Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\begin{align*}
[& (\text{customer.name, invoice.amount}) \\
| & \text{customer} \leftarrow \text{customers}, \\
& \text{invoice} \leftarrow \text{invoices}, \\
& \text{customer.cid} = \text{invoice.customer}, \\
& \text{invoice.due} \leq \text{today}]
\end{align*}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[
\begin{array}{c}
(A, \leq) \quad \perp \quad (B, \sqsubseteq) \\
\downarrow \quad f \quad \downarrow \\
\downarrow \quad g \\
\end{array}
\]

means \(f b \leq a \iff b \sqsubseteq g a \)

For example,

\[
\begin{array}{c}
(\mathbb{R}, \leq_\mathbb{R}) \quad \perp \quad (\mathbb{Z}, \leq_\mathbb{Z}) \\
\downarrow \quad inj \quad \downarrow \\
\downarrow \quad \text{floor} \\
(\mathbb{Z}, \leq) \quad \perp \quad (\mathbb{Z}, \leq) \\
\downarrow \quad \times k \quad \downarrow \\
\downarrow \quad \div k \\
\end{array}
\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving
the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : CMon \to Set$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $Free : Set \to CMon$ generates the free commutative monoid
(ie bags) on a set of elements:

$$Free A = (Bag A, \cup, \emptyset)$$
$$Free (f : A \to B) = map f : Bag A \to Bag B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction $\mathbf{C} \dashv \mathbf{D}$ means $\star \lfloor - \rfloor : \mathbf{C}(L X, Y) \cong \mathbf{D}(X, R Y) : \lfloor - \rfloor$.

A familiar example is given by currying:

$\mathbf{Set} \dashv \mathbf{Set}$ with $curry : \mathbf{Set}(X \times P, Y) \cong \mathbf{Set}(X, Y^P) : curry^\circ$

hence definitions and properties of $apply = uncurry \ id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \mid & \text{Set}^2 & \mid & \text{Set} \\
\circlearrowleft & \Delta & \circlearrowleft & \Delta & \circlearrowleft \\
\Delta & & \times & & \Delta
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) \quad : \text{fork}^{\circ}
\]

\[
\text{junc}^{\circ} : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork id}_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^{\circ} \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{align*}
\text{CMon} & \quad \perp \quad \text{Set} \\
\downarrow \quad \text{Free} & \quad \downarrow \quad U \\
\end{align*}
\]

with \([-] : \text{CMon}(\text{Free} A, (M, \otimes, \epsilon)) \Rightarrow \text{Set}(A, U (M, \otimes, \epsilon)) : [-]

Unit and counit:

\[
\begin{align*}
single A & = [id_{\text{Free} A}] : A \rightarrow U (\text{Free} A) \\
reduce M & = [id_M] : \text{Free} (U M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free} A \rightarrow M\) and \(f : A \rightarrow U M = M\),

\[
h = reduce M \cdot \text{Free } f \Leftrightarrow U h \cdot single A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard \ p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\text{Bag} = \mathcal{U} \cdot \text{Free}
\]

\(\text{union} : \text{Bag} (\text{Bag} A) \to \text{Bag} A\)

\(\text{single} : A \to \text{Bag} A\)

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
T = R \cdot L
\]

\[
\mu A = R \ [id_A] \ L : T (T A) \to T A
\]

\[
\eta A = [id_A] : A \to T A
\]
11. Maps

Database indexes are essentially maps $\text{Map} \ K \ V = V^K$. Maps $(-)^K$ from K form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

\begin{align*}
\text{Map} \ 0 \ V & \simeq 1 \\
\text{Map} \ 1 \ V & \simeq V \\
\text{Map} \ (K_1 + K_2) \ V & \simeq \text{Map} \ K_1 \ V \times \text{Map} \ K_2 \ V \\
\text{Map} \ (K_1 \times K_2) \ V & \simeq \text{Map} \ K_1 \ (\text{Map} \ K_2 \ V) \\
\text{Map} \ K \ 1 & \simeq 1 \\
\text{Map} \ K \ (V_1 \times V_2) & \simeq \text{Map} \ K \ V_1 \times \text{Map} \ K \ V_2: \textit{merge}
\end{align*}
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \quad \perp \quad \text{Set}
\]

where \(J \) embeds, and \(E \mathcal{R} : A \rightarrow \text{Set} \ B \) for \(\mathcal{R} : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} \ (K \times V) \simeq \text{Map} \ K \ (\text{Bag} \ V)
\]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[
x \ f \bowtie_g \ y = \text{flatten} \ (\text{Map} \ K \ \text{cp} \ (\text{merge} \ (\text{groupBy} \ f \ x, \text{groupBy} \ g \ y)))
\]

\[
\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} \ V \rightarrow \text{Map} \ K \ (\text{Bag} \ V)
\]

\[
\text{flatten} \ : \text{Map} \ K \ (\text{Bag} \ V) \rightarrow \text{Bag} \ V
\]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \perp & \text{Set} \\
\downarrow \text{Maybe} & & \downarrow \text{U} \\
\text{Set}_* & \downarrow & \text{Set} \\
\end{array}
\]

where \(\text{Maybe} \ A \cong 1 + A \) adds a point, and \(\text{U} (A, a) = A \) discards it.

In particular, \((\text{Bag} \ A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} \ f \) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map} \ K \ A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[
\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \\
\eta X : X \rightarrow T_\epsilon X
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.