A bovine in vitro blood-brain barrier model under oxygenglucose deprivation (OGD) condition
Tornabene, Erica; Helms, Hans Christian Cederberg; Berndt, Philipp; Blasig, Ingolf; Pedersen, Stine Helene Falsig; Waagepetersen, Helle S.; Brodin, Birger

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
A bovine in vitro blood-brain barrier model under oxygen-glucose deprivation (OGD) condition

Erica Tornabene1, Hans Christian Cederberg Helms2, Philipp Berndt3, Ingolf Blasig3, Stine Falsig Pedersen1, Helle S. Waagepetersen4 and Birger Brodin1

1Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
2Novo Nordisk A/S, Denmark
3Leibniz Institut für Molekulare Physiologie, Campus Berlin-Buch, Berlin, Germany
4Department of Biology, Faculty of Science, University of Copenhagen, Denmark

Aim

During stroke, the brain endothelium experiences low glucose and oxygen. We therefore wish to investigate the effects of low glucose and oxygen in cultured brain capillary endothelial cells focusing particularly on barrier properties and transport proteins.

Abbreviations

BBB: Blood-brain barrier; OGD: Oxygen-glucose deprivation; PCR: Polymerase chain reaction; R: reperfusion; TEER: Transendothelial electrical resistance.

Background

Ischemia is a devastating disease which affects million of people every year. During ischemia, the loss of regional cerebral blood-flow and the subsequent reperfusion induce significant changes in the transport pathways and barrier properties of the blood-brain barrier (BBB).

Oxygen-glucose deprivation (OGD) protocol in a bovine blood-brain barrier in vitro model

Figure 2. Bovine brain endothelial cells were grown from capillary fragments in culture flasks for 5 days. They were then organizzed and co-cultured with rat astrocytes in coated filter inserts for additional 6 days. Thus, they were subjected to oxygen-glucose deprivation (OGD) conditions for 4 hours in a hypoxia workbench and a subsequent “reperfusion” for 24-48h.

Permeability increased during OGD and recovered during “reperfusion”

Figure 3. TEER was measured at various time points, before, under and after the OGD protocol. Measurements were performed with an Endohm cup electrode. N=3-4, n=6 (right figures). Paracellular tightness was also evaluated by determining the passive permeability of 3 marker molecules: 3% mannitol, FITC-dextran4 and FITC-dextran40. N=3-4, n=3 (right figures).

Figure 4. Confocal laser scanning microscopy images of brain endothelial cells co-cultured with rat astrocytes. Cells were fixed, permeabilised and immunostained with Claudin-5, ZO-2 or GLUT-1 antibody (green), cell nuclei were counterstained with propidium iodide (red), n=4.

Figure 5. mRNA expression level of selected proteins before, during and after OGD

Conclusions

• The brain endothelial cells, co-cultured with astrocytes, showed a decrease in tightness during OGD, an effect which was reversible upon reperfusion.
• The tight junction proteins Claudin-5 and ZO-2 translocated from the junction complex to the cytosol during OGD, and relocalized to junctions during reperfusion. Their protein level decreased during OGD and recovered upon reperfusion.
• The transporter GLUT1 migrated to the cell border during reperfusion.
• Pgp protein expression decreased during reperfusion. The protein level of HBEGF, LRP1 and Insulin increased in the reperfusion phase.

Future experiments

• Evaluating the degree of Pgp activity reduction after 24h of reperfusion by testing the permeation of known Pgp substrates across the endothelial cell monolayer.
• Investigating the possibility that the receptors HBEGF, LRP1 and Insulin may mediate the delivery of drugs across the ischemic BBB by transport experiments.
• To examine other brain cell types influence on barrier properties during and after the OGD treatment.

References

• The Lundbeck Foundation is acknowledged for support via the RIBBOD project grant.