Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\begin{align*}
[& (\text{customer.name}, \text{invoice.amount}) \\
& | \text{customer} \leftarrow \text{customers}, \\
& \text{invoice} \leftarrow \text{invoices}, \\
& \text{customer.cid} = \text{invoice.customer}, \\
& \text{invoice.due} \leq \text{today}]
\end{align*}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

$$(A, \leq) \perp (B, \sqsubseteq) \quad \text{means} \quad f \ b \leq a \iff b \sqsubseteq g \ a$$

For example,

$$(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq)$$

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives

$$n \times k \leq m \iff n \leq m \div k,$$

and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of \textit{objects},
- a set* $\mathbf{C}(X, Y)$ of \textit{arrows} $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- \textit{identity} arrows $\text{id}_X : X \to X$ for each X
- \textit{composition} $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[
\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots
\]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category \(\text{CMon} \) has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon') \) as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \(\text{Set} \) has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects . . .

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F \ id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free} A = (\text{Bag} A, \uplus, \varnothing)$$
$$\text{Free} (f : A \to B) = \text{map} f : \text{Bag} A \to \text{Bag} B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories C, D, and functors $L : D \to C$ and $R : C \to D$, adjunction

$$A \Downarrow \Downarrow B$$

means $\star : C(L A, B) \simeq D(A, R B) : \star$.

A familiar example is given by currying:

$$\Downarrow \Downarrow : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}$$

hence definitions and properties of $\text{apply} = \text{uncurry} \text{id}_{Y^P} : Y^P \times P \to Y$.
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \downarrow & \text{Set}^2 & \downarrow & \text{Set} \\
\Delta & & & & \times
\end{array}
\]

with

\[
\begin{align*}
\text{fork} & : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) & : \text{fork}^\circ \\
\text{junc}^\circ & : \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
\text{dup} & = \text{fork} \ id_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^\circ \ id_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{c}
\text{CMon} \ \downarrow \ \text{Set} \\
\text{Free} \\
\text{U}
\end{array}
\]

with \([-]\) : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, \text{U } (M, \otimes, \epsilon)) : [-]

Unit and counit:

\[
single A \ = \ [id_{\text{Free } A}] : A \rightarrow \text{U } (\text{Free } A)
\]

\[
\text{reduce } M = [id_M] : \text{Free } (\text{U } M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h: \text{Free } A \rightarrow M\) and \(f: A \rightarrow \text{U } M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff \text{U } h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$(\mathbb{N}, 0, +)$</td>
<td>${a} \rightarrow 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$(\mathbb{R}, 0, +)$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>max</td>
<td>$(\mathbb{Z}, \text{minBound}, \text{max})$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>min</td>
<td>$(\mathbb{Z}, \text{maxBound}, \text{min})$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>all</td>
<td>$(\mathbb{B}, \text{True}, \land)$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>any</td>
<td>$(\mathbb{B}, \text{False}, \lor)$</td>
<td>${a} \rightarrow a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard \ p \ a = \text{if } p \ a \ \text{then } \{a\} \ \text{else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a monad \((\text{Bag}, \text{union, single})\) with

\[
\begin{align*}
\text{Bag} & = \text{U} \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag } A) & \to \text{Bag } A \\
\text{single} : A & \to \text{Bag } A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \gets x, b \gets g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \{ id_A \} L : T (T A) \to T A \\
\eta A & = \{ id_A \} : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2: \text{merge}
\end{align*}
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \text{Set} \xleftarrow{E} \text{Set} \]

where \(J \) embeds, and \(E_R : A \to \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[x f \bowtie g y = \text{flatten} (\text{Map} K \text{ cp } (\text{merge } (\text{groupBy } f x, \text{groupBy } g y))) \]

\[\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \]

\[\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V \]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_\ast \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).

Pointed sets and point-preserving functions form a category \(\text{Set}_\ast \). There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_\ast & \xleftarrow{\perp} & \text{Set} \\
\text{Maybe} & \xrightarrow{U} & \\
& \xrightarrow{\text{index}} & \text{Map}_\ast K (\text{Bag}_\ast V)
\end{array}
\]

where \(\text{Maybe} A \simeq 1 + A \) adds a point, and \(U (A, a) = A \) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} f \) is point-preserving, so we get a functor \(\text{Bag}_\ast : \text{Set} \to \text{Set}_\ast \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_\ast (K \times V) \simeq \text{Map}_\ast K (\text{Bag}_\ast V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta X : X \rightarrow T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.