Multiple hypothesis tracking based extraction of airway trees from CT data

Raghavendra, Selvan; Petersen, Jens; de Bruijne, Marleen

Publication date: 2016

Citation for published version (APA):
Raghavendra, S., Petersen, J., & de Bruijne, M. (2016). Multiple hypothesis tracking based extraction of airway trees from CT data: using statistical ranking of template-matched hypotheses. Poster session presented at Medical Imaging Summer School 2016, Italy.
MULTIPLE HYPOTHESIS TRACKING BASED EXTRACTION OF AIRWAY TREES FROM CT DATA
Using statistical ranking of template-matched hypotheses

Selvan R., Petersen J., de Bruijne M.
Image Group, Department of Computer Science

Abstract

Segmentation of airway trees from CT scans of lungs has important clinical applications, in relation to the diagnosis of chronic obstructive pulmonary disease (COPD). Here we present a method based on multiple hypothesis tracking (MHT) and template matching, originally devised for vessel segmentation, to extract airway trees. Individual tubular templates are constructed and ranked using scores assigned based on the image data. Several such regularly spaced hypotheses are used in constructing a hypothesis tree, which is then traversed to obtain improved segmentation results.

Introduction

COPD is a leading cause of mortality worldwide, characterised by:
• Destruction of the lungs (emphysema)
• Morphological changes to the airways

Objective: Develop segmentation methods, with improved specificity and sensitivity, to study morphological changes of airway trees from CT.

Existing methods:
• Airway tree segmentation is a challenging problem
• Most methods try to strike a balance between specificity and necessity
• Room for improvement on both fronts

• Multiple hypotheses / greedy algorithms
 – Instantaneous decisions
 – Only the best hypothesis is propagated
 – Sensitive to noise
 – Highly local solutions

MHT-based methods

Idea: Defeasc all HMP to decision as a single step. 유지, maintain all hypotheses.

Multiple hypothesis tracking (MHT)

Philosophy: Delay decisions. Use more data. Benefit from hindsight.

• Widely used in multi-target tracking [5]
• Deferred decision based on more data
• Several hypotheses are maintained
• Search depth controls the size of tree
• Trade-off between optimality, tractability

A tracking perspective to segmentation

• Prediction by regularly spaced guesses
• Image data is used to update the guesses

Figure 1: Coronal, sagittal and axial view of the probability image. Darker areas correspond to high probability, and hence likely airway regions.

Figure 2: Coronal view of the probability image after classification. Darker regions correspond to high probability, and hence likely airway regions.

Figure 3: Overview of tracking between two steps.

Figure 4: MHT tree, of search depth n. The decision at T_n is made based on all the data up to T_n, tracing back the best global hypothesis depicted in blue.

Figure 5: 3D tubular template of radius r, with center at (x_0, y_0, z_0), along the direction d. Intensity profile $I(x)$ at a cross section is shown on right.

Template matching-based MHT

Method based on [1], proposed for tracking small vessels:
• Designed to track small tubular structures
• Uses a scale-dependent score threshold
• Semi-automatic

Model

• Probability images obtained from trained KNN classifier ($K=21$), airways ($p=1$)
• Method in [1] is modified, while retaining the image model:

$$I(x, y, z; ref) = \text{contrast} \cdot \text{template} + \text{mean} + \text{noise}, \quad I(x, y, z; ref) = I(x, y, z) + \text{noise}$$

• Template function T used to map probability variations to a profile function P

$$T(x, x_0, y_0, z_0; \gamma, \delta) = e^{-\frac{d^2(x, x_0, y_0, z_0; \gamma, \delta)}{2\sigma^2}}$$

d^2 is minimum squared distance between x and line along δ through x_0 with $y = \gamma$

Constructing the hypothesis tree

• Fixed number of hypotheses are generated
• Guesses are 3D templates based on parameters from previous step
• Corresponds to the “prediction” step
• Predictions are “updated” by solving the weighted minimisation problem:

$$\sum_{i=0}^{n} \text{weight}(x_i, y_i, z_i; \gamma_i, \delta_i) = \sum_{i=0}^{n} \text{weight}(x_i, y_i, z_i; \gamma_i, \delta_i)$$

γ_i, δ_i are centerlines of reference, output segmentations, with n_{ref_i} n_{op_i} points respectively. d_{xy} is Euclidean distance

Discussion

• Ranking based MHT method shows an improvement in performance
• Fully automatic tree extraction method
• It does not outperform region-growing on probability images

Conclusions

• MHT allows for improved tracking decisions, as tracking solutions are not local.
• Method in [1] has been modified to extract airway trees.
• Ranking based scheme is more suitable for extracting airways, where structures of varying dimensions are observed.

Acknowledgements

Danish Council for Independent Research

References

Figure 6: Generation of local hypotheses. Each hypothesis inherits parameters from previous step, uses a predetermined increment in direction and position to progress to the next step.

Figure 7: Illustration of scores and thresholds in org and ranking-based MHT methods.

Figure 8: Each step, all hypotheses are considered for pruning. As an example here, two classes are formed and the best hypothesis within each is propagated as a new branch.

Handling branching

• Spectral clustering is performed
• If two clear clusters are observed, best hypothesis within each is tracked as new branch

Results

Data & Experiments

• Single seed point automatically placed at the origin of trachea; thus fully automatic
• Set of 32 images split into training, test sets
• Danish Lung Cancer Screening Trial data used [2]
• Probability images from KNN classifier
• Centerlines of segmentation results are compared with reference segmentations, to quantify estimation error

Figure 10: Performance comparison of the modified MHT (org-MHT) method with the original MHT (rg-MHT), region growing on intensity (rg-int) and region growing on probability (rg-prob).

Figure 11: Error distribution:$d_{xy}^2 = \sum_{i=0}^{n} \text{weight}(x_i, y_i, z_i; \gamma_i, \delta_i)$. $C_{rg, ref}$ are centerlines of reference, output segmentations, with n_{ref_i} n_{op_i} points respectively. d_{xy} is Euclidean distance