Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\left[(\text{customer.name}, \text{invoice.amount}) \right.
\mid \text{customer} \leftarrow \text{customers},
\text{invoice} \leftarrow \text{invoices},
\text{customer.cid} = \text{invoice.customer},
\text{invoice.due} \leq \text{today} \right]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\]

means \(f \ b \leq a \iff b \sqsubseteq g \ a\)

For example,

\[(\mathbb{R}, \leq_\mathbb{R}) \perp (\mathbb{Z}, \leq_\mathbb{Z})\]

and

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathcal{C} consists of

- a set* $|\mathcal{C}|$ of objects,
- a set* $\mathcal{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathcal{C}|$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

$$\ldots \to -2 \to -1 \to 0 \to 1 \to 2 \to \ldots$$

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category \textsf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
 h (m \otimes n) = h m \oplus h n
\]
\[
 h \epsilon = \epsilon'
\]

Trivially, category \textsf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$
F \ id_X = id_{F X} \\
F (f \cdot g) = F f \cdot F g
$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
$$

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$
\text{Free} A = (\text{Bag} A, \cup, \emptyset) \\
\text{Free} (f : A \to B) = \text{map} f : \text{Bag} A \to \text{Bag} B
$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction means* $\dashv : \mathbf{C}(L X, Y) \simeq \mathbf{D}(X, R Y) : \dashv$

A familiar example is given by *currying*:

$\dashv : \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P) : \dashv$

hence definitions and properties of $\text{apply} = \text{uncurry } id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

with

\[\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ \]
\[\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc} \]

hence

\[\text{dup} = \text{fork id}_{A,A} : \text{Set}(A, A \times A) \]
\[(\text{fst}, \text{snd}) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{c}
\text{CMon} \\ \downarrow \\
\text{Set}
\end{array}
\xleftarrow{\U} \xrightarrow{\text{Free}}
\]

with \([-\cdot]: \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \equiv \text{Set}(A, \U (M, \otimes, \epsilon)) : [-\cdot]\]

Unit and counit:

\[
single A = [id_{\text{Free } A}] : A \rightarrow \U (\text{Free } A)
\]

\[
\text{reduce } M = [id_M] : \text{Free } (\U M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h: \text{Free } A \rightarrow M\) and \(f : A \rightarrow \U M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff \U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$\langle \mathbb{N}, 0, + \rangle$</td>
<td>${a} \mapsto 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$\langle \mathbb{R}, 0, + \rangle$</td>
<td>${a} \mapsto a$</td>
</tr>
<tr>
<td>max</td>
<td>$\langle \mathbb{Z}, \minBound, \maxBound, \max \rangle$</td>
<td>${a} \mapsto a$</td>
</tr>
<tr>
<td>min</td>
<td>$\langle \mathbb{Z}, \maxBound, \minBound, \min \rangle$</td>
<td>${a} \mapsto a$</td>
</tr>
<tr>
<td>all</td>
<td>$\langle \mathbb{B}, \text{True}, \land \rangle$</td>
<td>${a} \mapsto a$</td>
</tr>
<tr>
<td>any</td>
<td>$\langle \mathbb{B}, \text{False}, \lor \rangle$</td>
<td>${a} \mapsto a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} : \text{Bag} \ (\text{Bag} \ A) & \to \text{Bag} \ A \\
\text{single} : A & \to \text{Bag} \ A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \ [id_A] \ L : T \ (T \ A) \to T \ A \\
\eta A & = [id_A] : A \to T \ A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the *Reader* monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \simeq 1$
- $\text{Map } 1 V \simeq V$
- $\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{\perp} \text{Set} \xleftarrow{E} \]

where \(J \) embeds, and \(E \, R : A \to \text{Set } B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag } (K \times V) \cong \text{Map } K (\text{Bag } V) \]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[x \, f \bowtie g \, y = \text{flatten} (\text{Map } K \, \text{cp} \,(\text{merge} (\text{groupBy } f \, x, \text{groupBy } g \, y))) \]

\[\text{groupBy} : (V \to K) \to \text{Bag } V \to \text{Map } K (\text{Bag } V) \]

\[\text{flatten} : \text{Map } K (\text{Bag } V) \to \text{Bag } V \]
13. Pointed sets and finite maps

Model finite maps Map_* not as partial functions, but total functions to a pointed codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$\text{Set}_* \quad \perp \quad \text{Set}$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $U(A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta \, a = \lambda k \rightarrow a : A \rightarrow \text{Map} \, K \, A \]

in general yields an infinite map.

However, finite maps are a \textit{graded monad}*: for monoid \((M, \otimes, \epsilon)\),

\[\mu \, X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta \, X : X \rightarrow T_\epsilon \, X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((K, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.