Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\left[(\text{customer.name, invoice.amount}) \mid \text{customer} \leftarrow \text{customers}, \text{invoice} \leftarrow \text{invoices}, \text{customer.cid} = \text{invoice.customer}, \text{invoice.due} \leq \text{today}\right]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\]

means \(f b \leq a \iff b \sqsubseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \mathbf{C} consists of

- a set star $|\mathbf{C}|$ of *objects*,
- a set star $\mathbf{C}(X, Y)$ of *arrows* $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- *identity* arrows $\text{id}_X : X \to X$ for each X
- *composition* $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

```
... −2 −1 0 1 2 ...```

Many categorical concepts are generalisations from ordered sets.

*proviso...*
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category $\mathbf{CMon}$ has commutative monoids $(M, \otimes, \epsilon)$ as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
h(m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category $\mathbf{Set}$ has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

\[
F \ id_X = id_{F X} \\
F (f \cdot g) = F f \cdot F g
\]

For example, forgetful functor $U : CMon \to Set$:

\[
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, $Free : Set \to CMon$ generates the free commutative monoid (ie bags) on a set of elements:

\[
Free A = (Bag A, \cup, \emptyset) \\
Free (f : A \to B) = map f : Bag A \to Bag B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \( C, D \), and functors \( L : D \to C \) and \( R : C \to D \), adjunction

\[
\begin{array}{c}
\text{C} \\
\downarrow \L \\
\downarrow \R \\
\text{D}
\end{array}
\]

means \(*\ : \mathcal{C}(L X, Y) \simeq \mathcal{D}(X, R Y) : [\ - \ ]\)

A familiar example is given by currying:

\[
\begin{array}{c}
\text{Set} \\
\downarrow - \times P \\
\downarrow (-)^P \\
\text{Set}
\end{array}
\]

with \( \text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^\circ \)

hence definitions and properties of \( \text{apply} = \text{uncurry } \text{id}_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \downarrow & \text{Set}^2 \\
\Delta & \rightarrow & \Delta \\
\downarrow & & \downarrow \\
\times & & +
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^\circ
\]
\[
\text{junc}^\circ : \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork \ } \text{id}_{A,A} : \text{Set}(A, A \times A)
\]
\[
(fst, \ snd) = \text{fork}^\circ \ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \bot & \text{Set} \\
\text{Free} & \downarrow & \text{U} \\
\end{array}
\]

with \([-\cdot]:\text{CMon}(\text{Free} \ A, (M, \otimes, \epsilon)) \cong \text{Set}(A, \text{U} (M, \otimes, \epsilon)) : [-]\)

Unit and counit:

- \(\text{single} \ A = [id_{\text{Free} \ A}]: A \to \text{U} (\text{Free} \ A)\)
- \(\text{reduce} \ M = [id_M] : \text{Free} (\text{U} M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)\)

whence, for \(h: \text{Free} \ A \to M\) and \(f: A \to \text{U} M = M\),

\[h = \text{reduce} \ M \cdot \text{Free} f \iff \text{U} h \cdot \text{single} A = f\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \wedge))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} & : A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f a b \mid a \leftarrow x, b \leftarrow g a \}\).

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R \left[ id_A \right] L : T (T A) \to T A \\
\eta A &= \left[ id_A \right] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from $K$ form a monad (the *Reader* monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

<table>
<thead>
<tr>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Map } 0 V \simeq 1$</td>
</tr>
<tr>
<td>$\text{Map } 1 V \simeq V$</td>
</tr>
<tr>
<td>$\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$</td>
</tr>
<tr>
<td>$\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$</td>
</tr>
<tr>
<td>$\text{Map } K 1 \simeq 1$</td>
</tr>
<tr>
<td>$\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$</td>
</tr>
</tbody>
</table>
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[ \text{Rel} \xrightarrow{J} \downarrow \text{Set} \xleftarrow{E} \]

where \( J \) embeds, and \( E \ R : A \rightarrow \text{Set} \ B \) for \( R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[ \text{index} : \text{Bag} (K \times V) \cong \text{Map} K (\text{Bag} V) \]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[ x_{f \Join g} y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y))) \]

\textit{groupBy} : \( (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V) \)

\textit{flatten} : \( \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V \)
13. Pointed sets and finite maps

Model *finite maps* \( \text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \( A \) with a distinguished element \( a : A \).

Pointed sets and point-preserving functions form a category \( \text{Set}_* \).

There is an adjunction to \( \text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \overset{\bot}{\cong} & \text{Set} \\
\downarrow & & \downarrow \\
\text{Maybe} & \overset{\cong}{\leftarrow} & \text{U}
\end{array}
\]

where \( \text{Maybe} A \simeq 1 + A \) adds a point, and \( \text{U} (A, a) = A \) discards it.

In particular, \( (\text{Bag} A, \emptyset) \) is a pointed set. Moreover, \( \text{Bag} f \) is point-preserving, so we get a functor \( \text{Bag}_*: \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta \ a = \lambda k \rightarrow a : A \rightarrow \text{Map } KA$$

in general yields an infinite map.

However, finite maps are a \textit{graded monad}: for monoid \((M, \otimes, \epsilon)\),

$$\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X$$
$$\eta X : X \rightarrow T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.