Multiple hypothesis tracking based extraction of airway trees from CT data
Raghavendra, Selvan; Petersen, Jens; de Bruijne, Marleen

Publication date:
2016

Citation for published version (APA):
Raghavendra, S., Petersen, J., & de Bruijne, M. (2016). Multiple hypothesis tracking based extraction of airway trees from CT data: using statistical ranking of template-matched hypotheses. Poster session presented at Medical Imaging Summer School 2016, Italy.
MÚLTIPLE HYPOTHESIS TRACKING BASED EX-
TRACTION OF AIRWAY TREES FROM CT DATA
Using statistical ranking of template-matched hypotheses

Selvan R., Petersen J., de Bruijne M.
Image Group, Department of Computer Science

Abstract
Segmentation of airway trees from CT scans of lungs has important clinical applications, in
relation to the diagnosis of chronic obstructive pulmonary disease (COPD). Here we present a
method based on multiple hypothesis tracking (MHT) and template matching, originally de-
vised for vessel segmentation, to extract airway trees. Idealized tubular templates are constructed and
ranked using scores assigned based on the image data. Several such regularly spaced hy-
potheses are used in constructing a hypothesis tree, which is then traversed to obtain improved
segmentation results.

Introduction
COPD is a leading cause of mortality worldwide, characterised by:
• Destruction of the lung tissues (emphysema)
• Morphological changes to the airways

Existing methods:
• Airway tree segmentation is a challenging prob-
lem
• Most methods try to strike a balance between simplicity and necessity
• Room for improvement on both fronts
• Single hypothesis / greedy algorithms
 ~ instantaneous decisions
 ~ Only the best hypothesis is propagated
 ~ Sensitive to noise
 ~ Highly local solutions

Figure 1: Coronal, sagittal and axial view of a
CT, along with a reference segmentation.

Figure 2: Coronal view of the probability image
after classification. Darker represents correspond to
high probability, and hence likely airway regions.

MHT-based methods

Idea: Defoe decision at current step to a
future step. Meanwhile, maintain all hy-
potheses.

Multiple hypothesis tracking (MHT)

Philosophy: Delay decisions. Use more
data. Benefit from hindsight.
• Widely used in multi-target tracking [3]
• Deferred decision based on more data
• Several hypotheses are maintained
• Search depth controls the size of tree
• Trade-off between optimality, tractability

A tracking perspective to segmentation
• Prediction by regularly spaced guesses
• Image data is used to update the guesses

Figure 3: Overview of tracking between two steps.

Figure 4: MHT tree, of search depth v = 2. The deci-
sion at τv is made based on all the data upto τv, tracing
back the best global hypothesis depicted in blue.

Figure 6: Generation of local hypotheses, L. Each hy-
pothesis inherits parameters from previous step, uses
a predetermined increment in direction and position to
trace to the next step.

Figure 5: 3D tubular template of radius r, with center at x, along the direction 6. Intensity profile p at a
crosssection is shown on right.

Template matching-based MHT
Method based on [1], proposed for tracking small
vessels.
• Designed to track small tubular structures
• Uses a scale-dependent score threshold
• Semi-automatic
Model
• Probability images obtained from trained
KNN classifier (K = 21), airways (p = 1)
• Method in [1] is modified, while retaining the
image model:
image \cong contrast + template \cong mean + noise, or
E_{\gamma} = \gamma \times T(x, y) + \sigma_i (\gamma, x, y)
(1)

• Template function (T) used to map prob-
ability variations to a profile function (p)
T(x, y, \gamma) = p \gamma (\nabla \times T(x, y, \gamma)) = \gamma
(2)

de^2_i is minimum squared distance between x and line along 6 through x_i with y = \gamma

Figure 7: Illustration of scores and thresholds in orig.
and ranking based MHT methods.

Handling branching
• Spectral clustering is performed
• If two clear clusters are observed, best hy-
pothesis in each is tracked as new branch

Results

Data & Experiments
• Single seed point automatically placed at
the origin of trachea; thus fully automatic
• Set of 32 images split into training, test sets
• Danish Lung Cancer Screening Trial data
used [2]
• Probability images from KNN classifier
• Centrelines of segmentation results are
compared with reference segmenta-
tions, to quantify estimation error:

Figure 8: Each step, all hypotheses are considered
for clustering. As an example here, two clusters are
formed and the best hypothesis within each is propa-
gated as a new branch.

Figure 9: Centrelines of test set results overlaid with reference

Conclusions
• MHT allows for improved tracking deci-
sions, as tracking solutions are not local.
• Method in [1] has been modified to extract
airway trees.
• Ranking based scheme is more suitable for
extracting airways, where structures of
varying dimensions are observed.

Acknowledgements
Danish Council for Independent Research

References
[1] Friman et.al. Multiple hypothesis template track-
ing of small vessels structures. Medical image analysis, 2010.
lung cancer ct screening trial: overall design and re-
sults of the prevalence round. Journal of Thoracic
Oncology, 2009.

Contact Information:
Universitetsparken 1
2100 København

Phone: +45 31873052
Email: raghav@di.ku.dk

Figure 10: Performance comparison of the modi-
fied MHT (Org-MHT) method with the original MHT
(org-MHT), region growing on intensity (rg-rg1),
and region growing on probability (rg-prg).

Discussion
• Ranking based MHT method shows an im-
provement in performance.
• Fully automatic tree extraction method
• It does not outperform region-growing on
probability images

Figure 11: Error distance:

$$d_{ij} = \sum_{n=1}^{N} d_{cn} - d_{cn}$$

$$d_{cn} = |x_{cn} - y_{cn}|$$