Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\left[\left(\text{customer.name, invoice.amount} \right) \right. \\
\left| \text{customer} \leftarrow \text{customers}, \right. \\
\left. \quad \text{invoice} \leftarrow \text{invoices}, \right. \\
\left. \quad \text{customer.cid} = \text{invoice.customer}, \right. \\
\left. \quad \text{invoice.due} \leq \text{today} \right]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq)\]

means \(f b \leq a \iff b \subseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives
\(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set \mathcal{C} of objects,
- a set $\mathcal{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : \mathcal{C}$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \rightarrow b$ iff $a \leq b$.

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
 h (m \otimes n) = h m \oplus h n
\]
\[
 h \epsilon = \epsilon'
\]

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A *functor* \(F : C \to D \) is an operation on both objects and arrows, preserving the structure: if \(f : X \to Y \), then

\[
F f : F X \to F Y
\]

\[
F \text{id}_X = \text{id}_{F X}
\]

\[
F (f \cdot g) = F f \cdot F g
\]

For example, *forgetful* functor \(U : \text{CMon} \to \text{Set} \):

\[
U (M, \otimes, \epsilon) = M
\]

\[
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, \(\text{Free} : \text{Set} \to \text{CMon} \) generates the *free* commutative monoid (ie bags) on a set of elements:

\[
\text{Free } A = (\text{Bag } A, \cup, \emptyset)
\]

\[
\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories C, D, and functors $L : D \to C$ and $R : C \to D$, adjunctions mean

$$[-] : C(L X, Y) \simeq D(X, R Y) : [-]$$

A familiar example is given by currying:

$$[-\times P] : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}$$

hence definitions and properties of $\text{apply} = \text{uncurry } id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

with

\[\text{fork} : \mathbf{Set}^2(\Delta A, (B, C)) \simeq \mathbf{Set}(A, B \times C) \quad : \text{fork}^\circ \]

\[\text{junc}^\circ : \mathbf{Set}(A + B, C) \simeq \mathbf{Set}^2((A, B), \Delta C) : \text{junc} \]

hence

\[\text{dup} = \text{fork} \ id_{A,A} : \mathbf{Set}(A, A \times A) \]

\[(\text{fst}, \text{snd}) = \text{fork}^\circ \ id_{B \times C} : \mathbf{Set}^2(\Delta(B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \quad \perp \quad \text{Set}
\]

with \([-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, \text{U}(M, \otimes, \epsilon)) : [-]\)

Unit and counit:

\[
\begin{align*}
\text{single } A &= [id_{\text{Free } A}] : A \to \text{U}(\text{Free } A) \\
\text{reduce } M &= [id_M] : \text{Free}(\text{U} M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to \text{U} M = M\),

\[h = \text{reduce } M \cdot \text{Free } f \iff \text{U } h \cdot \text{single } A = f\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>(\lfloor a \rfloor \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>(\lfloor a \rfloor \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, minBound, max))</td>
<td>(\lfloor a \rfloor \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, maxBound, min))</td>
<td>(\lfloor a \rfloor \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, True, \wedge))</td>
<td>(\lfloor a \rfloor \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, False, \lor))</td>
<td>(\lfloor a \rfloor \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag} \ A \rightarrow \text{Bag} \ A
\]
\[
guard \ p \ a = \text{if} \ p \ a \ \text{then} \ \lfloor a \rfloor \ \text{else} \ \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} &= U \cdot \text{Free} \\
\text{union} &: \text{Bag} (\text{Bag} \ A) \to \text{Bag} \ A \\
\text{single} &: A \to \text{Bag} \ A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R \circ [id_A] L : T (T A) \to T A \\
\eta A &= [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xleftarrow{E} \bot \xrightarrow{J} \text{Set} \]

where \(J \) embeds, and \(E \ R : A \to \text{Set} \ B \) for \(R : A \sim B \).
Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} \ (K \times V) \simeq \text{Map} \ K \ (\text{Bag} \ V) \]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[x \ f \Join_{g} \ y = \text{flatten} \ (\text{Map} \ K \ \text{cp} \ (\text{merge} \ (\text{groupBy} \ f \ x, \ \text{groupBy} \ g \ y))) \]

\(\text{groupBy} : (V \to K) \to \text{Bag} \ V \to \text{Map} \ K \ (\text{Bag} \ V) \)
\(\text{flatten} : \text{Map} \ K \ (\text{Bag} \ V) \to \text{Bag} \ V \)
13. Pointed sets and finite maps

Model finite maps Map_* not as partial functions, but total functions to a pointed codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$\text{Set}_* \xrightarrow{ot} \text{Set} \xleftarrow{U}$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $U (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)$$
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \to a : A \to \text{Map} \ K \ A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon) \),

\[
\mu X : T_m (T_n X) \to T_{m \otimes n} X \\
\eta X : X \to T_\epsilon X
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1) \) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.