Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
[\ (customer\ .\ name,\ invoice\ .\ amount) \\
\ |\ customer \leftarrow customers, \\
\ \ \ \ \ invoice \leftarrow invoices, \\
\ \ \ \ \ customer\ .cid = invoice\ .customer, \\
\ \ \ \ \ invoice\ .due \leq today]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \quad \perp \quad (B, \subseteq)\]

\[\text{means } f(b \leq a \iff b \subseteq g(a)\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \quad \perp \quad (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \quad \perp \quad (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of *objects*,
- a set* $\mathbf{C}(X, Y)$ of *arrows* $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- *identity* arrows $\text{id}_X : X \to X$ for each X
- *composition* $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

```
      ⋯ −2 −1 0 1 2 ⋯
```

Many categorical concepts are generalisations from ordered sets.

proviso…
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')$ as arrows:

$$\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}$$

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

\[
F \ id_X = id_{F X} \\
F (f \cdot g) = F f \cdot F g
\]

For example, \textit{forgetful} functor $U : \text{CMon} \to \text{Set}$:

\[
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the \textit{free} commutative monoid (ie bags) on a set of elements:

\[
\text{Free } A = (\text{Bag } A, \uplus, \emptyset) \\
\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction

\[
\begin{align*}
\begin{array}{ccc}
C & \perp & D \\
\rotatebox{90}{L} & \rotatebox{90}{\perp} & \rotatebox{90}{R} \\
\end{array}
\end{align*}
\]

means\(^*\) \([-] : C(L X, Y) \simeq D(X, R Y) : [-]\)

A familiar example is given by currying:

\[
\begin{align*}
\begin{array}{ccc}
\text{Set} & \perp & \text{Set} \\
\rotatebox{90}{$- \times P$} & \rotatebox{90}{\perp} & \rotatebox{90}{$(-)^P$} \\
\end{array}
\end{align*}
\]

with \(\text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^{\circ} \)

hence definitions and properties of \(\text{apply} = \text{uncurry} \ \text{id}_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[
\begin{array}{c}
\text{Set} \\
\downarrow \\
\Delta \\
\end{array} \quad \begin{array}{c}
\text{Set}^2 \\
\downarrow \\
\Delta \\
\end{array} \quad \begin{array}{c}
\text{Set} \\
\downarrow \\
\times \\
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork } \text{id}_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{aligned}
\text{CMon} & \quad \bot \quad \text{Set} \\
U & \quad \rightarrow \quad \leftarrow
\end{aligned}
\]

with \([-]\) : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \simeq \text{Set}(A, U \ (M, \otimes, \epsilon)) : [-]

Unit and counit:

\[
\begin{aligned}
\text{single } A &= [id_{\text{Free } A}] : A \rightarrow U \ (\text{Free } A) \\
\text{reduce } M &= [id_M] : \text{Free } (U \ M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{aligned}
\]

whence, for \(h : \text{Free } A \rightarrow M\) and \(f : A \rightarrow U \ M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U \ h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$\langle \mathbb{N}, 0, + \rangle$</td>
<td>${a} \rightarrow 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$\langle \mathbb{R}, 0, + \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>max</td>
<td>$\langle \mathbb{Z}, \text{minBound}, \text{max} \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>min</td>
<td>$\langle \mathbb{Z}, \text{maxBound}, \text{min} \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>all</td>
<td>$\langle \mathbb{B}, \text{True}, \land \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>any</td>
<td>$\langle \mathbb{B}, \text{False}, \lor \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$$\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A$$

$$\text{guard } p \ a = \text{if } p \ a \ \text{then } \{a\} \ \text{else } \emptyset$$

Laws about selections follow from laws of homomorphisms
(and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} & : A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g a \}^*\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R [id_A] L : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

$$
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
$$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \text{Set} \]

where \(J \) embeds, and \(E R : A \to \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} \ (K \times V) \simeq \text{Map} \ K \ (\text{Bag} \ V) \]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[x f \bowtie g y = \text{flatten} \ (\text{Map} \ K \ cp \ (\text{merge} \ (\text{groupBy} \ f \ x, \text{groupBy} \ g \ y))) \]

\(\text{groupBy} : (V \to K) \to \text{Bag} \ V \to \text{Map} \ K \ (\text{Bag} \ V) \)

\(\text{flatten} : \text{Map} \ K \ (\text{Bag} \ V) \to \text{Bag} \ V \)
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_\ast \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).

Pointed sets and point-preserving functions form a category \(\text{Set}_\ast \). There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_\ast & \cong & \text{Set} \\
\downarrow & & \uparrow \\
\text{Maybe} & \Rightarrow & \text{U}
\end{array}
\]

where \(\text{Maybe} A \cong 1 + A \) adds a point, and \(\text{U} (A, a) = A \) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} f \) is point-preserving, so we get a functor \(\text{Bag}_\ast : \text{Set} \rightarrow \text{Set}_\ast \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_\ast (K \times V) \cong \text{Map}_\ast K (\text{Bag}_\ast V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a \textit{graded monad}*: for monoid \((M, \otimes, \epsilon)\),

\[
\mu X : T_m (T_n X) \to T_{m\otimes n} X \\
\eta X : X \to T_\epsilon X
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.