Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

 \[
 [(\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
 | \text{customer} \leftarrow \text{customers}, \\
 \text{invoice} \leftarrow \text{invoices}, \\
 \text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
 \text{invoice}.\text{due} \leq \text{today}]
 \]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \quad \text{means } f b \leq a \iff b \subseteq g a\]

For example,

\[(\mathbb{R}, \leq_\mathbb{R}) \perp (\mathbb{Z}, \leq_\mathbb{Z})\]

“Change of coordinates” can sometimes simplify reasoning; e.g., rhs gives

\[n \times k \leq m \iff n \leq m \div k,\]

and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathcal{C} consists of

- a set* $|\mathcal{C}|$ of objects,
- a set* $\mathcal{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathcal{C}|$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[
\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots
\]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a \textit{concrete category}: roughly,

\begin{itemize}
 \item the objects are \textit{sets with additional structure}
 \item the arrows are \textit{structure-preserving mappings}
\end{itemize}

Many useful categories are of this form.

For example, the category \texttt{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h: (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')\) as arrows:

\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}

Trivially, category \texttt{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A **functor** $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

\[
F \text{id}_X = \text{id}_{F X} \\
F (f \cdot g) = F f \cdot F g
\]

For example, **forgetful** functor $U : \text{CMon} \to \text{Set}$:

\[
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the **free** commutative monoid (ie bags) on a set of elements:

\[
\text{Free} A = (\text{Bag} A, \cup, \emptyset) \\
\text{Free} (f : A \to B) = \text{map } f : \text{Bag} A \to \text{Bag} B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction

\[
\begin{array}{c}
\begin{array}{c}
L \\
\circlearrowleft
\end{array}
\end{array}
\quad \Downarrow \quad
\begin{array}{c}
\begin{array}{c}
\downarrow \\
\circlearrowright
\end{array}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
R
\end{array}
\end{array}
\]

\(C \perp D \) means \([\cdot] : C(L X, Y) \simeq D(X, R Y) : [\cdot] \)

A familiar example is given by currying:

\[
\begin{array}{c}
\begin{array}{c}
- \times P \\
\circlearrowleft
\end{array}
\end{array}
\quad \Downarrow \quad
\begin{array}{c}
\begin{array}{c}
\downarrow \\
\circlearrowright
\end{array}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
(-)^P
\end{array}
\end{array}
\]

\(\text{Set} \perp \text{Set} \) with \(\text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry} \)

hence definitions and properties of \(\text{apply} = \text{uncurry} \text{id}_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

with

\[\text{fork} : \text{Set}^{2}(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^{\circ} \]
\[\text{junc}^{\circ} : \text{Set}(A + B, C) \cong \text{Set}^{2}((A, B), \Delta C) : \text{junc} \]

hence

\[\text{dup} = \text{fork} \text{id}_{A,A} : \text{Set}(A, A \times A) \]
\[(\text{fst}, \text{snd}) = \text{fork}^{\circ} \text{id}_{B \times C} : \text{Set}^{2}(\Delta(B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{align*}
\text{CMon} & \quad \perp \quad \text{Set} \\
\downarrow & \quad \downarrow \\
\text{Free} & \quad \text{with} \quad [-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \\
& \quad \cong \text{Set}(A, U (M, \otimes, \epsilon)) \\
& \quad : [-]
\end{align*}
\]

Unit and counit:

\[
\begin{align*}
single A & = [id_{\text{Free } A}] : A \to U (\text{Free } A) \\
\text{reduce } M & = [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \to M \) and \(f : A \to U M = M \),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>([a] \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>([a] \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>([a] \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>([a] \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>([a] \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>([a] \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } [a] \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union, single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} & : A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f a b \mid a \leftarrow x, b \leftarrow g a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \left[id_A \right] L : T (T A) \to T A \\
\eta A & = \left[id_A \right] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The $\textit{laws of exponents}$ arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \cong 1$
- $\text{Map } 1 V \cong V$
- $\text{Map } (K_1 + K_2) V \cong \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \cong \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \cong 1$
- $\text{Map } K (V_1 \times V_2) \cong \text{Map } K V_1 \times \text{Map } K V_2 : \textit{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\begin{array}{ccc}
\text{Rel} & \downarrow & \text{Set} \\
J & \rightarrow & \downarrow \\
\end{array}
\]

where \(J \) embeds, and \(E R : A \rightarrow \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[x f \bowtie g y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))\]

\[\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V)\]

\[\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{array}{ccc}
\text{Set}_* & \perp & \text{Set} \\
\text{Maybe} & \leftrightarrow & \text{U}
\end{array}
$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U } (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map} \ K \ A \]

in general yields an infinite map.

However, finite maps are a *graded monad*\(^*\): for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \to T_{m \otimes n} X \]
\[\eta X : X \to T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions\(^*\).

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: Calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.