Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date: 2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\begin{aligned}
&\left[(\text{customer}.\text{name}, \text{invoice}.\text{amount})
\mid
\text{customer} \leftarrow \text{customers},
\text{invoice} \leftarrow \text{invoices},
\text{customer}.\text{cid} = \text{invoice}.\text{customer},
\text{invoice}.\text{due} \leq \text{today}\right]
\end{aligned}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \]

means \(f b \leq a \iff b \sqsubseteq g a \)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq) \]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \(C \) consists of

- a set* \(|C|\) of objects,
- a set* \(C(X, Y) \) of arrows \(X \rightarrow Y \) for each \(X, Y : |C| \),
- identity arrows \(id_X : X \rightarrow X \) for each \(X \)
- composition \(f \cdot g : X \rightarrow Z \) of compatible arrows \(g : X \rightarrow Y \) and \(f : Y \rightarrow Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq)\) is a degenerate category, with objects \(A \) and a unique arrow \(a \rightarrow b \) iff \(a \leq b \).

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a **concrete category**: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category **CMon** has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category **Set** has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \rightarrow D$ is an operation on both objects and arrows, preserving the structure: $F(f) : F(X) \rightarrow F(Y)$ when $f : X \rightarrow Y$, and

$$F id_X = id_{F X}$$
$$F(f \cdot g) = F(f) \cdot F(g)$$

For example, forgetful functor $U : \text{CMon} \rightarrow \text{Set}$:

$$U(M, \otimes, \epsilon) = M$$
$$U(h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'$$

Conversely, $\text{Free} : \text{Set} \rightarrow \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free} A = (\text{Bag} A, \cup, \emptyset)$$
$$\text{Free} (f : A \rightarrow B) = \text{map} f : \text{Bag} A \rightarrow \text{Bag} B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction

$$\mathbf{C} \perp \mathbf{D}$$

means $^\ast([-]) : \mathbf{C}(L \, X, \, Y) \cong \mathbf{D}(X, \, R \, Y) : [-]$.

A familiar example is given by currying:

$$\mathbf{Set} \perp \mathbf{Set}$$

with $\text{curry} : \mathbf{Set}(X \times P, \, Y) \cong \mathbf{Set}(X, \, Y^P) : \text{curry}^\circ$.

hence definitions and properties of $\text{apply} = \text{uncurry} \, \text{id}_{Y^P} : Y^P \times P \to Y$.
7. Products and coproducts

with

\[\text{fork} : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^\circ \]
\[\text{junc}^\circ : \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc} \]

hence

\[\text{dup} = \text{fork} \, \text{id}_{A,A} : \text{Set}(A, A \times A) \]
\[(\text{fst}, \text{snd}) = \text{fork}^\circ \, \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \downarrow \text{Set} \quad \text{with} \quad [-] : \text{CMon}(\text{Free} \ A, (M, \otimes, \epsilon)) \quad \cong \quad \text{Set}(A, \text{U} (M, \otimes, \epsilon)) : [-]
\]

Unit and counit:

\[
single \ A = [id_{\text{Free} \ A}] : A \to \text{U} (\text{Free} \ A)
\]
\[
\text{reduce} \ M = [id_M] : \text{Free} (\text{U} M) \to M \quad \text{-- for} \ M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free} \ A \to M \) and \(f : A \to \text{U} M = M \),

\[
h = \text{reduce} \ M \cdot \text{Free} \ f \iff \text{U} \ h \cdot \ single \ A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>(\lfloor a \rfloor \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>(\lfloor a \rfloor \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \minBound, \max))</td>
<td>(\lfloor a \rfloor \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \maxBound, \min))</td>
<td>(\lfloor a \rfloor \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>(\lfloor a \rfloor \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>(\lfloor a \rfloor \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
\text{guard } p \ a = \textbf{if } p \ a \ \textbf{then } \lfloor a \rfloor \textbf{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} &= U \cdot \text{Free} \\
\text{union} &: \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} &: A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f\ a\ b \mid a \leftarrow x, b \leftarrow g\ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R [id_A] L : T (T A) \to T A \\
\eta A &= [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

\begin{align*}
\text{Map } 0 & \quad V \cong 1 \\
\text{Map } 1 & \quad V \cong V \\
\text{Map } (K_1 + K_2) & \quad V \cong \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) & \quad V \cong \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K & \quad 1 \cong 1 \\
\text{Map } K (V_1 \times V_2) & \cong \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \text{Set} \xleftarrow{E} \]

where \(J \) embeds, and \(E \ R : A \to \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} \ (K \times V) \cong \text{Map} \ K \ (\text{Bag} \ V) \]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[x \ f \bowtie g \ y = \text{flatten} \ (\text{Map} \ K \ cp \ (\text{merge} \ (\text{groupBy} \ f \ x, \text{groupBy} \ g \ y))) \]

\textit{groupBy} : \((V \to K) \to \text{Bag} \ V \to \text{Map} \ K \ (\text{Bag} \ V) \)

\textit{flatten} : Map \ K (Bag V) \to Bag V
13. Pointed sets and finite maps

Model finite maps Map_* not as partial functions, but total functions to a pointed codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{array}{ccc}
\text{Set}_* & \dashv & \text{Set} \\
\downarrow \downarrow & & \downarrow \downarrow \\
\text{Maybe} & & \text{U} \\
\end{array}
$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U} (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta_A = \lambda k \rightarrow a : A \rightarrow \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu_X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta_X : X \rightarrow T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.