Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query* notation

\[
\begin{align*}
\left[(\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
| \text{customer} \leftarrow \text{customers}, \\
\text{invoice} \leftarrow \text{invoices}, \\
\text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
\text{invoice}.\text{due} \leq \text{today} \right]
\end{align*}
\]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\]

means \(f b \leq a \iff b \sqsubseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \(C \) consists of

- a set* \(|C| \) of objects,
- a set* \(C(X, Y) \) of arrows \(X \to Y \) for each \(X, Y : |C| \),
- identity arrows \(id_X : X \to X \) for each \(X \)
- composition \(f \cdot g : X \to Z \) of compatible arrows \(g : X \to Y \) and \(f : Y \to Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq)\) is a degenerate category, with objects \(A \) and a unique arrow \(a \to b \) iff \(a \leq b \).

\[\cdots
\begin{array}{c}
\text{\(\to \)} \\
-2 \quad -1 \\
\text{\(\to \)} \\
0 \quad 1 \\
\text{\(\to \)} \\
1 \quad 2 \\
\end{array}
\cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a **concrete category**: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \(\textbf{CMon} \) has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon') \) as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \(\textbf{Set} \) has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F: C \rightarrow D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \rightarrow F Y$ when $f : X \rightarrow Y$, and

$$F \ id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \rightarrow \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'$$

Conversely, Free : $\text{Set} \rightarrow \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

Free $A = (\text{Bag } A, \cup, \emptyset)$
Free $(f : A \rightarrow B) = \text{map } f : \text{Bag } A \rightarrow \text{Bag } B$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathcal{C}, \mathcal{D}, and functors $L : \mathcal{D} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{D}$, adjunction

\[
\begin{array}{ccc}
\mathcal{C} & \perp & \mathcal{D} \\
\mathcal{R} & \uparrow & \mathcal{L} \\
\mathcal{D} & \downarrow & \mathcal{C}
\end{array}
\]

means $[-] : \mathcal{C}(L X, Y) \simeq \mathcal{D}(X, R Y) : [-]$.

A familiar example is given by currying:

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set} \\
(-)P & \uparrow & -\times P \\
\text{Set} & \downarrow & \text{Set}
\end{array}
\]

with $\text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^\circ$.

hence definitions and properties of $\text{apply} = \text{uncurry \ id}_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork } id_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ id_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \Downarrow & \text{Set} \\
\Upsilon & \circlearrowright & \circlearrowright
\end{array}
\]

with \([-]\) : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, \Upsilon (M, \otimes, \epsilon)): [-]

Unit and counit:

- \(\text{single } A = [id_{\text{Free } A}] : A \to \Upsilon (\text{Free } A)\)
- \(\text{reduce } M = [id_M] : \text{Free } (\Upsilon M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)\)

whence, for \(h : \text{Free } A \to M\) and \(f : A \to \Upsilon M = M\),

\[h = \text{reduce } M \cdot \text{Free } f \iff \Upsilon h \cdot \text{single } A = f\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single}) \) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) & \to \text{Bag} A \\
\text{single} : A & \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f a b \mid a \leftarrow x, b \leftarrow g a \} \).

In fact, for any adjunction \(L \dashv R \) between \(C \) and \(D \), we get a monad \((T, \mu, \eta) \) on \(D \), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R [id_A] L : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction. The laws of exponents arise from this adjunction, and from those for products and coproducts:

\begin{align*}
\text{Map } 0 V &\simeq 1 \\
\text{Map } 1 V &\simeq V \\
\text{Map } (K_1 + K_2) V &\simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V &\simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 &\simeq 1 \\
\text{Map } K (V_1 \times V_2) &\simeq \text{Map } K V_1 \times \text{Map } K V_2 \; : \text{merge}
\end{align*}
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \vdash \downarrow \text{Set} \]

where \(\text{J} \) embeds, and \(\text{E} R : A \to \text{Set} \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \text{index} and \text{merge} give efficient relational joins:

\[x_{f \bowtie g} y = \text{flatten} (\text{Map} K \; \text{cp} (\text{merge} (\text{groupBy} f \; x, \text{groupBy} g \; y))) \]

\[\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \]

\[\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V \]
13. **Pointed sets and finite maps**

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

\[\text{Set}_* \Downarrow \perp \xrightarrow{\text{Maybe}} \text{Set} \xrightarrow{U} \]

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $U (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_*: \text{Set} \rightarrow \text{Set}_*$.

Indexing remains an isomorphism:

\[\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V) \]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid $$(M, \otimes, \epsilon)$$,

$$\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X$$
$$\eta X : X \rightarrow T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid $$(\mathbb{K}, \times, 1)$$ of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.