Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are **monads**
- monads have nice *mathematical foundations via adjunctions*
- monads support **comprehensions**
- comprehension syntax provides a *query* notation

 \[
 \left[(\text{customer.name}, \text{invoice.amount}) \right.
 | \text{customer} \leftarrow \text{customers},
 \text{invoice} \leftarrow \text{invoices},
 \text{customer.cid} = \text{invoice.customer},
 \text{invoice.due} \leq \text{today} \right]
 \]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \]

means \(f b \leq a \iff b \subseteq g a \)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq) \]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives
\[n \times k \leq m \iff n \leq m \div k \], and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \(\mathbf{C} \) consists of

- a set* \(|\mathbf{C}|\) of *objects*,
- a set* \(\mathbf{C}(X, Y) \) of *arrows* \(X \to Y \) for each \(X, Y : |\mathbf{C}| \),
- *identity* arrows \(\text{id}_X : X \to X \) for each \(X \)
- *composition* \(f \cdot g : X \to Z \) of compatible arrows \(g : X \to Y \) and \(f : Y \to Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq)\) is a degenerate category, with objects \(A \) and a unique arrow \(a \to b \) iff \(a \leq b \).

\[
\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots
\]

Many categorical concepts are generalisations from ordered sets.

proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category \(\text{CMon} \) has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h: (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \(\text{Set} \) has sets as objects, and total functions as arrows.
Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F \ id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, *forgetful* functor $U : \mathbf{CMon} \to \mathbf{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $\text{Free} : \mathbf{Set} \to \mathbf{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \cup, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C, D, and functors $L: D \to C$ and $R: C \to D$, adjunction

\[
\begin{array}{ccc}
C & \perp & D \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
R & & L
\end{array}
\]

means* $[-]: C(LX, Y) \simeq D(X, RY): [-]$

A familiar example is given by currying:

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set} \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
(P \times \cdot) & & (-)^P
\end{array}
\]

with $curry: \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P): curry^\circ$

hence definitions and properties of $apply = uncurry id_{YP}: Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{c}
\text{Set} \\
\downarrow \Delta \\
\downarrow \times \\
\end{array}
\quad
\begin{array}{c}
\text{Set}^2 \\
\downarrow \Delta \\
\downarrow + \\
\end{array}
\quad
\begin{array}{c}
\text{Set} \\
\downarrow \perp \\
\downarrow \perp \\
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2(((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork id}_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[\text{CMon} \perp \text{Set} \]

with \([\cdot] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U (M, \otimes, \epsilon)) : [\cdot] \]

Unit and counit:

\[\text{single } A = [id_{\text{Free } A}] : A \to U (\text{Free } A) \]
\[\text{reduce } M = [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon) \]

whence, for \(h : \text{Free } A \to M \) and \(f : A \to U M = M \),

\[h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f \]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>([a] \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>([a] \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>([a] \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>([a] \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>([a] \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>([a] \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag} \ A \rightarrow \text{Bag} \ A
\]

\[
\text{guard } p \ a = \text{if } p \ a \text{ then } [a] \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} : \text{Bag} \, (\text{Bag} \, A) & \rightarrow \text{Bag} \, A \\
\text{single} : A & \rightarrow \text{Bag} \, A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \, a \, b \mid a \leftarrow x, b \leftarrow g \, a \}^\ast\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu \, A & = R \, [id_A] \, L : T \, (T \, A) \rightarrow T \, A \\
\eta \, A & = [id_A] : A \rightarrow T \, A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map} \ K \ V = V^K$. Maps $(-)^K$ from K form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

- $\text{Map} \ 0 \ V \cong 1$
- $\text{Map} \ 1 \ V \cong V$
- $\text{Map} \ (K_1 + K_2) \ V \cong \text{Map} \ K_1 \ V \times \text{Map} \ K_2 \ V$
- $\text{Map} \ (K_1 \times K_2) \ V \cong \text{Map} \ K_1 \ (\text{Map} \ K_2 \ V)$
- $\text{Map} \ K \ 1 \cong 1$
- $\text{Map} \ K \ (V_1 \times V_2) \cong \text{Map} \ K \ V_1 \times \text{Map} \ K \ V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \text{Set} \xleftarrow{E} \text{Set} \]

where \(J \) embeds, and \(E \ R : A \to \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[x f \Join_g y = \text{flatten} (\text{Map} K \text{ cp} (\text{merge} (\text{groupBy} f x, \text{groupBy} g y))) \]

\[\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \]

\[\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V \]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \dashv & \text{Set} \\
\downarrow \text{Maybe} & & \downarrow \text{U} \\
\text{Set}_* & \dashv & \text{Set}
\end{array}
\]

where \(\text{Maybe} A \cong 1 + A \) adds a point, and \(\text{U} (A, a) = A \) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} f \) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a **graded monad***: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m \left(T_n X \right) \to T_{m \otimes n} X \]
\[\eta X : X \to T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.