Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date: 2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\begin{array}{l}
[(\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
| \text{customer} \leftarrow \text{customers}, \\
\quad \text{invoice} \leftarrow \text{invoices}, \\
\quad \text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
\quad \text{invoice}.\text{due} \leq \text{today}]
\end{array}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \quad \text{means} \quad f \ b \leq a \iff b \sqsubseteq g \ a \]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq) \]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \(C \) consists of

- a set* \(|C| \) of objects,
- a set* \(C(X, Y) \) of arrows \(X \to Y \) for each \(X, Y : |C| \),
- identity arrows \(\text{id}_X : X \to X \) for each \(X \)
- composition \(f \cdot g : X \to Z \) of compatible arrows \(g : X \to Y \) and \(f : Y \to Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq) \) is a degenerate category, with objects \(A \) and a unique arrow \(a \to b \) iff \(a \leq b \).

\[\cdots \to -2 \to -1 \to 0 \to 1 \to 2 \to \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A **functor** \(F : C \to D \) is an operation on both objects and arrows, preserving the structure: \(F f : F X \to F Y \) when \(f : X \to Y \), and

\[
F \ id_X = id_{F X} \\
F (f \cdot g) = F f \cdot F g
\]

For example, **forgetful** functor \(U : \text{CMon} \to \text{Set} \):

\[
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, **Free** : \(\text{Set} \to \text{CMon} \) generates the **free** commutative monoid (ie bags) on a set of elements:

\[
\text{Free } A = (\text{Bag } A, \uplus, \emptyset) \\
\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \(\mathbf{C}, \mathbf{D}\), and functors \(L : \mathbf{D} \to \mathbf{C}\) and \(R : \mathbf{C} \to \mathbf{D}\), adjunction

\[
\mathbf{C} \perp \mathbf{D}
\]

means\(^*\)

\[
\forall X, Y \in \mathbf{C}, \quad \mathbf{D}(LX, Y) \simeq \mathbf{C}(X, RY)
\]

A familiar example is given by *currying*:

\[
\mathbf{Set} \perp \mathbf{Set}
\]

with \(\text{curry} : \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P)\)

hence definitions and properties of \(\text{apply} = \text{uncurry} \ \text{id}_{Y^P} : Y^P \times P \to Y\)
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set}^2 \\
\Delta & \downarrow & \Delta \\
\downarrow & \boxtimes & \downarrow \\
\Delta & \downarrow & \Delta \\
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
\text{dup} = \text{fork id}_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \quad \bot \quad \text{Set} \quad \text{with} \quad [-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-]
\]

Unit and counit:

\[
\begin{align*}
\text{single } A &= [id_{\text{Free } A}] : A \to U (\text{Free } A) \\
\text{reduce } M &= [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \to M \) and \(f : A \to U M = M \),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>(\lfloor a \rfloor \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>(\lfloor a \rfloor \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag} \ A \rightarrow \text{Bag} \ A
\]

\[
guard \ p \ a = \text{if } p \ a \ \text{then } \lfloor a \rfloor \ \text{else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = \mathcal{U} \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} & : A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{f \ a \ b \mid a \gets x, b \gets g \ a\}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R [id_A] L : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(\cdot)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \simeq 1$
- $\text{Map } 1 V \simeq V$
- $\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{J} \perp \xleftarrow{E} \text{Set}
\]

where \(J\) embeds, and \(E \, R : A \rightarrow \text{Set} \, B\) for \(R : A \sim B\).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} \,(K \times V) \simeq \text{Map} \,(K \,(\text{Bag} \, V))
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x \, f \bowtie_g \, y = \text{flatten} \,(\text{Map} \,(K \, cp \,(\text{merge} \,(\text{groupBy} \, f \, x, \text{groupBy} \, g \, y))))
\]

\[
\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} \, V \rightarrow \text{Map} \,(K \,(\text{Bag} \, V))
\]

\[
\text{flatten} \quad : \text{Map} \,(K \,(\text{Bag} \, V)) \rightarrow \text{Bag} \, V
\]
13. Pointed sets and finite maps

Model \textit{finite maps} \text{Map}_* \text{ not as partial functions, but \textit{total} functions to a pointed codomain \((A, a)\), i.e. a set \(A\) with a distinguished element \(a : A\).}

Pointed sets and point-preserving functions form a category \text{Set}_*. There is an adjunction to \text{Set}, via

\[
\begin{array}{ccc}
\text{Set}_* & \perp & \text{Set} \\
\downarrow \text{Maybe} & & \downarrow \text{U} \\
\text{Set}_* & \perp & \text{Set}
\end{array}
\]

where \text{Maybe} \(A \simeq 1 + A\) adds a point, and \(U (A, a) = A\) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \text{Bag} \(f\) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_*\).

Indexing remains an isomorphism:

\[\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \to a : A \to \text{Map } K A$$

in general yields an infinite map.

However, finite maps are a \textit{graded monad}*: for monoid \((M, \otimes, \epsilon)\),

$$\mu X : T_m (T_n X) \to T_{m \otimes n} X$$
$$\eta X : X \to T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*. We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- **monad comprehensions** for database queries
- structure arising from **adjunctions**
- equivalences from **universal properties**
- fitting in **relational joins**, via indexing
- to do: calculating **query optimisations**

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.