Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\begin{array}{l}
\left[(\text{customer}.\text{name}, \text{invoice}.\text{amount})
\mid
\text{customer} \leftarrow \text{customers},
\text{invoice} \leftarrow \text{invoices},
\text{customer}.\text{cid} = \text{invoice}.\text{customer},
\text{invoice}.\text{due} \leq \text{today}\right]
\end{array}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\]

means \(f \ b \leq a \iff b \sqsubseteq g \ a\)

For example,

\[(\mathbb{R}, \leq) \perp (\mathbb{Z}, \leq)\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \(C \) consists of

- a set* \(|C|\) of *objects*,
- a set* \(C(X, Y) \) of *arrows* \(X \to Y \) for each \(X, Y : |C| \),
- *identity* arrows \(id_X : X \to X \) for each \(X \)
- *composition* \(f \cdot g : X \to Z \) of compatible arrows \(g : X \to Y \) and \(f : Y \to Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq) \) is a degenerate category, with objects \(A \) and a unique arrow \(a \to b \) iff \(a \leq b \).

\[
\begin{align*}
\ldots & \to -2 & \to -1 & \to 0 & \to 1 & \to 2 & \to \ldots \\
& & & & & \end{align*}
\]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a \textit{concrete category}: roughly,

- the objects are \textit{sets with additional structure}
- the arrows are \textit{structure-preserving mappings}

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor \(F : C \to D \) is an operation on both objects and arrows, preserving the structure: \(F f : F X \to F Y \) when \(f : X \to Y \), and

\[
\begin{align*}
F \ id_X &= id_{F X} \\
F (f \cdot g) &= F f \cdot F g
\end{align*}
\]

For example, *forgetful* functor \(U : C\text{Mon} \to \text{Set} \):

\[
\begin{align*}
U (M, \otimes, \epsilon) &= M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) &= h : M \to M'
\end{align*}
\]

Conversely, \(\text{Free} : \text{Set} \to C\text{Mon} \) generates the *free* commutative monoid (ie bags) on a set of elements:

\[
\begin{align*}
\text{Free } A &= (\text{Bag } A, \cup, \emptyset) \\
\text{Free } (f : A \to B) &= \text{map } f : \text{Bag } A \to \text{Bag } B
\end{align*}
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C, D, and functors $L : D \to C$ and $R : C \to D$, adjunction

\[
\begin{array}{ccc}
C & \perp & D \\
\Leftrightarrow & & \Rightarrow \\
R & \Rightarrow & L
\end{array}
\]

means* $[-] : C(LX, Y) \simeq D(X, RY) : [-]$.

A familiar example is given by currying:

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set} \\
\Leftrightarrow & & \Rightarrow \\
(-)^P & \Rightarrow & - \times P
\end{array}
\]

with $\text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^\circ$.

hence definitions and properties of $\text{apply} = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y$.
7. Products and coproducts

\[
\text{Set} \quad \perp \quad \text{Set}^2 \quad \perp \quad \text{Set}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) \quad : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \quad \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
\text{dup} = \text{fork id}_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{align*}
\text{CMon} & \downarrow \text{Set} \\
\text{U} & \downarrow \text{U}
\end{align*}
\]

with \([-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \approx \text{Set}(A, \text{U}(M, \otimes, \epsilon)) : [-]\)

Unit and counit:

\[
\begin{align*}
single A &= [id_{\text{Free } A}] : A \to \text{U}(\text{Free } A) \\
reduce M &= [id_M] : \text{Free}(\text{U} M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to \text{U} M = M\),

\[
h = reduce M \cdot \text{Free } f \iff \text{U} h \cdot single A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$(\mathbb{N}, 0, +)$</td>
<td>${a} \rightarrow 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$(\mathbb{R}, 0, +)$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>max</td>
<td>$(\mathbb{Z}, \text{minBound}, \text{max})$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>min</td>
<td>$(\mathbb{Z}, \text{maxBound}, \text{min})$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>all</td>
<td>$(\mathbb{B}, \text{True}, \land)$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>any</td>
<td>$(\mathbb{B}, \text{False}, \lor)$</td>
<td>${a} \rightarrow a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$$\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A$$

$$\text{guard } p \ a = \text{if } p \ a \ \text{then } \{a\} \ \text{else } \emptyset$$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\text{Bag} = U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} : A \to \text{Bag} A
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}_{+}\).

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
T = R \cdot L \\
\mu A = R \int id_A \ L : T (T A) \to T A \\
\eta A = \int id_A : A \to T A
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the *Reader* monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \text{Set} \]

where \(J \) embeds, and \(E R : A \rightarrow \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[x f \Join g y = \text{flatten} (\text{Map} K \; \text{cp} (\text{merge} (\text{groupBy} f \; x, \text{groupBy} g \; y))) \]

\[\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V) \]

\[\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V \]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{c}
\text{Set}_* \\
\downarrow \downarrow \downarrow \downarrow \downarrow \\
\text{Maybe} \\
\text{Set}_* \\
\end{array}
\]

\[
\begin{array}{c}
\downarrow \\
\Upsilon \\
\end{array}
\]

where \(\text{Maybe} \ A \simeq 1 + A \) adds a point, and \(\Upsilon (A, a) = A \) discards it.

In particular, \((\text{Bag} \ A, \emptyset) \) is a pointed set. Moreover, \(\text{Bag} \ f \) is point-preserving, so we get a functor \(\text{Bag}_*: \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index}: \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \to a : A \to \text{Map } K A$$

in general yields an infinite map.

However, finite maps are a *graded monad*: for monoid $$(M, \otimes, \epsilon),$$

$$\mu X : T_m (T_n X) \to T_{m \otimes n} X$$
$$\eta X : X \to T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid $$(\mathbb{K}, \times, 1)$$ of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.