Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

 \[
 \begin{array}{|l|l|l|}
 \hline
 (\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
 \hline
 | \text{customer} \leftarrow \text{customers}, \\
 | \text{invoice} \leftarrow \text{invoices,} \\
 | \text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
 | \text{invoice}.\text{due} \leq \text{today} \end{array}
 \]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\]

means \(f b \leq a \iff b \sqsubseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\] \(\text{inj}\)

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\] \(\times k\)

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\] \(\div k\)

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \(C \) consists of

- a set* \(|C| \) of objects,
- a set* \(C(X, Y) \) of arrows \(X \rightarrow Y \) for each \(X, Y : |C| \),
- identity arrows \(\text{id}_X : X \rightarrow X \) for each \(X \)
- composition \(f \cdot g : X \rightarrow Z \) of compatible arrows \(g : X \rightarrow Y \) and \(f : Y \rightarrow Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq)\) is a degenerate category, with objects \(A \) and a unique arrow \(a \rightarrow b \) iff \(a \leq b \).

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a \textit{concrete category}: roughly,

- the objects are \textit{sets with additional structure}
- the arrows are \textit{structure-preserving mappings}

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor \(F : C \to D \) is an operation on both objects and arrows, preserving the structure: \(F f : F X \to F Y \) when \(f : X \to Y \), and

\[
\begin{align*}
F \ id_X &= id_{FX} \\
F (f \cdot g) &= F f \cdot F g
\end{align*}
\]

For example, forgetful functor \(U : \text{CMon} \to \text{Set} \):

\[
\begin{align*}
U (M, \otimes, \epsilon) &= M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) &= h : M \to M'
\end{align*}
\]

Conversely, \(\text{Free} : \text{Set} \to \text{CMon} \) generates the free commutative monoid (ie bags) on a set of elements:

\[
\begin{align*}
\text{Free } A &= (\text{Bag } A, \cup, \emptyset) \\
\text{Free } (f : A \to B) &= \text{map } f : \text{Bag } A \to \text{Bag } B
\end{align*}
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C, D, and functors $L : D \to C$ and $R : C \to D$, adjunction

$$
C \perp D \quad \text{means}^* \quad [-] : C(L X, Y) \simeq D(X, R Y) : [-]
$$

A familiar example is given by currying:

$$
\text{Set} \perp \text{Set} \quad \text{with} \quad \text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^\circ
$$

hence definitions and properties of $apply = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{cc}
\text{Set} & \Delta \\
\downarrow & \downarrow \\
\perp & \perp \\
\rightarrow & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cc}
\Delta & \times \\
\rightarrow & \rightarrow \\
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork} \ id_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \ id_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{c}
\text{CMon} \quad \perp \quad \text{Set} \\
\Upsilon \\
\end{array}
\]

with \([-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \approx \text{Set}(A, \Upsilon (M, \otimes, \epsilon)) : [-]\)

Unit and counit:

\[
\begin{align*}
\text{single } A &= [id_{\text{Free } A}] : A \rightarrow \Upsilon (\text{Free } A) \\
\text{reduce } M &= [id_M] : \text{Free } (\Upsilon M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \rightarrow M\) and \(f : A \rightarrow \Upsilon M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff \Upsilon h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>(\mathbb{N}, 0, +)</td>
<td>({a} \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>(\mathbb{R}, 0, +)</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>(\mathbb{Z}, \text{minBound}, \text{max})</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>(\mathbb{Z}, \text{maxBound}, \text{min})</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>(\mathbb{B}, \text{True}, \land)</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>(\mathbb{B}, \text{False}, \lor)</td>
<td>({a} \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & \quad = \ U \cdot \text{Free} \\
\text{union} & \quad : \text{Bag} \ (\text{Bag} \ A) \rightarrow \text{Bag} \ A \\
\text{single} & \quad : A \rightarrow \text{Bag} \ A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}_{\sum}^\cdot\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & \quad = R \cdot L \\
\mu \ A & \quad = R \ [id_A] L : T \ (T \ A) \rightarrow T \ A \\
\eta \ A & \quad = [id_A] : A \rightarrow T \ A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K \ V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

$\text{Map } 0 \ V \cong 1$

$\text{Map } 1 \ V \cong V$

$\text{Map } (K_1 + K_2) \ V \cong \text{Map } K_1 \ V \times \text{Map } K_2 \ V$

$\text{Map } (K_1 \times K_2) \ V \cong \text{Map } K_1 \ (\text{Map } K_2 \ V)$

$\text{Map } K \ 1 \cong 1$

$\text{Map } K \ (V_1 \times V_2) \cong \text{Map } K \ V_1 \times \text{Map } K \ V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{\perp} \text{Set} \]

where \(J \) embeds, and \(E \ R : A \rightarrow \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[x \ f \bowtie g \ y = \text{flatten} \ (\text{Map} K \ cp \ (\text{merge} \ (\text{groupBy} f \ x, \text{groupBy} g \ y))) \]

\(\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V) \)

\(\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V \)
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

\[
\begin{array}{ccc}
\text{Set}_* & \underbrace{\otimes} & \text{Set} \\
\downarrow & & \downarrow \\
\underbrace{\text{U}} & & \text{U}
\end{array}
\]

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U} (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_*: \text{Set} \rightarrow \text{Set}_*$.

Indexing remains an isomorphism:

\[
\text{index }: \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta_a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid (M, \otimes, ϵ),

$$\mu_X : T_m(T_n X) \rightarrow T_{m \otimes n} X$$
$$\eta_X : X \rightarrow T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid $(\mathbb{K}, \times, 1)$ of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.