Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

 \[
 \left\{ \left(customer\cdot name, invoice\cdot amount \right) \mid \begin{align*}
 & customer \leftarrow customers, \\
 & invoice \leftarrow invoices, \\
 & customer\cdot cid = invoice\cdot customer, \\
 & invoice\cdot due \leq today
 \end{align*} \right. \right\}
 \]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq)\]

\[f \rightleftharpoons g\]

means \[f \ b \leq a \iff b \subseteq g \ a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[\text{floor} \rightleftharpoons \text{inj}\]

\[(\mathbb{Z}, \leq) \perp \left(\mathbb{Z}, \leq\right)\]

\[\times k \rightleftharpoons \div k\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \[n \times k \leq m \iff n \leq m \div k\], and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \mathcal{C} consists of

- a set* \mathcal{C} of *objects*,
- a set* $\mathcal{C}(X,Y)$ of *arrows* $X \to Y$ for each $X,Y : \mathcal{C}$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a **concrete category**: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F \ f : F\ X \to F\ Y$ when $f : X \to Y$, and

$$F\ id_X = id_{F\ X}$$
$$F\ (f \cdot g) = F\ f \cdot F\ g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U\ (M, \otimes, \epsilon) = M$$
$$U\ (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, Free : $\text{Set} \to \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free}\ A = (\text{Bag}\ A, \uplus, \emptyset)$$
$$\text{Free}\ (f : A \to B) = \text{map}\ f : \text{Bag}\ A \to \text{Bag}\ B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C, D, and functors $L : \mathsf{D} \to \mathsf{C}$ and $R : \mathsf{C} \to \mathsf{D}$, adjunction

\[\mathsf{C} \downarrow \mathsf{D} \]

means $^\ast \ [\cdot] : \mathsf{C}(L X, Y) \simeq \mathsf{D}(X, R Y) : [\cdot]$

A familiar example is given by *currying*:

\[\mathsf{Set} \downarrow \mathsf{Set} \]

with $\text{curry} : \mathsf{Set}(X \times P, Y) \simeq \mathsf{Set}(X, Y^P) : \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry \ id}_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{c}
\text{Set} \quad \perp \quad \text{Set}^2 \\
\Delta \quad \quad \quad \Delta \\
\downarrow \quad \quad \downarrow \\
\text{Set} \quad \perp \quad \text{Set}
\end{array}
\]

with

\[
\begin{align*}
\text{fork} : \text{Set}^2(\Delta A, (B, C)) & \simeq \text{Set}(A, B \times C) : \text{fork}^\circ \\
\text{junc}^\circ : \text{Set}(A + B, C) & \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
dup & = \text{fork } id_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^\circ id_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \downarrow & \text{Set} \\
\downarrow & & \downarrow \\
\text{Free} & \ & \mathcal{U}
\end{array}
\]

with \([-] : \text{CMon}(\text{Free} \ A, (M, \otimes, \epsilon)) \]
\[\simeq \text{Set}(A, \mathcal{U} (M, \otimes, \epsilon)) : [-]\]

Unit and counit:

\[
single \ A = [id_{\text{Free} \ A}] : A \to \mathcal{U} (\text{Free} \ A)
\]
\[reduce \ M = [id_M] : \text{Free} (\mathcal{U} M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)\]

whence, for \(h : \text{Free} \ A \to M \) and \(f : A \to \mathcal{U} M = M\),

\[h = reduce \ M \cdot \text{Free} \ f \iff \mathcal{U} \ h \cdot single \ A = f\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$(\mathbb{N}, 0, +)$</td>
<td>$\langle a \rangle \rightarrow 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$(\mathbb{R}, 0, +)$</td>
<td>$\langle a \rangle \rightarrow a$</td>
</tr>
<tr>
<td>max</td>
<td>$(\mathbb{Z}, \text{minBound}, \text{max})$</td>
<td>$\langle a \rangle \rightarrow a$</td>
</tr>
<tr>
<td>min</td>
<td>$(\mathbb{Z}, \text{maxBound}, \text{min})$</td>
<td>$\langle a \rangle \rightarrow a$</td>
</tr>
<tr>
<td>all</td>
<td>$(\mathbb{B}, \text{True}, \land)$</td>
<td>$\langle a \rangle \rightarrow a$</td>
</tr>
<tr>
<td>any</td>
<td>$(\mathbb{B}, \text{False}, \lor)$</td>
<td>$\langle a \rangle \rightarrow a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$\text{guard} : (A \rightarrow B) \rightarrow \text{Bag A} \rightarrow \text{Bag A}$

$\text{guard } p \ a = \text{if } p \ a \text{ then } \langle a \rangle \text{ else } \emptyset$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) & \to \text{Bag} A \\
\text{single} : A & \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R [id_A] L : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction. The laws of exponents arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \approx 1 \\
\text{Map } 1 V & \approx V \\
\text{Map } (K_1 + K_2) V & \approx \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \approx \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \approx 1 \\
\text{Map } K (V_1 \times V_2) & \approx \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{E} \downarrow \xleftarrow{J} \text{Set} \]

where \(J \) embeds, and \(E R : A \rightarrow \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \cong \text{Map} K (\text{Bag} V) \]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[x f \boxtimes g y = \text{flatten} (\text{Map} K cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y))) \]

\[\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V) \]

\[\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V \]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \cong & \text{Set} \\
\downarrow & & \downarrow \\
\text{Maybe} & \cong & \text{U}
\end{array}
\]

where \(\text{Maybe} \ A \cong 1 + A \) adds a point, and \(\text{U} \ (A, a) = A \) discards it.

In particular, \((\text{Bag} \ A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} \ f \) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \to a : A \to \text{Map} K A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid $$(M, \otimes, \epsilon)$$,

$$\mu X : T_m (T_n X) \to T_{m \otimes n} X$$

$$\eta X : X \to T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid $$(\mathbb{K}, \times, 1)$$ of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.