Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\left[(\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
| \text{customer} \leftarrow \text{customers}, \\
\text{invoice} \leftarrow \text{invoices}, \\
\text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
\text{invoice}.\text{due} \leq \text{today} \right]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \]

means \(f \ b \leq a \iff b \subseteq g \ a \)

For example,

\[\text{floor} \]

\[(\mathbb{R}, \leq_\mathbb{R}) \perp (\mathbb{Z}, \leq_\mathbb{Z}) \]

\[\text{inj} \]

\[(\mathbb{R}, \leq_\mathbb{R}) \perp (\mathbb{Z}, \leq_\mathbb{Z}) \]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives
\[n \times k \leq m \iff n \leq m \div k, \]
and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of *objects*,
- a set* $\mathbf{C}(X, Y)$ of *arrows* $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- *identity* arrows $\text{id}_X : X \to X$ for each X
- *composition* $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\cdots \longrightarrow -2 \longrightarrow -1 \longrightarrow 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h: (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A **functor** $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

\[
F \ id_X = id_{FX} \\
F (f \cdot g) = F f \cdot F g
\]

For example, **forgetful functor** $U : \text{CMon} \to \text{Set}$:

\[
U (M, \otimes, \epsilon) = M \\
U \ (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the **free** commutative monoid (ie bags) on a set of elements:

\[
\text{Free } A = (\text{Bag } A, \cup, \emptyset) \\
\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction

\[\mathbf{C} \perp \mathbf{D} \]

means $\star \downarrow \downarrow [-] : \mathbf{C}(L X, Y) \simeq \mathbf{D}(X, R Y) : [-]$

A familiar example is given by currying:

\[\mathbf{Set} \perp \mathbf{Set} \]

with $\text{curry} : \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P) : curry^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry } id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set}^2 \\
\Delta \quad \quad \quad & & \quad \Delta \quad \quad \quad \\
\rightarrow & & \downarrow \\
\rightarrow & & \rightarrow \\
\text{Set} & \perp & \text{Set}
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork id}_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{c}
\text{CMon} \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\text{Set} \\
\end{array}
\]

\[\text{with } [-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-]\]

Unit and counit:

\[
\begin{align*}
\text{single } A & = [id_{\text{Free } A}] : A \to U (\text{Free } A) \\
\text{reduce } M & = [id_M] : \text{Free } U M \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to U M = M\),

\[h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>([a] \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>([a] \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \minBound, \max))</td>
<td>([a] \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \maxBound, \min))</td>
<td>([a] \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>([a] \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>([a] \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
\text{guard } p \ a = \text{if } p \ a \ \text{then } [a] \ \text{else } \emptyset
\]

Laws about selections follow from laws of homomorphisms
(and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\text{Bag} = U \cdot \text{Free}
\]

\[\text{union} : \text{Bag} (\text{Bag } A) \to \text{Bag } A\]

\[\text{single} : A \to \text{Bag } A\]

which justifies the use of comprehension notation \(\{f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a\}\).

In fact, for any adjunction \(\mathbf{L} \dashv \mathbf{R}\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
T = R \cdot L
\]

\[
\mu A = R [id_A] L : T (T A) \to T A
\]

\[
\eta A = [id_A] : A \to T A
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the *Reader* monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \simeq 1$
- $\text{Map } 1 V \simeq V$
- $\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2$ *merge*
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \downarrow \text{Set}
\]

where \(J \) embeds, and \(E R : A \to \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x f \Join g y = \text{flatten} (\text{Map} K cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{tikzcd}
\text{Set}_* & \perp \\
\downarrow & \\
\text{Set} & \downarrow
\end{tikzcd}
$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $U (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta \ a = \lambda k \rightarrow \ a : A \rightarrow \text{Map} \ K \ A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu \ X : T_m \ (T_n \ X) \rightarrow T_{m \otimes n} \ X \]
\[\eta \ X : X \rightarrow T_\epsilon \ X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.