Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are **monads**
- monads have nice **mathematical foundations via adjunctions**
- monads support **comprehensions**
- comprehension syntax provides a **query notation**

\[
\left[(\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
| \text{customer} \leftarrow \text{customers}, \\
\quad \text{invoice} \leftarrow \text{invoices}, \\
\quad \text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
\quad \text{invoice}.\text{due} \leq \text{today} \right]
\]

- monad structure explains **selection, projection**
- less obvious how to explain **join**
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \text{ means } f(b) \leq a \iff b \sqsubseteq g(a)\]

For example,

\[(\mathbb{R}, \leq) \perp (\mathbb{Z}, \leq) \text{ and } (\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; e.g., rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \rightarrow Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \rightarrow X$ for each X
- composition $f \cdot g : X \rightarrow Z$ of compatible arrows $g : X \rightarrow Y$ and $f : Y \rightarrow Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \rightarrow b$ iff $a \leq b$.

\[\ldots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \(\textbf{C} \text{Mon} \) has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h: (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon') \) as arrows:

\[
h (m \otimes n) = h m \oplus h n \\
h \epsilon = \epsilon'
\]

Trivially, category \(\textbf{Set} \) has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free} A = (\text{Bag} A, \cup, \emptyset)$$
$$\text{Free} (f : A \to B) = \text{map} f : \text{Bag} A \to \text{Bag} B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction

\[
\begin{array}{ccc}
C & \perp & D \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
R & & L
\end{array}
\]

means \(*\) \([-] : C(L \ X, \ Y) \simeq D(X, R \ Y) : [-] \)

A familiar example is given by currying:

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set} \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
(-)^P & & - \times P
\end{array}
\]

with \(\text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^\circ \)

hence definitions and properties of \(\text{apply} = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} &
\oplus
\downarrow
\Delta
\rightarrow
\downarrow
\Delta
&
\text{Set}^2

\downarrow

\Delta
\rightarrow

\downarrow
\times
&
\text{Set}
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork } \text{id}_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \bot & \text{Set} \\
\downarrow & & \downarrow \\
\text{Free} & \Rightarrow & \text{reduce}
\end{array}
\]

with \([-\cdot] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-]\)

Unit and counit:

\[
\begin{align*}
single A &= [id_{\text{Free } A}] : A \to U (\text{Free } A) \\
reduce M &= [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to U M = M\),

\[
h = reduce M \cdot \text{Free } f \iff U h \cdot single A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \to \mathbb{B}) \to \text{Bag} A \to \text{Bag} A
\]

\[
\text{guard } p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms
(and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a \textit{monad} \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} & : A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}^+\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \ [id_A] \ L : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K \ V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction. The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 \ V & \simeq 1 \\
\text{Map } 1 \ V & \simeq V \\
\text{Map } (K_1 + K_2) \ V & \simeq \text{Map } K_1 \ V \times \text{Map } K_2 \ V \\
\text{Map } (K_1 \times K_2) \ V & \simeq \text{Map } K_1 (\text{Map } K_2 \ V) \\
\text{Map } K \ 1 & \simeq 1 \\
\text{Map } K \ (V_1 \times V_2) & \simeq \text{Map } K \ V_1 \times \text{Map } K \ V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{\perp} \text{Set} \xleftarrow{\text{E}} R : A \to \text{Set} B \quad \text{for} \quad R : A \sim B.
\]

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \text{index} and \text{merge} give efficient relational joins:

\[
x f \Join_g y = \text{flatten} (\text{Map} K \text{cp} (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \). There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \xleftarrow{\perp} & \text{Set} \\
\text{Maybe} & \xrightarrow{\downarrow} & \text{U} \\
\end{array}
\]

where \(\text{Maybe} A \simeq 1 + A \) adds a point, and \(\text{U} (A, a) = A \) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} f \) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a \textit{graded monad}* for monoid \((M, \otimes, \epsilon)\),

\[
\begin{align*}
\mu_X &: T_m (T_n X) \rightarrow T_{m \otimes n} X \\
\eta_X &: X \rightarrow T_\epsilon X
\end{align*}
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.