Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query notation*

\[
\begin{array}{c}
[(customer.name, invoice.amount) \\
| customer ← customers, \\
invoice ← invoices, \\
customer.cid = invoice.customer, \\
invoice.due ≤ today]
\end{array}
\]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \quad \text{means} \quad f b \leq a \iff b \subseteq g a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives

\[n \times k \leq m \iff n \leq m \div k\]

and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category C consists of

- a set* $|C|$ of objects,
- a set* $C(X, Y)$ of arrows $X \to Y$ for each $X, Y : |C|$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a \textit{concrete category}: roughly,

- the objects are \textit{sets with additional structure}
- the arrows are \textit{structure-preserving mappings}

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \cup, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction

\[
\begin{array}{c}
\mathbf{C} \\
\bot
\end{array}
\quad
\begin{array}{c}
\mathbf{D}
\end{array}

\overset{L}{\leftrightarrow}
\overset{R}{\leftrightarrow}

\text{means}^* \ [-] : \mathbf{C}(L X, Y) \simeq \mathbf{D}(X, R Y) : [-]

A familiar example is given by *currying*:

\[
\begin{array}{c}
\mathbf{Set}
\end{array}
\quad
\begin{array}{c}
\bot
\end{array}
\quad
\begin{array}{c}
\mathbf{Set}
\end{array}

\overset{- \times P}{\leftrightarrow}
\overset{(-)^P}{\leftrightarrow}

\text{with } \text{curry} : \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P) : \text{curry}^*

\text{hence definitions and properties of } \text{apply} = \text{uncurry } id_{Y^P} : Y^P \times P \to Y
7. Products and coproducts

\[
\begin{array}{c}
\text{Set} \quad \perp \quad \text{Set}^2 \quad \perp \quad \text{Set} \\
\Delta \quad \rightarrow \quad \Delta \quad \rightarrow \\
\downarrow \quad \downarrow \\
\Delta \quad \rightarrow \quad \times \\
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ \\
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork id}_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{c}
\text{CMon} \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\text{Set} \\
\end{array}
\]

with \([-\cdot] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \equiv \text{Set}(A, U (M, \otimes, \epsilon)) : [-\cdot]

Unit and counit:

\[
single A = [id_{\text{Free } A}] : A \rightarrow U (\text{Free } A)
\]

\[
\text{reduce } M = [id_M] : \text{Free } (U M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \rightarrow M\) and \(f : A \rightarrow U M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>(\mathbb{N}, 0, +)</td>
<td>(</td>
</tr>
<tr>
<td>sum</td>
<td>(\mathbb{R}, 0, +)</td>
<td>(</td>
</tr>
<tr>
<td>max</td>
<td>(\mathbb{Z}, \text{minBound}, \text{max})</td>
<td>(</td>
</tr>
<tr>
<td>min</td>
<td>(\mathbb{Z}, \text{maxBound}, \text{min})</td>
<td>(</td>
</tr>
<tr>
<td>all</td>
<td>(\mathbb{B}, \text{True}, \land)</td>
<td>(</td>
</tr>
<tr>
<td>any</td>
<td>(\mathbb{B}, \text{False}, \lor)</td>
<td>(</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } |a| \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \(\text{(Bag, union, single)}\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} \ (\text{Bag} \ A) \to \text{Bag} \ A \\
\text{single} & : A \to \text{Bag} \ A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \ | \ a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu_A & = R \ [id_A] \ L : T \ (T \ A) \to T \ A \\
\eta_A & = [id_A] : A \to T \ A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(\cdot)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 & \ V & \simeq & \ 1 \\
\text{Map } 1 & \ V & \simeq & \ V \\
\text{Map } (K_1 + K_2) & \ V & \simeq & \ \text{Map } K_1 \ V \times \text{Map } K_2 \ V \\
\text{Map } (K_1 \times K_2) & \ V & \simeq & \ \text{Map } K_1 \ (\text{Map } K_2 \ V) \\
\text{Map } K & \ 1 & \simeq & \ 1 \\
\text{Map } K \ (V_1 \times V_2) & \simeq & \ \text{Map } K \ V_1 \times \text{Map } K \ V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \text{Set} \xleftarrow{E} \text{Set} \]

where \(J \) embeds, and \(E R : A \to \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[x \overset{f \Join g}{\bowtie} y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y))) \]

\(\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \)

\(\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V \)
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{array}{ccc}
\text{Set}_* & \perp & \text{Set} \\
\downarrow & & \downarrow \\
\text{Maybe} & & \text{U}
\end{array}
$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U} (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta X : X \rightarrow T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.