Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\left[\langle \text{customer.name, invoice.amount} \rangle \right.
| \text{customer} \leftarrow \text{customers},
\text{invoice} \leftarrow \text{invoices},
\text{customer.cid} = \text{invoice.customer},
\text{invoice.due} \leq \text{today} \right]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \preceq)\]

means \[f b \leq a \iff b \preceq g a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \[n \times k \leq m \iff n \leq m \div k\], and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

$$\ldots \to -2 \to -1 \to 0 \to 1 \to 2 \to \ldots$$

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. **Concrete categories**

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor \(F : C \to D\) is an operation on both objects and arrows, preserving the structure: \(F f : F X \to F Y\) when \(f : X \to Y\), and

\[
F \text{id}_X = \text{id}_{F X} \\
F (f \cdot g) = F f \cdot F g
\]

For example, forgetful functor \(U : \text{CMon} \to \text{Set}\):

\[
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, \(\text{Free} : \text{Set} \to \text{CMon}\) generates the free commutative monoid (i.e., bags) on a set of elements:

\[
\text{Free } A = (\text{Bag } A, \uplus, \emptyset) \\
\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction

\[\mathbf{C} \perp \mathbf{D} \]

means\(^*\) $[-] : \mathbf{C}(L X, Y) \simeq \mathbf{D}(X, R Y) : [-]$.

A familiar example is given by _currying_:

\[\mathbf{Set} \perp \mathbf{Set} \]

with $\text{curry} : \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P) : \text{curry}^\circ$.

hence definitions and properties of $\text{apply} = \text{uncurry } \text{id}_{Y^P} : Y^P \times P \to Y$.
7. Products and coproducts

\[
\begin{align*}
\text{Set} & \quad \perp \quad \text{Set}^2 \quad \perp \quad \text{Set} \\
\Delta & \quad \text{+} \quad \Delta \\
\Delta & \quad \times \\
\end{align*}
\]

with

\[
\begin{align*}
\text{fork} : \text{Set}^2(\Delta A, (B, C)) & \simeq \text{Set}(A, B \times C) & : \text{fork}^{-1} \\
\text{junc} : \text{Set}(A + B, C) & \simeq \text{Set}^2((A, B), \Delta C) & : \text{junc} \\
\end{align*}
\]

hence

\[
\begin{align*}
\text{dup} & = \text{fork} \ id_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^{-1} \ id_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C)) \\
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{align*}
\text{CMon} & \quad \dashv \quad \text{Set} \\
\text{Free} & \quad \downarrow \quad \Upsilon \\
\end{align*}
\]

with \([-]\) : \text{CMon}(\text{Free} A, (M, \otimes, \epsilon)) \cong \text{Set}(A, \Upsilon (M, \otimes, \epsilon)) : [-]

Unit and counit:

\[
\begin{align*}
single A &= [id_{\text{Free} A}] : A \to \Upsilon (\text{Free} A) \\
reduce M &= [id_M] : \text{Free} (\Upsilon M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free} A \to M\) and \(f : A \to \Upsilon M = M\),

\[
h = reduce M \cdot \text{Free} f \iff \Upsilon h \cdot single A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \to 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \to a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \max))</td>
<td>({a} \to a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \min))</td>
<td>({a} \to a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \to a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \to a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \to \mathbb{B}) \to \text{Bag} A \to \text{Bag} A
\]

\[
\text{guard } p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a \textit{monad} \((\text{Bag, union, single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} & : A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g a \} \).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R [id_A] L : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction. The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \simeq 1$
- $\text{Map } 1 V \simeq V$
- $\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \quad \downarrow \quad \text{Set}
\]

\[\downarrow \quad \text{E}\]

\[\downarrow \quad \text{J}\]

where \(\text{J}\) embeds, and \(\text{E} \ R : A \to \text{Set} \ B\) for \(\text{R} : A \sim B\).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} \ (K \times V) \simeq \text{Map} \ K \ (\text{Bag} \ V)
\]

Together, \text{index} and \text{merge} give efficient relational joins:

\[
x \ f \triangleleft g \ y = \text{flatten} \left(\text{Map} \ K \ \text{cp} \ (\text{merge} \ (\text{groupBy} \ f \ x, \text{groupBy} \ g \ y))\right)
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} \ V \to \text{Map} \ K \ (\text{Bag} \ V)
\]

\[
\text{flatten} \quad : \text{Map} \ K \ (\text{Bag} \ V) \to \text{Bag} \ V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{array}{ccc}
\text{Maybe} & \bot & \text{Set} \\
\downarrow & & \downarrow \\
\text{Set}_* & & \text{Set} \\
\downarrow & & \downarrow \\
\text{U} & & \text{U}
\end{array}
$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U } (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_*: \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[
\begin{align*}
\mu X : & T_m (T_n X) \to T_{m \otimes n} X \\
\eta X : & X \to T_\epsilon X
\end{align*}
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.