Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\begin{align*}
\left[\ (\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
\mid \text{customer} & \leftarrow \text{customers}, \\
\text{invoice} & \leftarrow \text{invoices}, \\
\text{customer}.\text{cid} & = \text{invoice}.\text{customer}, \\
\text{invoice}.\text{due} & \leq \text{today} \right]
\end{align*}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \]

means \(f b \leq a \iff b \sqsubseteq g a \)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \mathbf{C} consists of

- a set $|\mathbf{C}|$ of *objects*,
- a set $\mathbf{C}(X, Y)$ of *arrows* $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- *identity* arrows $\text{id}_X : X \to X$ for each X,
- *composition* $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\cdots \xrightarrow{-2} \xrightarrow{-1} \xrightarrow{0} \xrightarrow{1} \xrightarrow{2} \cdots \]

Many categorical concepts are generalisations from ordered sets.

proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \(\text{CMon} \) has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon') \) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \(\text{Set} \) has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$F id_X = id_{F X}$

$F (f \cdot g) = F f \cdot F g$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$U (M, \otimes, \epsilon) = M$

$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$

Conversely, Free : Set \to CMon generates the free commutative monoid (ie bags) on a set of elements:

Free $A = (\text{Bag } A, \cup, \emptyset)$

Free $(f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathbf{C}, \mathbf{D}, and functors $L: \mathbf{D} \to \mathbf{C}$ and $R: \mathbf{C} \to \mathbf{D}$, adjunction

\[
\begin{array}{c}
\mathbf{C} \\
\downarrow \downarrow \\
\mathbf{D}
\end{array}
\quad \Downarrow L \\
\begin{array}{c}
\mathbf{D} \\
\uparrow \uparrow \\
\mathbf{C}
\end{array}
\] \\
\[\Rightarrow \quad [-]: \mathbf{C}(L X, Y) \simeq \mathbf{D}(X, R Y): [-]\]

A familiar example is given by currying:

\[
\begin{array}{c}
\mathbf{Set} \\
\downarrow \downarrow \\
\mathbf{Set}
\end{array}
\quad \Downarrow - \times P \\
\begin{array}{c}
\mathbf{Set} \\
\uparrow \uparrow \\
\mathbf{Set}
\end{array}
\] \\
with $\text{curry}: \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P): \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry id}_{Y^P}: Y^P \times P \to Y$
7. Products and coproducts

\[
\text{Set} \xrightarrow{\Delta} \text{Set}^2 \xrightarrow{\times} \text{Set} \xleftarrow{\perp} \text{Set} \xleftarrow{\perp} \text{Set}^2 \xrightarrow{\Delta} \text{Set} \xrightarrow{+} \text{Set}
\]

with

\[
\begin{align*}
\text{fork} & : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) & : \text{fork}^\circ \\
\text{junc}^\circ & : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) & : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
dup & = \text{fork } \text{id}_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \dashv \text{Set} \quad \text{with } [-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U(M, \otimes, \epsilon)) : [-]
\]

Unit and counit:

- *single* \(A = [id_{\text{Free } A}] : A \to U(\text{Free } A)\)
- *reduce* \(M = [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)\)

whence, for \(h : \text{Free } A \to M\) and \(f : A \to U M = M\),

\[h = \text{reduce } M \cdot \text{Free } f \iff U \cdot h \cdot \text{single } A = f\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True, } \land))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False, } \lor))</td>
<td>({a} \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} &= U \cdot \text{Free} \\
\text{union} &: \text{Bag} \ (\text{Bag} \ A) \to \text{Bag} \ A \\
\text{single} &: A \to \text{Bag} \ A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a\ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R \ [id_A] \ L : T \ (T \ A) \to T \ A \\
\eta A &= [id_A] : A \to T \ A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \cong 1$
- $\text{Map } 1 V \cong V$
- $\text{Map } (K_1 + K_2) V \cong \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \cong \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \cong 1$
- $\text{Map } K (V_1 \times V_2) \cong \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \downarrow \downarrow \text{Set}
\]

where \(J \) embeds, and \(E \) \(R : A \rightarrow \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[
x f \bowtie g y = \text{flatten} (\text{Map} K cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))
\]

\[
\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \perp & \text{Set} \\
\downarrow & & \downarrow \\
\text{Maybe} & \rightarrow & \text{U}
\end{array}
\]

where \(\text{Maybe} \ A \cong 1 + A \) adds a point, and \(\text{U} \ (A, a) = A \) discards it.

In particular, \((\text{Bag} \ A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} \ f \) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* \ (K \times V) \cong \text{Map}_* \ K \ (\text{Bag}_* \ V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map} \ K \ A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta X : X \rightarrow T_{\epsilon} X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.