Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

 \[
 \left[(\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
 | \text{customer} \leftarrow \text{customers}, \\
 \text{invoice} \leftarrow \text{invoices}, \\
 \text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
 \text{invoice}.\text{due} \leq \text{today} \right]
 \]

- monad structure explains selection, projection
- less obvious how to explain join

2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \]

means \(f b \leq a \iff b \sqsubseteq g a \)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \]

“Change of coordinates” can sometimes simplify reasoning; e.g., rhs gives \(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathcal{C} consists of

- a set* $|\mathcal{C}|$ of objects,
- a set* $\mathcal{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathcal{C}|$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\ldots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category CMon has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor \(F : C \to D \) is an operation on both objects and arrows, preserving the structure: \(F f : F X \to F Y \) when \(f : X \to Y \), and

\[
\begin{align*}
F \ id_X &= id_{FX} \\
F (f \cdot g) &= F f \cdot F g
\end{align*}
\]

For example, forgetful functor \(U : \text{CMon} \to \text{Set} \):

\[
\begin{align*}
U (M, \otimes, \epsilon) &= M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\end{align*}
\]

Conversely, \(\text{Free} : \text{Set} \to \text{CMon} \) generates the free commutative monoid (ie bags) on a set of elements:

\[
\begin{align*}
\text{Free } A &= (\text{Bag } A, \uplus, \emptyset) \\
\text{Free } (f : A \to B) &= \text{map } f : \text{Bag } A \to \text{Bag } B
\end{align*}
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathbf{C}, \mathbf{D}, and functors $L: \mathbf{D} \to \mathbf{C}$ and $R: \mathbf{C} \to \mathbf{D}$, adjunction

$$
\begin{array}{c}
\mathbf{C} \\
\mathbf{D}
\end{array}
\xleftarrow{\perp}
\begin{array}{c}
\mathbf{D} \\
\mathbf{C}
\end{array}
\xrightarrow{\perp}

\text{means}^* [-]: \mathbf{C}(L X, Y) \cong \mathbf{D}(X, R Y) : [-]

A familiar example is given by currying:

$$
\begin{array}{c}
\mathbf{Set} \\
\mathbf{Set}
\end{array}
\xleftarrow{\perp}
\begin{array}{c}
\mathbf{Set} \\
\mathbf{Set}
\end{array}
\xrightarrow{\perp}

\text{with } curry : \mathbf{Set}(X \times P, Y) \cong \mathbf{Set}(X, Y^P) : curry^\circ

\text{hence definitions and properties of } apply = uncurry \ id_{Y^P} : Y^P \times P \to Y
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set}^2 \\
\Delta & \rightarrow & \rightarrow \\
\rightarrow & & \rightarrow \\
\Delta & \rightarrow & \rightarrow \\
\text{Set} & \perp & \text{Set}
\end{array}
\]

with

\[
\begin{align*}
\text{fork} &: \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^\circ \\
\text{junc}^\circ &: \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
\text{dup} &= \text{fork} \ id_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) &= \text{fork}^\circ \ id_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \perp & \text{Set} \\
\downarrow & & \downarrow \\
\text{Free} & \Downarrow & U \\
\end{array}
\]

with \([-\phantom{\text{free}}]\) : CMon(\text{Free} \ A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-\phantom{\text{free}}]

Unit and counit:

\[
\begin{align*}
\text{single} \ A & = [id_{\text{Free} \ A}] : A \to U (\text{Free} \ A) \\
\text{reduce} \ M &= [id_{M}] : \text{Free} (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h: \text{Free} \ A \to M\) and \(f: A \to U M = M\),

\[
h = \text{reduce} \ M \cdot \text{Free} \ f \iff U \ h \cdot \text{single} \ A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>(\llbracket a \rrbracket \to 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>(\llbracket a \rrbracket \to a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>(\llbracket a \rrbracket \to a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>(\llbracket a \rrbracket \to a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>(\llbracket a \rrbracket \to a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>(\llbracket a \rrbracket \to a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
\text{guard } p \ a = \text{if } p \ a \text{ then } \llbracket a \rrbracket \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} &= U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag } A) &\to \text{Bag } A \\
\text{single} : A &\to \text{Bag } A
\end{align*}
\]

which justifies the use of comprehension notation \(\{f a b \mid a \leftarrow x, b \leftarrow g a\}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R \left[id_A \right] L : T (T A) \to T A \\
\eta A &= \left[id_A \right] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \cong 1$
- $\text{Map } 1 V \cong V$
- $\text{Map } (K_1 + K_2) V \cong \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \cong \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \cong 1$
- $\text{Map } K (V_1 \times V_2) \cong \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\begin{array}{c}
\text{Rel} \\
\downarrow \quad \text{J} \\
\text{Set} \\
\downarrow \quad \text{E}
\end{array}
\]

where J embeds, and \(E R : A \rightarrow \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \text{index} and \text{merge} give efficient relational joins:

\[
x \ f \bowtie g \ y = \text{flatten} (\text{Map} K \ \text{cp} (\text{merge} (\text{groupBy} f \ x, \text{groupBy} g \ y)))
\]

\[
\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).

Pointed sets and point-preserving functions form a category \(\text{Set}_*\). There is an adjunction to \(\text{Set}\), via

\[
\begin{tikzcd}
\text{Set}_* & \perp & \text{Set} \\
\text{Set}_* \arrow{r}{\perp} \arrow{r}[swap]{U} & \text{Set} \arrow{r}{\text{Maybe}} & \text{Set}_*
\end{tikzcd}
\]

where \(\text{Maybe } A \simeq 1 + A\) adds a point, and \(U (A, a) = A\) discards it.

In particular, \((\text{Bag } A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag } f\) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \rightarrow \text{Set}_*\).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map} \, K \, A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \to T_{m \otimes n} X \]
\[\eta X : X \to T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.