Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

```
[ (customer.name, invoice.amount) |
  customer ← customers,
  invoice ← invoices,
  customer.cid = invoice.customer,
  invoice.due ≤ today ]
```

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\begin{align*}
(A, \leq) & \perp (B, \sqsubseteq) \quad \text{means } f b \leq a \iff b \sqsubseteq g a \\
\end{align*}

For example,

\begin{align*}
(\mathbb{R}, \leq_{\mathbb{R}}) & \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \\
\text{floor} & \\
(\mathbb{Z}, \leq) & \perp (\mathbb{Z}, \leq) \\
\times k & \\
\div k & \\
\end{align*}

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \(C \) consists of

- a set* \(|C| \) of objects,
- a set* \(C(X, Y) \) of arrows \(X \to Y \) for each \(X, Y : |C| \),
- identity arrows \(id_X : X \to X \) for each \(X \)
- composition \(f \cdot g : X \to Z \) of compatible arrows \(g : X \to Y \) and \(f : Y \to Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq) \) is a degenerate category, with objects \(A \) and a unique arrow \(a \to b \) iff \(a \leq b \).

\[\ldots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A *functor* $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

- $F \ id_X = id_{F X}$
- $F (f \cdot g) = F f \cdot F g$

For example, *forgetful* functor $U : \text{CMon} \to \text{Set}$:

- $U (M, \otimes, \epsilon) = M$
- $U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the *free* commutative monoid (ie bags) on a set of elements:

- $\text{Free} A = (\text{Bag } A, \uplus, \emptyset)$
- $\text{Free} (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction

![Diagram of adjunction]

means $\ast \lfloor - \rfloor : \mathbf{C}(L X, Y) \simeq \mathbf{D}(X, R Y) : \lfloor - \rfloor$

A familiar example is given by currying:

![Diagram of currying]

with $\text{curry} : \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P) : \text{curry}$

hence definitions and properties of $\text{apply} = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

with

\[\text{fork} : \mathbf{Set}^2(\Delta A, (B, C)) \cong \mathbf{Set}(A, B \times C) \quad : \text{fork}^\circ \]
\[\text{junc}^\circ : \mathbf{Set}(A + B, C) \cong \mathbf{Set}^2((A, B), \Delta C) : \text{junc} \]

hence

\[\text{dup} = \text{fork} \ id_{A,A} : \mathbf{Set}(A, A \times A) \]
\[(\text{fst}, \text{snd}) = \text{fork}^\circ \ id_{B \times C} : \mathbf{Set}^2(\Delta (B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \dashv & \text{Set} \\
\downarrow & & \downarrow \\
\text{Free} & \rightarrow & \text{Set}
\end{array}
\]

\[
\boxed{\text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U(M, \otimes, \epsilon))} \quad : \boxed{[-]}
\]

Unit and counit:

\[
single A = [id_{\text{Free } A}] : A \rightarrow U(\text{Free } A)
\]

\[
\text{reduce } M = [id_M] : \text{Free}(U M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \rightarrow M \) and \(f : A \rightarrow U M = M \),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>(\uparrow a \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>(\uparrow a \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>(\uparrow a \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>(\uparrow a \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>(\uparrow a \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>(\uparrow a \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \uparrow a \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1 \)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} &= U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \rightarrow \text{Bag} A \\
\text{single} & : A \rightarrow \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a\}\).

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R \{id_A\} L : T (T A) \rightarrow T A \\
\eta A &= \{id_A\} : A \rightarrow T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction. The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \simeq 1$
- $\text{Map } 1 V \simeq V$
- $\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2$: merge
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{\perp} \text{Set}
\]

where \(J \) embeds, and \(E \ R : A \to \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \operatorname{Bag} (K \times V) \simeq \operatorname{Map} K (\operatorname{Bag} V)
\]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[
x f \Join g y = \text{flatten} (\operatorname{Map} K \ cp (\text{merge} (\operatorname{groupBy} f x, \operatorname{groupBy} g y)))
\]

\[
\operatorname{groupBy} : (V \to K) \to \operatorname{Bag} V \to \operatorname{Map} K (\operatorname{Bag} V)
\]

\[
\text{flatten} : \operatorname{Map} K (\operatorname{Bag} V) \to \operatorname{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

\[
\begin{array}{ccc}
\text{Set}_* & \Downarrow & \text{Set} \\
\text{Maybe} & \& & \text{U} \\
\end{array}
\]

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U} (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta \ a = \lambda k \to a : A \to \text{Map} \ K \ A \]

in general yields an infinite map.

However, finite maps are a \textit{graded monad}*: for monoid \((M, \otimes, \epsilon)\),

\[
\mu X : T_m (T_n X) \to T_{m \otimes n} X \\
\eta X : X \to T_\epsilon X
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.