Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\left[
\begin{array}{c}
(customer_name, invoice_amount) \\
| customer \leftarrow customers, \\
\quad invoice \leftarrow invoices, \\
\quad customer_cid = invoice_customer, \\
\quad invoice_due \leq today \\
\end{array}
\right]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \text{ means } f \ b \leq a \iff b \sqsubseteq g \ a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; e.g., rhs gives
\[n \times k \leq m \iff n \leq m \div k,\]
and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathcal{C} consists of

- a set* $|\mathcal{C}|$ of objects,
- a set* $\mathcal{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathcal{C}|$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

$$\ldots \to -2 \to -1 \to 0 \to 1 \to 2 \to \ldots$$

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h: (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')$ as arrows:

$$h (m \otimes n) = h m \oplus h n$$

$$h \epsilon = \epsilon'$$

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

\[
F \text{id}_X = \text{id}_{F X} \\
F (f \cdot g) = F f \cdot F g
\]

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

\[
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, Free : Set \to CMon generates the free commutative monoid (ie bags) on a set of elements:

\[
\text{Free } A = (\text{Bag } A, \cup, \emptyset) \\
\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \(\mathbf{C}, \mathbf{D} \), and functors \(\mathbf{L} : \mathbf{D} \to \mathbf{C} \) and \(\mathbf{R} : \mathbf{C} \to \mathbf{D} \), adjunction

\[
\begin{array}{ccc}
\mathbf{C} & \perp & \mathbf{D} \\
\mathbf{C}(\mathbf{L} X, Y) & \cong & \mathbf{D}(X, \mathbf{R} Y) \\
\mathbf{R} & \searrow & \mathbf{L}
\end{array}
\]

A familiar example is given by currying:

\[
\begin{array}{ccc}
\mathbf{Set} & \perp & \mathbf{Set} \\
\mathbf{Set}(X \times P, Y) & \cong & \mathbf{Set}(X, P^Y) \\
\mathbf{(-)^P} & \searrow & \mathbf{\times P}
\end{array}
\]

with \(\text{curry} : \mathbf{Set}(X \times P, Y) \cong \mathbf{Set}(X, P^Y) : \text{curry} \)

hence definitions and properties of \(\text{apply} = \text{uncurry id}_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set}^2 \\
\circlearrowleft & \Delta & \circlearrowright \\
\Delta & \perp & \Delta \\
\Delta & \times & \Delta
\end{array}
\]

with

\[
\begin{align*}
\text{fork} & : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^\circ \\
\text{junc}^\circ & : \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
dup & = \text{fork} \ id_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^\circ \ id_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[\text{CMon} \downarrow \text{Set} \]

with \([\cdot] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-]\)

Unit and counit:

\[\text{single } A = [id_{\text{Free } A}] : A \to U (\text{Free } A) \]
\[\text{reduce } M = [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon) \]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to U M = M\),

\[h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f \]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* (Bag, union, single) with

\[
\text{Bag } = U \cdot \text{Free} \\
\text{union } : \text{Bag } (\text{Bag } A) \to \text{Bag } A \\
\text{single } : A \to \text{Bag } A
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g\ a \} \).

In fact, for any adjunction \(L \dashv R \) between \(C \) and \(D \), we get a monad \((T, \mu, \eta)\) on \(D \), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R \left[id_A \right] L : T (T A) \to T A \\
\eta A &= [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \downarrow \downarrow \xrightarrow{E} \text{Set} \]

where \(J \) embeds, and \(E R : A \to \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[x f \bowtie g y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y))) \]

\(\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \)

\(\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V \)
13. Pointed sets and finite maps

Model \textit{finite maps} \(\text{Map}_* \) not as partial functions, but \textit{total} functions to a \textit{pointed} codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \dashv & \text{Set} \\
\downarrow & & \downarrow \\
\text{Maybe} & & \text{U}
\end{array}
\]

where \(\text{Maybe} A \simeq 1 + A \) adds a point, and \(\text{U} (A, a) = A \) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} f \) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \rightarrow \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta\ a = \lambda k \to a : A \to \text{Map} \ K A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \varepsilon)\),

$$\mu\ X : T_m (T_n X) \to T_{m \otimes n} X$$
$$\eta\ X : X \to T_{\varepsilon} X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.