Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are **monads**
- monads have nice *mathematical foundations via adjunctions*
- monads support **comprehensions**
- comprehension syntax provides a *query* notation

\[
\left[(customer.name, invoice.amount) \\
| customer ← customers, \\
 invoice ← invoices, \\
 customer.cid = invoice.customer, \\
 invoice.due ≤ today \right]
\]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \\subseteq) \text{ means } f b \leq a \iff b \subseteq g a\]

For example,

\[\text{floor} \quad \inj \quad \times k \quad \div k\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \(C \) consists of

- a set\(^*\) \(|\mathcal{C}|\) of *objects*,
- a set\(^*\) \(\mathcal{C}(X, Y) \) of *arrows* \(X \rightarrow Y \) for each \(X, Y : |\mathcal{C}| \),
- *identity* arrows \(\text{id}_X : X \rightarrow X \) for each \(X \)
- *composition* \(f \cdot g : X \rightarrow Z \) of compatible arrows \(g : X \rightarrow Y \) and \(f : Y \rightarrow Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq)\) is a degenerate category, with objects \(A \) and a unique arrow \(a \rightarrow b \) iff \(a \leq b \).

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

\(^*\)proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \rightarrow D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \rightarrow F Y$ when $f : X \rightarrow Y$, and

$$F \ id_X = id_{FX}$$
$$F \ (f \cdot g) = F \ f \cdot F \ g$$

For example, forgetful functor $U : CMon \rightarrow Set$:

$$U \ (M, \otimes, \epsilon) = M$$
$$U \ (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'$$

Conversely, $Free : Set \rightarrow CMon$ generates the free commutative monoid (ie bags) on a set of elements:

$$Free \ A = \text{(Bag } A, \cup, \emptyset)$$
$$Free \ (f : A \rightarrow B) = map \ f : \text{Bag } A \rightarrow \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction

\[
\begin{array}{ccc}
C & \perp & D \\
\rightarrow & & \rightarrow \\
L & & R
\end{array}
\]

means \footnote{\(\ast \)} \([-] : C(LX, Y) \cong D(X, RY) : [-] \)

A familiar example is given by currying:

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set} \\
\rightarrow & & \rightarrow \\
- \times P & & (\cdot)^P
\end{array}
\]

with \(\text{curry} : \text{Set}(X \times P, Y) \cong \text{Set}(X, Y^P) : \text{curry}^\circ \)

hence definitions and properties of \(\text{apply} = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[
\begin{align*}
\text{Set} & \quad \perp \quad \text{Set}^2 \quad \perp \quad \text{Set} \\
\Delta & \quad \lor \quad \Delta & \quad \land \quad \times
\end{align*}
\]

with

\[
\begin{align*}
\text{fork} &: \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) & : \text{fork}^\circ \\
\text{junc}^\circ &: \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) & : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
dup &= \text{fork id}_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) &= \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{c}
\text{CMon} \\
\downarrow \\
\text{Set}
\end{array}
\quad \Downarrow
\quad
\begin{array}{c}
\text{CMon} \\
\left(\text{Free } A, (M, \otimes, \epsilon)\right)
\end{array}
\quad \Downarrow
\quad
\begin{array}{c}
\text{Set} \\
\left(\text{A, } U (M, \otimes, \epsilon)\right)
\end{array}
\quad \Downarrow
\quad
\begin{array}{c}
\text{set}
\end{array}
\]

with \([-]\) : CMon(Free A, (M, \otimes, \epsilon)) \cong Set(A, U (M, \otimes, \epsilon)) : [-]

Unit and counit:

\[
single A = [id_{\text{Free } A}] : A \rightarrow U (\text{Free } A)
\]

\[
reduce M = [id_M] : \text{Free } (U M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \rightarrow M \) and \(f : A \rightarrow U M = M\),

\[
h = reduce M \cdot \text{Free } f \iff U h \cdot single A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$(\mathbb{N}, 0, +)$</td>
<td>${a} \mapsto 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$(\mathbb{R}, 0, +)$</td>
<td>${a} \mapsto a$</td>
</tr>
<tr>
<td>max</td>
<td>$(\mathbb{Z}, \text{minBound}, \text{max})$</td>
<td>${a} \mapsto a$</td>
</tr>
<tr>
<td>min</td>
<td>$(\mathbb{Z}, \text{maxBound}, \text{min})$</td>
<td>${a} \mapsto a$</td>
</tr>
<tr>
<td>all</td>
<td>$(\mathbb{B}, \text{True}, \land)$</td>
<td>${a} \mapsto a$</td>
</tr>
<tr>
<td>any</td>
<td>$(\mathbb{B}, \text{False}, \lor)$</td>
<td>${a} \mapsto a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$$\text{guard} : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A$$

$$\text{guard } p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset$$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & \;= \; U \cdot \text{Free} \\
\text{union} & \;: \; \text{Bag} (\text{Bag} \, A) \rightarrow \text{Bag} \, A \\
\text{single} & \;: \; A \rightarrow \text{Bag} \, A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \, a \, b \mid a \leftarrow x, b \leftarrow g \, a \}^\cdot\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & \;= \; R \cdot L \\
\mu \, A & \;= \; R \left[id_A \right] \, L : \; T \,(T \, A) \rightarrow T \, A \\
\eta \, A & \;= \; [id_A] : \; A \rightarrow T \, A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction. The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \simeq 1$
- $\text{Map } 1 V \simeq V$
- $\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2$: \textit{merge}
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\begin{array}{c}
\text{Rel} \\
\downarrow \quad \downarrow \\
\text{Set} \\
\end{array}
\]

where \(J \) embeds, and \(E R : A \rightarrow \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[
x_f \otimes g y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))
\]

\[
\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{array}{c}
\text{Maybe} \\
\downarrow \\
\text{Set}_* \\
\downarrow \\
\text{Set} \\
\end{array}
\overset{\bot}{\Rightarrow}
\begin{array}{c}
\Downarrow \\
\text{U} \\
\end{array}
$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U} (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map} \, K \, A \]

in general yields an infinite map.

However, finite maps are a \textit{graded monad}: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m \,(T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta X : X \rightarrow T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

• *monad comprehensions* for database queries

• structure arising from *adjunctions*

• equivalences from *universal properties*

• fitting in *relational joins*, via indexing

• to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.