Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\left[
\begin{array}{l}
(customer.name, invoice.amount) \\
customer \leftarrow customers, \\
invoice \leftarrow invoices, \\
customer.cid = invoice.customer, \\
invoice.due \leq today
\end{array}
\right]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \quad \perp \quad (B, \equiv)\]

means \[f(b) \leq a \iff b \leq g(a)\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \quad \perp \quad (\mathbb{Z}, \leq_{\mathbb{Z}})\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \[n \times k \leq m \iff n \leq m \div k\], and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \rightarrow Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \rightarrow X$ for each X
- composition $f \cdot g : X \rightarrow Z$ of compatible arrows $g : X \rightarrow Y$ and $f : Y \rightarrow Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \rightarrow b$ iff $a \leq b$.

$$\ldots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots$$

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor \(F : C \to D \) is an operation on both objects and arrows, preserving the structure: \(F f : FX \to FY \) when \(f : X \to Y \), and

\[
\begin{align*}
F id_X &= id_{FX} \\
F(f \cdot g) &= F f \cdot F g
\end{align*}
\]

For example, forgetful functor \(U : \text{CMon} \to \text{Set} \):

\[
\begin{align*}
U (M, \otimes, \epsilon) &= M \\
U(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) &= h : M \to M'
\end{align*}
\]

Conversely, Free : \(\text{Set} \to \text{CMon} \) generates the free commutative monoid (ie bags) on a set of elements:

\[
\begin{align*}
\text{Free } A &= (\text{Bag } A, \uplus, \emptyset) \\
\text{Free } (f : A \to B) &= \text{map } f : \text{Bag } A \to \text{Bag } B
\end{align*}
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction

$$\mathbf{C} \perp \mathbf{D}$$

means $\star \downarrow \star : \mathbf{C}(L X, Y) \simeq \mathbf{D}(X, R Y) : \star$

A familiar example is given by currying:

$$\mathbf{Set} \perp \mathbf{Set}$$

with $curry : \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P) : curry^\circ$

hence definitions and properties of $apply = uncurry \ id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

with

\[\text{fork} : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^{\circ} \]
\[\text{junc}^{\circ} : \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc} \]

hence

\[\text{dup} = \text{fork} \text{id}_{A,A} : \text{Set}(A, A \times A) \]
\[(\text{fst}, \text{snd}) = \text{fork}^{\circ} \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{align*}
\text{CMon} & \quad \bot \quad \text{Set} \\
\downarrow & \quad & \uparrow \\
U & \quad & \bot \\
\end{align*}
\]

with \([-\cdot] : \text{CMon}(\text{Free} \, A, (M, \otimes, \epsilon)) \]
\[\cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-] \]

Unit and counit:

\[
\begin{align*}
single A &= [id_{\text{Free} \, A}] : A \rightarrow U (\text{Free} \, A) \\
\text{reduce} \, M &= [id_M] : \text{Free} (U M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free} \, A \rightarrow M\) and \(f : A \rightarrow U \, M = M\),

\[
h = \text{reduce} \, M \cdot \text{Free} \, f \iff U \, h \cdot single \, A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag} A \rightarrow \text{Bag} A
\]

\[
\text{guard} \ p \ a = \text{if} \ p \ a \ \text{then} \ \{a\} \ \text{else} \ \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} & : A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \{ id_A \} L : T (T A) \to T A \\
\eta A & = \{ id_A \} : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map} \; K \; V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

- $\text{Map} \; 0 \; V \simeq 1$
- $\text{Map} \; 1 \; V \simeq V$
- $\text{Map} \; (K_1 + K_2) \; V \simeq \text{Map} \; K_1 \; V \times \text{Map} \; K_2 \; V$
- $\text{Map} \; (K_1 \times K_2) \; V \simeq \text{Map} \; K_1 \; (\text{Map} \; K_2 \; V)$
- $\text{Map} \; K \; 1 \simeq 1$
- $\text{Map} \; K \; (V_1 \times V_2) \simeq \text{Map} \; K \; V_1 \times \text{Map} \; K \; V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{J} \text{Set} \xleftarrow{E} \text{Set}
\]

where \(J\) embeds, and \(E R : A \rightarrow \text{Set} B\) for \(R : A \sim B\).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x f \bowtie g y = \text{flatten} (\text{Map} K cp (\text{merge} (\text{groupBy f x, groupBy g y})))
\]

\textit{groupBy} : \((V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V)

\textit{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

\[
\begin{array}{ccc}
\text{Maybe} & \vdash & \text{Set}_* \\
\downarrow & & \downarrow \\
\text{Set} & & \text{Set} \\
\end{array}
\]

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U} (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map} \, K \, A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[
\begin{align*}
\mu X &: T_m (T_n X) \to T_{m \otimes n} X \\
\eta X &: X \to T_\epsilon X
\end{align*}
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.