Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

 \[
 \left\{ \begin{array}{c}
 (customer.name, invoice.amount) \\
 customer \leftarrow customers, \\
 invoice \leftarrow invoices, \\
 customer.cid = invoice.customer, \\
 invoice.due \leq today
 \end{array} \right.
 \]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \quad \text{means} \quad f b \leq a \iff b \sqsubseteq g a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \quad \text{and} \quad (\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \(\mathcal{C} \) consists of

- a set* \(|\mathcal{C}| \) of *objects*,
- a set* \(\mathcal{C}(X, Y) \) of *arrows* \(X \rightarrow Y \) for each \(X, Y : |\mathcal{C}| \),
- *identity* arrows \(\text{id}_X : X \rightarrow X \) for each \(X \)
- *composition* \(f \cdot g : X \rightarrow Z \) of compatible arrows \(g : X \rightarrow Y \) and \(f : Y \rightarrow Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq) \) is a degenerate category, with objects \(A \) and a unique arrow \(a \rightarrow b \) iff \(a \leq b \).

\[\ldots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \]

Many categorical concepts are generalisations from ordered sets.

proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h \, m \oplus h \, n \\
 h \, \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F \ id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : CMon \to Set$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $\text{Free} : Set \to CMon$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \cup, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathcal{C}, \mathcal{D}, and functors $L : \mathcal{D} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{D}$, adjunction

\[
\mathcal{C} \perp \mathcal{D}
\]

means* $[-] : \mathcal{C}(L X, Y) \simeq \mathcal{D}(X, R Y) : [-]\]

A familiar example is given by *currying*:

\[
\mathsf{Set} \perp \mathsf{Set}
\]

with $\text{curry} : \mathsf{Set}(X \times P, Y) \simeq \mathsf{Set}(X, Y^P) : \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

with

\[\text{fork} : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^\circ \]
\[junc^\circ : \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : junc \]

hence

\[\text{dup} = \text{fork } \text{id}_{A,A} : \text{Set}(A, A \times A) \]
\[(\text{fst}, \text{snd}) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \quad \downarrow \quad \text{Set}
\]

with \([-\,] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \simeq \text{Set}(A, U (M, \otimes, \epsilon)) : [-]\]

Unit and counit:

\[
\text{single } A = [id_{\text{Free } A}] : A \to U (\text{Free } A)
\]

\[
\text{reduce } M = [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to U M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U \, h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad $(\text{Bag}, \text{union}, \text{single})$ with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) & \rightarrow \text{Bag} A \\
\text{single} : A & \rightarrow \text{Bag} A \\
\end{align*}
\]

which justifies the use of comprehension notation $\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g a \}$. In fact, for any adjunction $L \dashv R$ between \mathbf{C} and \mathbf{D}, we get a monad (T, μ, η) on \mathbf{D}, where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \{ id_A \} L : T (T A) \rightarrow T A \\
\eta A & = \{ id_A \} : A \rightarrow T A \\
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the $Reader$ monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \quad \perp \quad \text{Set}
\]

where \(J\) embeds, and \(E R : A \rightarrow \text{Set } B\) for \(R : A \sim B\).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag } (K \times V) \simeq \text{Map } K \ (\text{Bag } V)
\]

Together, \text{index} and \text{merge} give efficient relational joins:

\[
x f \bowtie g y = \text{flatten} \ (\text{Map } K \ cp \ (\text{merge} \ (\text{groupBy } f \ x, \text{groupBy } g \ y)))
\]

\[
\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag } V \rightarrow \text{Map } K \ (\text{Bag } V)
\]

\[
\text{flatten} : \text{Map } K \ (\text{Bag } V) \rightarrow \text{Bag } V
\]
13. Pointed sets and finite maps

Model finite maps Map_* not as partial functions, but total functions to a pointed codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{array}{ccc}
\text{Set}_* & \downarrow & \text{Set} \\
\text{Maybe} & \swarrow & \leftarrow \text{U} \\
\end{array}
$$

where $\text{Maybe} A \simeq 1 + A$ adds a point, and $\text{U} (A, a) = A$ discards it.

In particular, $(\text{Bag} A, \emptyset)$ is a pointed set. Moreover, $\text{Bag} f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \to a : A \to \text{Map} \ K \ A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

$$\mu \ X : T_m \ (T_n \ X) \to T_{m \otimes n} \ X$$
$$\eta \ X : X \to T_\epsilon \ X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.