Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query* notation

\[
\begin{array}{l}
\left[(\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
| \text{customer} \leftarrow \text{customers}, \\
\quad \text{invoice} \leftarrow \text{invoices}, \\
\quad \text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
\quad \text{invoice}.\text{due} \leq \text{today} \right]
\end{array}
\]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[
\begin{array}{c}
\text{(A, } \leq \text{)} \quad \perp \quad \text{(B, } \sqsubseteq \text{)}
\end{array}
\]

means \(f \ b \leq a \iff b \sqsubseteq g \ a \)

For example,

\[
\begin{array}{c}
\text{(R, } \leq \text{)} \quad \perp \quad \text{(Z, } \leq \text{)}
\end{array}
\]

\[
\begin{array}{c}
\text{(Z, } \leq \text{)} \quad \perp \quad \text{(Z, } \leq \text{)}
\end{array}
\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives
\(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \mathbf{C} consists of

- a set* $\mid \mathbf{C} \mid$ of *objects*,
- a set* $\mathbf{C}(X, Y)$ of *arrows* $X \to Y$ for each $X, Y : \mid \mathbf{C} \mid$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\ldots \implies -2 \implies -1 \implies 0 \implies 1 \implies 2 \implies \ldots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a **concrete category**: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category **CMon** has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category **Set** has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F \text{id}_X = \text{id}_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the free commutative monoid (i.e, bags) on a set of elements:

$$\text{Free} A = (\text{Bag} A, \cup, \emptyset)$$
$$\text{Free} (f : A \to B) = \text{map} f : \text{Bag} A \to \text{Bag} B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction

\[
\begin{array}{c}
\mathbf{C} \perp \mathbf{D} \\
\downarrow \quad \downarrow \\
\mathbf{R} & \mathbf{L}
\end{array}
\]

means* $[-] : \mathbf{C}(L X, Y) \simeq \mathbf{D}(X, R Y) : [-]$.

A familiar example is given by *currying*:

\[
\begin{array}{c}
\mathbf{Set} \perp \mathbf{Set} \\
\downarrow \quad \downarrow \\
(-)^P & (-\times P)
\end{array}
\]

with $\text{curry} : \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P) : \text{curry}^\circ$.

hence definitions and properties of $\text{apply} = \text{uncurry id}_{Y^P} : Y^P \times P \to Y$.
7. **Products and coproducts**

with

\[
\text{fork} : \mathbf{Set}^2(\Delta A, (B, C)) \simeq \mathbf{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \mathbf{Set}(A + B, C) \simeq \mathbf{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork } \text{id}_{A,A} : \mathbf{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \mathbf{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \dashv \text{Set} \quad \text{with } [-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, \text{U}(M, \otimes, \epsilon)) : [-]
\]

Unit and counit:

\[
\begin{align*}
\text{single } A &= [id_{\text{Free } A}] : A \to \text{U}(\text{Free } A) \\
\text{reduce } M &= [id_M] : \text{Free}(\text{U } M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \to M \) and \(f : A \to \text{U } M = M \),

\[
h = \text{reduce } M \cdot \text{Free } f \iff \text{U } h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \minBound, \max))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \maxBound, \min))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, True, \land))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, False, \lor))</td>
<td>({a} \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard \ p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} &= U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) &\to \text{Bag} A \\
\text{single} : A &\to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(\mathcal{C}\) and \(\mathcal{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathcal{D}\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R \left[id_A \right] L : T (T A) \to T A \\
\eta A &= \left[id_A \right] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps \(\text{Map } K V = V^K \). Maps \((-)^K\) from \(K \) form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\begin{align*}
\text{Rel} & \xrightarrow{J} \text{Set} \\
\downarrow \quad \perp & \quad \downarrow \\
\text{Set} & \xleftarrow{E} \text{Rel}
\end{align*}
\]

where \(J\) embeds, and \(E \ R : A \to \text{Set} \ B\) for \(R : A \sim B\).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \text{index} and \text{merge} give efficient relational joins:

\[
x \ f \Join_g y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f \ x, \text{groupBy} g \ y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} \quad : \text{Map} K (\text{Bag} V) \to \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{array}{ccc}
\text{Maybe} & \downarrow & \text{Set}_* \\
\text{Set}_* & \negthinspace \simeq \negthinspace & \text{Set} \\
\uparrow & \quad & \uparrow \\
\text{U} & \downarrow & \text{Maybe}
\end{array}
$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U } (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta X : X \rightarrow T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.