Gut microbiota composition may relate to weight loss rate in obese pet dogs
Kieler, Ida Nordang; Vitger, Anne Désiré; Bin Shamzir Kamal, Shamrulazhar; Nielsen, Dennis Sandris; Bjørnvad, Charlotte Reinhard

Published in:
European Society of Veterinary and Comparative Nutrition

Publication date:
2015

Citation for published version (APA):
Gut microbiota composition may relate to weight loss rate in obese pet dogs

Kieler I. N.¹, Vitger A.¹, Shamzir Kamal S.², Nielsen D. S.² Bjornvad C. R.¹

¹Dyrlægevej 16, DK-1870 Frb. C, Denmark, ²University of Copenhagen, Department of Food Science, Rølighedsvej 26, DK-1958 Frb. C, Denmark
*ink@sund.ku.dk

Introduction: The gut microbiota (GM) composition of obese individuals differs from the GM of lean individuals. Furthermore, the efficiency of a high-protein diet to induce weight loss in overweight humans depends on the GM (Santacruz et al. 2009). We aimed to study the interaction between exercise, weight-loss rate and the GM during weight-loss in dogs.

Animals, Material and Methods: Fifteen privately-owned obese dogs were recruited for a 12-week weight-loss intervention, 8 were exercised and fed restrictively with a high-protein diet, while 7 were only fed restrictively and no changes to their exercise regime was made. Fecal samples were collected and the dogs were weighed at baseline, after 6 and 12 weeks (Vitger et al. 2015). GM was determined using MiSeq-based tag-encoded 16S rRNA gene high-throughput amplicon sequencing, and analyzed by ANOVA, ANOSIM and linear regression analyzes (QIIME 1.7.0).

Results and Discussion: Total weight loss, food allowance and GM were not significantly different between groups. Both groups were dominated by genera Fusobacterium (~20-50%) and Bacteroides (~15-35%). A significant increase in the genera Suterella, Fusobacterium and a decrease in the Megamonas were observed. Megamonas abundance negatively correlated to high weight loss (>1% per week). Ruminococcaceae were significantly higher at 12 weeks in dogs with a low weight loss (<0.5% per week). Members of Megamonas and Ruminococcaceae produce acetate, a short chain fatty acid (SCFA), and a substrate for lipogenesis and cholesterol formation (Conterno et al. 2011). Obese rodents also have a GM with a putative increased SCFA producing ability (Turnbaugh et al. 2006), and the GM of some obese individuals may therefore produce more SCFA, which may affect weight loss rate.

Conclusion: Following a 12 week weight-loss intervention in dogs a significant GM change, which may relate to weight loss rate, was seen.

References: