Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\left[(\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
| \text{customer} \leftarrow \text{customers}, \\
\text{invoice} \leftarrow \text{invoices}, \\
\text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
\text{invoice}.\text{due} \leq \text{today} \right]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \]

means \(f b \leq a \iff b \sqsubseteq g a \)

For example,

\[\text{inj} \]

\[\text{floor} \]

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \]

\[\times k \]

\[\div k \]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq) \]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category C consists of

- a set* $|C|$ of objects,
- a set* $C(X, Y)$ of arrows $X \to Y$ for each $X, Y : |C|$,
- identity arrows $id_X : X \to X$ for each X,
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\ldots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

$$h (m \otimes n) = h m \oplus h n$$
$$h \epsilon = \epsilon'$$

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F \ id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, Free : Set $\to \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \cup, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction

\[
\begin{array}{ccc}
C & \perp & D \\
\downarrow & & \downarrow \\
R & & L
\end{array}
\]

means \(*\) \:\[[-] : C(L \, X, \, Y) \simeq D(X, \, R \, Y) : [-] \]

A familiar example is given by currying:

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set} \\
\downarrow & & \downarrow \\
(-)^P & & - \times P
\end{array}
\]

with \(\text{curry} : \text{Set}(X \times P, \, Y) \simeq \text{Set}(X, \, Y^P) : \text{curry}^\circ \)

hence definitions and properties of \(\text{apply} = \text{uncurry \, id}_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

with

\[\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ\]
\[\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}\]

hence

\[\text{dup} = \text{fork} \ id_{A,A} : \text{Set}(A, A \times A)\]
\[(\text{fst}, \text{snd}) = \text{fork}^\circ \ id_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[\begin{array}{ccc}
\text{CMon} & \mathbf{\perp} & \text{Set} \\
\downarrow & & \downarrow \\
\text{Free} & \text{with} & [-] : \text{CMon}(\text{Free} A, (M, \otimes, \epsilon)) \\
\uparrow & & \uparrow \\
U & \text{\text{\dashv}} & \text{Set}(A, U (M, \otimes, \epsilon)) \\
\end{array} \]

Unit and counit:

\[
\text{single } A = [id_{\text{Free } A}] : A \rightarrow U (\text{Free } A) \\
\text{reduce } M = [id_M] : \text{Free } (U M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \rightarrow M \) and \(f : A \rightarrow U M = M \),

\[h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f \]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \wedge))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad (\text{Bag}, \text{union}, \text{single}) with

\[
\begin{align*}
\text{Bag} &= U \cdot \text{Free} \\
\text{union} : \text{Bag (Bag A)} &\to \text{Bag A} \\
\text{single} : A &\to \text{Bag A}
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R \) between \(\mathbf{C} \) and \(\mathbf{D} \), we get a monad \((T, \mu, \eta) \) on \(\mathbf{D} \), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R [id_A] L : T (T A) \to T A \\
\eta A &= [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \perp \xrightarrow{E} \text{Set} \]

where \(J \) embeds, and \(E \) \(R : A \rightarrow \text{Set} \) \(B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \cong \text{Map} K (\text{Bag} V) \]

Together, \text{index} and \text{merge} give efficient relational joins:

\[x \cdot f \otimes g \cdot y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f \cdot x, \text{groupBy} g \cdot y))) \]

\[\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V) \]

\[\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V \]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

\[
\begin{array}{ccc}
\text{Set}_* & \downarrow & \text{Set} \\
\text{Maybe} & \circlearrowleft & \perp \\
\text{U} & \circlearrowleft & \text{Set}
\end{array}
\]

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U} (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid $$(M, \otimes, \epsilon),$$

$$\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X$$
$$\eta X : X \rightarrow T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid $$(\mathbb{K}, \times, 1)$$ of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.