Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

```
[ (customer.name, invoice.amount)
| customer ← customers,
  invoice ← invoices,
  customer.cid = invoice.customer,
  invoice.due ≤ today ]
```

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \quad \text{means} \quad f(b) \leq a \iff b \sqsubseteq g(a)\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \quad \text{and} \quad (\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives
\[n \times k \leq m \iff n \leq m \div k,\]
and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \(C \) consists of

- a set* \(|C|\) of *objects*,
- a set* \(C(X, Y) \) of *arrows* \(X \to Y \) for each \(X, Y : |C| \),
- *identity* arrows \(\text{id}_X : X \to X \) for each \(X \)
- *composition* \(f \cdot g : X \to Z \) of compatible arrows \(g : X \to Y \) and \(f : Y \to Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq) \) is a degenerate category, with objects \(A \) and a unique arrow \(a \to b \) iff \(a \leq b \).

\[\cdots \to -2 \to -1 \to 0 \to 1 \to 2 \to \cdots \]

Many categorical concepts are generalisations from ordered sets.

proviso...
4. Concrete categories

Ordered sets are a \textit{concrete category}: roughly,

- the objects are \textit{sets with additional structure}
- the arrows are \textit{structure-preserving mappings}

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : CMon \to Set$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, Free : Set \to CMon generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \cup, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction

\[
\begin{array}{ccc}
\mathbf{C} & \perp & \mathbf{D} \\
\downarrow & & \downarrow \\
\mathbf{D} & & \mathbf{C}
\end{array}
\]

means\(^*\) $[-] : \mathbf{C}(L X, Y) \simeq \mathbf{D}(X, R Y) : [-]$

A familiar example is given by currying:

\[
\begin{array}{ccc}
\mathbf{Set} & \perp & \mathbf{Set} \\
\downarrow & & \downarrow \\
\mathbf{Set} & & \mathbf{Set}
\end{array}
\]

with $\text{curry} : \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P) : \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry} \ \text{id}_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set}^2 \\
\Delta & \hookrightarrow & \\
\text{Set} & \perp & \text{Set}
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork} \ id_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \ id_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[\text{CMon} \downarrow \text{Set} \]

with \([-]\) : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \simeq \text{Set}(A, U (M, \otimes, \epsilon)) : [-]

Unit and counit:

\[
\begin{align*}
\text{single } A &= [id_{\text{Free } A}] : A \to U (\text{Free } A) \\
\text{reduce } M &= [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to U M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$(\mathbb{N}, 0, +)$</td>
<td>$\downarrow a \mapsto 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$(\mathbb{R}, 0, +)$</td>
<td>$\downarrow a \mapsto a$</td>
</tr>
<tr>
<td>max</td>
<td>$(\mathbb{Z}, \text{minBound}, \text{max})$</td>
<td>$\downarrow a \mapsto a$</td>
</tr>
<tr>
<td>min</td>
<td>$(\mathbb{Z}, \text{maxBound}, \text{min})$</td>
<td>$\downarrow a \mapsto a$</td>
</tr>
<tr>
<td>all</td>
<td>$(\mathbb{B}, \text{True}, \land)$</td>
<td>$\downarrow a \mapsto a$</td>
</tr>
<tr>
<td>any</td>
<td>$(\mathbb{B}, \text{False}, \lor)$</td>
<td>$\downarrow a \mapsto a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$$
guard : (A \to \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A$$

$$
guard \ p \ a = \text{if } p \ a \ \text{then } \downarrow a \ \text{else } \emptyset$$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} & : A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \left[id_A \right] L : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{\perp} \text{Set} \xleftarrow{\text{E}} \]

where \(J \) embeds, and \(\text{E} R : A \rightarrow \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[x \ f \bigodot g \ y = \text{flatten} \ (\text{Map} K \ cp \ (\text{merge} (\text{groupBy} f \ x, \text{groupBy} g \ y))) \]

\[\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V) \]

\[\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V \]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_\ast \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_\ast \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{c}
\ast \\
\downarrow \ \downarrow \\
\text{Set}_\ast \\
\downarrow \\
\text{Set}
\end{array}
\]

where \(\text{Maybe} \ A \simeq 1 + A \) adds a point, and \(U (A, a) = A \) discards it.

In particular, \((\text{Bag} \ A, \emptyset) \) is a pointed set. Moreover, \(\text{Bag} \ f \) is point-preserving, so we get a functor \(\text{Bag}_\ast : \text{Set} \to \text{Set}_\ast \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_\ast (K \times V) \simeq \text{Map}_\ast K (\text{Bag}_\ast V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map} K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta X : X \rightarrow T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.