Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date: 2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
[(\text{customer.name}, \text{invoice.amount}) \\
| \text{customer} \leftarrow \text{customers}, \\
\text{invoice} \leftarrow \text{invoices}, \\
\text{customer.cid} = \text{invoice.customer}, \\
\text{invoice.due} \leq \text{today}]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\quad \text{means} \quad f \ b \leq a \iff b \sqsubseteq g \ a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\quad \text{and} \quad (\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \(\mathbf{C} \) consists of

- a set* \(|\mathbf{C}|\) of objects,
- a set* \(\mathbf{C}(X, Y) \) of arrows \(X \to Y \) for each \(X, Y : |\mathbf{C}| \),
- identity arrows \(\text{id}_X : X \to X \) for each \(X \)
- composition \(f \cdot g : X \to Z \) of compatible arrows \(g : X \to Y \) and \(f : Y \to Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows. An ordered set \((A, \leq)\) is a degenerate category, with objects \(A \) and a unique arrow \(a \to b \) iff \(a \leq b \).

\[
\cdots \to -2 \to -1 \to 0 \to 1 \to 2 \to \cdots
\]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \mathbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \mathbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F \ id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \cup, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \(\mathcal{C}, \mathcal{D} \), and functors \(L : \mathcal{D} \to \mathcal{C} \) and \(R : \mathcal{C} \to \mathcal{D} \), adjunction

\[
\begin{array}{ccc}
\mathcal{C} & \perp & \mathcal{D} \\
\mathcal{L} & \downarrow & \mathcal{R}
\end{array}
\]

means* \([-] : \mathcal{C}(L \, X, \, Y) \cong \mathcal{D}(X, \, R \, Y) : [-] \)

A familiar example is given by currying:

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set} \\
- \times \, P & \downarrow & (-)^P
\end{array}
\]

with \(\text{curry} : \text{Set}(X \times \, P, \, Y) \cong \text{Set}(X, \, Y^P) : \text{curry}^\circ \)

hence definitions and properties of \(\text{apply} = \text{uncurry} \, \text{id}_{Y^P} : Y^P \times \, P \to \, Y \)
7. Products and coproducts

\[
\begin{array}{c}
\text{Set} \quad \Delta \quad \downarrow \quad \perp \quad \downarrow \quad \text{Set}^2 \\
\Delta \quad \downarrow \quad \times \quad \downarrow \quad \Delta \quad \downarrow \quad \text{Set}
\end{array}
\]

with

\[
\begin{align*}
\text{fork} & : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) \quad : \text{fork}^\circ \\
junc^\circ & : \text{Set}(A + B, C) \quad \simeq \text{Set}^2((A, B), \Delta C) : junc
\end{align*}
\]

hence

\[
\begin{align*}
dup & = \text{fork id}_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \quad \bot \quad \text{Set} \quad \text{with } [-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \\
\cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-]
\]

Unit and counit:

\[
\text{single } A = [id_{\text{Free } A}] : A \to U (\text{Free } A) \\
\text{reduce } M = [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to U M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>($\mathbb{N}, 0, +$)</td>
<td>$\lfloor a \rfloor \rightarrow 1$</td>
</tr>
<tr>
<td>sum</td>
<td>($\mathbb{R}, 0, +$)</td>
<td>$\lfloor a \rfloor \rightarrow a$</td>
</tr>
<tr>
<td>max</td>
<td>($\mathbb{Z}, \minBound, \max$)</td>
<td>$\lfloor a \rfloor \rightarrow a$</td>
</tr>
<tr>
<td>min</td>
<td>($\mathbb{Z}, \maxBound, \min$)</td>
<td>$\lfloor a \rfloor \rightarrow a$</td>
</tr>
<tr>
<td>all</td>
<td>($\mathbb{B}, \text{True}, \land$)</td>
<td>$\lfloor a \rfloor \rightarrow a$</td>
</tr>
<tr>
<td>any</td>
<td>($\mathbb{B}, \text{False}, \lor$)</td>
<td>$\lfloor a \rfloor \rightarrow a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$$\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A$$

$$\text{guard } p \ a = \text{if } p \ a \text{ then } \lfloor a \rfloor \text{ else } \emptyset$$

Laws about selections follow from laws of homomorphisms
(and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single}) \) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) & \to \text{Bag} A \\
\text{single} : A & \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g a \} \).

In fact, for any adjunction \(\mathbf{L} \dashv \mathbf{R} \) between \(\mathbf{C} \) and \(\mathbf{D} \), we get a monad \((T, \mu, \eta) \) on \(\mathbf{D} \), where

\[
\begin{align*}
T & = \mathbf{R} \cdot \mathbf{L} \\
\mu A & = \mathbf{R} [id_A] \mathbf{L} : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The $\textit{laws of exponents}$ arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \cong 1 \\
\text{Map } 1 V & \cong V \\
\text{Map } (K_1 + K_2) V & \cong \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \cong \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \cong 1 \\
\text{Map } K (V_1 \times V_2) & \cong \text{Map } K V_1 \times \text{Map } K V_2 : \textit{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\begin{array}{ccc}
\text{Rel} & \downarrow & \text{Set} \\
\uparrow & \text{J} & \downarrow \\
\text{E} & & \\
\end{array}
\]

where \(J \) embeds, and \(E \) \(R : A \to \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} \ (K \times V) \simeq \text{Map} \ K \ (\text{Bag} \ V)
\]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[
x_f \bowtie_g y = \text{flatten} \left(\text{Map} \ K \ \text{cp} \left(\text{merge} \left(\text{groupBy} \ f \ x, \text{groupBy} \ g \ y \right) \right) \right)
\]

\(\text{groupBy} : (V \to K) \to \text{Bag} \ V \to \text{Map} \ K \ (\text{Bag} \ V) \)

\(\text{flatten} : \text{Map} \ K \ (\text{Bag} \ V) \to \text{Bag} \ V \)
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{align*}
\text{Set}_* & \Downarrow U \\
\text{Set} & \Downarrow \text{Maybe} \\
\end{align*}
\]

where \(\text{Maybe} A \cong 1 + A \) adds a point, and \(U (A, a) = A \) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} f \) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \rightarrow \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \to a : A \to \text{Map } K A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid $\left(M, \otimes, \epsilon \right)$,

$$\mu X : T_m \left(T_n X \right) \to T_{m \otimes n} X$$
$$\eta X : X \to T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid $\left(\mathbb{K}, \times, 1 \right)$ of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.