Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are **monads**
- monads have nice *mathematical foundations via adjunctions*
- monads support **comprehensions**
- comprehension syntax provides a **query notation**

 \[
 \left\{
 (\text{customer}\cdot\text{name}, \text{invoice}\cdot\text{amount}) \mid \text{customer} \leftarrow \text{customers}, \right.

 \left. \text{invoice} \leftarrow \text{invoices}, \right.

 \text{customer}\cdot\text{cid} = \text{invoice}\cdot\text{customer},

 \text{invoice}\cdot\text{due} \leq \text{today} \right\}
 \]

- monad structure explains **selection, projection**
- less obvious how to explain **join**
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\] means \(f \ b \leq a \iff b \sqsubseteq g \ a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\] \(\text{floor} \quad \text{inj} \quad \times k\)

\[(\mathbb{Z}, \leq_{\mathbb{Z}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\] \(\div k\)

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A **functor** $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F \ id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, **forgetful** functor $U : \text{CMon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, **Free** : $\text{Set} \to \text{CMon}$ generates the **free** commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \cup, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C, D, and functors $L : D \to C$ and $R : C \to D$, adjunction means:

$$[-] : C(L X, Y) \simeq D(X, R Y) : [-]$$

A familiar example is given by currying:

$$\text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}$$

hence definitions and properties of $\text{apply} = \text{uncurry } \text{id}_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

with

\[\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) \quad : \text{fork}^\circ \]
\[\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc} \]

hence

\[\text{dup} = \text{fork} \ id_{A,A} : \text{Set}(A, A \times A) \]
\[(\text{fst}, \text{snd}) = \text{fork}^\circ \ id_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{aligned}
\text{CMon} & \quad \Downarrow \quad \text{Set} \\
\downarrow & \quad \downarrow \\
\text{Free} & \quad \bar{	ext{with}} \\
\end{aligned}
\]

\[
\text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U(M, \otimes, \epsilon)) : [-]
\]

Unit and counit:

\[
\begin{aligned}
\text{single } A & = [id_{\text{Free } A}] : A \to U(\text{Free } A) \\
\text{reduce } M & = [id_M] : \text{Free}(U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{aligned}
\]

whence, for \(h : \text{Free } A \to M \) and \(f : A \to U M = M \),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$(\mathbb{N}, 0, +)$</td>
<td>${a} \to 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$(\mathbb{R}, 0, +)$</td>
<td>${a} \to a$</td>
</tr>
<tr>
<td>max</td>
<td>$(\mathbb{Z}, \minBound, \max)$</td>
<td>${a} \to a$</td>
</tr>
<tr>
<td>min</td>
<td>$(\mathbb{Z}, \maxBound, \min)$</td>
<td>${a} \to a$</td>
</tr>
<tr>
<td>all</td>
<td>$(\mathbb{B}, \text{True}, \land)$</td>
<td>${a} \to a$</td>
</tr>
<tr>
<td>any</td>
<td>$(\mathbb{B}, \text{False}, \lor)$</td>
<td>${a} \to a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$$guard : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A$$

$$guard \ p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset$$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\text{Bag} = U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} : A \to \text{Bag} A
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a + \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
T = R \cdot L \\
\mu A = R [i d_A] L : T (T A) \to T A \\
\eta A = [i d_A] : A \to T A
\]
11. Maps

Database indexes are essentially maps $\text{Map} \ K \ V = \ V^K$. Maps $(-)^K$ from K form a monad (the *Reader* monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

- $\text{Map} \ 0 \ V \simeq 1$
- $\text{Map} \ 1 \ V \simeq V$
- $\text{Map} \ (K_1 + K_2) \ V \simeq \text{Map} \ K_1 \ V \times \text{Map} \ K_2 \ V$
- $\text{Map} \ (K_1 \times K_2) \ V \simeq \text{Map} \ K_1 \ (\text{Map} \ K_2 \ V)$
- $\text{Map} \ K \ 1 \simeq 1$
- $\text{Map} \ K \ (V_1 \times V_2) \simeq \text{Map} \ K \ V_1 \times \text{Map} \ K \ V_2 : \text{merge}
12. **Indexing**

Relations are in 1-to-1 correspondence with set-valued functions:

$$\text{Rel} \xrightarrow{\text{J}} \text{Set} \xleftarrow{\text{E}} \text{Set}$$

where J embeds, and $\text{E} R : A \to \text{Set} B$ for $R : A \sim B$.

Moreover, the correspondence remains valid for bags:

$\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)$

Together, index and merge give efficient relational joins:

$$x f \bowtie_g y = \text{flatten} (\text{Map} K \text{ cp} (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))$$

$\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V)$

$\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V$
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \xrightarrow{\bot} & \text{Set} \\
\downarrow \text{Maybe} & & \downarrow \text{U} \\
\text{Set}_* & \xleftarrow{\bot} & \text{Set}
\end{array}
\]

where \(\text{Maybe} \ A \simeq 1 + A \) adds a point, and \(\text{U} (A, a) = A \) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} f \) is point-preserving, so we get a functor \(\text{Bag}_*: \text{Set} \rightarrow \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index}: \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \to a : A \to \text{Map } K A$$

in general yields an infinite map.

However, finite maps are a *graded monad*: for monoid $$(M, \otimes, \epsilon)$$,

$$\mu X : T_m (T_n X) \to T_{m \otimes n} X$$
$$\eta X : X \to T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid $$(\mathbb{K}, \times, 1)$$ of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.