Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query* notation

```
[ (customer.name, invoice.amount)
| customer ← customers,
  invoice ← invoices,
  customer.cid = invoice.customer,
  invoice.due ≤ today ]
```

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \quad \text{means} \quad f b \leq a \iff b \sqsubseteq g a\]

For example,

\[
\begin{align*}
\text{floor} & \quad (\mathbb{R}, \leq_{\mathbb{R}}) \quad \perp \quad (\mathbb{Z}, \leq_{\mathbb{Z}}) \\
\text{inj} & \quad (\mathbb{Z}, \leq) \quad \perp \quad (\mathbb{Z}, \leq)
\end{align*}
\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives

\[n \times k \leq m \iff n \leq m \div k,\]

and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \(C \) consists of

- a set* \(|C| \) of objects,
- a set* \(C(X, Y) \) of arrows \(X \to Y \) for each \(X, Y : |C| \),
- identity arrows \(id_X : X \to X \) for each \(X \)
- composition \(f \cdot g : X \to Z \) of compatible arrows \(g : X \to Y \) and \(f : Y \to Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq)\) is a degenerate category, with objects \(A \) and a unique arrow \(a \to b \) iff \(a \leq b \).

\[\cdots \leftrightarrow -2 \leftrightarrow -1 \leftrightarrow 0 \leftrightarrow 1 \leftrightarrow 2 \leftrightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

$$h (m \otimes n) = h m \oplus h n$$
$$h \epsilon = \epsilon'$$

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \rightarrow D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \rightarrow F Y$ when $f : X \rightarrow Y$, and

$$F \text{id}_X = \text{id}_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \rightarrow \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'$$

Conversely, $\text{Free} : \text{Set} \rightarrow \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free} A = (\text{Bag} A, \cup, \emptyset)$$
$$\text{Free} (f : A \rightarrow B) = \text{map} f : \text{Bag} A \rightarrow \text{Bag} B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction

\[
\begin{array}{c}
\text{C} \\
\downarrow \\
\text{D}
\end{array}
\quad
\leftrightarrow
\quad
\begin{array}{c}
\text{D} \\
\downarrow \\
\text{C}
\end{array}
\]

means* \([-] : C(L X, Y) \simeq D(X, R Y) : [-] \)

A familiar example is given by currying:

\[
\begin{array}{c}
\text{Set} \\
\downarrow \\
\text{Set}
\end{array}
\quad
\leftrightarrow
\quad
\begin{array}{c}
\text{Set} \\
\downarrow \\
\text{Set}
\end{array}
\quad
\text{with curry : Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : curry^{-1}
\]

hence definitions and properties of \(apply = \text{uncurry id}_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[\begin{align*}
\text{Set} & \quad \perp \quad \text{Set}^2 \quad \perp \quad \text{Set} \\
\Delta & \quad \leftrightarrow \quad \Delta \\
\times & \quad \leftrightarrow \quad +
\end{align*} \]

with

\[\begin{align*}
\text{fork} : \text{Set}^2(\Delta A, (B, C)) & \cong \text{Set}(A, B \times C) : \text{fork}^\circ \\
junc^\circ : \text{Set}(A + B, C) & \cong \text{Set}^2((A, B), \Delta C) : junc
\end{align*} \]

hence

\[\begin{align*}
dup & = \text{fork} \ \text{id}_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^\circ \ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\end{align*} \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \perp & \text{Set} \\
\text{Free} & \xrightarrow{\dashv} & \text{Set} \\
\downarrow & \uparrow & \\
U & & F \\
\end{array}
\]

with \([-]\) : CMon(Free \(A\), \((M, \otimes, \epsilon)\)) \simeq Set(A, U(M, \otimes, \epsilon)) : [-]

Unit and counit:

\[
\begin{align*}
single A &= [id_{\text{Free } A}] : A \rightarrow U(\text{Free } A) \\
reduce M &= [id_M] : \text{Free}(U M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \rightarrow M\) and \(f : A \rightarrow U M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U \cdot h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>(\mathbb{N}, 0, +)</td>
<td>{a} \rightarrow 1</td>
</tr>
<tr>
<td>sum</td>
<td>(\mathbb{R}, 0, +)</td>
<td>{a} \rightarrow a</td>
</tr>
<tr>
<td>max</td>
<td>(\mathbb{Z}, \text{minBound}, \text{max})</td>
<td>{a} \rightarrow a</td>
</tr>
<tr>
<td>min</td>
<td>(\mathbb{Z}, \text{maxBound}, \text{min})</td>
<td>{a} \rightarrow a</td>
</tr>
<tr>
<td>all</td>
<td>(\mathbb{B}, True, &)</td>
<td>{a} \rightarrow a</td>
</tr>
<tr>
<td>any</td>
<td>(\mathbb{B}, False, \lor)</td>
<td>{a} \rightarrow a</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single}) \) with

\[
\text{Bag} = U \cdot \text{Free} \\
\text{union} : \text{Bag (Bag } A) \rightarrow \text{Bag } A \\
\text{single} : A \rightarrow \text{Bag } A
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R \) between \(C \) and \(D \), we get a monad \((T, \mu, \eta) \) on \(D \), where

\[
T = R \cdot L \\
\mu A = R \lceil \text{id}_A \rceil \ L : T (T A) \rightarrow T A \\
\eta A = \lfloor \text{id}_A \rfloor : A \rightarrow T A
\]
11. Maps

Database indexes are essentially maps $\text{Map } K \ V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 \ V \simeq 1$
- $\text{Map } 1 \ V \simeq V$
- $\text{Map } (K_1 + K_2) \ V \simeq \text{Map } K_1 \ V \times \text{Map } K_2 \ V$
- $\text{Map } (K_1 \times K_2) \ V \simeq \text{Map } K_1 \ (\text{Map } K_2 \ V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{\text{J}} \downarrow \xrightarrow{\text{E}} \downarrow \text{Set}
\]

where J embeds, and \(E : R : \text{A} \rightarrow \text{Set} \text{B} \) for \(R : \text{A} \sim \text{B} \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \text{index} and \text{merge} give efficient relational joins:

\[
x_f \Join_g y = \text{flatten} (\text{Map} K \text{cp} (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))
\]

\[
\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V
\]
13. Pointed sets and finite maps

Model \textit{finite maps} \(\text{Map}_* \) not as partial functions, but \textit{total} functions to a \textit{pointed} codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \cong & \text{Set} \\
\uparrow & & \downarrow \\
\text{Maybe} & & \text{U} \\
\end{array}
\]

where \(\text{Maybe } A \cong 1 + A \) adds a point, and \(\text{U } (A, a) = A \) discards it.

In particular, \((\text{Bag } A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag } f \) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \to a : A \to \text{Map} \ K \ A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid $$(M, \otimes, \epsilon)$$,

$$\mu X : T_m (T_n X) \to T_{m \otimes n} X$$
$$\eta X : X \to T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid $$(\mathbb{K}, \times, 1)$$ of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.