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We study matter with central charge c > 1 coupled to two-dimensional (2d) quantum gravity, here 
represented as causal dynamical triangulations (CDT). The 2d CDT is known to provide a regularization of 
(Euclidean) 2d Hořava–Lifshitz quantum gravity. The matter fields are massive Gaussian fields, where the 
mass is used to monitor the central charge c. Decreasing the mass we observe a higher order phase 
transition between an effective c = 0 theory and a theory where c > 1. In this sense the situation 
is somewhat similar to that observed for “standard” dynamical triangulations (DT) which provide a 
regularization of 2d quantum Liouville gravity. However, the geometric phase observed for c > 1 in CDT 
is very different from the corresponding phase observed for DT.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Two-dimensional models of quantum gravity are useful toy 
models when it comes to study a number of conceptual prob-
lems related to a theory of quantum gravity: how to define dif-
feomorphism invariant observables, how to define distance when 
we at the same time integrate over geometries, etc. Some two-
dimensional models have the further advantage that they can be 
solved analytically both as continuum quantum field theories and 
as regularized “lattice” theories. Quantum Liouville gravity (2d Eu-
clidean quantum gravity) can be solved as a conformal field the-
ory [1–3] and also using dynamical triangulations (DT) [4–6]. Sim-
ilarly 2d (Euclidean) quantum Hořava–Lifshitz gravity (HLG) [7]
can be solved both by using continuum methods and as a lattice 
theory [8]. In both cases there seems to be a c = 1 barrier: the ge-
ometries for c < 1 and c > 1 look completely different.1 However, 
it has not been easy to study the transition in either of the cases 
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1 Whenever we talk about a field theory with central charge c coupled to quan-
tum geometry, the central charge refers to the central charge of the field theory 
defined in flat spacetime, before it is coupled to the fluctuating geometry.
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SCOAP3.
since no analytic solutions exist for c > 1 and since it is difficult to 
vary c continuously in numerical simulations.

There exist many numerical studies (and a few analytic stud-
ies) of DT coupled to matter in the c > 1 region (for a partial list 
see [9]), and a few numerical studies of CDT coupled to matter in 
the same region [10,11]. In this paper we will study the transi-
tion from c < 1 to c > 1 in a CDT model coupled to four Gaussian 
matter fields. In order to be able to interpolate between the two 
regimes we introduce a mass for the Gaussian fields. When the 
mass is large (of the order of the inverse lattice spacing) we ex-
pect the Gaussian fields to decouple from the geometry (when 
we work with Euclidean signature geometries). The geometry will 
then be that of pure 2d HLG, corresponding to c = 0. If the mass 
is zero the Gaussian fields will represent a conformal field theory 
with c = 4. We have already studied this system numerically [11]
and we observed a change of the geometry compared to the c = 0
case. Decreasing the mass will bring us from c = 0 to c = 4. On the 
way we will observe a phase transition between the two geometric 
regimes.

Let us briefly describe what has already been observed before 
the present study. The numerical studies of (1 + 1)-dimensional
CDT are conducted using an (Euclidean) spacetime with topol-
ogy S1 × S1. In the original formulation of the CDT model in 
1 + 1 dimensions [12] the geometry is represented by a discretized 
spacetime built of triangles. The vertices of triangles are located at 
integer times, with two vertices at a time t and one at t ±1. Spatial 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Individual configurations n(t,m2) for d = 4, m2 = 0.05 (left), and 0.20 (right). In both cases we center the distribution so that the center of volume is shifted to t = 0.
slices at the discrete integer-labeled times then have the topology 
of a circle S1. Equivalently, one can use the dual lattice with points 
in the centers of triangles connected by links, dual to the links of 
the triangles. In this paper we use this dual formulation.

Without matter fields the model can be solved analytically [12]. 
Let 〈n(t)〉 denote the average spatial volume measured at time t . 
If the time direction has length L and the spacetime volume is N
we have 〈n(t)〉 = N/L. The fluctuations around this average value 
can also be calculated analytically. If we couple matter fields to the 
geometry, one observes the same (trivial) picture as long as the 
central charge c ≤ 1 for the matter fields [13]. However, if c > 1
one observes a change in the behavior of the universe [10,11]. 
If one looks at the distribution n(t) in a single (1 + 1)-dimensional
universe generated by Monte Carlo simulations one observes a 
“blob” and a “stalk”. In the stalk n(t) is of the order of the cut-
off. In the computer simulations we do not allow n(t) to shrink 
to zero which would result in disconnected universes and we thus 
put in a lower cut off n(t) = 2. In the blob we have large n(t)’s and 
the average time extent of the blob scales as N1/3, independent of 
L if L is larger than the size of the blob. As a function of computer 
time the “center of volume” of the blob is performing a random 
walk in the periodic time direction and to measure average prop-
erties of the blob we have to break the translation symmetry in 
our periodic discrete time. For each configuration we define t = 0
as the “center of volume” of the blob.2 In this way one can ob-
tain the average spatial volume distribution of the blob with high 
accuracy:

〈n(t)〉 = 2

π
α N1−1/3 cos2

(
α

t

N1/3

)
, |t| < π N1/3

2α
, (1)

with α being a constant which depends on the central charge c > 1
of the matter fields, typically growing with c [11].3

The scaling of the blob as a function of the size N is precisely 
what one expects for a (deformed) sphere S3, t being the distance 
from equator and we thus say that the Hausdorff dimension of the 
average two-dimension graph representing the blob is D H = 3.

2. The model

A massless Gaussian field has central charge c = 1. Thus d Gaus-
sian fields have central charge d. In this paper we couple d Gaus-
sian fields to the geometry using the CDT model. The scalar fields 

2 More precisely we determine the center of volume ti0 as follows: W (i0) is the 
minimum of the numbers W (i) = ∑L

j=1 min{|ti − t j |, L − |ti − t j |} n(t j). We then 
shift the ti such that ti0 = 0, see [14] for a more detailed discussion in the case of 
higher-dimensional CDT where the centering was first discussed.

3 We note that the procedure of assigning t = 0 to the “center of volume” will 
introduce a bias even for distributions n(t) where there are no “blobs”, as for c < 1. 
In such cases we will observe an average distribution 〈n(t)〉 with a maximum at 
t = 0 because of this bias. However, the maximum will be very broad and there will 
be no stalk so the distribution is easily distinguished from the blob-distribution (1). 
We will discuss the scaling of this kind of distributions in Section 3.2.
φ
μ
i , μ = 1, . . . ,d, are located at the vertices of the dual lattice. 

The combined system of geometry and matter is then a statistical 
model described by the partition function

Z =
∑

T

1

ST
e−λNT

∫ ∏
i,μ

dφ
μ
i e−Smeasure(φ

μ
i ,m) (2)

where λ is a cosmological constant, NT is the number of vertices 
in the graph dual to the triangulation T and ST is a symmetry 
factor of the graph (the order of the automorphism group of the 
graph). The Gaussian measure (or action) Smeasure is defined as

Smeasure(φ
μ
i ,m) = 1

2

∑
li j,μ

(φ
μ
i − φ

μ
j )2 + m2

∑
i,μ

(
φ

μ
i

)2
, (3)

where li j is the link between vertices i and j and where we have 
also added a mass term to the action.

It is convenient to use d massless Gaussian fields in the simula-
tions if we want to study the effect of matter with central charge 
d on the geometry. In contrast, using 2d Ising spins would require 
that we first locate the critical point of these Ising spins coupled 
to the geometry and then conduct the simulations precisely at this 
critical point. Massless Gaussian fields are automatically critical. 
Using such massless Gaussian fields we have measured the scal-
ing (1) for various d > 1.

However, it is difficult to study in detail the change of geometry 
between the regime with c < 1 and c > 1 using massless Gaussian 
fields since d is an integer. In order to induce a continuous change 
between the two regimes we thus introduce a mass term for the 
Gaussian fields. We start out with d = 4 massless fields and by 
increasing the mass we will eventually for large mass have a sys-
tem which effectively has c = 0.4 In principle one could obtain the 
same effect for multiple Ising spins by moving gradually away from 
the critical point, but the procedure is much more difficult to con-
trol numerically.

Typical configurations for two choices of masses are shown in 
Fig. 1 when we have four Gaussian fields. We see a blob for small 
masses, it gets broader with increasing mass and it finally disap-
pears for large masses. This will be seen even better when we 
study the average profile of the blob.

In the next sections we shall quantify these effects and try to 
determine a transition between the two regimes as a function of 
the mass parameter m2.

4 When interpolating between c = 4 and c = 0 using a massive deformation of 
the c = 4 conformal field theory, there is of course not a specific central charge 
associated with the deformed theory. In this sense it is a slight misnomer to talk 
about a c = 1 transition when changing the mass. However, our point is that what 
we observe is the same transition in geometry, just in a larger space of field theories 
which include also massive deformations.
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Fig. 2. Scaling for small masses m2 ∈ [0, 0.09]: the left plot shows the distributions ρ(τ ,m2)

α(m2)

α(0)
ρ(0,0)

plotted as functions of τ = t/N1/3. The right plot shows the same ratio 
plotted as a function of τ̃ = α(m2)τ , where the factors α(m2) are determined by maximizing the overlap between the various curves. The universal curve that emerges on 
the right plot is ρ̃(τ̃ ) up to a normalization factor π/2 (see Eq. (4)).
3. Mass dependence of the volume profiles

3.1. Small masses

For a small mass m2 the average profile of spatial volumes 
〈n(t, m2)〉 contains a central blob where 〈n(t, m2)〉 � 2 and a stalk 
where 〈n(t, m2)〉 is of the cut-off size 2, as illustrated in Fig. 1 for 
a single configuration n(t, m).

For t in the blob range, 〈n(t, m2)〉 scales with N in a way con-
sistent with a Hausdorff dimension D H = 3, i.e. the time extent 
of the blob scales as N1/3. This means we can find a distribution 
ρ(τ , m2) = N1/D H −1〈n(t, m2)〉, independent of N , plotted as a func-
tion of the scaled time variable τ = t/N1/D H . The requirement of a 
scaling function ρ(τ , m2) for different spacetime volumes N deter-
mines D H = 3 with good precision for all small values of m2.

However, the universality is even larger. For small masses all 
distributions 〈n(t, m2)〉 can be made to coincide if we, rather than 
scaling the time as τ = t/N1/3, define a rescaled time which de-
pends on the mass: τ̃ = α(m2)τ and redefine the height of distri-
bution accordingly as ρ̃(τ̃ ) = (α(m2))−1N1/3−1〈n(t, m2)〉. A com-
parison of the rescaled distributions ρ̃(τ̃ ) for m2 ∈ [0.01, 0.09] is 
presented in Fig. 2. The left curves are obtained by keeping the 
time variable τ unchanged but rescaling the maximum height of 
the curves to the m2 = 0 curve (which is equivalent to multiplying 
ρ(τ , m2) with α(0)/α(m2), provided a universal ρ̃(τ̃ ) exists). The 
right curves are then obtained by rescaling τ to τ̃ for the various 
curves, and in this way determining α(m2)/α(m2 = 0) as the value 
leading to maximal overlap with the m2 = 0 curve. It thus follows 
from (1) that

ρ̃(τ̃ ) = 2

π
cos2 τ̃ , τ ∈ [−π/2,π/2]. (4)

The α values drop for larger mass (see Fig. 4 for the plot of 
α(m2)/α(0)), implying that the blob gets broader when expressed 
in the unscaled time-variable. However, using the rescaled vari-
able τ̃ we can talk about one universal scaling distribution (4) of 
spatial volumes in the “blob” phase, independent of the mass for 
m2 ∈ [0, 0.09].

3.2. Large masses

The behavior is different for masses m2 ≥ 0.15. As was ex-
plained above we expect for large masses that 〈n(t, m2)〉 will be 
qualitatively similar to the pure gravity case, where it is known 
analytically that any scaling should correspond to a Hausdorff di-
mension D H = 2. In our approach we use the same method to 
center the volume of individual configurations as we used in the 
case where we observed a genuine blob (see footnote 2). As a 
consequence we see an artificial maximum around time t = 0, 
as already mentioned in footnote 3. The stalk is absent, and the 
distributions have triangular shapes, with the height depending on 
the assumed period L as 1/L. Thus

〈n(t,m2)〉 = N

L
f (t/L,m2),

1/2∫
−1/2

f (x,m2)dx ≈ 1. (5)

If we want to look for scaling behavior of 〈n(t, m2)〉 when 
changing N , we have to change the length of the time period L
simultaneously as L ∝ N1/2 since there is no stalk. For the choice 
L = √

N Eq. (5) reads

〈n(t,m2)〉 = N1/2 f (t/N1/2,m2). (6)

For each value of m2 ≥ 0.15 we can extract a scaling function 
f (τ , m2), τ = t/N1/2, by varying N . When comparing (6) with the 
general scaling form N1−1/D H f (t/N1/D H , m2) we find that the ob-
served scaling indeed is compatible with D H = 2.

In the same way as we did for the small masses, we now 
try to find a universal scaling of 〈n(t, m2)〉 for all large masses. 
We construct the universal function in two steps, starting from the 
scaling functions f (τ , m2), τ = t/N1/2, we already have available 
for each m2. First we scale these functions such that they agree at 
τ = 0 using f (τ , m2

max) as reference, i.e.

f̂ (τ ,m2) = f (0,m2
max)

f (0,m2)
f (τ ,m2), (7)

The result is shown in the left plot in Fig. 3. Then we try to rescale 
the time variable as we did for the small masses: τ̃ = β(m2)t/L, 
where the function β(m2) is determined to ensure maximal over-
lap. This results in our universal scaling function

f̃ (τ̃ ) = f̂ (τ ,m2), τ̃ = β(m2)τ (8)

The result is shown in the right plot in Fig. 3 and the function 
β(m2) is shown in Fig. 4. Thus it makes sense to talk about one 
universal scaling function associated with 〈n(t, m2)〉 also in the large 
mass regime, and this scaling function can be extracted from pure 
CDT without matter fields, which is the limit of m2 → ∞. From 
Fig. 4 it is seen that the function β(m2) is 1 for m2 > 0.18. 
m2 = ∞ thus effectively starts at m2 = 0.18. In Fig. 4 we show 
values of α(m2)/α(0) and β(m2)/β(∞) as functions of m2. For 
m2 ∈ [0.10, 0.14] there is a cross over between the two well de-
fined regimes corresponding to D H = 3 and D H = 2, respectively. 
In this range none of the fitting prescriptions described above 
works and using scaling arguments alone do not allow us to de-
termine if there is a genuine phase transition or just a rapid cross 
over between the D H = 3 and the D H = 2 regions of m2.
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Fig. 3. The function f̂ (τ ,m2) (left plot) and the universal scaling function f̃ (τ̃ ) (right plot) for m2 ∈ [0.12,0.18].
Fig. 4. Possible range of the phase transition: α(m2)/α(0) is the scaling factor for 
the small masses and β(m2)/β(∞) the scaling factor for large masses. The Haus-
dorff dimension is respectively D H = 3 and D H = 2.0.

4. Study of the phase transition

In order to study better the change from D H = 3 to D H = 2
we introduce the so-called volume–volume correlator 〈corr(	)〉, 
where corr(	) is defined for individual configurations as

corr(	) =
L∑

i=1

n(ti)n(ti + 	) (9)

A great advantage of using the correlation function (9) is that one 
does not need to identify and to center the blob and it is well 
defined even if there is no blob.

A correlator similar to that defined by (9) was used in numeri-
cal studies of the scaling in three- and four-dimensional CDT [15]. 
We will measure corr(	) at the maximal separation 	 = L/2. 
In the small mass regime, where the blob is well localized we ex-
pect a behavior

〈corr(L/2)〉 ≈ 2hN (10)

where h is the average spatial volume of the time slices belonging 
to the stalk. As a consequence we expect in this mass regime that 
〈corr(L/2)〉/N ≈ 2h, i.e. approximately both N and L independent. 
In the large mass regime we expect a different behavior
〈corr(L/2)〉 ≈ N2/L (11)

and consequently L〈corr(L/2)〉/N2 ≈ 1 should be N and L in-
dependent. In our analysis we fix the time period L and the 
spacetime volume N and measure the correlator as a function 
of m2. In Fig. 5 we show the typical behavior of 〈corr(L/2)〉/N
and L〈corr(L/2)〉/N2 for L = 800 and a sequence of spacetime vol-
umes N . The plots illustrate the difference between the small and 
large mass behavior and indicate that there is a well defined tran-
sition between the two regimes.

To substantiate this we calculate the derivative d〈corr(L/2)〉/
dm2. It has a clear peak growing with the size N of the system 
and thus signals a phase transition. In Fig. 6 we show the values of 
the numerically estimated derivative (1/N)	〈corr(L/2)〉/	m2 as a 
function of m2 for L = 800 and for a sequence of spacetime vol-
umes N (left plot) and the peak values of the estimated derivatives 
as a function of N (right plot).

The position of the maxima permits us to estimate the transi-
tion to be located at the critical mass m2

c ≈ 0.135 ± 0.005. A more 
precise determination of the critical mass mc is difficult with the 
present numerical setup. The scaling of the maxima H(N) as a 
function of the spacetime volume N can be parametrized by

H(N) ∼ Nα, α = 1.48 ± 0.12 (12)

strongly suggesting a higher order phase transition (the fit is pre-
sented on right plot in Fig. 6 as a red line).

5. Discussion and conclusion

We analyzed spatial volume distributions 〈n(t, m2)〉 for CDT ge-
ometries interacting with 4 massive scalar fields. There seem to 
be two regimes: a small mass regime with a universal distribu-
tion identical to the distribution obtained for massless fields, i.e. 
for a conformal field theory with central charge c = 4, containing 
a blob and a stalk, and with the blob scaling with Hausdorff di-
mension D H = 3. The other regime where the masses are large 
also has a universal distribution scaling with D H = 2 and the uni-
versal distribution is the one of pure gravity without any matter 
Fig. 5. The dependence of 〈corr(L/2)〉/N and L〈corr(L/2)〉/N2 on the mass in the range between m2 = 0.01 and m2 = 0.30. Both plots are for L = 800 with spacetime volumes 
N = 8000, 16 000, 24 000, 32 000 and 40 000.
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Fig. 6. (1/N)	〈corr(L/2, m2)〉/	m2 for m2 ∈ [0.01, 0.30] (left). The curves correspond to N = 8000, 16 000, 24 000, 32 000 and 40 000 and L = 800. The right figure shows 
the maximum as a function of N , the curve being a fit to N1.5. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)
fields. Using the volume–volume correlator we located the critical 
mass m2

c where the transition between the two regime of different 
geometries takes place. The scaling of the derivative of the corre-
lator at the critical mass m2

c as a function of system size suggests 
that the phase transition is of second or higher order.

We observe the same blob structure for any number d > 1 of 
massless Gaussian fields, as well as for multiple critical Ising spins 
corresponding to c > 1 coupled to CDT geometries. We have not 
observed the blobs for a single Ising spin, a single three-states Pott 
model or a single massless Gaussian field coupled to CDT geome-
tries, systems which all have c ≤ 1. Thus it is natural to conjecture 
that there is c = 1 barrier also in 2d CDT/Hořava–Lifshitz quantum 
gravity coupled to conformal field theories, and that it is a transi-
tion associated with this barrier that we observe by changing the 
mass of the four Gaussian fields.

It would be very interesting if one could solve the CDT model 
coupled to Gaussian fields analytically. Understanding the c = 1
barrier might help us to a better understanding of the c = 1 bar-
rier in quantum Liouville gravity and understanding the formation 
of the blobs might help us to understand better the similar phe-
nomenon in higher-dimensional CDT [16], where the appearance 
of the blob has been important in the attempts to define a contin-
uum limit of lattice gravity [17,14].
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