Relational algebra by way of adjunctions

Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
[(\text{customer}.\text{name}, \text{invoice}.\text{amount})
| \text{customer} \leftarrow \text{customers},
\text{invoice} \leftarrow \text{invoices},
\text{customer}.\text{cid} = \text{invoice}.\text{customer},
\text{invoice}.\text{due} \leq \text{today}]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[
\begin{align*}
(A, \leq) & \quad \perp \quad (B, \sqsubseteq) \\
\downarrow f & \quad \quad \quad \quad \quad \quad \uparrow g \\
\downarrow g & \quad \quad \quad \quad \quad \quad \uparrow f
\end{align*}
\]

means \(f b \leq a \Leftrightarrow b \sqsubseteq g a \)

For example,

\[
\begin{align*}
(R, \leq_R) & \quad \perp \quad (Z, \leq_Z) \\
\downarrow \text{floor} & \quad \quad \quad \quad \quad \quad \uparrow \text{inj} \\
\downarrow \times k & \quad \quad \quad \quad \quad \quad \uparrow \div k
\end{align*}
\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \Leftrightarrow n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category C consists of

- a set* $|C|$ of objects,
- a set* $C(X, Y)$ of arrows $X \to Y$ for each $X, Y : |C|$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\cdots \overset{\rightarrow}{-2} \overset{\rightarrow}{-1} \overset{\rightarrow}{0} \overset{\rightarrow}{1} \overset{\rightarrow}{2} \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')$ as arrows:

$$h (m \otimes n) = h m \oplus h n$$
$$h \epsilon = \epsilon'$$

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$F id_X = id_{F X}$

$F (f \cdot g) = F f \cdot F g$

For example, forgetful functor $U : \mathbf{CMon} \to \mathbf{Set}$:

$U (M, \otimes, \epsilon) = M$

$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$

Conversely, $\text{Free} : \mathbf{Set} \to \mathbf{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$\text{Free } A = (\text{Bag } A, \cup, \emptyset)$

$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathcal{C}, \mathcal{D}, and functors $L : \mathcal{D} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{D}$, adjunction $\mathcal{C} \perp \mathcal{D}$ means $[-] : \mathcal{C}(L \mathbf{X}, \mathbf{Y}) \simeq \mathcal{D}(\mathbf{X}, R \mathbf{Y}) : [-]$

A familiar example is given by currying:

$\mathbb{Set} \perp \mathbb{Set}$ with $\text{curry} : \mathbb{Set}(X \times P, Y) \simeq \mathbb{Set}(X, Y^P) : \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry } id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{c}
\text{Set} \rightarrow \perp \\
\Delta \rightarrow \\
\downarrow \\
\rightarrow \\
\times \\
\downarrow \\
\Delta \\
\rightarrow \text{Set}
\end{array}
\]

with

\[
\begin{align*}
\text{fork} : \text{Set}^2(\Delta A, (B, C)) & \simeq \text{Set}(A, B \times C) : \text{fork}^\circ \\
\text{junc}^\circ : \text{Set}(A + B, C) & \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
dup &= \text{fork } \text{id}_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) &= \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\end{align*}
\]
give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \Downarrow & \text{Set} \\
\circlearrowleft & & \circlearrowright \\
\text{Free} & \downarrow & U \\
\end{array}
\]

\[
\text{CMon} \left(\text{Free } A, (M, \otimes, \epsilon) \right) \cong \text{Set} \left(A, U (M, \otimes, \epsilon) \right)
\]

Unit and counit:

\[
single A = [id_{\text{Free } A}] : A \to U (\text{Free } A)
\]
\[
\text{reduce } M = [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \to M \) and \(f : A \to U M = M \),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>(\mathbb{N}, 0, +)</td>
<td>{a} \rightarrow 1</td>
</tr>
<tr>
<td>sum</td>
<td>(\mathbb{R}, 0, +)</td>
<td>{a} \rightarrow a</td>
</tr>
<tr>
<td>max</td>
<td>(\mathbb{Z}, \text{minBound}, \text{max})</td>
<td>{a} \rightarrow a</td>
</tr>
<tr>
<td>min</td>
<td>(\mathbb{Z}, \text{maxBound}, \text{min})</td>
<td>{a} \rightarrow a</td>
</tr>
<tr>
<td>all</td>
<td>(\mathbb{B}, \text{True}, \wedge)</td>
<td>{a} \rightarrow a</td>
</tr>
<tr>
<td>any</td>
<td>(\mathbb{B}, \text{False}, \lor)</td>
<td>{a} \rightarrow a</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag} A \rightarrow \text{Bag} A
\]

\[
\text{guard } p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & \quad = \mathcal{U} \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} & : A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, \ b \leftarrow g \ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \downarrow id_A \downarrow L : T (T A) \to T A \\
\eta A & = \downarrow id_A : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{J} \text{Set} \xrightarrow{E} \text{Set}
\]

where \(J \) embeds, and \(E \) \(R : A \rightarrow \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x f \Join g y = \text{flatten} \left(\text{Map} K \ cp \left(\text{merge} \left(\text{groupBy} \ f \ x, \text{groupBy} \ g \ y \right) \right) \right)
\]

\[
\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*.

There is an adjunction to Set, via

\[
\begin{array}{ccc}
\text{Set}_* & \perp & \text{Set} \\
\downarrow \text{Maybe} & & \downarrow \text{U} \\
\text{Set}_* & \perp & \text{Set}
\end{array}
\]

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U } (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map} \, K \, A \]

in general yields an infinite map.

However, finite maps are a \textit{graded monad}*:

\[\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta X : X \rightarrow T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.