Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date: 2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

```
[ (customer.name, invoice.amount)
| customer ← customers,
  invoice ← invoices,
  customer.cid = invoice.customer,
  invoice.due ≤ today ]
```

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \quad \text{means } f b \leq a \iff b \sqsubseteq g a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \quad \text{and} \quad (\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathcal{C} consists of

- a set* $|\mathcal{C}|$ of objects,
- a set* $\mathcal{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathcal{C}|$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\cdots \to -2 \to -1 \to 0 \to 1 \to 2 \to \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category CMon has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \rightarrow D$ is an operation on both objects and arrows, preserving
the structure: $F f : F X \rightarrow F Y$ when $f : X \rightarrow Y$, and

$$F \text{id}_X = \text{id}_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, **forgetful** functor $U : \text{CMon} \rightarrow \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'$$

Conversely, $\text{Free} : \text{Set} \rightarrow \text{CMon}$ generates the **free** commutative monoid
(ie bags) on a set of elements:

$$\text{Free} A = (\text{Bag} A, \cup, \emptyset)$$
$$\text{Free} (f : A \rightarrow B) = \text{map} f : \text{Bag} A \rightarrow \text{Bag} B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \mathcal{C}, \mathcal{D}, and functors $L : \mathcal{D} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{D}$, adjunction

$\mathcal{C} \perp \mathcal{D}$ means $[-] : \mathcal{C}(L X, Y) \simeq \mathcal{D}(X, R Y) : [-]$

A familiar example is given by currying:

$\mathcal{Set} \perp \mathcal{Set}$ with $\text{curry} : \mathcal{Set}(X \times P, Y) \simeq \mathcal{Set}(X, Y^P) : \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry } id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \downarrow\Delta & \text{Set}^2 \\
\downarrow\Delta & & \downarrow\times
\end{array}
\]

with

\[
\begin{align*}
\text{fork} & : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) \quad : \text{fork}^\circ \\
\text{junc}^\circ & : \text{Set}(A + B, C) \quad \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
dup & = \text{fork } \text{id}_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \quad \perp \quad \text{Set} \\
\U \quad \downarrow \quad \uparrow
\]

with \([-\cdot] : \text{CMon}(\text{Free } A, (M, \otimes, \varepsilon)) \]
\[
\cong \text{Set}(A, \U (M, \otimes, \varepsilon)) : [-]\n\]

Unit and counit:

\[
single A = [id_{\text{Free } A}] : A \to \U (\text{Free } A)
\]
\[
reduce M = [id_M] : \text{Free } (\U M) \to M \quad \text{-- for } M = (M, \otimes, \varepsilon)
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to \U M = M\),

\[
h = reduce M \cdot \text{Free } f \iff \U h \cdot single A = f
\]

ie 1-to-1 correspondence between homomorphisms from
the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \to 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \to a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \to a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \to a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \to a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \to a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \to \mathbb{B}) \to \text{Bag} A \to \text{Bag} A
\]

\[
\text{guard } p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} &= U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) &\to \text{Bag} A \\
\text{single} : A &\to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R \,[\, id_A \,] \, L : T \,(T \, A) &\to T \, A \\
\eta A &= [\, id_A \,] : A &\to T \, A
\end{align*}
\]
11. Maps

Database indexes are essentially maps \(\text{Map } K V = V^K \). Maps \((-)^K\) from \(K \) form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

- \(\text{Map } 0 V \approx 1 \)
- \(\text{Map } 1 V \approx V \)
- \(\text{Map } (K_1 + K_2) V \approx \text{Map } K_1 V \times \text{Map } K_2 V \)
- \(\text{Map } (K_1 \times K_2) V \approx \text{Map } K_1 (\text{Map } K_2 V) \)
- \(\text{Map } K 1 \approx 1 \)
- \(\text{Map } K (V_1 \times V_2) \approx \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge} \)
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \triangleleft \downarrow \text{Set} \quad \xrightarrow{\text{J}} \quad \text{Set} \quad \xleftarrow{\text{E}} \text{Rel}
\]

where \(\text{J}\) embeds, and \(\text{E} R : A \to \text{Set} \, B\) for \(R : A \sim B\).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} \, K \, (\text{Bag} \, V)
\]

Together, \(\text{index}\) and \(\text{merge}\) give efficient relational joins:

\[
x \, f \Join g \, y = \text{flatten} \, (\text{Map} \, K \, \text{cp} \, (\text{merge} \, (\text{groupBy} \, f \, x, \text{groupBy} \, g \, y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} \, V \to \text{Map} \, K \, (\text{Bag} \, V)
\]

\[
\text{flatten} : \text{Map} \, K \, (\text{Bag} \, V) \to \text{Bag} \, V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{array}{ccc}
\text{Set}_* & \dashv & \text{Set} \\
\downarrow\text{Maybe} & & \downarrow\text{U} \\
\text{Set}_* & \dashv & \text{Set}
\end{array}
$$

where $\text{Maybe} A \cong 1 + A$ adds a point, and $\text{U} (A, a) = A$ discards it.

In particular, $(\text{Bag} A, \emptyset)$ is a pointed set. Moreover, $\text{Bag} f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \rightarrow \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta \ a = \lambda k \rightarrow a : A \rightarrow \text{Map} \ K \ A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

$$\mu \ X : T_m (T_n X) \rightarrow T_{m \otimes n} X$$
$$\eta \ X : X \rightarrow T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

• *monad comprehensions* for database queries
• structure arising from *adjunctions*
• equivalences from *universal properties*
• fitting in *relational joins*, via indexing
• to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.