Multiple hypothesis tracking based extraction of airway trees from CT data
Raghavendra, Selvan; Petersen, Jens; de Bruijne, Marleen

Publication date:
2016

Citation for published version (APA):
Raghavendra, S., Petersen, J., & de Bruijne, M. (2016). Multiple hypothesis tracking based extraction of airway trees from CT data: using statistical ranking of template-matched hypotheses. Poster session presented at Medical Imaging Summer School 2016, Italy.
MULTIPLE HYPOTHESIS TRACKING BASED EXTRACTION OF AIRWAY TREES FROM CT DATA
Using statistical ranking of template-matched hypotheses

Selvan R., Petersen J., de Bruijne M.
Image Group, Department of Computer Science

Abstract
Segmentation of airway trees from CT scans of lungs is a major clinical application, in relation to the diagnosis of chronic obstructive pulmonary disease (COPD). Here we present a method based on multiple hypothesis tracking (MHT) and template matching, originally designed for vessel segmentation, to extract airway trees. Idealized tubular templates are constructed and ranked using scores assigned based on the image data. Several such regularly spaced hypotheses are used in constructing a hypothesis tree, which is then traversed to obtain improved segmentation results.

Introduction
COPD is a leading cause of mortality worldwide, characterised by:
• Distortion of the lung tissue (emphysema)
• Morphological changes to the airways
Objective: Develop segmentation methods, with improved specificity and sensitivity, to study morphological changes of airway trees from CT.

Existing methods:
• Airway tree segmentation is a challenging problem
• Most methods try to strike a balance between specificity and sensitivity.
• Room for improvement on both fronts
• Single hypothesis / greedy algorithms
 – Instaneous decisions
 – Only the best hypothesis is propagated
 – Sensitive to noise
 – Highly local solutions

MHT-based methods

Template matching-based MHT
Method based on [1], proposed for tracking small vessels:
• Designed to track small tubular structures
• Uses a scale-dependent score threshold
• Semi-automatic
Model
• Probability images obtained from trained KNN classifiers (K = 21), airways (p = 1)
• Method in [1] is modified, while retaining the image model:

\[\text{image} = \text{contrast} \times \text{template} + \text{mean} + \text{noise}, \] (1)

• Template function (T) used to map probability variations to a profile function (P)

\[T(x, y) = 1 - e^{-d(x,y)^2 / \sigma^2}, \] (2)

\[d(x,y) = \text{minimum squared distance between x and line along y through x}, \] (3)

Constructing the hypothesis tree
• Fixed number of guesses are generated
• Guesses are 3D templates based on parameters from previous step
• Corresponds to the “prediction” step.
• Predictions are “updated” by solving the weighted minimization problem:

\[\text{error} = \sum_{i=1}^{n} W(i) \text{error}(x, y(i)) \] (4)

W is the weighting matrix.
• Guesses are ranked based on prominence of score, removing the dependence on scale

Multiple hypothesis tracking (MHT)

Philosophy: Delay decisions. Use more data. Benefit from hindsight.

• Widely used in multi-target tracking [5]
• Deferred decision based on more data
• Several hypotheses are maintained
• Search depth controls the size of tree
• Trade-off between optimality, tractability

A tracking perspective to segmentation
• Prediction by regularly spaced guesses
• Image data is used to update the guesses

References