Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\left[(\text{customer.name, invoice.amount}) \\
\mid \text{customer} \leftarrow \text{customers}, \quad \text{invoice} \leftarrow \text{invoices}, \quad \text{customer.cid} = \text{invoice.customer}, \quad \text{invoice.due} \leq \text{today} \right]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \sqsubseteq (B, \subseteq) \quad \text{means} \quad f b \leq a \iff b \subseteq g a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \sqsubseteq (\mathbb{Z}, \leq_{\mathbb{Z}}) \quad \text{and} \quad (\mathbb{Z}, \leq) \sqsubseteq (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives
\[n \times k \leq m \iff n \leq m \div k,\]
and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,

such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

```
... −2 −1 0 1 2 ...```

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \( \text{CMon} \) has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
    h (m \otimes n) &= h m \oplus h n \\
    h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \( \text{Set} \) has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F \ id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \cup, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \( C, D \), and functors \( L : D \to C \) and \( R : C \to D \), adjunction

\[
\begin{array}{ccc}
\downarrow & & \downarrow \\
C & \perp & D \\
\updownarrow & & \updownarrow \\
R & & L
\end{array}
\]

means\(^\ast\) \( [-] : C(LX, Y) \simeq D(X, RY) : [-] \)

A familiar example is given by currying:

\[
\begin{array}{ccc}
\downarrow & & \downarrow \\
\text{Set} & \perp & \text{Set} \\
\updownarrow & & \updownarrow \\
(-)^P & & - \times P
\end{array}
\]

with \( \text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry} \)

hence definitions and properties of \( \text{apply} = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[
\text{with}
\]

\[
\text{fork} : \mathbf{Set}^2(\Delta A, (B, C)) \cong \mathbf{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \mathbf{Set}(A + B, C) \cong \mathbf{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
\text{dup} = \text{fork id}_{A,A} : \mathbf{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \mathbf{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[ \text{CMon} \cong \text{Set} \]

with \([-]\) : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-]

Unit and counit:

\[ \text{single } A = [id_{\text{Free } A}] : A \rightarrow U (\text{Free } A) \]
\[ \text{reduce } M = [id_M] : \text{Free } (U M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon) \]

whence, for \( h : \text{Free } A \rightarrow M \) and \( f : A \rightarrow U M = M \),

\[ h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f \]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
## 9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \wedge))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \vee))</td>
<td>({a} \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\text{Bag} = \text{U} \cdot \text{Free}
\]

\[
\text{union} : \text{Bag} \ (\text{Bag} \ A) \to \text{Bag} \ A
\]

\[
\text{single} : A \to \text{Bag} \ A
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
T = R \cdot L
\]

\[
\mu A = R \ [id_A] \ L : T \ (T \ A) \to T \ A
\]

\[
\eta A = [id_A] : A \to T \ A
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from $K$ form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \cong 1 \\
\text{Map } 1 V & \cong V \\
\text{Map } (K_1 + K_2) V & \cong \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \cong \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \cong 1 \\
\text{Map } K (V_1 \times V_2) & \cong \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

$$\text{Rel} \overset{J}{\to} \downarrow \overset{E}{\to} \text{Set}$$

where $J$ embeds, and $E R : A \to \text{Set } B$ for $R : A \sim B$.

Moreover, the correspondence remains valid for bags:

$\text{index} : \text{Bag } (K \times V) \simeq \text{Map } K (\text{Bag } V)$

Together, $\text{index}$ and $\text{merge}$ give efficient relational joins:

$$x f \Join g y = \text{flatten} (\text{Map } K \text{ cp } (\text{merge } (\text{groupBy } f x, \text{groupBy } g y)))$$

$\text{groupBy} : (V \to K) \to \text{Bag } V \to \text{Map } K (\text{Bag } V)$

$\text{flatten} : \text{Map } K (\text{Bag } V) \to \text{Bag } V$
13. Pointed sets and finite maps

Model \textit{finite maps} \(\text{Map}_*\) not as partial functions, but \textit{total} functions to a \textit{pointed} codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).

Pointed sets and point-preserving functions form a category \(\text{Set}_*\). There is an adjunction to \(\text{Set}\), via

\[
\begin{array}{ccc}
\text{Set}_* & \downarrow & \text{Set} \\
\text{Maybe} & \rightleftharpoons & \text{Set} \\
\text{U} & \leftleftharpoons & \text{Set}_*
\end{array}
\]

where \(\text{Maybe} A \simeq 1 + A\) adds a point, and \(U (A, a) = A\) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} f\) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_*\).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[ \eta a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[ \mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[ \eta X : X \rightarrow T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.