Petrography and mineralogy of archaeological finds from Al Zubarah, Qatar

Kinzel, Moritz; Sølling, Theis Ivan; Sobott, Robert

Publication date:
2016

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Petrography and mineralogy of archaeological finds from Al Zubarah, Qatar

INTRODUCTION

The once prosperous and flourishing merchant and pearling town of Al Zubarah, situated at the upper NW coast of the Qatar peninsula and founded about 1760 AD by the Banu Utaba tribe from Kuwait, was gradually abandoned in the 2nd half of the 19th century and finally given up at the beginning of the 20th century. Apart from the removal of commodities which could be used for building and living at other places it was not destroyed but handed over to nature. The desert sand covered the partly ruined buildings and thus conserved the entire layout and fabric of the town. Since 2009 the University of Copenhagen in partnership with Qatar Museums is excavating and conserving some areas of the over 60 hectares large site. The abundance of archaeological finds comprising among other items porcelain and celadon from China, pottery from India and silver coins from the Austrian-Hungarian Empire attests to the wealth gained from pearl fishing and the world-wide trade links of merchants from Al Zubarah. The excavated implements and articles of daily life convey pictures of the bustling life in workshops and houses. Quite a number of tools, for instance rotary querns, pounders, whetstones and diving weights, were made from natural stones or minerals (Figure 1).

The quantitative mineral compositions of the rocks was calculated from the combination of the qualitative phase and quantitative chemical data. For example, the calculation of chemical and petrographical analyses the work draws on three important resources, namely visits to museums in Bahrain, Doha, Dubai, Abu Dhabi and Muscat, the literature about trading in the Gulf area and the published regional geology of the Arabian Peninsula.

Chemical and petrographical analyses

Quantitative chemical analyses were carried out on tablets prepared from sample material ground down to grain sizes below 10 µm with an EDX system attached to a JEOL scanning electron microscope. For qualitative phase analysis X-ray diffractometry and polarized light microscopy were used. The quantitative chemical composition data was used to compute quantitative mineral phase compositions on the basis of the qualitatively identified mineral phases. The optical light microscopy of some samples was backed by analyses with a QEMSCAN system stationed at the Maersk Oil Research and Technology Center in Doha (Figure 2).

Table 1: Chemical and mineralogical composition of 5 (out of 14) rock samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>MgO</th>
<th>CaO</th>
<th>MnO</th>
<th>Fe₂O₃</th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Cl</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Granite Oz. Mt. Bl. Bt.</td>
<td>1.64</td>
<td>7.65</td>
<td>1.20</td>
<td>0.52</td>
<td>-</td>
<td>1.74</td>
<td>11.58</td>
<td>75.36</td>
<td>0.00</td>
<td>2.27</td>
<td>100.01</td>
</tr>
<tr>
<td>09 Herberghite Oz. Mt. Bl.</td>
<td>-</td>
<td>-</td>
<td>42.54</td>
<td>1.80</td>
<td>-</td>
<td>0.96</td>
<td>11.86</td>
<td>42.30</td>
<td>0.55</td>
<td>-</td>
<td>100.01</td>
</tr>
<tr>
<td>10 Gabbro Mt. Oz. Mt. Bl.</td>
<td>2.58</td>
<td>2.67</td>
<td>6.53</td>
<td>9.47</td>
<td>-</td>
<td>15.36</td>
<td>0.11</td>
<td>54.10</td>
<td>0.03</td>
<td>-</td>
<td>100.00</td>
</tr>
<tr>
<td>11 Balsalt Mt. Oz. Mt. Bl.</td>
<td>2.92</td>
<td>4.27</td>
<td>4.82</td>
<td>5.32</td>
<td>0.27</td>
<td>16.37</td>
<td>11.68</td>
<td>40.35</td>
<td>1.39</td>
<td>-</td>
<td>96.99</td>
</tr>
<tr>
<td>12 Porphyry Oz. Mt. Mu</td>
<td>1.46</td>
<td>9.59</td>
<td>1.99</td>
<td>5.70</td>
<td>-</td>
<td>12.65</td>
<td>3.93</td>
<td>63.37</td>
<td>1.01</td>
<td>-</td>
<td>100.00</td>
</tr>
</tbody>
</table>

(+1 Na₂O contents results from contamination of sample with NaCl in the sabkha and was obviously not completely removed by the washing process (Oz. Quartz, Mt. K Feldspar, Bt. Pigeonite, Mt. Bottke, Mu Muscovite, Ch. Chlorite, Mt. Hornblende, Di. Diopside, Mt. Pigeonite, En. Enstatite, Li. Lizardite)

The quantitative mineral composition of the rocks was calculated from the combination of the qualitative phase and quantitative chemical data. For example, the calculated production followed the result for sample 01 Granite (contents in mass%): K-feldspar 41, albite 15.5, quartz 35, biotite 6.9, hornblende 1.6.

Discussion

As far as the mafic to ultramafic rocks are concerned, the ochhrasites in Oman and UAE are potential sources for peridotite, gabbro and basalt. Some of the outcrops are situated close to the coast of the Gulf of Oman, and it is conceivable that rock material was taken on board as ballast. Some of the gabbroic rocks have undergone intensive low-grade metamorphic alteration (saussuritization). Probably the altered gabbro was easier to work on because this material was also frequently used for tool-making. The most likely hematite supplier seems to be Iran which is still one of the biggest iron ore producers in the world. Small apatite crystals in some of the hematite samples can be distinguishing feature. Barite may also come from Iran. Large deposits are located in the Haji Abad regions in Kashan, Isfahan Province, and Yazd, Province Yazd. Besides the chemical and petrographical analyses the work draws on these important resources, namely visits to museums in Bahrain, Doha, Dubai, Abu Dhabi and Muscat, the literature about trading in the Gulf area and the published regional geology of the Arabian Peninsula.

References

Tobias Richter (2010), The Pearl divers of Qatar. Excavations at Al Zubarah, World Archaeology, Issue 40, 18 – 26

Figure 1: Natural stone implements: 1 quartzite diving weight, 2 hematite diving weight, 3 altered gabbro pestle, 4 barite diving weight, 5 altered peridotite hammer, 6 quartz sercite schist whetstone

Figure 2: Handspecimen, thin section & QEMSCAN image of sample 10 (Gabbro)