Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query notation*

\[
\begin{aligned}
\left[
\begin{array}{l}
(customer.name, invoice.amount) \\
\mid customer \leftarrow customers,
\end{array}
\right]
\end{aligned}
\]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \quad \text{means} \quad f(b) \leq a \iff b \subseteq g(a)\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \quad \text{and} \quad (\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives

\[n \times k \leq m \iff n \leq m \div k,\]

and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category C consists of

- a set* $|C|$ of objects,
- a set* $C(X, Y)$ of arrows $X \to Y$ for each $X, Y : |C|$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,

such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\cdots \to -2 \overset{}{\longrightarrow} -1 \overset{}{\longrightarrow} 0 \overset{}{\longrightarrow} 1 \overset{}{\longrightarrow} 2 \overset{}{\longrightarrow} \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

$$h (m \otimes n) = h m \oplus h n$$
$$h \epsilon = \epsilon'$$

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F id_X = id_{FX}$$

$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : CMon \to Set$:

$$U (M, \otimes, \epsilon) = M$$

$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, Free : Set \to CMon generates the free commutative monoid (ie bags) on a set of elements:

Free $A = (\text{Bag } A, \cup, \emptyset)$

Free ($f : A \to B$) = map $f : \text{Bag } A \to \text{Bag } B$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C, D, and functors $L : D \to C$ and $R : C \to D$, adjunction

$$C \perp D\quad \text{means}^*\quad [-] : C(L X, Y) \simeq D(X, R Y) : [-]$$

A familiar example is given by currying:

$$\text{Set} \perp \text{Set}\quad \text{with} \quad \text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^\circ$$

hence definitions and properties of $apply = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{align*}
\text{Set} & \quad \perp \quad \text{Set}^2 & \quad \perp \quad \text{Set} \\
\Delta & \quad \Delta & \quad \times
\end{align*}
\]

with

\[
\begin{align*}
\text{fork} : & \, \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) & : \text{fork}^\circ \\
\text{junc}^\circ : & \, \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
\text{dup} & = \text{fork} \, \text{id}_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^\circ \, \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{c}
\text{CMon} \quad \perp \quad \text{Set} \\
\xleftarrow{\mathrm{Free}} \quad \downarrow \quad \xrightarrow{\mathrm{U}}
\end{array}
\]

with \([-] : \text{CMon} (\text{Free } A, (M, \otimes, \epsilon)) \approx \text{Set} (A, \text{U } (M, \otimes, \epsilon)) : [-]\)

Unit and counit:

\[
single A = [\text{id}_{\text{Free } A}] : A \to \text{U } (\text{Free } A)
\]
\[
\text{reduce } M = [\text{id}_M] : \text{Free } (\text{U } M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to \text{U } M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff \text{U } h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>(\lfloor a \rfloor \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag} A \rightarrow \text{Bag} A
\]

\[
guard p a = \text{if } p a \text{ then } \lfloor a \rfloor \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) & \rightarrow \text{Bag} A \\
\text{single} : A & \rightarrow \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R [id_A] L : T (T A) \rightarrow T A \\
\eta A & = [id_A] : A \rightarrow T A
\end{align*}
\]
Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(\cdot)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction. The laws of exponents arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V &\cong 1 \\
\text{Map } 1 V &\cong V \\
\text{Map } (K_1 + K_2) V &\cong \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V &\cong \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 &\cong 1 \\
\text{Map } K (V_1 \times V_2) &\cong \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. **Indexing**

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{\text{J}} \text{Set} \xleftarrow{\text{E}} \text{Bag}(K \times V) \sim \text{Map } K(\text{Bag } V)
\]

where J embeds, and E R : A → Set B for R : A ~ B.

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag } (K \times V) \sim \text{Map } K(\text{Bag } V)
\]

Together, `index` and `merge` give efficient relational joins:

\[
x f \Join_g y = \text{flatten } (\text{Map } K \text{ cp } (\text{merge } (\text{groupBy } f x, \text{groupBy } g y)))
\]

`groupBy : \(V \rightarrow K\) → Bag V → Map K (Bag V)`

`flatten : \text{Map } K(\text{Bag } V) \rightarrow \text{Bag } V`
13. Pointed sets and finite maps

Model *finite maps* Map_\ast not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_\ast.

There is an adjunction to Set, via

$$
\begin{array}{ccc}
\text{Set}_\ast & \overset{\bot}{\to} & \text{Set} \\
\downarrow & \Downarrow & \downarrow \\
\text{Maybe} & \Rightarrow & \text{Set} \\
\end{array}
$$

where $\text{Maybe } A \cong 1 + A$ adds a point, and $U (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_\ast : \text{Set} \to \text{Set}_\ast$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_\ast (K \times V) \cong \text{Map}_\ast K (\text{Bag}_\ast V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta \ a = \lambda k \to a : A \to \text{Map} \ K \ A \]

in general yields an infinite map.

However, finite maps are a \textit{graded monad}*: for monoid \((M, \otimes, \epsilon)\),

\[\mu \ X : T_m (T_n X) \to T_{m \otimes n} X \]
\[\eta \ X : X \to T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.