This process represents a paramount mechanism driving biogeochemical cycle of Fe and associated trace metals, while greatly influencing the cycle of organic carbon in soils, sediments, water ecosystems and thermal environments. Dissimilatory Fe(III) reduction is regarded to be the first mode of respiration, coupled to organic matter oxidation, that appeared in hot Achaean biosphere. Importance of Fe(III)-reducers in industrial significant processes covers corrosion control, microbial fuel cells and waste management.

The mechanisms for microbial reduction of insoluble Fe(III) have been previously studied in details for Geobacter and Shewanella species. The studies revealed direct electron transfer from cells to the insoluble electron acceptor to be the key strategy for Fe(III) oxide’s reduction. Moreover, a novel physiological feature among microorganisms has been detected – transfer of electrons via electrically conductive pili called bacterial nanowires. However, the mentioned Geobacter and Shewanella species represent only 2 of ca. 56 genera of Fe(III)-reducing prokaryotes that have been studied so far. The group of different phylogenetic affiliation have been the subjects of our studies: (1) a thermophilic Gram-positive bacterium Carboxydothermus ferrireducens supporting its growth at 65 °C via dissimilatory reduction of amorphous Fe(III) oxide into magnetite by the strategy of direct cell-to-mineral contact; and (2) a hyperthermophilic archaeon Geoglobus acetivorans (optimal growth at 81 °C), recently isolated from the deepest submarine thermal field and depending on insoluble Fe(III) oxide as an electron acceptor. We have detected the formation of pili-like proteinaceous appendages by both of the organisms in response to the presence of insoluble Fe(III) in the culture medium. Electron microscopy and X-ray microanalysis revealed that pili-like structures in C. ferrireducens and G. acetivorans connected the cells with each other and with the insoluble mineral nanoparticles. Full transformation of Fe(III) oxide into magnetite and the absence of pili production in the cells grown with soluble Fe(III) indicate the potential electron transfer role of the detected appendages. The presence of the main structural subunits of pili has unambiguously evidenced for both organisms. However, no any homology of the pilin-related genes with the previously described ones for Shewanella and Geobacter nanowires have been revealed. Instead, in ‘Geoglobus acetivorans’ we have detected a highly similar homolog of an archaeal pilin domain from Methanococcus maripaludis. The detection of pili in Archaea represents comparatively rare phenomenon and little is known now about their structure and functions.

The obtained data shows that the mechanism of extracellular electron transfer, facilitated by proteinaceous nanowires, could reside to phyllogenetically and physiologically different groups of Fe(III)-reducers. The resulting diversity of electron transferring pili creates an intriguing task of the search for interrelations between structural features of these appendages and their conductive properties. Such investigations could provide insights into poorly understood nature of the conductivity of microbial nanowires, and finally stimulate the development of biotechnologies aimed at production of the nanowires with predefined properties. As an example, the conductivity of the pili produced by thermophilic microorganisms is supposed to exceed the conductivity of the pili, found in mesophiles, due to generally recognized peculiarities in the amino acid composition of thermostable proteins, i.e. increase in the number of charged and aromatic amino acids. Further, the pili of Gram-positive bacteria, in contrast to Gram-negative ones, are characterized by covalent bonds between pilin subunits which could also facilitate electron transfer along the filaments increasing their conductivity. Anyway, much more detailed studies are necessary for understanding of the nature of conductance in microbial nanowires, their exact physiological role and biotechnological potential.

Keywords: thermophiles; microbial Fe(III)-reduction; Gram-positive bacteria, Archaea, nanowires.

Transformation of nerol with Aspergillus niger in Czapek-Dox medium

Takehiko Tsuruta1

1 Laboratory of Microbial Engineering, Department of Biotechnology and Environmental Engineering, Faculty of Engineering, Hachinohe Institute of Technology, 88-1, Aza-Ohbiraki, Myoh, Hachinohe, Aomori, 031-8501, Japan

Transformation of nerol with A. niger AHU7120 was cultured in Czapek-Dox medium 3days, after that, nerol (2mmol) was added to the culture. The culture was continued 21days from the addition of substrate. α-terpineol and linalool were produced at day 1 and increased until day 7 in the case of α-terpineol and that 3 in the case of linalool, whereas substrate nerol was decreased until day 7 (Fig.1). The transformation mechanism of α-terpineol and linalool from nerol or geraniol in the HCl was reported via same delocalized cation (1). However, the amount of produced α-terpineol was much larger than that of produced linalool. Therefore, the production mechanism of α-terpineol and linalool was assumed via different intermediate cations. Accordingly, It assumed that α-terpineol was produced via intermediate II and linalool was produced via intermediate III in scheme 1.

Some minor compounds were also produced in this transformation. p-Menthane-1, 8-diol was produced at day 1 and increased until day 8. It can be produced by the addition of H2O to α-terpineol. After 7 days, p-menth 1-8-dien-7-ol was started to produce and increased until day 12. It can be produced by the addition of H2O to α-terpineol. After 7 days, p-menth 1-8-dien-7-ol was started to produce and increased until day 12. It can be produced by the de hydration from α-terpineol followed oxidation of 7-methyl group. 2,6-Dimethyl-2,7-octene-1,6-diol was produced at day 7 and increased until day 9 by the oxidative hydroxylation of linalool. Cis and trans-2,6-Dimethyl-5,7-octene-2-ols were produced at day 8 and increased until day 12 by the hydration and dehydration of linalool. A few amounts of furan type linalool oxides and pyran type of cyclized compound were produced from linalool. Furan type linalool oxides were produced at day 1 and increased until day 12 by the cyclization of linalool and oxidative hydroxylation of isopropyl group. Pyran type of cyclized compound was produced at day 1 and increased until day 12 by the cyclization of linalool.

Keywords: transformation of nerol, Aspergillus niger, Czapek-Dox medium
Use of volatile acids waste in the production of xanthan gum in a culture of Xanthomonas campestris pv campestris - CBMAI 199 (ATCC 33913)

J.A.C. Leite1, E. Pozzi2, L. Pelizer2, M. Zaiat2 and M. Barboza1

1Federal University of São Carlos, São Carlos, Brazil.
2University of São Paulo, Brazil. 3University of Franca, Brazil.

The aim of this study was the production of xanthan gum with the use of by-products (VFA) generated in bioprocesses. The world scientific community frantically seeks for new energy sources. Immediately, in parallel, we should concern about the destination of the new waste that will be generated. Second generation wastes (hydrogen and methane) used to be an attractive energy sources, but present with different amounts of volatile acids. The reusability of those acids must to be technically and, economically viable: high value of the xanthan gum enables feasible the new energy source: hydrogen. The xanthan gum was produced with short-chain volatile acids (acetate, propionate and butyrate) in substitution of the citric acid present in the medium as suggested by Garcia-Ochoa, 2004. The microorganism used in the studies was the species Xanthomonas campestris pv campestris collection CBMAI – 199 (ATCC 33913). Preliminary studies were done with commercial salts, in batch process carried out in shaker at 28ºC and 250 rpm. Three different salts were used to replace the citric acid: (a) 0.0328M sodium acetate, (b) sodium propionate 0.0219M and (c) 0.0164M sodium butyrate. In the first series the best gum production / biomass (g / g) in the corresponding time of culture were Ac (20.0 / 69 h), Prop (31.8 / 47 h) and But (33.8 / 47 h). In concentration of 0.25% the acetate gum showed consistency index of 1.68 and flow index of 0.5. Their consumption of glucose in the growth period of 69 hours was 73%, 39%, 33% and 34%. In another series the test the conditions they were different, including the glucose content lower (26 to 35%) in the assays. The gum production / biomass (g / g) they were lower, corresponding to content lower of substrate. However, the biomass (g / L) increased 30 to 100% in tests.

Keywords Xanthomonas campestris; Xanthan gum; volatile fatty acids

UV-A mediated modulation of photosynthetic efficiency, xanthophyll cycle and fatty acid production of Nannochloropsis

E. Forján1, I. Garbayo1, C. Casal1, B. Mogedas1, J.M. Vega1 and C. Vilchez1

1Biotechnology of Algae Group, Department of Chemistry and Material Sciences, University of Huelva, Spain
2Department of Plant Biochemistry and Molecular Biology, Faculty of Chemistry, Seville, Spain

Nannochloropsis, a green microalg, is source for commercially valuable compounds as extensively described and, in particular, is recognized as a good potential source of EPA (20:5ω3), an important polyunsaturated fatty acid for human consumption for prevention of several diseases. Climate change might include variation in the UV levels, as one of the consequences derived from the anthropogenic activity. This paper shows the response of Nannochloropsis cultures exposed for 7 days to UV-A added to PAR. Growth rates and photosynthetic activity were assessed to determine the impact of UV-A increased levels on cell growth and basic metabolic activity. Xanthophyll pigments (zeaxanthin and violaxanthin), carotenoids (canthaxanthin and β-carotene) and PUFAs (miristic, palmitic, palmitoleic, araquidonic and eicosapentanoic acids) were measured for assessing the antioxidant response of the microalgae to added UV-A radiation to PAR. The results show that the modulated use of UV-A radiations can led to increased growth rates which are sustained in time by an increased light transduction activity. The expected antioxidant response to the incident UV-A radiation consisted of increases in zeaxanthin –through an increased activity of xanthophyll cycle- and β-carotene contents (both of them are antioxidant carotenoids) and increases in the SFAs (saturated fatty acids) to PUFAs (polyunsaturated fatty acids) ratio. The results suggest that modulated UV-A radiation can be used as a tool to stimulate value molecules accumulation in microalgae through an enhanced both light transduction process and microalgal antioxidant response, while sustaining cell growth.

Keywords: microalgae, Nannochloropsis, UV-A, xanthophyll cycle, fatty acids

Acknowledgements: This work has been supported by the Ministerio de Educación y Cultura (Proyecto AGL2006-12741).
Xylitol production from dilute-acid hydrolysis of bean group shells

Chizuru Sasaki1, Akihiro Kurosumi1, Yuya Yamashita1, Godliving Mtui2 and Yoshitoshi Nakamura1

1Department of Biological Science and Technology Institute of Technology and Science
The University of Tokushima Graduate School, 2-1 Minamiijosanjima-cho, Tokushima City, 770-8506, Japan
2Department of Molecular Biology and Biotechnology, University of Dar es Salaam, P. O. Box 35179, Dar es Salaam, Tanzania

Xylitol, a five-carbon sugar alcohol, is used as a sweetener in foods and sugar substitute for the treatment of diabetes. Xylitol can be obtained from hemicellulosic fraction of lignocellulosic materials containing D-xylose. Bean group shells, an agricultural waste, is an abundant source of hemicellulose, especially pistachio shells. The hemicellulose contents of pistachio shells is approx 50% and consists mainly of xylene. The aims of this study are to optimize the extraction of hemicellulosic sugar xylose from pistachio shells and to produce xylitol using xylose derived from pistachio shells.

Xylose production from pistachio (Pistacia vera L.) shells was carried out using 0.1 ~ 10.0%(v/v) sulfuric acid. Also, microbial xylitol production from xylose was investigated using Candida tropicalis NBRC 0618. The maximum xylose concentration in the hydrolysate was attained when the pistachio shells were treated at 121°C for 20 min, using 5.0% (v/v) sulfuric acid. To remove fermentative inhibitors from the hydrolysate, two different detoxification methods, namely active carbon adsorption and ion exchange resin treatment, were tested. Ion exchange resin treatment using both anion and cation exchange resin were found to be effective for detoxification of the hydrolysate. Maximum xylitol productivity was 0.006 g/L/h which is 4.8 higher than the value obtained from untreated samples.

Keywords pistachio shells; xylitol; hydrolysis

Potential of microbial consortium for biological treatment of the effluent from cassava flour production

E. L. V. Cruz, R. A. Lima, S. C. Paiva, G. M. C. Takaki, A. A. Salgueiro

Núcleo de Pesquisas em Ciências Ambientais, Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco
Rua do Príncipe, 526, Boa Vista, 50050-900, Recife, PE, Brasil

Wastewaters from the production of cassava flour contain high organic material and hydrogen cyanide. These pollutants need to be degraded before being launched in the water resources. The aim of this work was to obtain a microbial consortium from the effluent of cassava flour production and to investigate its potential for the biological treatment of this effluent.

Experiments were carried out in a bioreactor with the effluent from cassava flour production in the presence of ammonium sulfate 0.8%, at 28 ~ 30°C, 1 vvm and 200 rpm. Three pulses of 10% (v/v) of the effluent, supplemented with the nitrogen source, were weekly added to the bioreactor after seven days of cultivation. The microbial growth was determined by aerobic plate count of bacteria, yeasts and filamentous fungi. Enzyme activities and chemical oxygen demand were determined.

The concentration of carbohydrates (2,6%), proteins (1,8%) and lipids (0,4%) in the effluent stimulated the growth of the autochthon microorganisms, under experimental conditions. The maximum growth of bacteria in the consortium reached 10^8 CFU/mL at the stationary phase. Maximum activities of amylases, cellulases, lipases and proteases were detected after seven days of cultivation. The organic matter was aerobically metabolized by the autochthon microorganisms of the consortium, during 48 h, at 30°C and 150 rpm. Reductions of the chemical oxygen demand (80%) and hydrogen cyanide (28%) were determined after the biological treatment of the effluent.

The microbial consortium obtained from the effluent has potential for the biodegradation of the effluent samples in aerobic condition.

Keywords: microbial consortium, cassava flour production, biodegradation.
Bioprospection of microorganisms for lipase production using an industrial waste as carbon source

D. S. Gomes, E. L. V. Cruz, L. L. Noronha, G. M. C. Takaki, A. A. Salgueiro
Núcleo de Pesquisas em Ciências Ambientais, Universidade Católica de Pernambuco. Rua do Príncipe, 526, Boa Vista, 50050-900, Recife, PE, Brasil

Scientific research has been developed for the treatment of industrial effluents and the reuse of its nutrients in the cultivation of microorganisms to produce metabolites of economic value. "Manipueira" is the principal component of the effluent from the cassava flour production. The high organic material in the effluent causes negative impact in the environment. The aim of this study was the production of lipases - one of the most important biocatalysts for biotechnological applications - by samples of microorganisms isolated from the effluent of the cassava flour production.

Samples of bacteria, yeasts and filamentous fungi were isolated from this effluent. The microorganisms were inoculated in 500 mL Erlenmeyers flasks, using 300 mL working volume of the medium: 2 % "manipueira", 1 % olive oil and 0.25 % ammonium sulfate. The experiments were carried out in a shaker at 150 rpm, at 28 °C, during 8 days. The samples were centrifuged and the supernatants were used to determine the pH (potentiometry) and the lipolytic activity. The enzyme activity was determined with paranitrophenilpalmitate (pNPP), dissolved in isopropanol in the presence of Triton-X100 and gum arabic in buffer Tris-HCl 50 mM pH 7.0.

The lipase production increased with the cultivation time for 45 % of the microorganisms investigated. Some microbial samples showed different peaks of lipolytic activities. A filamentous fungus sample showed atypical behavior of lipase production: on the second day of the cultivation, the maximum activity was 7.9 IU/L and this value decreased gradually over the time. The maximum lipase production reached 10.1 IU/L at pH 5.6 after 8 days by a bacteria sample while the maximum productivity was 3.95 IU/L.d obtained at pH 3.9 by a filamentous fungus sample.

More research needs to be stimulated on bioprospection of microorganisms for enzymes production with the reuse of industrial waste, avoiding environmental impact and reducing costs for biotechnological processes.

Keywords: bioprospection, microorganisms, industrial waste, lipase production.

Effectiveness of N-acetilcysteine (NAC) on prevention and eradication of S. epidermidis biofilms.

Fernández-Calderón MC1,2, Pérez-Giraldo C1,3, Delgado-Rastrollo M1,2, Blanco MT1,3, Hurtado C1, Lasa F2, Gómez-García AC1,3.
1Area of Microbiology, Department of Biomedical Sciences, Faculty of Medicine, University of Extremadura, Badajoz 06071, Spain.
2Laboratory of Microbial Biofilms, Institute of Agrobiotechnology, Public University of Navarra-CSIC, Pamplona 31006, Spain.
3CIBER-BBN Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Spain.

Background: The infections related with artificial devices implanted in the human body suppose a serious problem at the present time. These infections are very frequent and they are almost always produced by Staphylococcus spp.

Methods: All total of 6 biofilm producing S. epidermidis strains were used to investigate the activity of N-acetylcystein (NAC) against biofilms developed. The quantitative measurement of biofilm production and the lipolytic activity. The enzyme activity was determined with paranitrophenilpalmitate (pNPP), dissolved in isopropanol in the presence of Triton-X100 and gum arabic in buffer Tris-HCl 50 mM pH 7.0.

Results: In all strains we confirmed the reduction of PIA/PNAG-dependent biofilm in the presence of N-acetylcysteine (NAC) against biofilms developed. The quantitative measurement of biofilm production and the slime Index (SI) in presence of NAC subinhibitory concentrations was determined. The effect of NAC on different biofilm components of S. epidermidis by microtiter detachment assay was carried out. The PIA/PNAG production by Dot-blot and hemagglutination inhibition was analyzed. The bacteria included in biofilm after treatment with NAC would be quantified using BacTiter-Glo™ Microbial Cell Viability Assay and mature biofilms were observed through fluorescent microscopy.

Conclusions: Our result suggesting that decrease of biofilm development in S. epidermidis strains is due to the inhibition of PIA/PNAG synthesis and accumulation on the bacterial surface. For this reason, NAC is interesting candidate for use as inhibitor of formation of bacterial biofilms on medical device.

Keywords: Staphylococcus epidermidis; Biofilms; Medical-device infections; N-acetilcysteine.
An *in vivo* study on the fungicidal effects of PAA (Per acetic Acid) against phytopathogenis fungi

Santos M., Díaz F., Alvaro J.E. Carretero F., and Urrestarazu M.

Dpto. Vegetal Production. University of Almería. 04120. Spain

The peroxy of acetic acid, is one of the most important organic peroxydes with wide spectrum of antimicrobial activity. Mixed peracid or peracetic systems are made with peracetic acid (PAA), hydrogen peroxyde and acetic acid. There is a growing to develop alternative chemicals recognizing as safe, less harmful to human health and the environment, for controlling phytopathogenic fungi. Peracetic acid (PAA) has potential as a disinfectant of low environmental impact for glasshouse hydroponic systems and other horticultural applications.

The objective of this study was evaluate peroxyacetic acid (PAA) as alternative to Metam sodium in the control of soilborne diseases in hydroponic substrates. Four pathosystems were studied: *Pythium aphanidermatum*-cucumber, *Phytophthora parasitica*-tomate, *Fusarium oxysporum* f.sp. *radicis-cucumerinum*-cucumber and *Sclerotinia sclerotiorum*-zucchini. Also fungicide effect of PAA was compared with metam sodium at common dose rates used in substrates disinfection.

The results demonstrated that PAA could be a good alternative disinfection method for elimination of fungi in susbtrates. The most fungicidal activity was observed against the *Fusarium oxysporum* f.sp. *radicis-cucumerinum*-cucumber. The different observed in antifungal activity of PAA may suggest susceptibility of various phytopathogenic fungi against oxidation potential of PAA. Limited data are available on the control of phytopathogenic fungi in field conditions by PAA, so more studies are needed to test other important phytopathogenic fungi and further study are also needed to test it phytotoxicity towards host plants.

Catalytic Promiscuity of Thermostable T1 Lipase from *Geobacillus zalihaii* by Metal Substitution

M.B. Abdul Rahman1,2, H. Harun1, M. Basri2, T.C. Leow3, R.N.Z. Abdul Rahman2 and A.B. Salleh1

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Selangor, Selangor Darul Ehsan, Malaysia
2Structural Biology Research Center, Malaysia Genome Institute, MTDC-UKM, Smart Technology Centre, 43600 UKM Bangi, Selangor, Malaysia
3Laboratory of Industrial Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Selangor, Selangor, Malaysia

The research of metalloenzyme has become an active area in biochemistry and biophysics. For many experimental approaches, large quantities as well as high concentration of protein are needed. Purification for improving fusion lipase without signal peptide has been accomplished using affinity chromatography glutathione-sepharose. The crude lipase was obtained from cell lysate of recombinant clone *E. coli* BL21 (De3)pLysS (pGEX/T1S). The purification yields of 42.66 and 44.37% were obtained for T1 fusion lipase (GST + T1 mature lipase) without signal peptide and T1 mature lipase (T1 lipase without signal peptide), respectively. In the present work, we explore the adjacent amino acids to Zn²⁺. There are three Histidine groups bind to Zn²⁺. Histidine is an essential amino acid that has as a positively charged imidazole functional group which is a common coordinating ligand in metalloproteins and is a part of catalytic sites in certain enzymes. Metal removal experiment of 5.72mg of protein was done using 2,6-pyridinedicarboxylate as the killer agent. The specific activity of pure T1 lipase increased three folds to 30.66 U/mg after serial dialysis to remove the zinc from its structure. This could be due to the changes in its structure that makes T1 become more active when the zinc has been removed. Later, metal ion substitution of Zn²⁺ with transition earth metals was performed and evaluated in term of its biophysical analysis, thermostability, structural-function relationship, enantioselective and protein crystallization studies.

Keywords: metalloenzyme; T1 lipase; enzyme; biocatalysis; metal binding
Design of surfaces response analysis of k_{La} depending of aeration and agitation in 14 L bioreactor

F. Rodríguez Gómez, C. G. Ríos Jaco, M. Lozano-Contreras, F. Vilcanquí Pérez and M. Elías-Santos

1 Instituto Tecnológico y de Estudios Superiores, C.P. 64849, Monterrey, N.L.
2 Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, C.P. 97130, Yucatán
3 Instituto de Biotecnología. Facultad de Ciencias Biológicas. Universidad Autónoma de Nuevo León, CP 66450. Monterrey, N.L. México.

Oxygen is the most essential requirement for aerobic bioprocesses. The microbial growth in a bioreactor depends upon the oxygen transfer rate (OTR). The OTR is widely used to study the growth behavior of microbial and plant cell cultures. The mass transfer coefficient (k_{La}) determines the magnitude of the OTR. There are many techniques for measuring oxygen concentration and OTR in bioreactors. In the present work we show the experimental design to use the surface response analysis k_{La} as a function of aeration and agitation in 14 L bioreactor. The goal of surface response design, consist in optimize the experimental condition to generate a model for a region denominate surface, and this surface was predicted from controlled factors. Based on the limits of the factors used (100 a 600 rpm y 0.5 a 1.5 vvm volumen air/volumen liquid. min) we use “Face Centered” design (Figure 1). The surface design response was run in two replicates in the center and 8 experiments as describes in (Figure 2). The software used was MINITAB® Release 14.12.0.

The experiment was run in a 14 L bioreactor (New Brunswick), fill to 10 L, and operated according to experimental design. Between each run the oxygen was eliminated of the reactor with nitrogen flow, to the concentration of oxygen was zero. After this the aeration was started at indicated rpm. Using a Clark electrode, oxygen concentration was read in time. With this data factor k_{La} was calculated for each condition (Figure 3).

The software analysis of k_{La} data for 10 experiments, we obtained the general equation and a graphic of the surface response (Figure 4), which shown a correlation factor of 99%. With this result is possible estimate the k_{La} of the reactor with high precision with minimum number of experiment.

Ecodynamics and impact of copper on microbial communities in a vineyard soil variably amended with organic matter

Jean M.F. Martins, Aline Navel, David P.H. Lejon, Lionel Ranjard, Jean Lévêque and, Lorenzo Spadini

1 CNRS; Université Grenoble I, LTHE UMR5564, 1025 Rue de la piscine, BP53, 38041 Grenoble Cedex 9, France.
2 INRA-Université Bourgogne, UNR MSE, CMSE, 17 rue Sully, BP-80510, F-21065 Dijon, France.
3 CNRS; Université Grenoble I. UMR5559 LGIT, Grenoble, France.

In a coupled microcosm and lysimeter study, the effect of the soil organic status (SOS) on copper outcome and impact was investigated in a vineyard soil that had been amended with varying types of organic matter during a previous long-term field experiment. Soil microcosms and lysimeters were contaminated at 240 mg Cu kg$^{-1}$ and incubated for 6 months. Copper distribution and dynamics were assessed in the solid matrix by size fractionation and sequential extraction procedures and in the soil solution by measuring total and free exchangeable copper concentrations. Copper bioavailability was also measured with a whole-cell biosensor. Variations in microbial communities were assessed by means of biomass-C measurements and characterization of genetic structure using ARISA (Automated-Ribosomal-Intergenic-Spacer-Analysis). Results showed that copper distribution, speciation and bioavailability are strongly different between organically amended and non-amended soils and largely driven by the SOS. Unexpectedly, in solution, bioavailable copper correlated with total-copper but not with free-copper, suggesting that non-free copper remains bioavailable to microorganisms. Similarly the observed differential copper impact on microorganisms suggested that organic matter controlled copper toxicity through the control of both copper speciation and the structure of the microbial communities in the different soils. Bacterial-ARISA modifications corresponding to the soil enrichment in Actinobacteria, also correlated with the estimated metal bioavailability. Contrarily, biomass-C and Fungal-ARISA measurements did not relate trivially to copper speciation and bioavailability suggesting that the composition of the initial indigenous-soil communities, which is amendment-specific, controls its sensitivity to Cu.
Evaluation of antagonism in the phyllosphere of tomato

Yau J. A., Santos M., Díaz F., de Cara M., Carretero F., and Tello J. C.
University of Almería. Carretera de Sacramento s/n Almería, 04120 España.

In vitro assessed antagonistic 5 of isolated group’s capacity bacterial and fungal 68 of the healthy tomato plants from organic production greenhouses leaves phyllosphere. The isolated were faced pathogens Botrytis cinerea, Fusarium oxysporum fsp lycopersici (FOL), Fusarium oxysporum fsp radicis lycopersici (FORL), Mycosphaerella pinodes, Phytophthora parasitica, Pythium aphanidermatum and V. dahliae. The results show that 5 of the bacterial isolates showed antagonistic activity to pathogens P. aphanidermatum and FORL and fungal 18 to B. cinerea, P. aphanidermatum, M. pinodes and V. dahliae.

Keywords: antagonism, endophytes, phyllosphere, in vitro.

Experimental investigation and modelling of biofilm growth and hydrodynamic/biomass interaction in a granular bioreactor applied to phenol removal

J.M.F. Martins1, P. Séchet2, C. Geindreau3, Ch. Morra1, M. Karrabi2 and A. Cartelier2

1LTHE, CNRS-UJF-INPG, BP 53, 38041 Grenoble cedex 9, France
2LEGI, CNRS-UJF-INPG, BP 53X, 38041 Grenoble cedex 9, France
3Lab. 3S, CNRS-UJF-INPG, BP 53X, 38041 Grenoble cedex 9, France

The study of biofilms in porous media spans a range of environmental applications going from subsurface ecosystems to industrial bioreactors. The development of bacterial biofilms in porous media is driven by complex processes that involve fluid flow, nutrient transport, microbial ecology and/or biotransformation. In practice, in order to describe the biological behaviour of a bioreactor that usually ends up with porous media clogging, it is almost impossible to account for all these biophysical processes at the pore scale, and continuum macroscopic modelling approaches are usually preferred although not satisfactorily from a pure mechanistic point of view.

This paper aims at deriving macroscopically equivalent medium from the description of biophysical mechanisms occurring at the microscopic scale using an homogenization method of multiple scale expansions for periodic structure. For this purpose, a medium scale pilot reactor has been developed, which a biofilm of Pseudomonas putida was grown under varying controlled conditions. Bacterial growth was indirectly monitored through macroscopic pressure drop measurements until complete bio-clogging of the porous medium. Our modelling approach was then applied to simulate observed data and in particular to indirectly derive the evolution of the macroscopic permeability through pressure drop profiles. The modelling results were then validated by measured profiles of bacterial biomass and pollutant and oxygen concentration. The results were compared with outputs obtained with simple and classical 1D models and discussed in the light of the main processes occurring at the microscopic scale.
First Report of Vegetative Compatibility Group 0136 of Fusarium oxysporum f.sp. melonis in Colima State, Mexico

Santos M., García-Alcázar M., Carretero F., Díaz F., Marín F., de Cara M., and Tello JC.

Fusarium oxysporum f.sp. melonis, the causal agent of the Fusarium wilt of melon (Cucumis melo L.), was described in Colima State's melon crops during years 2001, 2002 and 2003 by de Cara et al. (2004). They studied 4 soil samples obtaining 31 isolates of F.o. f.sp. melonis. This 31 isolates were inoculated on melon plants to know their pathogenicity. The results of this inoculation tests allowed to de Cara et al. to affirm that all isolates were race 1 of F.o. f.sp. melonis. Because of the homogeneity we wondered about isolates' genetic variability. Then, following the same methodology employed to determinate VCGs of F.o. f.sp. radicis-cucumerinum (García-Alcázar et al., 2006), we studied isolates of F.o. f.sp. melonis from Colima State (Mexico). To begin the study 20 isolates were selected and 4 monosporic isolates were obtained from each isolates. Then 2 monosporic isolates was selected in order to obtain nitrate nonutilizing mutants (nit mutants). Nit mutants were obtained from 80% of the isolates. After phenotypic identification of nit mutants, they were paired themselves and with the testers isolates in order to know their self compatibility and compatibility groups. Two isolates (their two monosporic isolated) were determined as HSI (Heterokaryon Self Incompatibility). The rest of isolates, 15, were determined as HSC (Heterokaryon Self Compatibility). All of them were included in VCG 0136. This VCG has already been cited in Mexico by Jacobson and Gordon (1991). It means all isolates are natives, so they haven't been introduced from foreign countries. Moreover, as all isolates belong to the same VCG, they are able to anastomose cells and form heterokaryons, so there is possibility of genetic recombination on this somatic cells (Puhalla y Spieth, 1983).

Hypocholesterolemic Effects of Lactobacillus Strain Isolated from Blondo (Waste of virgin coconut oil) Observed in Broiler Cholesterol Contained Diets

Endang Purwati
Professor of Microbiology and biotechnology
Faculty of Animal Husbandry, Andalas University, Padang, West Sumatera, Indonesia

In order to evaluate the hypocholesterolemic effect of Lactobacillus, an isolate from blondo in the broiler were fed cholesterol containing diets supplemented with fermented cultured with TMC 0409. No significant inhibitory effect was observed in the broiler fed after 14 days feeding. But the increase of serum cholesterol was suppressed (36%) in the broiler fed TMC 0409 lyophilized cells. Total cholesterol, HDL-cholesterol, triglyceride and phospholipid in serum, neutral steroid and bile acids in feces, cholesterol and triglyceride in liver were analyzed in the rat fed TMC 0409 cells after 14 days feeding. Total cholesterol and phospholipid were significantly decreased compared to those of control group (P<0.01), however HDL-cholesterol was significantly increased (P<0.05). Serum triglyceride was also decreased but the difference was not significant. From these results, the inhibition of increase of serum cholesterol in broiler fed TMC 0409 cells was considered to have resulted from the reduction of LDL+VLDL-cholesterol. Meanwhile, the accumulation of triglyceride in the liver was inhibited significantly compared with the control group (P<0.05), and the excretion of bile acid in the feeds was also enhanced significantly (P<0.01). These results imply that strain TMC 0409 can alter the serum cholesterol concentration, especially LDL+VLDL-cholesterol by enhancing the excretion of bile acid in the feeds.

Keywords: hypocholesterolemic, Lactobacillus, broiler
In situ identification of bacteria involved in Polycyclic Aromatic Hydrocarbon biodegradation and proteomic analysis of associated enzymes

Martin, F., Geremia, R., Black, G., Coute, Y., and Jouanneau, Y.

Polyaromatic hydrocarbons (PAHs) are ubiquitous and persistent contaminants in the environment, which are of concern because of their mutagenic and carcinogenic effects. Among the treatments proposed to remove pollution from contaminated soils, bioremediation, which uses microorganisms to degrade organic contaminants, appears attractive because it is cost-effective and it preserves ecosystems. However, bioprocesses currently implemented to remove stable and very hydrophobic pollutants such as PAHs are slow and incomplete. Understanding biodegradation processes in situ is therefore crucial to improve bioremediation.

Previous studies on PAH-degrading bacteria isolated from polluted sites, essentially Mycobacterium and Sphingomonas strains, contributed to a better understanding of the metabolic pathways and the enzymes involved in PAH degradation [1-3]. Ring-hydroxylating dioxygenases, which catalyse the initial ring attack on PAH, have been characterised [2]. However, culture-dependent approaches do not take into account factors that affect the fate of PAHs in soil, such as competition among microorganisms or the bioavailability of pollutants. Moreover, since less than 10% of soil bacterial species are cultivable, bacterial strains studied in the laboratory may not be major protagonists of in situ pollutant degradation.

In recent years, approaches based on stable isotope-probing (SIP) have been widely applied to identify bacteria responsible for the degradation of organic compounds in soils or sediments. Most SIP methods use [13C]-labelled substrates to target active microorganisms. Bacteria able to metabolize labeled substrates incorporate [13C]- and can be identified through the analysis of biomarkers (16S rRNA or specific catabolic genes) after isolation of [13C]-DNA [4].

In this study, we have undertaken a SIP analysis of PAH-degrading bacteria from a constructed wetland collecting road runoffs, using [13C]-phenanthrene as a probe. [13C]-DNA recovered from soil is used to amplify and analyze by sequencing 16S rRNA and dioxygenase genes. In addition, Single Strand Conformation Polymorphism [5] of a variable region of 16S rRNA is used to identify changes in the whole bacterial community during incubation with PAHs. Preliminary data obtained using these DNA-based molecular approaches will be presented.

Moreover, we are testing the possibility of identifying [13C]-labelled proteins recovered from soil by metaproteomic analysis. The approach involves extraction of bacteria from soil, separation of protein homogenates by SDS-PAGE, and shotgun proteomic analysis through LC-MS/MS. The challenge is to identify key enzymes involved in PAH degradation directly from environmental samples.

The molecular methods developed in this study may eventually serve as diagnostic tools for monitoring mitigation of PAH pollution in soils upon treatments by bioremediation.

References

Keywords: stable isotope probing, PAH degradation, metaproteomics, single-strand conformation polymorphism, mass spectrometry
Molecular Characterization of Bacteria Acetic Lactat Isolated from Blondo (Waste Virgin Coconut Oil)

Endang Purwati
Faculty of Animal Husbandry, Andalas University, Padang, West Sumatera, Indonesia

Specific multiplex PCR assay based on the amplification of parts of the 16S rRNA gene was designed. Primers derived from variable regions of the 16S rRNA provided a means of easily differentiating the species Lactobacillus. They could be clearly discriminated from the phylogenetically related species known to be present in Blondo. Other strains isolated together with Lactococcus plantarum an industrial sourdough fermentation could be clearly separated from these species by comparative sequence analysis and construction of a specific PCR primer. For a fast identification a DNA isolation protocol based on the ultrasonic lysis of cells from single colonies was developed. To demonstrate the potential of such techniques for tracking these organisms in a laboratory-scale fermentation, we combined the specific PCR assay with direct DNA extraction from the organisms in the blondo without previous cultivation.

Key words : BAL, blondo, PCR

Optimization of Lipase-Catalyzed Production of Succinic Acid Ester Using Central Composite Design Analysis

M.B. Abdul Rahman1,2, N.I. Jarmi1, N. Chaibakhsh1, M. Basri1, R.N.Z. Abdul Rahman3, and A.B. Salleh3
1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Structural Biology Research Center, Malaysia Genome Institute, MTDC-UKM, 43600 Bangi, Selangor, Malaysia
3Laboratory of Industrial Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Esters of succinic acid are extensively used as flavor enhancers in food products and as stabilizers in pharmaceuticals. They are also used as ingredients in solvents, paints, detergents, plastics, fuel additives and fabrics. The future for succinates lies in utilizing them in creating innovative biopolymers like polybutylene succinate. Succinates are traditionally manufactured from petrochemicals through expensive processes using a chemical catalyst. The chemical method involves some problems such as high reaction temperature, toxic and corrosive catalysts, complex and expensive reaction setup, large amounts of raw materials due to the un-selectiveness of the process and high waste generation. The use of enzymes as “green” alternatives to produce these high value added esters may offer significant superiorities because of mild reaction conditions, higher selectivity and specificity, lower energy requirement and much purer products. In this work, modeling and optimization of enzyme-catalyzed production of dioleyl succinate was performed using Novozyme 435. Response surface methodology (RSM) and central composite design (CCD) were employed to evaluate the effects of several reaction parameters including reaction time, temperature, enzyme amount and molar ratio of oleyl alcohol to succinic acid on percentage conversion of dioleyl succinate ester. Temperature was the most important variable of the four factors. 99% of ester conversion was predicted at the optimum conditions of enzyme amount 77 g/L, alcohol/acid molar ratio 4.5:1, temperature 55°C, and reaction time 72 min. The model generated is able to predict the percentage of production yield in any given conditions. The obtained optimum conditions can be used to scale up the process in bioreactor.

Keywords : lipase, biocatalysis, succinic; ester; response surface methodology
Studies on siderophore production of *Erwinia aphidicola* and *E. persicina*.

Santos M., Vicente N., Diánez F., Martínez S., Carretero F., Tello J.C.
Dpto. Vegetal Production. University of Almería. 04120. Spain

The purpose of this research was to study the relationship between the production of siderophores by *E. persicina* and *E. aphidicola* and the pathogenicity caused in *Phaseolus vulgaris*. Two tests were carried out, the first centred on studying in vitro siderophores production by different isolates of *E. persicina* and *E. aphidicola* from beans greenhouse producers through the colorimetric method CAS. Subsequently, different isolates of *E. persicina* and *E. aphidicola* producers of siderophores were inoculated in bean plants to determine their involvement in pathogenesis, watching, if alone, they caused any symptoms using the Detached leaf technique. The results of the test in vitro showed that *Erwinia persicina* isolates from bean and tomato plants (ATCC 49742 and DSMZ 19328, respectively) showed great differences in the production of siderophores. These bacterial isolates were used as a control, because at the beginning of the test these isolates from bean plants with symptoms of chlorosis and necrosis were identified as *E. persicina* and not as *E. aphidicola*. In addition, all the isolates of *Erwinia aphidicola* and the isolate from the aphid *Acyrthosiphon pisum* (DMSZ 19347T) were producers of siderophores. The production of siderophores could not be correlated with the symptoms in the leaves by the technique "Detached leaf" because *Pantoea agglomerans* did not produce siderophores and showed similar symptoms on the leaves.

Transmission of *Erwinia aphidicola* on bean (*Phaseolus vulgaris*) seeds

Santos M., Marín F., Diánez F., Carretero F., Tello J.C.

Since late 2003, has developed in bean crops under plastic in southeastern Spanish, bacteriosis causing a shrinkage in production by over 50%. Santos et al. (2009) identified as the causative agent of the disease the bacterium *Erwinia aphidicola*, which until then had never before been described as pathogens.

The aim of this work is to determine the possible transmission of bacteriosis through seed. It has 120 seed from commercial bean, cv. "Donna", the same batch as that used in one of the affected farms and 120 seeds from the fruit of diseased plants of the same farm.

Samples tegument and cotyledons of the seed and leaves of plants originated from them, were analyzed by DAS-ELISA technique. Have also been isolated all bacteria present in the cotyledons of the seed trade. These isolates were analyzed by serological, biochemical and molecular tests.

The PCR amplification and subsequent sequencing of a fragment of 660 bp of dnaJ area of the genome of the bacteria, confirmed the presence of the phytopathogen *Erwinia aphidicola* in two of the analyzed seeds, which is sufficient for the disease originated in the suitable environmental conditions.

Keywords: *Erwinia aphidicola*, *Phaseolus vulgaris*, transmission, seeds