Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query notation*

\[
[(customer.name, invoice.amount) \\
| customer ← customers, \\
\quad invoice ← invoices, \\
\quad customer.cid = invoice.customer, \\
\quad invoice.due ≤ today]
\]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \quad \text{means} \quad f b \leq a \iff b \subseteq g a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]
\[\quad \text{inj} \quad \text{floor}\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]
\[\times k \quad \div k\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \rightarrow Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \rightarrow X$ for each X
- composition $f \cdot g : X \rightarrow Z$ of compatible arrows $g : X \rightarrow Y$ and $f : Y \rightarrow Z$,

such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \rightarrow b$ iff $a \leq b$.

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a \textit{concrete category}: roughly,

- the objects are \textit{sets with additional structure}
- the arrows are \textit{structure-preserving mappings}

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

$$h (m \otimes n) = h m \oplus h n$$

$$h \epsilon = \epsilon'$$

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : CMon \to Set$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, Free : Set \to CMon generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \cup, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction means:

\[
\begin{align*}
\downarrow & \quad \downarrow \\
C & \quad \perp \quad D \\
\downarrow & \quad \downarrow
\end{align*}
\]

\[[-] : C(L X, Y) \cong D(X, R Y) : [-] \]

A familiar example is given by currying:

\[
\begin{align*}
\downarrow & \quad \downarrow \\
\text{Set} & \quad \perp \quad \text{Set} \\
\downarrow & \quad \downarrow
\end{align*}
\]

\[\text{curry : Set}(X \times P, Y) \cong \text{Set}(X, Y^P) : \text{curry}^\circ \]

hence definitions and properties of \(\text{apply} = \text{uncurry id}_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

with

\[\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ \]
\[\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc} \]

hence

\[\text{dup} = \text{fork} \ id_{A,A} : \text{Set}(A, A \times A) \]
\[(\text{fst}, \text{snd}) = \text{fork}^\circ \ id_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \perp & \text{Set} \\
\downarrow & & \downarrow \text{U} \\
\text{Free} & & \text{Set} \\
\end{array}
\]

with \([-]\) : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, \text{U}(M, \otimes, \epsilon)) : [-]

Unit and counit:

\[
\text{single } A = [id_{\text{Free } A}] : A \to \text{U}(\text{Free } A)
\]

\[
\text{reduce } M = [id_M] : \text{Free}(\text{U } M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h: \text{Free } A \to M\) and \(f: A \to \text{U } M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff \text{U } h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>(\mathbb{N}, 0, +)</td>
<td>\lfloor a \rfloor \to 1</td>
</tr>
<tr>
<td>sum</td>
<td>(\mathbb{R}, 0, +)</td>
<td>\lfloor a \rfloor \to a</td>
</tr>
<tr>
<td>max</td>
<td>(\mathbb{Z}, minBound, max)</td>
<td>\lfloor a \rfloor \to a</td>
</tr>
<tr>
<td>min</td>
<td>(\mathbb{Z}, maxBound, min)</td>
<td>\lfloor a \rfloor \to a</td>
</tr>
<tr>
<td>all</td>
<td>(\mathbb{B}, True, \land)</td>
<td>\lfloor a \rfloor \to a</td>
</tr>
<tr>
<td>any</td>
<td>(\mathbb{B}, False, \lor)</td>
<td>\lfloor a \rfloor \to a</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
\text{guard } p \, a = \text{if } p \, a \text{ then } \lfloor a \rfloor \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1 \)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} &= \mathcal{U} \cdot \text{Free} \\
\text{union} &: \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} &: A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f a b | a \leftarrow x, b \leftarrow g a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R \lceil id_A \rceil L : T (T A) \to T A \\
\eta A &= [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K \ V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 \ V & \cong 1 \\
\text{Map } 1 \ V & \cong V \\
\text{Map } (K_1 + K_2) \ V & \cong \text{Map } K_1 \ V \times \text{Map } K_2 \ V \\
\text{Map } (K_1 \times K_2) \ V & \cong \text{Map } K_1 (\text{Map } K_2 \ V) \\
\text{Map } K \ 1 & \cong 1 \\
\text{Map } K (V_1 \times V_2) & \cong \text{Map } K \ V_1 \times \text{Map } K \ V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\begin{array}{c}
\text{Rel} \quad \perp \\
\downarrow \quad \downarrow \\
\text{Set} \\
\end{array}
\]

where \(J \) embeds, and \(E R : A \to \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x f \bowtie g y = \text{flatten} (\text{Map} K \text{ cp} (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

\[
\begin{array}{c}
\text{Set}_* \\
\downarrow \circ \downarrow
\end{array}
\quad \vdash
\begin{array}{c}
\text{Set} \\
\downarrow \circ \downarrow
\end{array}
\quad
\begin{array}{c}
\text{Maybe} \\
\downarrow \circ \downarrow
\end{array}
\quad \begin{array}{c}
\text{Set}_* \\
\downarrow \circ \downarrow
\end{array}
\quad
\begin{array}{c}
\text{U} \\
\downarrow \circ \downarrow
\end{array}
\]

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $U (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta \ a = \lambda k \rightarrow a : A \rightarrow \text{Map } K \ A$$

in general yields an infinite map.

However, finite maps are a \textit{graded monad}*: for monoid \((M, \otimes, \epsilon)\),

$$\mu \ X : T_m \ (T_n \ X) \rightarrow T_{m \otimes n} \ X$$

$$\eta \ X : X \rightarrow T_\epsilon \ X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.