Breeding Restrictions Decrease the Prevalence of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniels over an 8-to 10-Year Period

Birkegård, Anna Camilla; Reimann, Maria Josefine Ubbe; Martinussen, Torben; Haggstrom, J.; Pedersen, H. D.; Olsen, Lisbeth Høier

Published in:
Journal of Veterinary Internal Medicine

DOI:
10.1111/jvim.13663

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Breeding Restrictions Decrease the Prevalence of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniels over an 8- to 10-Year Period

A.C. Birkegård, M.J. Reimann, T. Martinussen, J. Håggström, H.D. Pedersen, and L.H. Olsen

Background: Cavalier King Charles Spaniels (CKCS) are predisposed to myxomatous mitral valve disease (MMVD). Studies have indicated a strong genetic background.

Objective: The aim of this study was to evaluate the effect of a breeding scheme involving auscultation and echocardiography.

Animals: In the Danish Kennel Club mandatory breeding scheme, 997 purebred CKCS were examined during the period 2002–2011. Each dog was evaluated 1–4 times with a total of 1,380 examinations.

Methods: Auscultation and echocardiography were performed to evaluate mitral regurgitation murmur severity and degree of mitral valve prolapse (MVP). The odds of having mitral regurgitation murmur or MVP > grade 1 in 2010–2011 compared to 2002–2003 were estimated using logistic regression analysis including age and sex as covariates. Odds were estimated for dogs that were products of the breeding scheme (defined as dogs with both parents approved by the breeding scheme before breeding) and non-products of the breeding scheme (defined as dogs with at least 1 parent with unknown cardiac status).

Results: In 2010–2011, the odds of having mitral regurgitation murmur were 0.27 if dogs were a product of the breeding scheme compared with dogs in 2002–2003, reflecting a 73% decreased risk (P < .0001). If non-products of the breeding scheme examined in 2010–2011 were compared with dogs in 2002–2003, no difference in odds was found (P = .49).

Conclusion and Clinical Importance: A mandatory breeding scheme based on auscultation and echocardiography findings significantly decreased the prevalence of MMVD over the 8- to 10-year period. Such a breeding scheme therefore is recommended for CKCS.

Key words: Dog; Genetics; Inheritance; Mitral valve prolapse.

Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKCS</td>
<td>Cavalier King Charles Spaniels</td>
</tr>
<tr>
<td>DKCA</td>
<td>Danish Kennel Club Association</td>
</tr>
<tr>
<td>MMVD</td>
<td>myxomatous mitral valve disease</td>
</tr>
<tr>
<td>MVP</td>
<td>mitral valve prolapse</td>
</tr>
<tr>
<td>non-PB</td>
<td>non-products of the breeding scheme</td>
</tr>
<tr>
<td>PB</td>
<td>products of the breeding scheme</td>
</tr>
</tbody>
</table>

Ma"xomatous mitral valve disease (MMVD) often causes cardiac-related death in dogs <10 years of age. The disease results in valvular extracellular matrix changes including deposition of mucopolysaccharides and collagen degeneration. The valvular changes may cause mitral valve prolapse (MVP) and insufficient closure of the mitral valve leading to mitral regurgitation. Mitral regurgitation murmur intensity and echocardiographic MVP are predictors of MMVD progression in dogs. The disease is most common in small and medium-sized dog breeds, but often is a relatively benign condition because of its slow disease progression. A higher prevalence and earlier onset of the disease have been reported in Cavalier King Charles Spaniels (CKCS) compared to other dog breeds. A study from Sweden based on animal insurance data from 1995 to 2006 shows that the disease accounts for 37% of the total mortality among CKCS <10 years of age. Hereditary background of MMVD has long been suggested on the basis of a higher prevalence of the disease in certain dog breeds, and more recent studies indicate strong genetic background with polygenic inheritance. In CKCS, a positive association between parental heart status and mitral regurgitation murmur...
intensity in 5 year-old offspring has been reported.8 Furthermore, in Dachshunds, a positive association has been found between the degree of MVP in parents and offspring.9 Based on data from the United Kingdom, a high heritability for MMVD in CKCS has been estimated.10 The heritability for having a mitral regurgitation murmur and for the grade of murmur intensity was estimated to 0.33 and 0.67, respectively.10 Furthermore, a recent genome-wide association study found 2 gene loci on chromosomes 13 and 14 that differ between CKCS with early and late onset of MMVD.11 However, another similar genome-wide association study including a lower number of CKCS did not find any association between gene loci and MMVD disease severity.12 Additional studies are needed to further elucidate associations between gene changes and MMVD disease severity.

Breeding restrictions or recommendations aimed at decreasing the prevalence of MMVD in CKCS have been developed in breeding clubs in different countries. The high heritability of the disease indicates that selection against the disease could be successful.10 From 2001, a breeding scheme has been ongoing in Denmark as a collaboration between the Danish Kennel Club Association (DKCA), The Cavalier Club in Denmark and the University of Copenhagen. The aim of this study was to evaluate if a mandatory breeding scheme based on echocardiography and cardiac auscultation results in decreased MMVD severity in CKCS after an 8- to 10-year time period.

Materials and Methods

Study Design

A retrospective study of the mandatory cardiac examinations in the DKCA breeding scheme was performed. Inclusion criteria for the statistical analyses were that the cardiac examinations were performed in the period 2002–2011 (both years included), all data from the individual examination were available, and that the dogs were registered in DKCA. Dogs had to be at least 1.5 years at examination and registered in the DKCA with a verified CKCS pedigree. Pregnant and lactating dogs were excluded.

Cardiac Examination and Observers

Cardiac auscultation was performed and the degree of mitral regurgitation murmur was graded from 1 to 6.13 The echocardiographic degree of MVP was evaluated with the dog placed in right lateral recumbency using a right parasternal long axis 4-chamber echocardiographic view with focus on the mitral valve.14,15 Echocardiographic recordings were stored on video tape or digitally on DVD. Auscultation and echocardiography were performed by 1 of 8 veterinarians (clinical observers; Table 1). Five clinical observers were general practitioners with cardiovascular interest selected by University of Copenhagen, trained at least 2 days in cardiovascular auscultation and MVP echocardiography and approved by the founder of the breeding scheme (HDP) in 2001 at University of Copenhagen. Two cardiovascular researchers (LHO and JK) with at least 8 years small animal cardiovascular clinical research experience were included as clinical observers in 2004 and 2009, respectively.

Echocardiographic Assessment of MVP

The degree of MVP was evaluated by LHO or HDP (MVP observers). The degree of MVP was assessed as 0 (≤1.5 mm as the sum of the maximum protrusion of the cranial, caudal and coaptation point of the mitral valve according to annulus plane), 1 (>1.5 and ≤4.5 mm), 2 (>4.5 and ≤7.5 mm), and 3 (>7.5 mm).16 One of the MVP observers (HDP) evaluated the MVP echocardiograms from the debut of the breeding scheme until November 2004, hereafter the recordings were evaluated by the other MVP observer (LHO). The MVP observers made the final approval for the DKCA report (see below).

Breeding Guidelines and Cardiac Health Criteria

Dogs examined ≥1½ years of age were approved for breeding until 4 years of age if cardiac health criteria were fulfilled. To continue breeding in DKCS after 4 years of age dogs had to be reexamined. From January 2007, an additional restriction was decided introducing an additional reexamination after 6 years of age for male dogs. At all examination time points, dogs were excluded from breeding if they had MVP grade 3 (first a criterion from 2007) or a mitral regurgitation murmur grade ≥3. Dogs with grade 2 murmurs were excluded if they had MVP grades 2 or 3. Thus, cardiac health criteria for breeding in the MMVD breeding scheme of the DKCA were as follows: Mitral regurgitation murmur of 1 at a maximum combined with a MVP grade 2 at a maximum; or a grade 2 murmur combined with a degree of MVP not >1. Before 2007, dogs with a grade 3 MVP were approved if they had a murmur grade not >1. Ejection murmurs (physiological flow murmurs) were accepted. They were diagnosed as systolic murmurs with crescendo–decresendo sound configuration, point of maximal intensity at the left heart base and with minimal or no concurrent mitral regurgitation estimated using color flow Doppler echocardiography.17 These dogs often have aortic flow maximum velocity on the higher side of the normal reference range (>1.5 m/s).18 This observation was used to confirm the diagnosis. Dogs with heart murmurs caused by non-MMVD cardiac disease were excluded. Mitral regurgitation murmur intensity and MVP status of all examined dogs became freely available from DKCA homepage after examination. Each parent needed to fulfill the cardiac health criteria for registration of their puppies in DKCA.

Statistics

All statistical calculations were conducted with a statistical software program (SAS)a and a statistical significance level of 5% was used.

Logistic regression analysis taking clustering caused by multiple measurements per clinical observer into account was performed using proc gendum in the SAS system. Dogs examined in the years of 2002, 2003, 2010, and 2011 were divided into 3 groups. Group 1 was defined as all dogs examined in 2002 and 2003. Dogs in group 2 were examined in 2010 and 2011, and in addition, were a product of the breeding scheme (PB). Group 3 consisted of dogs also examined in 2010 and 2011 but not a product of the breeding scheme (non-PB). Products of the breeding scheme were defined as dogs with both parents approved by the DKCA breeding scheme. Only the most recent examination was included in the statistical analyses if a dog had repeated examinations within the time period. The presence of mitral regurgitation murmur (yes/no) or degree of MVP > 1 (yes/no) were included as response variables and age at examination, group (1, 2 or 3) and sex (male or female) were included as explanatory variables. Backward stepwise elimination was performed until only explanatory variables showing significance were left in the model. If an overall significance of
group was found, the risk of having a mitral regurgitation murmur or MVP > 1 was compared between group 1 (all dogs examined in 2002 and 2003) and group 2 (PB examined in 2010 and 2011), group 1 and group 3 (non-PB examined in 2010 and 2011), and finally group 2 and 3, to evaluate a potential effect of the MMVD breeding scheme.

Results

A total of 1,471 cardiac examinations were performed from the debut of the DKCA breeding scheme in December 2001 until the end of 2011. Ninety-one cardiac examinations were excluded from the statistical analyses according to predefined criteria (Fig 1). A total of 1,380 cardiac examinations were included from 2002 to 2011 (Tables 1 and 2). In the period, 997 dogs were evaluated (689 females and 308 males). Dogs of both sexes were evaluated 1–4 times with an average of 1.4

Table 1. Number of dogs examined by 8 different clinical observers from 2002 to 2011 in the Danish Kennel Club Association (DKCA) myxomatous mitral valve disease (MMVD) breeding scheme.

<table>
<thead>
<tr>
<th>Clinical observer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Total Exams</th>
<th>Number of Excluded Dogs</th>
<th>% Excluded Dogs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>19</td>
<td>29</td>
<td>12</td>
<td>1</td>
<td>133</td>
<td>11</td>
<td>8.3</td>
</tr>
<tr>
<td>2003</td>
<td>57</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>17</td>
<td>10</td>
<td>2</td>
<td>99</td>
<td>5</td>
<td>5.1</td>
</tr>
<tr>
<td>2004</td>
<td>34</td>
<td>18</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>24</td>
<td>9</td>
<td>1</td>
<td>95</td>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>79</td>
<td>0</td>
<td>10</td>
<td>4</td>
<td>16</td>
<td>7</td>
<td>2</td>
<td>118</td>
<td>4</td>
<td>3.4</td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>79</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>24</td>
<td>5</td>
<td>2</td>
<td>122</td>
<td>6</td>
<td>4.9</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>91</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>17</td>
<td>5</td>
<td>2</td>
<td>154</td>
<td>17</td>
<td>11.0</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>124</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>21</td>
<td>7</td>
<td>3</td>
<td>170</td>
<td>10</td>
<td>5.9</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>117</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>15</td>
<td>6</td>
<td>8</td>
<td>159</td>
<td>5</td>
<td>3.1</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>131</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>11</td>
<td>7</td>
<td>163</td>
<td>8</td>
<td>4.9</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>123</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>16</td>
<td>8</td>
<td>3</td>
<td>167</td>
<td>9</td>
<td>5.4</td>
</tr>
<tr>
<td>Total</td>
<td>156</td>
<td>763</td>
<td>6</td>
<td>73</td>
<td>57</td>
<td>201</td>
<td>90</td>
<td>34</td>
<td>1,380</td>
<td>78</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Table 2. Characteristics of the dogs examined from 2002 to 2011 in the Danish Kennel Club Association (DKCA) myxomatous mitral valve disease (MMVD) breeding scheme included in the statistical analysis.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>215</td>
<td>172</td>
<td>153</td>
</tr>
<tr>
<td>Age (years)</td>
<td>2.5 (1.8–4.4)</td>
<td>2.0 (1.7–4.1)</td>
<td>2.3 (1.6–4.4)</td>
</tr>
<tr>
<td>Sex (m/f)</td>
<td>63/152</td>
<td>54/118</td>
<td>63/90</td>
</tr>
</tbody>
</table>

Only the most recent examination was included in the statistical analyses if dogs had repeated examinations. Group 1 is dogs examined in 2002 and 2003. Group 2 and 3 are dogs examined in 2010 and 2011 that are products of the breeding scheme (PB) and nonproducts of the breeding scheme (non-PB), respectively. f, female; m, male. Except for sex, data are shown as median and 25 and 75% interquartile intervals.
evaluations per dog. Presence of heart murmur could not be evaluated satisfactorily in 5 dogs and therefore their results regarding murmur were removed from the statistical analyses. Among the 1,380 cardiac examinations, 137 mitral regurgitation murmurs (10%), 83 innocent flow murmurs (6%) and 84 MVP grade 3 (6%) were found. In total, 78 dogs (5.7%; 39 males and 39 females) were excluded from breeders (31 males and 18 females from 2007 to 2011). Among dogs with repeated examinations (n = 343 [306 dogs twice, 34 dogs 3 times and 3 dogs 4 times]), 6 dogs (2%) had decreased degree of mitral regurgitation murmur of 1 grade and 11 dogs (3%) had decreased MVP of 1 grade over time.

Reduction in Risk of Having a Mitral Regurgitation Murmur

Group and age statistically significantly influenced the presence of mitral regurgitation murmur (Table 3). The odds of having mitral regurgitation murmur in 2010–2011 compared to 2002–2003 were 0.27 if the dogs in 2010–2011 were PB, reflecting a 73% decreased risk ($P < .0001$; Table 3 and Fig 2). Similarly, within 2010–2011, the odds of having mitral regurgitation murmur for dogs that was PB was 0.31 compared to non-PB, reflecting 69% decreased risk ($P < .0001$). If non-PB examined in 2010–2011 were compared with dogs examined in 2002–2003, no statistical difference in odds of having mitral regurgitation murmur was found ($P = .4873$). There was no significant influence of sex on odds of murmur. Odds of having a murmur were higher with advancing age ($P < .0001$; Table 3).

Reduction in Risk of Having MVP > 1

Group, sex, and age at examination significantly influenced the presence of MVP above grade 1 (Table 3). In 2010–2011, the odds of PB having MVP > 1 compared to non-PB was 0.64 reflecting a 36% reduced risk ($P < .0006$; Table 3 and Fig 3). There was no significant difference in odds of having MVP > 1 in 2010–2011 compared with 2002–2003.

Table 3. Odds for occurrence of mitral regurgitation murmur and moderate to severe mitral valve prolapse (MVP) in dogs examined in 2010 and 2011 compared with dogs examined in 2002 and 2003.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MR murmur > 0</td>
<td>Agea at examination ($P < .0001$)</td>
<td>$P < .0001$</td>
<td>.49</td>
<td>$<.0001$</td>
</tr>
<tr>
<td></td>
<td>Age 95%</td>
<td>OR 0.27</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MVP > 1</td>
<td>Agea at examination ($P < .0001$)</td>
<td>$P = .23$</td>
<td>.78</td>
<td>.0006</td>
</tr>
<tr>
<td></td>
<td>Age 95% and sexb</td>
<td>OR –</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Group 1 is dogs examined in 2002 and 2003. Group 2 and 3 are dogs examined in 2010 and 2011 that are products of the breeding scheme (PB) and nonproducts of the breeding scheme (non-PB), respectively. MR, mitral regurgitation. OR, odds ratio; 95%, 95% confidence interval for the odds ratio.

aOdds increase with advancing age.

bMale higher odds than female.

Discussion

Our study shows that a breeding scheme based on cardiac auscultation and echocardiography markedly decreased the risk of having a mitral regurgitation murmur caused by MMVD after an 8- to 10-year period. The reduction in risk was only significant for offspring where both parents had been approved by the breeding scheme (PB), not for offspring where 1 or both parents were not approved by the breeding scheme (non-PB). The risk of having moderate to severe MVP (MVP > 1) was not decreased after the 8- to 10-year period, but PB had lower risk of MVP > 1 than did non-PB within the years 2010 and 2011.

To the authors’ knowledge ours is the first study reporting a clear effect of a breeding scheme aimed at decreasing the prevalence of MMVD in CKCS (or in any breed). Preliminary findings from the British voluntary breeding scheme (annual cardiac auscultation and parents’ murmur status) reported an effect in the group of dogs auscultated by a general practitioner but only a trend was reported when the dogs were auscultated by a veterinary cardiologist. A mandatory breeding scheme in Sweden including annual cardiac auscultation and parent information did not result in significant effect of the scheme, albeit after a short follow-up period (2007–2009).

Different breeding schemes aimed at decreasing the prevalence of MMVD in CKCS are ongoing in several countries worldwide to guide dog breeders. The breeding schemes are mandatory or voluntary, include cardiac auscultation or both cardiac auscultation and echocardiography and some programs include parent cardiac information. Some schemes include annual cardiac examinations where as others have a more limited number of cardiac examinations during the dog’s lifetime. In some schemes, the cardiac examination results are open to the public, in others the results are only known by the dog owner. How much such factors influence the effect of a breeding scheme still needs much clarification.

Voluntary participation may decrease the number of dog owners who follow the breeding advice and thereby reducing the prevalence of MMVD in CKCS.
ing scheme. Non-PB, nonproducts of the breeding scheme.

Color flow Doppler echocardiography can confirm the
diagnosis of mitral regurgitation, but experienced obser-
vers can detect mitral regurgitation using auscultation in
89% of dogs with mild or more severe mitral regurgita-
tion (regurgitant jet area >30% of the left atrial area). 17
Moderately, experienced observers (general practitioners
level) can detect mitral regurgitation in 72% of the dogs
by auscultation. Echocardiography is useful to support
the diagnosis of ejection murmurs (physiological flow
murmurs) and other heart murmurs not associated with
mitral regurgitation. 17 In this study, approximately 6%
of the dogs examined from 2002 to 2011 were diagnosed
with ejection murmurs based on clinical findings and
echocardiography. In a previous study, 6 of 57 (10%)
CKCS were diagnosed with ejection murmurs based on
auscultation and phonography. 17 Ejection murmurs do
not seem to be associated with heart disease, 17,18 and
exclusion of dogs with ejection murmurs in breeding
schemes may unnecessarily decrease the number of
CKCS available for breeding. Estimation of mitral regur-
gitant jet size in relation to left atrial area using color
flow Doppler echocardiography is a semi-quantitative
estimate influenced by several factors including echocar-
diographic equipment and technical settings. 22 This limi-
tation may affect the use of this method in breeding
schemes including multicenter clinical examinations.

Studies have shown that MVP is an early predictor
of MMVD disease progression and is correlated with
other disease variables such as degree of mitral regurgi-
tation and mitral valve thickness. 4,5 In this study, the
risk of having moderate to severe MVP was not found
to decrease in the breeding scheme during the 8- to
10-year follow-up period. However in 2010 and 2011,
PB were found to have a decreased risk of having mod-
erate to severe MVP compared to non-PB suggesting an
effect of the breeding scheme on this parameter as well.

The study has limitations. One of the observers in the
breeding scheme was replaced in 2004 and the overall
observer performance may have changed during the 8-
to 10-year time period. Clinical observer was included as
random variable in the statistical models to take observer
variation into account. However, it was not possible to
include MVP observer variation in the modeling. Yet,
the finding of a decreased risk of MMVD was confirmed
by comparison of the risk of having a mitral regurgita-
tion murmur and moderate to severe MVP (MVP
10-year time period. Clinical observer was included as
random variable in the statistical models to take observer
variation into account. However, it was not possible to
include MVP observer variation in the modeling. Yet,
the finding of a decreased risk of MMVD was confirmed
by comparison of the risk of having a mitral regurgita-
tion murmur and moderate to severe MVP (MVP
10-year time period. Clinical observer was included as
random variable in the statistical models to take observer
variation into account. However, it was not possible to
include MVP observer variation in the modeling. Yet,
the finding of a decreased risk of MMVD was confirmed
by comparison of the risk of having a mitral regurgita-
tion murmur and moderate to severe MVP (MVP
10-year time period. Clinical observer was included as
random variable in the statistical models to take observer
variation into account. However, it was not possible to
include MVP observer variation in the modeling. Yet,
the finding of a decreased risk of MMVD was confirmed
by comparison of the risk of having a mitral regurgita-
tion murmur and moderate to severe MVP (MVP
10-year time period. Clinical observer was included as
random variable in the statistical models to take observer
variation into account. However, it was not possible to
include MVP observer variation in the modeling. Yet,
the finding of a decreased risk of MMVD was confirmed
by comparison of the risk of having a mitral regurgita-
tion murmur and moderate to severe MVP (MVP
10-year time period. Clinical observer was included as
random variable in the statistical models to take observer
variation into account. However, it was not possible to
include MVP observer variation in the modeling. Yet,
the finding of a decreased risk of MMVD was confirmed
by comparison of the risk of having a mitral regurgita-
tion murmur and moderate to severe MVP (MVP
10-year time period. Clinical observer was included as
random variable in the statistical models to take observer
variation into account. However, it was not possible to
include MVP observer variation in the modeling. Yet,
the finding of a decreased risk of MMVD was confirmed
by comparison of the risk of having a mitral regurgita-
tion murmur and moderate to severe MVP (MVP
10-year time period. Clinical observer was included as
random variable in the statistical models to take observer
variation into account. However, it was not possible to
include MVP observer variation in the modeling. Yet,
the finding of a decreased risk of MMVD was confirmed
by comparison of the risk of having a mitral regurgita-
tion murmur and moderate to severe MVP (MVP
10-year time period. Clinical observer was included as
random variable in the statistical models to take observer
variation into account. However, it was not possible to
include MVP observer variation in the modeling. Yet,
gram is recommended until other breeding schemes aimed at decreasing the prevalence of MMVD with higher performance are described. Genetic tests potentially could be included in future breeding schemes.

In conclusion, a mandatory breeding scheme based on auscultation and echocardiography significantly decreased the prevalence of MMVD over the 8- to 10-year time period. Therefore, such a breeding scheme is recommended for CKCS.

Footnote

Acknowledgments

The authors thank the general veterinary practitioners Christian Mogensen, Varde Animal Hospital, Varde, Denmark; Gustaf Valentin-Branth, Bygholm Animal Hospital, Horsens; Mette Ronn-Landbo, Aalborg Animal Hospital, Aalborg, Denmark; Jesper Lund Sørensen, Rodding and Trekantens Animal Hospital, Rodding, Denmark, Peter Knold, Aarslev Animal Hospital, Aarslev, Denmark; and associate professor Jørgen Koch, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark, for performing cardiac auscultation and echocardiography of dogs in the breeding scheme. Christina Tirsdal Kjempff, Dennis Jensen and Hanne Carlsson at the Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark are acknowledged for excellent technical assistance.

Conflict of Interest Declaration: Authors disclose no conflict of interest.

Off-Label Antimicrobial Declaration: Authors declare no off-label use of antimicrobials.

References