Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date: 2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query* notation

\[
\begin{align*}
&\left[(\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
&| \text{customer} \leftarrow \text{customers}, \\
&\quad \text{invoice} \leftarrow \text{invoices}, \\
&\quad \text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
&\quad \text{invoice}.\text{due} \leq \text{today} \right]
\end{align*}
\]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\]

means \(f b \leq a \iff b \sqsubseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* C consists of

- a set $|C|$ of *objects*,
- a set $C(X, Y)$ of *arrows* $X \to Y$ for each $X, Y : |C|$,
- *identity* arrows $id_X : X \to X$ for each X
- *composition* $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

$$\ldots \to -2 \to -1 \to 0 \to 1 \to 2 \to \ldots$$

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

$$h(m \otimes n) = h(m) \oplus h(n)$$
$$h(\epsilon) = \epsilon'$$

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F \ id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \uplus, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction

\[
\begin{array}{ccc}
C & \perp & D \\
\downarrow L & & \downarrow R \\
\end{array}
\]

means

\([-] : C(L X, Y) \cong D(X, R Y) : [-] \)

A familiar example is given by currying:

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set} \\
\downarrow (- \times P) & & \downarrow (\cdot)^P \\
\end{array}
\]

with \(\text{curry} : \text{Set}(X \times P, Y) \cong \text{Set}(X, Y^P) : \text{curry}^\circ \)

hence definitions and properties of \(\text{apply} = \text{uncurry} \text{id}_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[\begin{array}{ccc}
\text{Set} & \perp & \text{Set}^2 \\
\Delta & \odot & \Delta \\
\text{Set} & \perp & \text{Set}
\end{array} \]

with

\[\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) \quad : \text{fork}^\circ \]

\[\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc} \]

hence

\[\text{dup} = \text{fork } \text{id}_{A,A} : \text{Set}(A, A \times A) \]

\[(\text{fst}, \text{snd}) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[\text{CMon} \perp \text{Set} \]

\[
\begin{align*}
\text{CMon} & \quad \text{Set} \\
\text{U} & \quad \text{U}
\end{align*}
\]

with \([-\cdot]: \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \approx \text{Set}(A, \text{U}(M, \otimes, \epsilon)) : [-]\)

Unit and counit:

\[
\begin{align*}
\text{single } A &= [id_{\text{Free } A}] : A \to \text{U}(\text{Free } A) \\
\text{reduce } M &= [id_M] : \text{Free}(\text{U} M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h: \text{Free } A \to M\) and \(f: A \to \text{U} M = M\),

\[h = \text{reduce } M \cdot \text{Free } f \iff \text{U} h \cdot \text{single } A = f \]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$(\mathbb{N}, 0, +)$</td>
<td>${a} \rightarrow 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$(\mathbb{R}, 0, +)$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>max</td>
<td>$(\mathbb{Z}, \text{minBound}, \text{max})$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>min</td>
<td>$(\mathbb{Z}, \text{maxBound}, \text{min})$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>all</td>
<td>$(\mathbb{B}, \text{True}, \land)$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>any</td>
<td>$(\mathbb{B}, \text{False}, \lor)$</td>
<td>${a} \rightarrow a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$$\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A$$

$$\text{guard } p \ a = \text{if } p \ a \ \text{then } \{a\} \ \text{else } \emptyset$$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a *monad* `(Bag, union, single)` with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag}(\text{Bag } A) \to \text{Bag } A \\
\text{single} & : A \to \text{Bag } A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R \) between \(C \) and \(D \), we get a monad \((T, \mu, \eta) \) on \(D \), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \left[id_A \right] L : T(TA) \to TA \\
\eta A & = [id_A] : A \to TA
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \simeq 1$
- $\text{Map } 1 V \simeq V$
- $\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \text{Set} \xleftarrow{E} \]

where \(J \) embeds, and \(E \ R : A \rightarrow \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[x \ f \bowtie g \ y = \text{flatten} \left(\text{Map} K \ \text{cp} \left(\text{merge} \left(\text{groupBy} f \ x, \text{groupBy} g \ y \right) \right) \right) \]

\(\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V) \)

\(\text{flatten} \ : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V \)
13. Pointed sets and finite maps

Model \textit{finite maps} \text{Map}_* not as partial functions, but \textit{total} functions to a \textit{pointed} codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).

Pointed sets and point-preserving functions form a category \text{Set}_*.
There is an adjunction to \text{Set}, via

\[
\begin{array}{ccc}
\text{Set}_* & \perp & \text{Set} \\
\text{Maybe} & \downarrow & \text{U} \\
\end{array}
\]

where \text{Maybe} \(A \simeq 1 + A\) adds a point, and \(U (A, a) = A\) discards it.

In particular, \((\text{Bag} \ A, \emptyset)\) is a pointed set. Moreover, \text{Bag} \(f\) is point-preserving, so we get a functor \text{Bag}_* : \text{Set} \to \text{Set}_*.

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta \ a = \lambda k \to a : A \to \text{Map } K \ A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

$$\mu \ X : T_m (T_n X) \to T_{m \otimes n} X$$
$$\eta \ X : X \to T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*. We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.