Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation
 \[
 \left[(\text{customer.name, invoice.amount})
 \mid \text{customer} \leftarrow \text{customers},
 \text{invoice} \leftarrow \text{invoices},
 \text{customer.cid} = \text{invoice.customer},
 \text{invoice.due} \leq \text{today}\right]
 \]
- monad structure explains selection, projection
- less obvious how to explain join

2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \quad \text{means} \quad f b \leq a \iff b \subseteq g a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \quad \text{and} \quad (\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives
\[n \times k \leq m \iff n \leq m \div k\], and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,

such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\ldots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a \textit{concrete category}: roughly,

- the objects are \textit{sets with additional structure}
- the arrows are \textit{structure-preserving mappings}

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h(m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \rightarrow D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \rightarrow F Y$ when $f : X \rightarrow Y$, and

$$F \ id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : CMon \rightarrow Set$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'$$

Conversely, $Free : Set \rightarrow CMon$ generates the free commutative monoid (ie bags) on a set of elements:

$$Free A = (Bag A, \cup, \emptyset)$$
$$Free (f : A \rightarrow B) = map f : Bag A \rightarrow Bag B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories C, D, and functors $L : D \to C$ and $R : C \to D$, adjunction

\[
\begin{array}{ccc}
C & \perp & D \\
\downarrow & & \downarrow \\
R & & L
\end{array}
\]

means* $[-] : C(L X, Y) \simeq D(X, R Y) : [-]$.

A familiar example is given by currying:

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set} \\
\downarrow & & \downarrow \\
(-)^P & & (- \times P)
\end{array}
\]

with $curry : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : curry^\circ$.

hence definitions and properties of $apply = uncurry id_{Y^P} : Y^P \times P \to Y$.
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \downarrow & \text{Set}^2 \\
\Delta & \rightarrow & \Delta
\end{array}
\quad \begin{array}{ccc}
\text{Set}^2 & \downarrow & \text{Set} \\
\Delta & \rightarrow & \times
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ
\]
\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork id}_{A,A} : \text{Set}(A, A \times A)
\]
\[
(fst, snd) = \text{fork}^\circ id_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[\text{CMon} \perp \text{Set} \]

with \([-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \)

\[\simeq \text{Set}(A, U \ (M, \otimes, \epsilon)) \]

Unit and counit:

- **single** \(A \) = \([id_{\text{Free } A}] : A \to U \ (\text{Free } A) \)
- **reduce** \(M \) = \([id_M] : \text{Free } (U M) \to M \) \quad -- \ for \(M = (M, \otimes, \epsilon) \)

whence, for \(h : \text{Free } A \to M \) and \(f : A \to U M = M \),

\[h = \text{reduce } M \cdot \text{Free } f \iff U \ h \cdot \text{single } A = f \]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard \ p \ a = \text{if } p \ a \ \text{then } \{a\} \ \text{else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1 \)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & \quad = \ U \cdot \text{Free} \\
\text{union} : \text{Bag}(\text{Bag} \ A) & \rightarrow \text{Bag} \ A \\
\text{single} : \ A & \rightarrow \text{Bag} \ A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, \ b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
\begin{align*}
T & \quad = R \cdot L \\
\mu \ A & = R[\text{id}_A] \ L : T(\ T \ A) \rightarrow T \ A \\
\eta \ A & = [\text{id}_A] \quad : A \rightarrow T \ A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \cong 1 \\
\text{Map } 1 V & \cong V \\
\text{Map } (K_1 + K_2) V & \cong \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \cong \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \cong 1 \\
\text{Map } K (V_1 \times V_2) & \cong \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \bot \xrightarrow{E} \text{Set} \]

where \(J \) embeds, and \(E \ R : A \to \text{Set} \ B \) for \(R : A \sim B \).
Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[x \ f \triangleleft g \ y = \text{flatten} \ (\text{Map} K \ cp \ (\text{merge} \ (\text{groupBy} \ f \ x, \text{groupBy} \ g \ y))) \]

\[\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \]

\[\text{flatten} \ : \text{Map} K (\text{Bag} V) \to \text{Bag} V \]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).

Pointed sets and point-preserving functions form a category \(\text{Set}_*\). There is an adjunction to \(\text{Set}\), via

\[
\begin{array}{ccc}
\text{Set}_* & \perp & \text{Set} \\
\downarrow \text{Maybe} & & \downarrow \text{U} \\
\text{Set}_* & \downarrow & \text{Set} \\
\end{array}
\]

where \(\text{Maybe} A \simeq 1 + A\) adds a point, and \(\text{U} (A, a) = A\) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} f\) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_*\).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map} \ K \ A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid $$(M, \otimes, \epsilon)$$,

$$\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X$$
$$\eta X : X \rightarrow T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid $$(\mathbb{K}, \times, 1)$$ of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.