Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
[(\text{customer.name, invoice.amount})
|\text{customer} \leftarrow \text{customers},
\text{invoice} \leftarrow \text{invoices},
\text{customer.cid} = \text{invoice.customer},
\text{invoice.due} \leq \text{today}]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \quad \perp \quad (B, \sqsubseteq)\]

\[\text{means } f \ b \leq a \iff b \sqsubseteq g \ a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \quad \perp \quad (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \quad \perp \quad (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives

\[n \times k \leq m \iff n \leq m \div k,\]

and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set $|\mathbf{C}|$ of objects,
- a set $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,

such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\ldots \to -2 \to -1 \to 0 \to 1 \to 2 \to \ldots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

$$h (m \otimes n) = h m \oplus h n$$
$$h \epsilon = \epsilon'$$

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : C\text{Mon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $\text{Free} : \text{Set} \to C\text{Mon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \cup, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories C, D, and functors $L : D \to C$ and $R : C \to D$, adjunction means

$$[-] : C(L X, Y) \simeq D(X, R Y) : [-]$$

A familiar example is given by currying:

$$Set \perp Set \quad \text{with} \quad \text{curry} : Set(X \times P, Y) \simeq Set(X, Y^P) : \text{curry}$$

hence definitions and properties of $\text{apply} = \text{uncurry id}_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[\text{Set} \xleftarrow{\Delta} \text{Set} \xrightarrow{\times} \text{Set} \]

\[\text{Set} \xleftarrow{+} \text{Set}^2 \xrightarrow{\Delta} \text{Set} \]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^\circ \\
\text{junc}^\circ : \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
\text{dup} = \text{fork id}_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{align*}
\text{CMon} & \quad \perp \quad \text{Set} \\
\downarrow \quad \text{Free} & \quad \uparrow \quad \bot \\
\U & \quad \rightarrow \quad U \\
\end{align*}
\]

with \([\cdot] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(\text{A}, U (M, \otimes, \epsilon)) : [\cdot]

Unit and counit:

\[
\begin{align*}
\text{single } A & \ = \ [id_{\text{Free } A}] : A \rightarrow U (\text{Free } A) \\
\text{reduce } M & \ = \ [id_{M}] : \text{Free } (U M) \rightarrow M \quad -- \text{for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \rightarrow M\) and \(f : A \rightarrow U M = M\),

\[
\begin{align*}
h = \text{reduce } M \cdot \text{Free } f & \iff U h \cdot \text{single } A = f
\end{align*}
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>(N, 0, +)</td>
<td>[a] → 1</td>
</tr>
<tr>
<td>sum</td>
<td>(R, 0, +)</td>
<td>[a] → a</td>
</tr>
<tr>
<td>max</td>
<td>(Z, minBound, max)</td>
<td>[a] → a</td>
</tr>
<tr>
<td>min</td>
<td>(Z, maxBound, min)</td>
<td>[a] → a</td>
</tr>
<tr>
<td>all</td>
<td>(B, True, ∧)</td>
<td>[a] → a</td>
</tr>
<tr>
<td>any</td>
<td>(B, False, ∨)</td>
<td>[a] → a</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A → B) → \text{Bag } A → \text{Bag } A
\]

\[
\text{guard } p a = \text{if } p a \text{ then } [a] \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(B = 1 + 1\)).
10. Monads

Bags form a *monad* \(\text{Bag, union, single}\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) & \to \text{Bag} A \\
\text{single} : A & \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \left[id_A \right] L : T (T A) \to T A \\
\eta A & = \left[id_A \right] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map} \, K \, V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map} \, 0 \, V \simeq 1$
- $\text{Map} \, 1 \, V \simeq V$
- $\text{Map} \, (K_1 + K_2) \, V \simeq \text{Map} \, K_1 \, V \times \text{Map} \, K_2 \, V$
- $\text{Map} \, (K_1 \times K_2) \, V \simeq \text{Map} \, K_1 \, (\text{Map} \, K_2 \, V)$
- $\text{Map} \, K \, 1 \simeq 1$
- $\text{Map} \, K \, (V_1 \times V_2) \simeq \text{Map} \, K \, V_1 \times \text{Map} \, K \, V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \downarrow \text{Set} \xleftarrow{E} \]

where \(J \) embeds, and \(E R : A \to \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \cong \text{Map} K (\text{Bag} V) \]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[x f \Join g y = \text{flatten} (\text{Map} K \text{ cp } (\text{merge (\text{groupBy } f x, \text{groupBy } g y)))) \]

\(\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \)

\(\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V \)
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{array}{c}
\text{Set}_* \\
\downarrow \text{Maybe} \\
\text{Set}
\end{array}
\quad \dashv
\begin{array}{c}
\text{Set}_* \\
\downarrow \text{U}
\end{array}

$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $U(A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta \ a = \lambda k \to a : A \to \text{Map} \ K \ A \]

in general yields an infinite map.

However, finite maps are a \textit{graded monad}*: for monoid \((M, \otimes, \epsilon)\),

\[
\mu X : T_m (T_n X) \to T_{m \otimes n} X \\
\eta X : X \to T_\epsilon X
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.