Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query notation*

\[
\begin{align*}
& (\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
| & \text{customer} \leftarrow \text{customers}, \\
& \text{invoice} \leftarrow \text{invoices}, \\
& \text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
& \text{invoice}.\text{due} \leq \text{today}
\end{align*}
\]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

$$(A, \leq) \perp (B, \sqsubseteq)$$ means $f b \leq a \iff b \sqsubseteq g a$$

For example,

$$\left(\mathbb{R}, \leq_{\mathbb{R}} \right) \perp \left(\mathbb{Z}, \leq_{\mathbb{Z}} \right) \quad \text{inj}$$

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives $n \times k \leq m \iff n \leq m \div k$, and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of *objects*,
- a set* $\mathbf{C}(X, Y)$ of *arrows* $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- *identity* arrows $\text{id}_X : X \to X$ for each X,
- *composition* $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

... → −2 → −1 → 0 → 1 → 2 → ...

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category **CMon** has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category **Set** has sets as objects, and total functions as arrows.
Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F \ id_X = id_{F X}$$

$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : CMon \to Set$:

$$U (M, \otimes, \epsilon) = M$$

$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $Free : Set \to CMon$ generates the free commutative monoid (ie bags) on a set of elements:

$$Free A = (Bag A, \uplus, \emptyset)$$

$$Free (f : A \to B) = map f : Bag A \to Bag B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction

$$\xymatrix{\mathbf{C} & \mathbf{D} \\
\ar@/_/[r]|L & \ar@/^/[r]|R}
$$

means $*-\downarrow : \mathbf{C}(L X, Y) \simeq \mathbf{D}(X, R Y) : [-]$.

A familiar example is given by currying: $\setminus \times P \simeq \setminus \times P$ with $\text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^\circ$.

hence definitions and properties of $\text{apply} = \text{uncurry } \text{id}_{Y^P} : Y^P \times P \to Y$.
7. Products and coproducts

with

\[\text{fork} : \mathbf{Set}^2(\Delta A, (B, C)) \simeq \mathbf{Set}(A, B \times C) : \text{fork}^\circ \]
\[\text{junc} : \mathbf{Set}(A + B, C) \simeq \mathbf{Set}^2((A, B), \Delta C) : \text{junc} \]

hence

\[\text{dup} = \text{fork id}_{A,A} : \mathbf{Set}(A, A \times A) \]
\[(\text{fst}, \text{snd}) = \text{fork}^\circ \text{id}_{B\times C} : \mathbf{Set}^2(\Delta (B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[\text{CMon} \downarrow \text{Set} \]

with \([-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \]

\[\cong \text{Set}(A, \text{U } (M, \otimes, \epsilon)) \]

\[: [-] \]

Unit and counit:

- \(\text{single } A = [\text{id}_{\text{Free } A}] : A \to \text{U } (\text{Free } A)\)
- \(\text{reduce } M = [\text{id}_M] : \text{Free } (\text{U } M) \to M \quad \text{ -- for } M = (M, \otimes, \epsilon)\)

whence, for \(h : \text{Free } A \to M \) and \(f : A \to \text{U } M = M \),

\(h = \text{reduce } M \cdot \text{Free } f \iff \text{U } h \cdot \text{single } A = f \)

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
guard p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* (Bag, union, single) with

\[
\text{Bag} = U \cdot \text{Free}
\]

\[
\text{union} : \text{Bag} \ (\text{Bag} \ A) \rightarrow \text{Bag} \ A
\]

\[
\text{single} : A \rightarrow \text{Bag} \ A
\]

which justifies the use of comprehension notation $\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}$. In fact, for any adjunction $L \dashv R$ between C and D, we get a monad (T, μ, η) on D, where

\[
T = R \cdot L
\]

\[
\mu A = R \ [id_A] L : T \ (T \ A) \rightarrow T \ A
\]

\[
\eta A = [id_A] : A \rightarrow T \ A
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\begin{array}{ccc}
\text{Rel} & \downarrow_J & \text{Set} \\
\text{E} & \downarrow_E & \\
\end{array}
\]

where \(J \) embeds, and \(E \ R : A \rightarrow \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x \, f \bowtie g \, y = \text{flatten} \left(\text{Map} K \, cp \, (\text{merge} \, (\text{groupBy} \, f \, x, \text{groupBy} \, g \, y)) \right)
\]

\[
\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} \ V \rightarrow \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V
\]
13. Pointed sets and finite maps

Model \textit{finite maps} \(\text{Map}_* \) not as partial functions, but \textit{total} functions to a \textit{pointed} codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \). There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \cong \downarrow & \text{Set} \\
\downarrow & \downarrow & \downarrow \\
\text{Maybe} & \cong & \text{U} \\
\end{array}
\]

where \(\text{Maybe} A \cong 1 + A \) adds a point, and \(\text{U} (A, a) = A \) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} f \) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta \ a = \lambda k \rightarrow a : A \rightarrow \text{Map } K\ A \]

in general yields an infinite map. However, finite maps are a \textit{graded monad}* for monoid \((M, \otimes, \epsilon)\),

\[
\mu \ X : T_m (T_n X) \rightarrow T_{m \otimes n} X \\
\eta \ X : X \rightarrow T_\epsilon X
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((K, \times, 1)\) of finite key types under product.
15. Conclusions

- monad comprehensions for database queries
- structure arising from adjunctions
- equivalences from universal properties
- fitting in relational joins, via indexing
- to do: calculating query optimisations

Thanks to EPSRC Unifying Theories of Generic Programming for funding.