Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\begin{align*}
\left[\ (\text{customer.name}, \text{invoice.amount}) \ \\
\mid \text{customer} \gets \text{customers}, \\
\text{invoice} \gets \text{invoices}, \\
\text{customer.cid} &= \text{invoice.customer}, \\
\text{invoice.due} &\leq \text{today} \right]
\end{align*}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[
\begin{array}{c}
(A, \leq) \quad \perp \quad (B, \subseteq) \\
\downarrow f \quad \downarrow g \\
\end{array}
\]

means \(f b \leq a \iff b \subseteq g a \)

For example,

\[
\begin{array}{c}
(\mathbb{R}, \leq) \quad \perp \quad (\mathbb{Z}, \leq) \\
\downarrow inj \quad \downarrow \text{floor} \\
\end{array}
\quad \quad \quad \quad \quad \\
\begin{array}{c}
(\mathbb{Z}, \leq) \quad \perp \quad (\mathbb{Z}, \leq) \\
\downarrow \times k \quad \downarrow \div k \\
\end{array}
\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \(\mathbf{C} \) consists of

- a set* \(|\mathbf{C}| \) of *objects*,
- a set* \(\mathbf{C}(X, Y) \) of *arrows* \(X \to Y \) for each \(X, Y : |\mathbf{C}| \),
- *identity* arrows \(\text{id}_X : X \to X \) for each \(X \)
- *composition* \(f \cdot g : X \to Z \) of compatible arrows \(g : X \to Y \) and \(f : Y \to Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq) \) is a degenerate category, with objects \(A \) and a unique arrow \(a \to b \) iff \(a \leq b \).

\[\ldots \to -2 \to -1 \to 0 \to 1 \to 2 \to \ldots \]

Many categorical concepts are generalisations from ordered sets.

proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

$$h (m \otimes n) = h m \oplus h n$$
$$h \epsilon = \epsilon'$$

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$F \ id_X = id_{F X}$
$F (f \cdot g) = F f \cdot F g$

For example, forgetful functor $U : CMon \to Set$:

$U (M, \otimes, \epsilon) = M$
$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$

Conversely, $Free : Set \to CMon$ generates the free commutative monoid (ie bags) on a set of elements:

$Free A = (Bag A, \cup, \emptyset)$
$Free (f : A \to B) = map f : Bag A \to Bag B$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction

\[
\begin{array}{ccc}
C & \perp & D \\
\downarrow \scriptscriptstyle L & & \downarrow \scriptscriptstyle R \\
\end{array}
\]

means\(^*\)

\[
[-] : C(L X, Y) \simeq D(X, R Y) : [-]
\]

A familiar example is given by currying:

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set} \\
\downarrow \scriptscriptstyle - \times P & & \downarrow \scriptscriptstyle (-)^P \\
\end{array}
\]

with \(curry : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) \): \(curry^\circ \)

hence definitions and properties of \(apply = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \xrightarrow{\bigtriangleup} & \text{Set}^2 \\
\downarrow & & \downarrow \\
\text{Set}^2 & \xrightarrow{\bigtriangleup} & \text{Set}
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\bigtriangleup A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \bigtriangleup C) : \text{junc}
\]

hence

\[
dup = \text{fork id}_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\bigtriangleup (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \Downarrow & \text{Set} \\
\text{Free} & \underset{\cup}{\rightarrow} & \text{with } [-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \\
\end{array}
\]

\[\approx \text{Set}(A, \cup (M, \otimes, \epsilon)) : [-] \]

Unit and counit:

- single \(A\) = \([id_{\text{Free } A}] : A \rightarrow \cup (\text{Free } A)\)
- reduce \(M\) = \([id_M] : \text{Free } (\cup M) \rightarrow M\) -- for \(M = (M, \otimes, \epsilon)\)

whence, for \(h : \text{Free } A \rightarrow M\) and \(f : A \rightarrow \cup M = M\),

\[h = \text{reduce } M \cdot \text{Free } f \iff \cup h \cdot \text{single } A = f\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$\langle \mathbb{N}, 0, + \rangle$</td>
<td>$\mathbb{1} \mapsto 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$\langle \mathbb{R}, 0, + \rangle$</td>
<td>$\mathbb{1} \mapsto a$</td>
</tr>
<tr>
<td>max</td>
<td>$\langle \mathbb{Z}, \text{minBound}, \text{max} \rangle$</td>
<td>$\mathbb{1} \mapsto a$</td>
</tr>
<tr>
<td>min</td>
<td>$\langle \mathbb{Z}, \text{maxBound}, \text{min} \rangle$</td>
<td>$\mathbb{1} \mapsto a$</td>
</tr>
<tr>
<td>all</td>
<td>$\langle \mathbb{B}, \text{True, } \land \rangle$</td>
<td>$\mathbb{1} \mapsto a$</td>
</tr>
<tr>
<td>any</td>
<td>$\langle \mathbb{B}, \text{False, } \lor \rangle$</td>
<td>$\mathbb{1} \mapsto a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$$\text{guard} : (A \to \mathbb{B}) \to \text{Bag} A \to \text{Bag} A$$

$$\text{guard } p \; a = \text{if } p \; a \text{ then } \mathbb{1} \text{ else } \varnothing$$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} &= U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag } A) &\rightarrow \text{Bag } A \\
\text{single} : A &\rightarrow \text{Bag } A
\end{align*}
\]

which justifies the use of comprehension notation \(\{f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a\} \).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R [id_A] L : T (T A) \rightarrow T A \\
\eta A &= [id_A] : A \rightarrow T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps \(\text{Map } K \ V = V^K \). Maps \((-)^K\) from \(K \) form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 \ V & \simeq 1 \\
\text{Map } 1 \ V & \simeq V \\
\text{Map } (K_1 + K_2) \ V & \simeq \text{Map } K_1 \ V \times \text{Map } K_2 \ V \\
\text{Map } (K_1 \times K_2) \ V & \simeq \text{Map } K_1 (\text{Map } K_2 \ V) \\
\text{Map } K \ 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K \ V_1 \times \text{Map } K \ V_2 : \textit{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{\perp} \text{Set} \xleftarrow{\text{J}} \]

where \(J \) embeds, and \(E R : A \to \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[x f \bowtie_{g} y = \text{flatten} (\text{Map} K cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y))) \]

\(\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \)

\(\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V \)
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).

Pointed sets and point-preserving functions form a category \(\text{Set}_*\).

There is an adjunction to \(\text{Set}\), via

\[
\begin{array}{ccc}
\text{Set}_* & \perp & \text{Set} \\
\uparrow & & \downarrow \\
\text{Maybe} & & \text{U}
\end{array}
\]

where \(\text{Maybe} A \simeq 1 + A\) adds a point, and \(\text{U} (A, a) = A\) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} f\) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_*\).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[
\begin{align*}
\mu X &: T_m (T_n X) \rightarrow T_{m \otimes n} X \\
\eta X &: X \rightarrow T_\epsilon X
\end{align*}
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.