Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\begin{align*}
[& (\text{customer.name, invoice.amount}) \\
| & \text{customer} \leftarrow \text{customers}, \\
& \text{invoice} \leftarrow \text{invoices}, \\
& \text{customer.cid} = \text{invoice.customer}, \\
& \text{invoice.due} \leq \text{today}]
\end{align*}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \equiv) \quad \text{means} \quad f \ b \leq a \iff b \equiv g \ a\]

For example,

\[
\begin{aligned}
\text{floor} & \quad (\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \\
\text{inj} & \quad (\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \\
\times k & \quad (\mathbb{Z}, \leq_{\mathbb{Z}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \\
\div k & \quad (\mathbb{Z}, \leq_{\mathbb{Z}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})
\end{aligned}
\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives $n \times k \leq m \iff n \leq m \div k$, and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \rightarrow Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \rightarrow X$ for each X
- composition $f \cdot g : X \rightarrow Z$ of compatible arrows $g : X \rightarrow Y$ and $f : Y \rightarrow Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \rightarrow b$ iff $a \leq b$.

$$\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots$$

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \mathbf{CMon} has commutative monoids $(M, \otimes, \varepsilon)$ as objects, and homomorphisms $h : (M, \otimes, \varepsilon) \rightarrow (M', \oplus, \varepsilon')$ as arrows:

$$h (m \otimes n) = h m \oplus h n$$
$$h \varepsilon = \varepsilon'$$

Trivially, category \mathbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving
the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F id_X = id_{FX}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the free commutative monoid
(ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \uplus, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction $\mathbf{C} \perp \mathbf{D}$ means $[-] : \mathbf{C}(L X, Y) \simeq \mathbf{D}(X, R Y) : [-]$.

A familiar example is given by currying:

$\mathbf{Set} \perp \mathbf{Set}$ with $\text{curry} : \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P) : \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry \text{id}_{Y^P}} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{c}
\text{Set} \quad \bot \quad \text{Set}^2 \\
\Delta \quad \downarrow \quad \Delta \\
\text{Set} \quad \bot \quad \text{Set}
\end{array}
\]

with

\[
fork : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) \quad : \text{fork}^\circ
\]
\[
junc^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : junc
\]

hence

\[
dup = fork \ id_{A,A} : \text{Set}(A, A \times A)
\]
\[
(fst, snd) = fork^\circ \ id_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \dashv & \text{Set} \\
\downarrow & & \downarrow \\
\text{Free} & \approx & \text{Set}(A, U (M, \otimes, \epsilon))
\end{array}
\]

with \([-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \approx \text{Set}(A, U (M, \otimes, \epsilon)) : [-]\)

Unit and counit:

\[
single A = [id_{\text{Free } A}] : A \rightarrow U (\text{Free } A) \\
reduce M = [id_M] : \text{Free } (U M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \rightarrow M\) and \(f : A \rightarrow U M = M\),

\[
h = reduce M \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \max))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \min))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
\text{guard } p \; a = \begin{cases}
\{a\} & \text{if } p \; a \\
\emptyset & \text{else}
\end{cases}
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union, single})\) with

\[
\begin{align*}
\text{Bag} &= U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) &\to \text{Bag} A \\
\text{single} : A &\to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f a b \mid a \leftarrow x, b \leftarrow g a \} \).

In fact, for any adjunction \(L \dashv R \) between \(\mathbf{C} \) and \(\mathbf{D} \), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D} \), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R \left[id_A \right] L : T (T A) \to T A \\
\eta A &= \left[id_A \right] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the *Reader* monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \approx 1$
- $\text{Map } 1 V \approx V$
- $\text{Map } (K_1 + K_2) V \approx \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \approx \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \approx 1$
- $\text{Map } K (V_1 \times V_2) \approx \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{\perp} \text{Set} \]

where \(J \) embeds, and \(E R : A \rightarrow \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[x f \bowtie g y = \text{flatten} (\text{Map} K \text{cp} (\text{merge} (\text{groupBy} f x, \text{groupBy} g y))) \]

\[\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V) \]

\[\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V \]
13. Pointed sets and finite maps

Model finite maps Map_* not as partial functions, but total functions to a pointed codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

\[
\begin{array}{ccc}
\text{Set}_* & \downarrow & \text{Set} \\
\text{Maybe} & \circlearrowleft & \text{U}
\end{array}
\]

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U } (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

\[\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map} \, K \, A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[
\begin{align*}
\mu X &: T_m (T_n X) \to T_{m \otimes n} X \\
\eta X &: X \to T_\epsilon X
\end{align*}
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.