Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\begin{align*}
&\left[(\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
&| \text{customer} \leftarrow \text{customers}, \\
&\text{invoice} \leftarrow \text{invoices}, \\
&\text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
&\text{invoice}.\text{due} \leq \text{today} \right]
\end{align*}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \quad \text{means} \quad f \ b \leq a \iff b \sqsubseteq g \ a \]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \quad \text{and} \quad (\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq) \]

“Change of coordinates” can sometimes simplify reasoning; e.g., rhs gives

\[n \times k \leq m \iff n \leq m \div k, \quad \text{and multiplication is easier to reason about than rounding division.}\]
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $id_X : X \to X$ for each X,
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (\mathbf{A}, \leq) is a degenerate category, with objects \mathbf{A} and a unique arrow $a \to b$ iff $a \leq b$.

\[\ldots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

$$h(m \otimes n) = h(m) \oplus h(n)$$
$$h(\epsilon) = \epsilon'$$

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A **functor** \(F : C \to D \) is an operation on both objects and arrows, preserving the structure: \(F \ f : F \ X \to F \ Y \) when \(f : X \to Y \), and

\[
F \ id_X = id_{F \ X} \\
F \ (f \cdot g) = F \ f \cdot F \ g
\]

For example, **forgetful** functor \(U : \text{CMon} \to \text{Set} \):

\[
U \ (M, \otimes, \epsilon) = M \\
U \ (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, **Free** : \(\text{Set} \to \text{CMon} \) generates the *free* commutative monoid (ie bags) on a set of elements:

\[
\text{Free} \ A = (\text{Bag} \ A, \cup, \emptyset) \\
\text{Free} \ (f : A \to B) = \text{map} \ f : \text{Bag} \ A \to \text{Bag} \ B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories C, D, and functors $L : D \to C$ and $R : C \to D$, adjunction $C \dashv D$ means *

\[[-] : C(L X, Y) \simeq D(X, R Y) : [-] \]

A familiar example is given by currying:

\[\text{Set} \dashv \text{Set} \quad \text{with} \quad \text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^\circ \]

hence definitions and properties of $\text{apply} = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{align*}
\mathsf{Set} & \xrightarrow{\bot} \mathsf{Set}^2 \xrightarrow{\bot} \mathsf{Set} \\
\mathsf{Set} & \xleftarrow{\Delta} \mathsf{Set}^2 \xleftarrow{\Delta} \mathsf{Set}
\end{align*}
\]

with

\[
\begin{align*}
\text{fork} & : \mathsf{Set}^2(\Delta A, (B, C)) \simeq \mathsf{Set}(A, B \times C) & : \text{fork}^o \\
\text{junc}^o & : \mathsf{Set}(A + B, C) \simeq \mathsf{Set}^2((A, B), \Delta C) & : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
\text{dup} & = \text{fork id}_{A,A} : \mathsf{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^o \text{id}_{B \times C} : \mathsf{Set}^2(\Delta(B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \downarrow \text{Set} \quad \text{with} \quad [-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \\
\cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-]
\]

Unit and counit:

single \(A \) = \([id_{\text{Free } A}] : A \to U (\text{Free } A)\)

\(\text{reduce } M = [id_M] : \text{Free } (U M) \to M\) -- for \(M = (M, \otimes, \epsilon)\)

whence, for \(h : \text{Free } A \to M\) and \(f : A \to U M = M\),

\(h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f\)

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$\langle \mathbb{N}, 0, + \rangle$</td>
<td>${a} \rightarrow 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$\langle \mathbb{R}, 0, + \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>max</td>
<td>$\langle \mathbb{Z}, \minBound, \max \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>min</td>
<td>$\langle \mathbb{Z}, \maxBound, \min \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>all</td>
<td>$\langle \mathbb{B}, \text{True}, \land \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>any</td>
<td>$\langle \mathbb{B}, \text{False}, \lor \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$$guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A$$

$$guard\ p\ a = \text{if } p\ a \text{ then } \{a\} \text{ else } \emptyset$$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a monad \((Bag, union, single)\) with

\[
\begin{align*}
Bag &= U \cdot \text{Free} \\
union : Bag (Bag A) &\to Bag A \\
single : A &\to Bag A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R [id_A] L : T (T A) \to T A \\
\eta A &= [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \downarrow \xrightarrow{E} \text{Set} \]

where \(J \) embeds, and \(E R : A \to \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[x f \Join_g y = \text{flatten} (\text{Map} K \text{ cp} (\text{merge} (\text{groupBy f} x, \text{groupBy g} y))) \]

\[\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \]

\[\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V \]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

![Adjunction Diagram]

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U} (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)$$
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map} \ K \ A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

$$\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X$$
$$\eta X : X \rightarrow T_{\epsilon} X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.