GPAW optimized for Blue Gene/P using hybrid programming

Kristensen, Mads Ruben Burgdorff; Happe, Hans Henrik; Vinter, Brian

Published in:
Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing

DOI:
10.1109/IPDPS.2009.5160936

Publication date:
2009

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Abstract—In this work we present optimizations of a Grid-based projector-augmented wave method software, GPAW [1] for the Blue Gene/P architecture. The improvements are achieved by exploring the advantage of shared and distributed memory programming also known as hybrid programming. The work focuses on optimizing a very time consuming operation in GPAW, the finite-difference stencil operation, and different hybrid programming approaches are evaluated. The work succeeds in demonstrating a hybrid programming model which is clearly beneficial compared to the original flat programming model. In total an improvement of 1.94 compared to the original implementation is obtained. The results we demonstrate here are reasonably general and may be applied to other finite difference codes.

I. INTRODUCTION

GPAW[1] is a simulation software which simulates many-body systems at the sub-atomic level. GPAW is primarily used by physicists and chemists to investigate the electronic structure, principally the ground state, of many-body systems. A significant part of a GPAW computation consists of a distributed finite-difference operation. The main object of this paper is to optimize this finite-difference operation on the Blue Gene/P [2] (BGP).

BGP, like most popular HPC hardware, consists of multiple shared-memory computation nodes. A hybrid programming paradigm may therefore be explored when targeting the BGP architecture. Unfortunately, it is not trivial to obtain good performance when combining threads and MPI [3]. It is often the case that the sole use of MPI outperforms a combination of OpenMP/Pthread and MPI when computing on clusters of SMP computation nodes [4], [5], [6].

II. GPAW

GPAW is a real-space grid implementation of the projector augmented wave method [7]. It uses uniform real-space grids and the finite-difference approximation for the density functional theory calculations.

A central part of density functional theory and a very time consuming task in GPAW, is to solve Poisson and Kohn-Sham equations. Both equations rely on finite-difference operations when solved by GPAW. When solving the Poisson equation, a finite-difference stencil is applied to the electrostatic potential of the system. When solving the Kohn-Sham equation, a finite-difference stencil is applied to all wave-functions in the system. Both the electron density and the wave-functions are represented by real-space grids. A system typically consists of one electron density and thousands of wave-functions. The number of wave-functions in a system depends on the number of valence electrons in the system. For every valence electron there may be up to two wave-functions.

The computational magnitude of a GPAW simulation depends mainly on three factors: The world size, simulation system resolution and the number of valence electrons. The world size and resolution determine the dimensions of the real-space grids and the number of valence electrons determines the number of real-space grids.

A user is typically more interested in adding valence electrons to the simulation than to increase the size or resolution of the world. The real-space grid size will ordinary be between 100^3 to 200^3 where as the total number of real-space grids will be greater than thousand.

A. Finite-difference

A stencil operation updates a point in a grid based on the surrounding points. A typical 2D example is illustrated in Figure 1 where points are updated based on the two nearest points in all four directions.

The finite-difference methods used in GPAW are stencil operations on the real-space grids (3D arrays). The stencil operation used is a linear combination of a point’s two nearest neighbors in all six directions and itself. The stencil operations do normally use periodic boundary condition but that is not always the case.

If we look at the real-space grid A and a predefined list of constants C, a point $A_{x,y,z}$ is computed like this:

$$A'_{x,y,z} = C_1A_{x,y,z} + C_2A_{x-1,y,z} + C_3A_{x+1,y,z} + C_4A_{x-2,y,z} + C_5A_{x+2,y,z} + C_6A_{x,y-1,z} + C_7A_{x,y+1,z} + C_8A_{x,y-2,z} + C_9A_{x,y+2,z} + C_{10}A_{x,y,z-1} + C_{11}A_{x,y,z+1} + C_{12}A_{x,y,z-2} + C_{13}A_{x,y,z+2}$$

![Fig. 1. A stencil operation on a 2D grid.](image-url)
TABLE I

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node CPU</td>
<td>Four PowerPC 450 cores</td>
</tr>
<tr>
<td>CPU frequency</td>
<td>850 MHz</td>
</tr>
<tr>
<td>L1 cache (private)</td>
<td>64KB per core</td>
</tr>
<tr>
<td>L2 cache (private)</td>
<td>Seven stream prefetching</td>
</tr>
<tr>
<td>L3 cache (shared)</td>
<td>8MB</td>
</tr>
<tr>
<td>Main memory bandwidth</td>
<td>2GB</td>
</tr>
<tr>
<td>Main memory bandwidth</td>
<td>13.6 GB/s</td>
</tr>
<tr>
<td>Peak performance</td>
<td>13.6 Gflops/node</td>
</tr>
<tr>
<td>Torus bandwidth</td>
<td>(6 \times 2 \times 425 \text{MB/s} = 5.1 \text{GB/s})</td>
</tr>
</tbody>
</table>

III. BLUE GENE/P

Blue Gene/P consists of a number of nodes interconnected with three independent networks: a 3D torus network, a collective tree structured network, and a global barrier network. All point-to-point communication goes through the torus network and every node is equipped with a direct memory access (DMA) engine to offload torus communication from the CPUs. The collective tree structured network is used for collective operation like the MPI reduce operation and the global barrier network is used for barriers.

Table I is a brief description of a BGP node. One thing to highlight is the ratio between the speed of the CPU-cores and the main memory. Since the CPU-cores are relatively slow and the main memory is relatively fast compared to today’s standard, the performance of the main memory is not as far behind the CPU as usually. Furthermore, the torus bandwidth is only three times lower than the main memory if all six connections are used. The von Neumann bottleneck associated with main memory and network is therefore reduced.

The CPU-cores can be utilized by normal SMP approaches like pthread or OpenMP, with the limitation that BGP only supports one thread per CPU-core. The BGP addresses the problem of utilizing multiple CPU-cores by supporting a virtual partition of the nodes. From the programmers point of view the four CPU-cores would then look like four individual nodes with each 512MB of main memory. This virtual partitioning is called virtual mode.

A. MPI

BGP implements the MPICH2 library which comply with the MPI-2 specification[8]. MPI-2 specifies different levels of threaded communication. BGP supports the fully thread-safe mode called MULTIPLE which allows any thread to call the MPI library at any time. Since there is an overhead associated with MULTIPLE (e.g. locks), it is also possible to use the more restricted SINGLE mode, which do not allow concurrent calls to MPI.

The MPICH2 implementation is tailored to utilize the BGP’s DMA engine which means that non-blocking MPI communication is handled asynchronously with minimum CPU involvement.

BGP supports the MPI_Cart_create function which tells BGP to reorder the MPI ranks in order to match the torus network. We make use of this function in all the following.

IV. THE GPAW IMPLEMENTATION

GPAW is implemented using C and Python. The intention is that the users of GPAW should write the model description in Python and then call C and Fortran functions from within Python. It is in this context a user would apply the C implemented finite-difference operation on one or more real-space grids.

The parallel version of GPAW uses MPI in a flat programming model and the parallelization is done by simple domain decomposition of every real-space grid in the simulation. That is, every MPI process gets the same subset of every real-space grid in the simulation. This is important because some part of the GPAW computation, like the orthogonalization of wavefunctions, requires the same subset of every real-space grid in the simulation. This is illustrated in Figure 3 with 2D real-space grids instead of 3D grids.
The grids are simply divided into a number of quadrilaterals matching the number of available MPI processes. If no user-defined domain decomposition is present, GPAW will try to minimize the aggregated surface of the quadrilaterals. A real-space grid is represented as a three dimensional array where every point in the grid can be a real or complex number (8 or 16 bytes).

A. Distributed Finite-difference

Generally, it should be easy to obtain good scalability for a distributed finite-difference operation since computation grows faster than communication. If we look at a 3D grid of size \(n \times n \times n \) the aggregated computation is \(O(n^3) \) where as the aggregated communication is only \(O(n^2) \). The operation should scale very well when \(n \) grows at the same rate as the number of CPUs.

In GPAW, however, scalability is very hard to obtain since the grid size will ordinarily not exceed \(200^3 \). Furthermore, since GPAW requires that every MPI process gets the same subset of every grid, it is hard to take advantage of the fact that the number of grids grows at the same pace as the CPUs.

One feature in GPAW which makes it easier to parallelize, is the fact that the input grid and the output grid used in the finite-difference operation is always two separate grids. We need, therefore, not consider the order in which the grid-points are computed.

Applying a finite-difference operation on a grid involves all MPI processes. It is possible for an MPI process to compute most of the points in the sub-grid assigned to it. However, points near the surface of the sub-grid, surface points, are dependent on remote points located in neighboring MPI processes. This dependency is illustrated in Figure 4.

The straightforward approach, and the one used in GPAW, for making remote points available, is to exchange the surface points between neighboring MPI processes before applying the finite-difference operation. The serialized communication pattern looks like this:

1. Exchange surface points in the first dimension.
2. Exchange surface points in the second dimension.
3. Exchange surface points in the third dimension.
4. Apply the finite-difference operation.

V. OPTIMIZATIONS

In order to make GPAW run faster on the BGP, we have explored different optimizations. Optimizations which have been beneficial, will be discussed in this section.

The most obvious optimization is to exchange surface elements simultaneously in all three dimensions, by using the following non-blocking communication pattern:

1. Initiate the exchange of surface points in all three dimensions.
2. Wait for all exchanges to finish.
3. Apply the finite-difference operation.

The idea is to fully utilize the torus network in all six directions simultaneously, see Table I.

Another important performance aspect is how to map the distributed real-space grids onto the physical network topology. The 3D torus network is used for point-to-point communication in MPI, thus it is the network, we should attempt to map the distributed real-space grids onto. Since the grids have the same number of dimensions as the torus network, and since the finite-difference operation may use periodic boundary condition, a torus topology is a perfect match to our problem. However, the BGP requires a partition with 512 or more nodes to form a torus topology. A partition under 512 nodes can only form a mesh topology.

A. Multiple real-space grids

Double buffering and communication batching are two techniques which can improve the performance of the finite-difference operation. Both techniques requires multiple real-space grids but the finite-difference operation is typically applied on thousands of real-space grids.

Double buffering

Double buffering is a technique which makes it possible to overlap communication and computation. The following communication pattern illustrates how:

1. Initiate the exchange of surface points in all three dimensions for the first grid.
2. Initiate the exchange of surface points in all three dimensions for the second grid.
3. Wait for all exchanges of the first grid to finish.
4. Apply the stencil operation on the first grid.
5. Initiate the exchange of surface points in all three dimensions for the third grid.
6. Wait for all exchanges of the second grid to finish.

The performance gain is dependent on the ability of the MPI library and the underlying hardware to process non-blocking send and receive calls. On the BGP, progress in non-blocking send and receive calls will be maintained by the DMA engine and increased performance is therefore expected.

Batching

An way to ensure critical packet size is to pack real-space grids into batches; inspired by the message size experiment (Figure 2).

Continuously dividing the grids between more and more MPI processes reduces the number of surface points in a single sub-grid. That is, at some point the amount of data send by a single MPI call will be reduced to a size in which the MPI
overhead and network latency will dominate the communication overhead. The idea is to send a batch of surface points in each MPI call, instead of sending surface points, individually. This will reduce the communication overhead considerably, as the size of the sub-grids decreases. The number of grids packed together in this way, we call the batch-size.

When using double buffering, it is important to allow the CPUs to start computing as soon as possible. Combining a large batch-size with double buffering will therefore introduce a penalty as the initial surface points exchange cannot be hidden. One approach to minimize this penalty, is to increase the batch-size continuously in the initial stage. For instance a batch-size of 128 could be reduced to 64 in the initial exchange.

VI. PROGRAMMING APPROACHES

Different approaches exist when combining threads and MPI. To preserve control we have chosen to handle the threading manually in pthread.

The following is a description of different programming approaches that we have investigated. Every programming approach except the Flat original uses the optimizations described in section V.

- **Flat original** is the approach originally used in GPAW. It uses the BGP’s virtual mode, where the four CPU-cores are treated as individual nodes, to utilize all four CPU-cores and it is therefore not necessary to modify anything to support the BGP architecture.

- **Flat optimized** is an optimized version of the original approach and just like the Flat original it uses the virtual mode.

- **Hybrid multiple** does not use the virtual mode. Instead, one hardware thread per CPU-core is spawned. Every thread handles its own inter-node communication. The node will distribute the real-space grids between its four CPU-cores, not by dividing the grids into smaller pieces but by assigning different grids to every CPU-core. Because of this no synchronization is needed until all grids are computed, the synchronization penalty is therefore constant. This way of exploiting multiple grids is the main advantage of this approach.

- **Hybrid master-only** also spawns one thread per CPU-core, but only one thread, the master thread, handles inter-node communication. Since we have to synchronize between every grid-computation, each grid-computation will be divided between the four CPU-cores. The synchronization penalty thus become proportional to the number of grids. On the other hand, this approach does work in SINGLE MPI-mode and the overhead associated with MULTIPLE is therefore avoided.

VII. RESULTS

A benchmark of each implementation has been executed on the Blue Gene/P. 16384 CPU-cores or 4096 nodes or 4 racks were made available to us. Every benchmark graph compares the different programming approaches of the finite-difference operation in GPAW and a periodic boundary condition is used in all cases.

Figure 5 is a classic speedup graph comparing every implemented approach with a sequential execution. It is a relatively small job containing only 32 real-space grids. But because of the memory demand, it is not possible to have more than 32 grids running on a single CPU-core.

The result clearly show that the best scaling and running time is obtained with Flat optimized and Hybrid multiple both using a batch-size of 8 grids. Since the job only consists of 32 grids a batch-size of 8 is the maximum if all four CPU-cores should be used. Another interesting observation is that the advantage of batching is greater in Hybrid multiple than in Flat optimized. This indicates that if a job consist of more grids, the Hybrid multiple approach may become faster than Flat optimized.

A. Multiple real-space grids

As the number of grids grow there is a corresponding linear growth in the computation required in the finite-difference operation. It is therefore possible to create a Gustafson graph by increasing the number of grids in the same rate as the number of CPU-cores (Figure 6). It is important to note that the required communication per node increases faster than the needed computation; this is due to the increased surface size associated with the additional partitioning of the grids. To illustrate this communication increase, the right scale in Figure 6 shows the needed communication per node for Flat optimized and Hybrid multiple respectively.

At 512 CPU-cores Hybrid multiple is faster than Flat optimized. The main reason is the difference in the needed communication. Flat optimized divides the grids four times more than the Hybrid multiple. We did not see this effect in the speedup graph, Figure 5, because of the small number of grids. Furthermore, Hybrid multiple is better to exploit an increase in grids because of the thread synchronization overhead. The overhead is small and constant, but since the total running time is very small for 32 grids (9 milliseconds with 2048 CPU-cores), the impact of the synchronization overhead is drastically reduced when the number of grids, and thereby the total running time, is increased.

To investigate the scalability of a large job with many real-space grids, we have made a speedup graph beginning at 1k CPU-cores, which allows for a 2816 grid job (Figure 7). Again Hybrid multiple has the best performance - going from 1k to 16k CPU-cores gives a speedup of approximately 16.5 compared to Flat original. Comparing Hybrid multiple with itself, we have a speedup of 12 where 16 would be linear but unobtainable due to the increase in the needed communication.

To further investigate the performance difference between Hybrid multiple and Flat optimized, we have made a small experiment. We modifies Flat optimized to statically divide the real-space grids into four sub-groups. It is now possible for all four CPU-cores to work on its own sub-group and the real-space grids will be divided into the same level as in Hybrid multiple. The only difference between the two approaches is
that Flat optimized uses BGP’s virtual mode and Hybrid multiple uses threads. It should be noted, however, that in a real GPAW computation this modification does not work, since GPAW requires that every MPI process gets the same subset of every real-space grid, see section IV. The experiment is not included in any of the graphs since its performance is identical with the Hybrid multiple. Because of the identical performance, we find it reasonable to conclude that the level of real-space partitioning is the sole reason for the performance difference between Hybrid multiple and the non-modified Flat optimized.

VIII. CONCLUSIONS

Overall this work has managed to improve the performance of a domain specific finite-difference code when scaling to very large systems. The primary improvements are obtained through the introduction of asynchronous communication which, even in a well balanced system such as the Blue Gene, efficiently improves processor utilization. Furthermore, two hybrid programming approaches have been explored: the hybrid multiple and the master-only approach.

The hybrid programming approach, in which inter-node communication is handled individually by every thread, has shown a positive impact on the performance. By allowing every thread to handle its own inter-node communication, the overhead for thread synchronization remains constant and the application becomes faster than the non-hybrid version.

On the other hand, the alternative hybrid programming approach, in which one thread handles the inter-node communication on behalf of all threads in the process, cannot compete with the non-hybrid version. That is explained by the overhead that is introduced by thread synchronization which grows proportional to the number of grids in the computation.

When comparing our fastest implementation compared to the original implementation, the hybrid programming approach combined with the latency-hiding techniques is 94% faster at 16384 CPU-cores. Translated into utilization this means that CPU utilization grows from 36% to 70%.

While latency-hiding is the primary factor for the improvement we observe, the hybrid implementation is still 10% faster than the non-hybrid approach.

A. Further work

Overall we are satisfied with the performance of the new implementation of the finite-difference operation, still a lot of work remains if the entire GPAW computation should utilize latency-hiding and hybrid programming. It may not be worth the hard work that is needed to rewrite most of GPAW, but it is our expectation that an overall performance gain as the one demonstrated in this work may be obtained for the application overall.

ACKNOWLEDGMENTS

The authors would like to thank the GPAW team at the Technical University of Denmark in particular Jens J. Mortensen and Marcin Dulak. Furthermore we would like to thank Argonne National Laboratory for giving us access to the Blue Gene/P.

REFERENCES

Fig. 5. Speedup of the finite-difference operation. The job consists of only 32 real-space grids all with a size of 144^3. In the left graph batching is disabled and in the right graph batching is enabled using a batch-size of 8.

Fig. 6. A Gustafson graph showing the running time of the finite-difference operation when the number of real-space grids is increasing in the same rate as the number of CPU-cores - one grid per CPU-core. The grid size are 192^3 and the best batch-size has been found for every number of CPU-cores. The right scale shows the needed communication per node.

Fig. 7. A Speedup graph starting at 1024 CPU-cores running the finite-difference operation; every approach is compared to the original approach at 1024 CPU-cores. The job consists of 2816 real-space grids all size of 192^3, and the best batch-size has been found for every number of CPU-cores.