Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date: 2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\left\langle (\text{customer}.\text{name}, \text{invoice}.\text{amount}) \mid \text{customer} \leftarrow \text{customers},
\text{invoice} \leftarrow \text{invoices},
\text{customer}.\text{cid} = \text{invoice}.\text{customer},
\text{invoice}.\text{due} \leq \text{today} \right\rangle
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\]

means \(f b \leq a \iff b \sqsubseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives

\(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \mathcal{C} consists of

- a set* $|\mathcal{C}|$ of *objects*,
- a set* $\mathcal{C}(X, Y)$ of *arrows* $X \to Y$ for each $X, Y : |\mathcal{C}|$,
- *identity* arrows $id_X : X \to X$ for each X
- *composition* $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category **CMon** has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category **Set** has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor \(F : C \to D \) is an operation on both objects and arrows, preserving the structure: \(F f : F X \to F Y \) when \(f : X \to Y \), and

\[
F \ id_X = id_{F X} \\
F \ (f \cdot g) = F f \cdot F g
\]

For example, forgetful functor \(U : \text{CMon} \to \text{Set} \):

\[
U \ (M, \otimes, \epsilon) = M \\
U \ (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, \(\text{Free} : \text{Set} \to \text{CMon} \) generates the free commutative monoid (ie bags) on a set of elements:

\[
\text{Free } A = (\text{Bag } A, \cup, \emptyset) \\
\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction

\[
\begin{array}{ccc}
C & \bot & \downarrow & D \\
\uparrow & & & \uparrow \\
R & & & L
\end{array}
\]

means \(* [-] : C(L X, Y) \simeq D(X, R Y) : [-]*

A familiar example is given by currying:

\[
\begin{array}{ccc}
\text{Set} & \bot & \downarrow & \text{Set} \\
\uparrow & & & \uparrow \\
(\cdot)^P & & & \times P
\end{array}
\]

with \(\text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^\circ \)

hence definitions and properties of \(\text{apply} = \text{uncurry} \text{id}_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[
\begin{array}{c}
\text{Set} \overset{\Delta}{\longrightarrow} \text{Set}^2 \overset{\Delta}{\longrightarrow} \text{Set} \\
\text{Set}^2 \overset{\times}{\longrightarrow} \text{Set} \overset{\Delta}{\longrightarrow} \text{Set}
\end{array}
\]

with

\[
\begin{align*}
\text{fork} : \text{Set}^2(\Delta A, (B, C)) & \cong \text{Set}(A, B \times C) : \text{fork}^\circ \\
\text{junc}^\circ : \text{Set}(A + B, C) & \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
\text{dup} & = \text{fork} \ id_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^\circ \ id_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \perp & \text{Set} \\
\downarrow & & \downarrow \\
\bowtie & & \bowtie \\
\end{array}
\]

with \([-\,]: \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \simeq \text{Set}(A, \text{U}(M, \otimes, \epsilon)) : [-\,]\)

Unit and counit:

\[
single A = [id_{\text{Free } A}] : A \rightarrow \text{U}(\text{Free } A)
\]
\[
reduce M = [id_M] : \text{Free}(\text{U} M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \rightarrow M\) and \(f : A \rightarrow \text{U} M = M\),

\[
h = reduce M \cdot \text{Free } f \iff \text{U } h \cdot single A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single}) \) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) & \to \text{Bag} A \\
\text{single} : A & \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R \) between \(C \) and \(D \), we get a monad \((T, \mu, \eta) \) on \(D \), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \lhd id_A \rhd L : T (T A) \to T A \\
\eta A & = \lhd id_A \rhd : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the *Reader* monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

$$
\begin{align*}
\text{Map } 0 V & \cong 1 \\
\text{Map } 1 V & \cong V \\
\text{Map } (K_1 + K_2) V & \cong \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \cong \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \cong 1 \\
\text{Map } K (V_1 \times V_2) & \cong \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
$$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \quad \perp \quad \text{Set}
\]

where \(J \) embeds, and \(E \ R : A \to \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[
x f \bowtie g y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \). There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \xrightarrow{\bot} & \text{Set} \\
\downarrow & & \downarrow \\
\text{U} & & \text{Maybe} \\
\end{array}
\]

where \(\text{Maybe } A \simeq 1 + A \) adds a point, and \(U (A, a) = A \) discards it.

In particular, \((\text{Bag } A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag } f \) is point-preserving, so we get a functor \(\text{Bag}_*: \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta \; a = \lambda k \rightarrow a : A \rightarrow \text{Map} \; K \; A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

$$\mu \; X : T_m \; (T_n \; X) \rightarrow T_{m \otimes n} \; X$$

$$\eta \; X : X \rightarrow T_{\epsilon} \; X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.