Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice *mathematical foundations* via *adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query* notation

```
[ (customer.name, invoice.amount)
  | customer ← customers,
  invoice ← invoices,
  customer.cid = invoice.customer,
  invoice.due ≤ today ]
```

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \]

means \(f b \leq a \iff b \subseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

$$\ldots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots$$

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a \textit{concrete category}: roughly,

- the objects are \textit{sets with additional structure}
- the arrows are \textit{structure-preserving mappings}

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h: (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor \(F : C \to D \) is an operation on both objects and arrows, preserving the structure: \(F f : F X \to F Y \) when \(f : X \to Y \), and

\[
F \ id_X = id_{F X} \\
F (f \cdot g) = F f \cdot F g
\]

For example, \textit{forgetful} functor \(U : \text{CMon} \to \text{Set} \):

\[
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, \textit{Free} : \text{Set} \to \text{CMon} generates the \textit{free} commutative monoid (ie bags) on a set of elements:

\[
\text{Free } A = (\text{Bag } A, \cup, \emptyset) \\
\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction

\[
\begin{array}{c}
\rotatebox{90}{\perp} \quad \rotatebox{90}{\perp} \\
C & \perp & D \\
\rotatebox{90}{\perp} \quad \rotatebox{90}{\perp} \\
R & \perp & L
\end{array}
\]

means \(\ast : C(LX, Y) \simeq D(X, RY) : \ast \)

A familiar example is given by currying:

\[
\begin{array}{c}
\rotatebox{90}{\times} \\
- \times P \\
\rotatebox{90}{\times} \\
Set & \perp & Set \\
\rotatebox{90}{\times} \\
(-)^P
\end{array}
\]

with \(curry : Set(X \times P, Y) \simeq Set(X, Y^P) : curry^\circ \)

hence definitions and properties of \(apply = uncurry \ id_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \mathrel{\bot} & \text{Set}^2 \mathrel{\bot} & \mathrel{\Delta} & \mathrel{\times} & \mathrel{\Delta} & \mathrel{\bot} & \text{Set}
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork} \ id_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \ id_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \dashv & \text{Set} \\
\text{Free} & \downarrow & \text{U} \\
\end{array}
\]

with \([\cdot] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \simeq \text{Set}(A, \text{U}(M, \otimes, \epsilon)) : [\cdot]
\]

Unit and counit:

- **single** \(A\) = \([id_{\text{Free } A}] : A \rightarrow \text{U}(\text{Free } A)\)
- **reduce** \(M\) = \([id_M] : \text{Free}(\text{U } M) \rightarrow M\) -- for \(M = (M, \otimes, \epsilon)\)

whence, for \(h : \text{Free } A \rightarrow M\) and \(f : A \rightarrow \text{U } M = M\),

\[h = \text{reduce } M \cdot \text{Free } f \iff \text{U } h \cdot \text{single } A = f\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>(\emptyset a \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>(\emptyset a \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \minBound, \max))</td>
<td>(\emptyset a \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \maxBound, \min))</td>
<td>(\emptyset a \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>(\emptyset a \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>(\emptyset a \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
\text{guard } p a = \text{if } p a \text{ then } \emptyset a \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \rightarrow \text{Bag} A \\
\text{single} & : A \rightarrow \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \ [id_A] \ L: T \ (T \ A) \rightarrow T \ A \\
\eta A & = [id_A] : A \rightarrow T \ A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \simeq 1$
- $\text{Map } 1 V \simeq V$
- $\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \textit{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xleftarrow{J} \text{Set} \xrightarrow{E} \]

where \(J \) embeds, and \(E R : A \to \text{Set} \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[x \ f \bowtie g \ y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f \ x, \text{groupBy} g \ y))) \]

\[\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \]

\[\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V \]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\text{Maybe} \quad \downarrow \quad \bot \quad \downarrow \quad \text{U}
$$

where $\text{Maybe } A \cong 1 + A$ adds a point, and $\text{U} (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a *graded monad* for monoid \((M, \otimes, e)\),

\[\mu X : T_m (T_n X) \to T_{m \otimes n} X \]
\[\eta X : X \to T_e X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.