Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\begin{align*}
[& \ (customer.name, invoice.amount) \\
| & \ customer \leftarrow customers, \\
& \ invoice \leftarrow invoices, \\
& \ customer.cid = invoice.customer, \\
& \ invoice.due \leq today]
\end{align*}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \]

means \(f b \leq a \iff b \sqsubseteq g a \)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives
\(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set $\|\mathbf{C}\|$ of objects,
- a set $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : \|\mathbf{C}\|$,
- identity arrows $\text{id}_X : X \to X$ for each X,
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a **concrete category**: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category **CMon** has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category **Set** has sets as objects, and total functions as arrows.
A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

\[
F \ id_X = id_{F \ X} \\
F (f \cdot g) = F f \cdot F g
\]

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

\[
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, Free : Set \to CMon generates the free commutative monoid (ie bags) on a set of elements:

\[
\text{Free } A = (\text{Bag } A, \cup, \emptyset) \\
\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathcal{C}, \mathcal{D}, and functors $\mathcal{L} : \mathcal{D} \to \mathcal{C}$ and $\mathcal{R} : \mathcal{C} \to \mathcal{D}$, adjunction

$$\mathcal{C} \dashv \mathcal{D}$$

means* $\dashv : \mathcal{C}(\mathcal{L} X, Y) \simeq \mathcal{D}(X, \mathcal{R} Y) : \dashv$

A familiar example is given by currying:

$$\mathbf{Set} \dashv \mathbf{Set}$$

with $\text{curry} : \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P) : \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry} \; \text{id}_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[\text{Set} \xrightarrow{\Delta} \text{Set}^2 \xrightarrow{\downarrow} \text{Set} \]
\[\text{Set}^2 \xrightarrow{\times} \text{Set} \]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) \quad : \text{fork}^\circ
\]
\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork id}_{A, A} : \text{Set}(A, A \times A)
\]
\[
(\text{fst}, \text{snd}) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \perp \text{Set}
\]

with \([-]\) : CMon(Free \(A\), \((M, \otimes, \epsilon)\)) \\approx \text{Set}(A, \text{U}(M, \otimes, \epsilon)) : [-]

Unit and counit:

\[
\text{single } A = [\text{id}_{\text{Free } A}] : A \rightarrow \text{U(} \text{Free } A) \\
\text{reduce } M = [\text{id}_M] : \text{Free(} \text{U } M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \rightarrow M\) and \(f : A \rightarrow \text{U } M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff \text{U } h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count</code></td>
<td><code>(\mathbb{N}, 0, +)</code></td>
<td><code>\{a\} \rightarrow 1</code></td>
</tr>
<tr>
<td><code>sum</code></td>
<td><code>(\mathbb{R}, 0, +)</code></td>
<td><code>\{a\} \rightarrow a</code></td>
</tr>
<tr>
<td><code>max</code></td>
<td><code>(\mathbb{Z}, \text{minBound}, \text{max})</code></td>
<td><code>\{a\} \rightarrow a</code></td>
</tr>
<tr>
<td><code>min</code></td>
<td><code>(\mathbb{Z}, \text{maxBound}, \text{min})</code></td>
<td><code>\{a\} \rightarrow a</code></td>
</tr>
<tr>
<td><code>all</code></td>
<td><code>(\mathbb{B}, \text{True}, \land)</code></td>
<td><code>\{a\} \rightarrow a</code></td>
</tr>
<tr>
<td><code>any</code></td>
<td><code>(\mathbb{B}, \text{False}, \lor)</code></td>
<td><code>\{a\} \rightarrow a</code></td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
\text{guard } p \ a = \text{if } p \ a \ \text{then} \ \{a\} \ \text{else} \ \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a monad \(\text{Bag} \) (\(\text{union} \), \(\text{single} \)) with

\[
\begin{align*}
\text{Bag} & = \text{U} \cdot \text{Free} \\
\text{union} & : \text{Bag} \ (\text{Bag} \ A) \to \text{Bag} \ A \\
\text{single} & : A \to \text{Bag} \ A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(\text{L} \dashv \text{R} \) between \(\mathbf{C} \) and \(\mathbf{D} \), we get a monad \((\mathbb{T}, \mu, \eta) \) on \(\mathbf{D} \), where

\[
\begin{align*}
\mathbb{T} & = \text{R} \cdot \text{L} \\
\mu \ A & = \text{R} \ [\text{id}_A \] \text{L} : \mathbb{T} \ (\mathbb{T} \ A) \to \mathbb{T} \ A \\
\eta \ A & = [\text{id}_A] : A \to \mathbb{T} \ A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction. The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \simeq 1$
- $\text{Map } 1 V \simeq V$
- $\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\begin{align*}
\text{Rel} & \xleftarrow{J} \text{Set} \\
\downarrow & \\
\text{Set} & \xrightarrow{E} \text{Rel}
\end{align*}
\]

where \(J \) embeds, and \(E R : A \to \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} \ (K \times V) \simeq \text{Map} \ K \ (\text{Bag} V)
\]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[
x \overset{\text{merge}}{\sim} y = \text{flatten} \ (\text{Map} \ K \ cp \ (\text{merge} \ (\text{groupBy} \ f \ x, \text{groupBy} \ g \ y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).

Pointed sets and point-preserving functions form a category \(\text{Set}_*\). There is an adjunction to \(\text{Set}\), via

\[
\begin{array}{ccc}
\text{Set}_* & \cong & \text{Set} \\
\downarrow & & \downarrow \\
\text{Maybe} & \cong & U
\end{array}
\]

where \(\text{Maybe } A \cong 1 + A\) adds a point, and \(U (A, a) = A\) discards it.

In particular, \((\text{Bag } A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag } f\) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_*\).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta \ a = \lambda k \to a : A \to \text{Map } K \ A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

$$\mu \ X : T_m (T_n X) \to T_{m \otimes n} X$$

$$\eta \ X : X \to T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.