Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query* notation

 \[
 \left[(\text{customer.name}, \text{invoice.amount}) \\
 | \text{customer} \rightarrow \text{customers}, \\
 \text{invoice} \rightarrow \text{invoices}, \\
 \text{customer.cid} = \text{invoice.customer}, \\
 \text{invoice.due} \leq \text{today} \right]
 \]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \rightarrow f \leq g (B, \subseteq) \perp (A, \leq) \text{ means } f b \leq a \iff b \subseteq g a\]

For example,

\[(\mathbb{R}, \leq) \perp (\mathbb{Z}, \subseteq) \rightarrow \text{floor} (\mathbb{Z}, \subseteq) \perp (\mathbb{R}, \leq) \rightarrow \text{inj}\]

\[(\mathbb{Z}, \subseteq) \rightarrow \times k (\mathbb{Z}, \subseteq) \rightarrow \div k (\mathbb{Z}, \subseteq)

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a \textit{concrete category}: roughly,

- the objects are \textit{sets with additional structure}
- the arrows are \textit{structure-preserving mappings}

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F \ id_X = id_{F \ X}$$
$$F (f \cdot g) = F \ f \cdot F \ g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U \ (M, \otimes, \epsilon) = M$$
$$U \ (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, Free : Set \to \text{CMon} generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free} \ A = (\text{Bag} \ A, \uplus, \emptyset)$$
$$\text{Free} \ (f : A \to B) = \text{map} \ f : \text{Bag} \ A \to \text{Bag} \ B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \mathcal{C}, \mathcal{D}, and functors $L : \mathcal{D} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{D}$, adjunction

\[\mathcal{C} \perp \mathcal{D} \quad \text{means}^* \quad [-] : \mathcal{C}(L X, Y) \simeq \mathcal{D}(X, R Y) : [-] \]

A familiar example is given by currying:

\[\mathsf{Set} \perp \mathsf{Set} \quad \text{with} \quad \text{curry} : \mathsf{Set}(X \times P, Y) \simeq \mathsf{Set}(X, Y^P) : \text{curry}^\circ \]

hence definitions and properties of $\text{apply} = \text{uncurry \ id}_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{c}
\text{Set} \quad \perp \quad \text{Set}^2 \quad \perp \quad \text{Set} \\
\Delta \quad + \quad \Delta \quad \times
\end{array}
\]

with

\[
\begin{aligned}
\text{fork} : & \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^\circ \\
\text{junc}^\circ : & \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{aligned}
\]

hence

\[
\begin{aligned}
dup = \text{fork} \ \text{id}_{A,A} : & \text{Set}(A, A \times A) \\
(fst, snd) = \text{fork}^\circ \ \text{id}_{B \times C} : & \text{Set}^2(\Delta (B, C), (B, C))
\end{aligned}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{c}
\text{CMon} & \downarrow & \text{Set} \\
\hookrightarrow & \text{U} & \hookleftarrow \\
\end{array}
\]

\[
\text{with } [-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, \text{U}(M, \otimes, \epsilon)) : [-]
\]

Unit and counit:

- \text{single } A = [id_{\text{Free } A}] : A \to \text{U}(\text{Free } A)
- \text{reduce } M = [id_M] : \text{Free}(\text{U } M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)

whence, for \(h : \text{Free } A \to M \) and \(f : A \to \text{U } M = M \),

\[
h = \text{reduce } M \cdot \text{Free } f \iff \text{U } h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({ a } \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({ a } \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \minBound, \max))</td>
<td>({ a } \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \maxBound, \min))</td>
<td>({ a } \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({ a } \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({ a } \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag} A \rightarrow \text{Bag} A
\]

\[
\text{guard } p \ a = \text{if } p \ a \ \text{then } \{ a \} \ \text{else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1 \)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag } A) \to \text{Bag } A \\
\text{single} & : A \to \text{Bag } A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}^\cup\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \left[id_A \right] L : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the $Reader$ monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

$$
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
$$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\begin{array}{c}
\text{Rel} \\
\downarrow J \\
\downarrow E \\
\downarrow \text{Set}
\end{array}
\]

where \(J\) embeds, and \(E : R : A \rightarrow \text{Set} B\) for \(R : A \sim B\).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x f \bowtie g y = \text{flatten} \left(\text{Map} K \ cp \left(\text{merge} \left(\text{groupBy} f x, \text{groupBy} g y \right) \right) \right)
\]

\[
\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*.

There is an adjunction to Set, via

$$
\begin{array}{ccc}
\text{Set}_* & \perp & \text{Set} \\
\downarrow \text{Maybe} & & \downarrow \text{U} \\
\text{Set}_* & \downarrow & \text{Set}
\end{array}
$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U } (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta \ a = \lambda k \to a : A \to \text{Map} \ K \ A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid $$(M, \otimes, \epsilon)$$,

$$\mu \ X : T_m (T_n X) \to T_{m \otimes n} X$$
$$\eta \ X : X \to T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid $$(\mathbb{K}, \times, 1)$$ of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.