Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query* notation

 \[
 \left[(\text{customer} . \text{name}, \text{invoice} . \text{amount})
 \mid \text{customer} \leftarrow \text{customers},
 \text{invoice} \leftarrow \text{invoices},
 \text{customer} . \text{cid} = \text{invoice} . \text{customer},
 \text{invoice} . \text{due} \leq \text{today} \right]
 \]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\]

\[\text{means } f(b) \leq a \iff b \sqsubseteq g(a)\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives
\[n \times k \leq m \iff n \leq m \div k\], and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \(C \) consists of

- a set* \(|C| \) of objects,
- a set* \(C(X, Y) \) of arrows \(X \to Y \) for each \(X, Y : |C| \),
- identity arrows \(id_X : X \to X \) for each \(X \)
- composition \(f \cdot g : X \to Z \) of compatible arrows \(g : X \to Y \) and \(f : Y \to Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq) \) is a degenerate category, with objects \(A \) and a unique arrow \(a \to b \) iff \(a \leq b \).

\[
\cdots \longrightarrow -2 \longrightarrow -1 \longrightarrow 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow \cdots
\]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor \(F : C \rightarrow D \) is an operation on both objects and arrows, preserving the structure: \(F f : F X \rightarrow F Y \) when \(f : X \rightarrow Y \), and

\[
\begin{align*}
F \ id_X & = id_{F X} \\
F (f \cdot g) & = F f \cdot F g
\end{align*}
\]

For example, forgetful functor \(U : \text{CMon} \rightarrow \text{Set} \):

\[
\begin{align*}
U (M, \otimes, \epsilon) & = M \\
U (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) & = h : M \rightarrow M'
\end{align*}
\]

Conversely, \(\text{Free} : \text{Set} \rightarrow \text{CMon} \) generates the free commutative monoid (ie bags) on a set of elements:

\[
\begin{align*}
\text{Free} A & = (\text{Bag} A, \uplus, \emptyset) \\
\text{Free} (f : A \rightarrow B) & = \text{map} f : \text{Bag} A \rightarrow \text{Bag} B
\end{align*}
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C, D, and functors $L : \mathsf{D} \to \mathsf{C}$ and $R : \mathsf{C} \to \mathsf{D}$, adjunction

$\mathsf{C} \perp \mathsf{D}$ means\(^*\) $[-] : \mathsf{C}(L X, Y) \cong \mathsf{D}(X, R Y) : [-]$

A familiar example is given by currying:

$\mathsf{Set} \perp \mathsf{Set}$ with $\text{curry} : \mathsf{Set}(X \times P, Y) \cong \mathsf{Set}(X, Y^P) : \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ
\]
\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
\text{dup} = \text{fork id}_{A,A} : \text{Set}(A, A \times A)
\]
\[
(\text{fst}, \text{snd}) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

$$\text{CMon} \vdash \downarrow \text{Set}$$

with $$[-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \simeq \text{Set}(A, U(M, \otimes, \epsilon)) : [-]$$

Unit and counit:

\begin{align*}
\text{single } A &= [id_{\text{Free } A}] : A \rightarrow U(\text{Free } A) \\
\text{reduce } M &= [id_M] : \text{Free}(U M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}

whence, for $$h : \text{Free } A \rightarrow M$$ and $$f : A \rightarrow U M = M$$,

$$h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f$$

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \wedge))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
\text{guard } p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

- \(\text{Bag} = U \cdot \text{Free}\)
- \(\text{union} : \text{Bag} (\text{Bag} A) \to \text{Bag} A\)
- \(\text{single} : A \to \text{Bag} A\)

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

- \(T = R \cdot L\)
- \(\mu A = R [id_A] L : T (T A) \to T A\)
- \(\eta A = [id_A] : A \to T A\)
11. Maps

Database indexes are essentially maps $\text{Map} \; K \; V = V^K$. Maps $(-)^K$ from K form a monad (the *Reader* monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

- $\text{Map} \; 0 \; V \cong 1$
- $\text{Map} \; 1 \; V \cong V$
- $\text{Map} \; (K_1 + K_2) \; V \cong \text{Map} \; K_1 \; V \times \text{Map} \; K_2 \; V$
- $\text{Map} \; (K_1 \times K_2) \; V \cong \text{Map} \; K_1 \; \text{Map} \; K_2 \; V$
- $\text{Map} \; K \; 1 \cong 1$
- $\text{Map} \; K \; (V_1 \times V_2) \cong \text{Map} \; K \; V_1 \times \text{Map} \; K \; V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{J} \downarrow \text{Set} \xleftarrow{E} \text{Set}
\]

where \(J\) embeds, and \(E R : A \rightarrow \text{Set} B\) for \(R : A \sim B\).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x f \Join g y = \text{flatten} (\text{Map} K \text{cp} (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))
\]

\[
\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

\[
\begin{array}{ccc}
\text{Set}_* & \Downarrow & \text{Set} \\
\text{Maybe} & \Downarrow & \text{U} \\
\end{array}
\]

where $\text{Maybe} A \cong 1 + A$ adds a point, and $\text{U} (A, a) = A$ discards it.

In particular, $(\text{Bag} A, \emptyset)$ is a pointed set. Moreover, $\text{Bag} f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \to T_{m \otimes n} X \]
\[\eta X : X \to T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.