Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
[(customer.name, invoice.amount) \\
| customer ← customers, \\
 invoice ← invoices, \\
 customer.cid = invoice.customer, \\
 invoice.due ≤ today]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq)\]

means \(f b \leq a \iff b \subseteq g a \)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category C consists of

- a set* $|C|$ of objects,
- a set* $C(X, Y)$ of arrows $X \to Y$ for each $X, Y : |C|$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

```
... → −2 → −1 → 0 → 1 → 2 → ... 
```

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

$$h (m \otimes n) = h m \oplus h n$$
$$h \epsilon = \epsilon'$$

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \rightarrow D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \rightarrow F Y$ when $f : X \rightarrow Y$, and

$$F \text{id}_X = \text{id}_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, *forgetful* functor $U : \text{CMon} \rightarrow \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'$$

Conversely, $\text{Free} : \text{Set} \rightarrow \text{CMon}$ generates the *free* commutative monoid (ie bags) on a set of elements:

$$\text{Free} A = (\text{Bag } A, \uplus, \emptyset)$$
$$\text{Free} (f : A \rightarrow B) = \text{map } f : \text{Bag } A \rightarrow \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathcal{C}, \mathcal{D}, and functors $L : \mathcal{D} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{D}$, adjunction

$$\mathcal{C} \perp \mathcal{D} \quad \text{means}^* \quad [-] : \mathcal{C}(L X, Y) \simeq \mathcal{D}(X, R Y) : [-]$$

A familiar example is given by currying:

$$\mathcal{Set} \perp \mathcal{Set} \quad \text{with} \quad \text{curry} : \mathcal{Set}(X \times P, Y) \simeq \mathcal{Set}(X, Y^P) : \text{curry}^\circ$$

hence definitions and properties of $\text{apply} = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set}^2 \\
\perp & \Delta & \perp \\
\Delta & \times & \text{Set}
\end{array}
\]

with

\[
\begin{align*}
\text{fork} &: \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^o \\
\text{junc}^o &: \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
dup &= \text{fork id}_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) &= \text{fork}^o \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \perp & \text{Set} \\
\downarrow & & \downarrow \\
\text{Free} & \Rightarrow & \U \\
\end{array}
\]

\[\text{with } [-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \approx \text{Set}(A, \U (M, \otimes, \epsilon)) : [-]\]

Unit and counit:

\[\text{single } A = [id_{\text{Free } A}] : A \to \U (\text{Free } A)\]
\[\text{reduce } M = [id_M] : \text{Free } (\U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to \U M = M\),

\[h = \text{reduce } M \cdot \text{Free } f \iff \U h \cdot \text{single } A = f\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>(\lfloor a \rfloor \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
\text{guard } p \ a = \text{if } p \ a \text{ then } \lfloor a \rfloor \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms
(and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a **monad** \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} & : A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(\mathbb{C}\) and \(\mathbb{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbb{D}\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R [id_A] L : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

$$\text{Map } 0 \ V \cong 1$$
$$\text{Map } 1 \ V \cong V$$
$$\text{Map } (K_1 + K_2) \ V \cong \text{Map } K_1 \ V \times \text{Map } K_2 \ V$$
$$\text{Map } (K_1 \times K_2) \ V \cong \text{Map } K_1 (\text{Map } K_2 \ V)$$
$$\text{Map } K \ 1 \cong 1$$
$$\text{Map } K (V_1 \times V_2) \cong \text{Map } K \ V_1 \times \text{Map } K \ V_2 : \text{merge}$$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\begin{array}{ccc}
J & \downarrow & \text{Set} \\
\text{Rel} & \overset{\perp}{\cong} & \text{Set} \\
E & \swarrow & \\
\end{array}
\]

where \(J \) embeds, and \(E R : A \to \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} \ K (\text{Bag} V)
\]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[
x f \bowtie g y = \text{flatten} (\text{Map} \ K \ cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} \ K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} \ K (\text{Bag} V) \to \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \). There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \downarrow & \text{Set} \\
\text{Maybe} & \Rightarrow & \Upsilon \\
\end{array}
\]

where \(\text{Maybe } A \simeq 1 + A \) adds a point, and \(\Upsilon (A, a) = A \) discards it.

In particular, \((\text{Bag } A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag } f\) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_*\).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map} K A \]

in general yields an infinite map.

However, finite maps are a graded monad\(^*\): for monoid \((M, \otimes, \epsilon)\),

\[
\mu X : T_m (T_n X) \to T_{m \otimes n} X \\
\eta X : X \to T_\epsilon X
\]

satisfying the usual laws. These too arise from adjunctions\(^*\).

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.