Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query notation*

\[
[(customer.name, invoice.amount)
| customer ← customers,
 invoice ← invoices,
 customer.cid = invoice.customer,
 invoice.due \leq today]
\]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \]

means \(f b \leq a \iff b \sqsubseteq g a \)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq) \]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category C consists of

- a set* $\mid C \mid$ of objects,
- a set* $C(X, Y)$ of arrows $X \to Y$ for each $X, Y : \mid C \mid$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

$$\ldots \xrightarrow{-} -2 \xrightarrow{-} -1 \xrightarrow{0} 1 \xrightarrow{2} \ldots$$

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category \mathbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
h (m \otimes n) = h m \oplus h n
\]
\[
h \epsilon = \epsilon'
\]

Trivially, category \mathbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \rightarrow D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \rightarrow F Y$ when $f : X \rightarrow Y$, and

$$F id_X = id_{F X}$$

$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : CMon \rightarrow Set$:

$$U (M, \otimes, \epsilon) = M$$

$$U (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'$$

Conversely, $Free : Set \rightarrow CMon$ generates the free commutative monoid (ie bags) on a set of elements:

$$Free A = (Bag A, \cup, \emptyset)$$

$$Free (f : A \rightarrow B) = map f : Bag A \rightarrow Bag B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C, D, and functors $L : D \rightarrow C$ and $R : C \rightarrow D$, adjunction

\[
\begin{array}{c}
C \quad \perp \quad D \\
\downarrow L \quad \quad \quad \quad \quad \quad \downarrow R
\end{array}
\]

means* $[-] : C(L X, Y) \simeq D(X, R Y) : [-]$

A familiar example is given by currying:

\[
\begin{array}{c}
\text{Set} \quad \perp \quad \text{Set} \\
\downarrow \text{(-)}^P \quad \quad \quad \quad \quad \quad \downarrow \text{(-)}^P
\end{array}
\]

with $\text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry} \; \text{id}_{Y^P} : Y^P \times P \rightarrow Y$
7. Products and coproducts

\[
\begin{align*}
\text{Set} & \xrightarrow{\perp} \text{Set}^2 \xrightarrow{\perp} \text{Set} \\
\Delta & \xrightarrow{\perp} \text{Set}^2 \xrightarrow{\Delta} \text{Set}
\end{align*}
\]

with

\[
\begin{align*}
\text{fork} & : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^o \\
\text{junc}^o & : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
\text{dup} & = \text{fork } \text{id}_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^o \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \downarrow & \text{Set} \\
\text{Free} & \nearrow & \ \Rightarrow \\
\downarrow & \nearrow & \ U \\
\end{array}
\]

\[
\text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-]
\]

Unit and counit:

- \(\text{single } A = [\text{id}_{\text{Free } A}] : A \to U (\text{Free } A)\)
- \(\text{reduce } M = [\text{id}_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)\)

whence, for \(h : \text{Free } A \to M\) and \(f : A \to U M = M\),

\[h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>(\lfloor a \rfloor \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \lfloor a \rfloor \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} : & \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} : & A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R [id_A] L : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction. The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \cong 1$
- $\text{Map } 1 V \cong V$
- $\text{Map } (K_1 + K_2) V \cong \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \cong \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \cong 1$
- $\text{Map } K (V_1 \times V_2) \cong \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \text{Set} \]

where \(J \) embeds, and \(E \) \(R : A \rightarrow \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} \ (K \times V) \simeq \text{Map} \ K \ (\text{Bag} \ V) \]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[x \ f \bowtie g \ y = \text{flatten} \ (\text{Map} \ K \ cp \ (\text{merge} \ (\text{groupBy} \ f \ x, \text{groupBy} \ g \ y))) \]

\(\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} \ V \rightarrow \text{Map} \ K \ (\text{Bag} \ V) \)

\(\text{flatten} : \text{Map} \ K \ (\text{Bag} \ V) \rightarrow \text{Bag} \ V \)
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{array}{c}
\text{Set}_* \quad \perp \quad \text{Set} \\
\downarrow \text{Maybe} \quad \downarrow \text{U}
\end{array}
$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $U (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map} K A \]

in general yields an infinite map.

However, finite maps are a \textit{graded monad*}: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta X : X \rightarrow T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.