Search for a new resonance decaying to a W or Z boson and a Higgs boson in the $\ell\ell/\ell\nu/\nu\nu + b\bar{b}$ final states with the ATLAS detector

ATLAS Collaboration*
CERN, 1211 Geneva 23, Switzerland

Abstract A search for a new resonance decaying to a W or Z boson and a Higgs boson in the $\ell\ell/\ell\nu/\nu\nu + b\bar{b}$ final states is performed using 20.3 fb$^{-1}$ of pp collision data recorded at $\sqrt{s} = 8$ TeV with the ATLAS detector at the Large Hadron Collider. The search is conducted by examining the WH/ZH invariant mass distribution for a localized excess. No significant deviation from the Standard Model background prediction is observed. The results are interpreted in terms of constraints on the Minimal Walking Technicolor model and on a simplified approach based on a phenomenological Lagrangian of Heavy Vector Triplets.

1 Introduction

Although the Higgs boson discovery by the ATLAS [1] and CMS [2] collaborations imposes strong constraints on theories beyond the Standard Model (SM), the extreme fine tuning in quantum corrections required to have a light fundamental Higgs boson [3,4] suggests that the SM may be incomplete, and not valid beyond a scale of a few TeV. Various dynamical electroweak symmetry breaking scenarios which attempt to solve this naturalness problem, such as Minimal Walking Technicolor [5–8], Little Higgs [9], or composite Higgs models [10,11], predict the existence of new resonances decaying to a vector boson plus a Higgs boson.

Using the full dataset collected by the ATLAS detector at 8 TeV centre-of-mass energy at the Large Hadron Collider, a search is performed for a heavy resonance decaying to VH, where V is a W or Z boson and H is the SM Higgs boson. This analysis looks for the leptonic decay of the W or Z boson and the Higgs decay into a $b\bar{b}$-quark pair. Therefore the selected final states are: zero charged leptons targeting $Z(\rightarrow \nu\nu)b\bar{b}$ decays, one charged lepton $W(\rightarrow \ell\nu)b\bar{b}$, and two oppositely charged leptons $Z(\rightarrow \ell\ell)b\bar{b}$ where $\ell = e, \mu$. The search is performed by examining the distribution of the reconstructed VH mass (m_{VH}) for a localized excess. The signal strength and the background normalization are determined from a likelihood fit to the data distribution in the three channels studied.

As a benchmark, the Minimal Walking Technicolor model (MWT) is used, a model with strongly coupled dynamics. This model predicts two triplets of resonances, $R_{1}^{\pm,0}$ and $R_{2}^{\pm,0}$, one of which is a vector and the other an axial-vector, that couple to vector bosons with strength \tilde{g} and to fermions with g/\tilde{g}, where g is the weak SU(2) coupling constant. The bare axial-vector mass m_{A} determines the masses of R_{1} and R_{2}, with the lower mass resonance R_{1} having a mass close to m_{A}. Recent lattice simulations in this model [12–14] predict masses close to 2 TeV. The decay channels $R_{1,2}^{\pm} \rightarrow WH$ and $R_{1,2}^{0} \rightarrow ZH$, lead to $Wb\bar{b}$ and $Zb\bar{b}$ final states.

A simplified approach based on a phenomenological Lagrangian [15] that incorporates Heavy Vector Triplets (HVT), which allows the interpretation of the results in a model-independent way, is also used. Here, the new heavy vector bosons, $V^{\pm,0}$, couple to the Higgs and SM gauge bosons via a combination of parameters gv_{CH} and to the fermions via the combination $(g^{2}/gv_{F})c_{F}$. The parameter gv_{F} represents the strength of the new vector boson interaction, while c_{H} and c_{F}, which represent the couplings to the Higgs and the fermions respectively, are expected to be of order unity in most models. Two benchmark models [15] are used here. In the first model, referred to as model A, the branching fractions to fermions and gauge bosons are comparable, as in some extensions of the SM gauge group [16]. For model B, fermionic couplings are suppressed, as for example in a composite Higgs model [17].

The three final states presented in this Letter have been extensively studied for non-resonant production in ATLAS [18]. Moreover, a search for a pseudoscalar resonance in the $\ell\ell\ell\ell$ and $\nu\nu\ell\ell$ channels has already been published by ATLAS, setting limits on two-Higgs-doublet models [19]. Other searches for particles occurring in MWT and

* e-mail: atlas.publications@cern.ch
HVT models have been conducted by the ATLAS [20, 21] and CMS [22] collaborations.

2 The ATLAS detector

The ATLAS detector [23] is a general-purpose particle detector used to investigate a broad range of physics processes. It includes inner tracking devices surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters and a muon spectrometer. The inner detector (ID) provides precision tracking of charged particles with pseudorapidity $|\eta| < 2.5$. The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. It is composed of sampling calorimeters with either liquid argon (LAr) or scintillator tiles as the active medium. The muon spectrometer consists of three large superconducting toroids and a system of trigger chambers and precision tracking chambers that provide triggering and tracking capabilities in the ranges of $|\eta| < 2.4$ and $|\eta| < 2.7$ respectively.

The ATLAS detector has a three-level trigger system to select events for offline analysis.

3 Data and Monte Carlo samples

This analysis is based on $\sqrt{s} = 8$ TeV pp collision data corresponding to 20.3 ± 0.6 fb$^{-1}$ [24]. The data used in the $\ell \ell b \bar{b}$ final state were collected using single-electron and single-muon triggers with transverse momentum (p_T) thresholds from 24 to 60 GeV. The data used in the $\ell \ell b \bar{b}$ final state were collected using a combination of single-electron, single-muon, dielectron (ee) and dimuon ($\mu\mu$) triggers. The p_T thresholds for the ee and $\mu\mu$ triggers vary from 12 to 13 GeV. The data used in the $\nu \nu b \bar{b}$ final state were collected using a trigger that requires a missing transverse momentum (E_{T}^{miss}) with magnitude $E_{T}^{miss} > 80$ GeV.

Simulated Monte Carlo (MC) samples for the MWT benchmark model use the implementation [25] in MADGRAPH5 [26], with the Higgs boson mass set to 126 GeV. The parameter g_{γ} is set to 2 for signal generation. Constraints on other values of this parameter can be set using the same samples since the kinematic distributions do not depend on g_{γ}. The parameter S, which is an approximate value [27] of the Peskin–Takeuchi S parameter [28] which measures potential new contributions to electroweak radiative corrections, is set to 0.3, in accordance with the recommendations in Ref. [29].

Signal samples for the HVT model are also generated with MadGraph5. The parameter e_F is assumed to be the same for quarks and leptons including third-generation fermions. Other parameters involving more than one heavy vector boson, g_{VVV}^c, g_{VVH}^c, and g_{VVW}^c, have negligible effect on the overall cross sections for the processes of interest here. For all signal events, parton showering and hadronization is performed with PYTHIA8 [30, 31] and the CTEQ6L1 [32] parton distribution functions (PDFs) are used. Benchmark signal samples are generated for a range of resonance masses from 300 to 2000 GeV in steps of 100 GeV.

MC samples are used to model the shape and normalization of most SM background processes, although some are later adjusted using data-based corrections extracted from control samples. The production of W and Z bosons in association with jets is simulated with SHERPA 1.4.1 [33] using the CT10 PDFs [34]. Top quark pair production is simulated using POWHEG [35, 36] with the POWHEG-BOX program [37] interfaced to PYTHIA6, using the CTEQ6L1 PDFs. In this analysis, the final normalizations of these dominant backgrounds are constrained by the data, but theoretical cross sections are used to optimize the selection. The cross sections are calculated at NNLO accuracy for $W/Z+\text{jets}$ [38] and at NNLO+NNLL accuracy for $\tau\tau$ [39]. Single top quark production is simulated with POWHEG and ACERMC [40] interfaced to PYTHIA6, using the CTEQ6L1 PDFs, and the cross sections are taken from Ref. [41]. Diboson production (WW, WZ, ZZ) is simulated using POWHEG interfaced to PYTHIA8, using the CT10 PDFs, and the cross sections are obtained at NLO from MCFM [42]. Finally, SM Higgs boson production in association with a W/Z boson is simulated using PYTHIA8 with the CTEQ6L1 PDFs, and considered as a background in this search. It is scaled to the SM cross section [18].

All MC simulated samples include the effect of multiple pp interactions in the same and neighbouring bunch crossings (pile-up) by overlaying simulated minimum-bias events on each generated signal or background event. The number of overlaid events is such that the distribution of the number of interactions per pp bunch crossing in the simulation matches that observed in the data, with on average 21 interactions per bunch crossing. The generated samples are processed through the GEANT4-based ATLAS detector simulation [43, 44] or a fast simulation using a parameterization of the performance of the calorimetry and GEANT4 for the other parts of the detector [45]. Simulated events are reconstructed with the standard ATLAS reconstruction software used for collision data.

4 Object reconstruction

The physics objects used in this analysis are electrons, muons, jets and missing transverse momentum.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.
Electrons are identified for $|\eta| < 2.47$ and $p_T > 7$ GeV from energy clusters in the electromagnetic calorimeter that are matched to tracks in the inner detector [46]. Quality requirements based on the calorimeter cluster and track are applied to reduce contamination from jets.

Muons are reconstructed in the muon spectrometer in the range $|\eta| < 2.7$ and $p_T > 4$ GeV [47]. For $|\eta| < 2.5$ the muon spectrometer track must be matched with a track in the inner detector and information from both is used to reconstruct the momentum. Muons considered for this analysis must have $p_T > 7$ GeV.

Lepton candidates are required to be isolated to reduce the multijet background. The scalar sum of the transverse momenta of tracks with $p_T > 1$ GeV within a cone of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ around the lepton track (tracking isolation) is required to be less than 10% of the lepton p_T.

Jets are reconstructed using the anti-k_t algorithm [48] with radius parameter $R = 0.4$. The jet transverse momentum is corrected for energy losses in passive material, for the non-compensating response of the calorimeter, and for any additional energy due to multiple pp interactions [49]. Jets are required to have $p_T > 30$ GeV and $|\eta| < 4.5$. To reject low-p_T jets from pile-up, for jets with $p_T < 50$ GeV and $|\eta| < 2.5$, the scalar sum of the p_T of associated tracks, originating from the reconstructed primary vertex, is required to be at least 50% of the scalar sum of the p_T of all associated tracks. To avoid double-counting of leptons and jets, an overlap removal procedure is applied [18].

In the pseudorapidity range $|\eta| < 2.5$, jets originating from b-quarks are identified using a multi-variate b-tagging algorithm [50]. This has an efficiency of 70% and a misidentification rate of less than 1% for selecting jets initiated by light quarks or gluons and of about 20% for jets initiated by c-quarks, as determined from $\ell\ell$ MC events.

The missing transverse momentum is calculated as the negative of the vectorial sum of the calorimeter-based transverse momenta of all electrons, jets, and calibrated calorimeter clusters within $|\eta| < 4.9$ that are not associated with any other objects [51], as well as muon momenta. In addition, a track-based missing transverse momentum ($p_{T\text{miss}}^{\text{miss}}$), with magnitude $p_{T\text{miss}}^{\text{miss}}$ is used, calculated as the negative vectorial sum of the track-based transverse momenta of objects with $|\eta| < 2.4$ associated with the primary vertex.

5 Event selection and reconstruction

Events are categorized into the $\nu\nu b\bar{b}$, $\ell\nu b\bar{b}$ or $\ell\ell b\bar{b}$ channels if they have zero, one or two reconstructed charged leptons respectively. All categories require at least two jets in the pseudorapidity range $|\eta| < 2.5$ (central jets). The channels are further subdivided into categories of events containing one or two b-tagged jets; events with zero or ≥ 3 b-tagged jets are rejected. The Higgs boson candidate (and its mass $m_{h\ell\ell}$) is reconstructed from the two b-tagged jets or, for 1-b-tag events, the b-tagged jet and the highest-p_T remaining central jet. In order to suppress $W/Z+\text{jets}$ background, at least one of the jets must have $p_T > 45$ GeV and the invariant mass of the dijet pair must be in the range $105 < m_{b\bar{b}} < 145$ GeV, consistent with the Higgs mass. In order to reduce the $t\bar{t}$ background in the $\nu\nu b\bar{b}$ and $\ell\nu b\bar{b}$ channels, events are rejected if they contain four or more jets. To improve the resolution of the VH mass a constraint to the Higgs boson mass is applied by scaling the Higgs boson candidate jet momenta by $m_H/m_{b\bar{b}}$ ($m_H = 125$ GeV). Further channel-specific cuts are applied as outlined below.

5.1 $\nu\nu b\bar{b}$ channel

Events are selected with $E_T^{\text{miss}} > 120$ GeV and $p_T^{\text{miss}} > 30$ GeV. A requirement is made on H_T, defined as the scalar sum of the p_T of all jets, in order to keep a high trigger efficiency: $H_T > 120$ GeV (>150 GeV) for events with two (three) jets. Selections are also applied on the angle between the jets used for reconstructing the Higgs candidate, $\Delta R_{b\bar{b}}$, to suppress the $W/Z+\text{jets}$ background [18]: for $120 < E_T^{\text{miss}} < 160$ GeV, $0.7 < \Delta R_{b\bar{b}} < 1.8$; for $160 < E_T^{\text{miss}} < 200$ GeV, $\Delta R_{b\bar{b}} < 1.8$; for $E_T^{\text{miss}} > 200$ GeV, $\Delta R_{b\bar{b}} < 1.4$. Events containing an electron or muon passing the selection cuts described in Sect. 4 are removed.

In events with real E_T^{miss} the directions of E_T^{miss} and $p_{T\text{miss}}^{\text{miss}}$ are expected to be similar. In events with fake E_T^{miss} arising from a jet energy fluctuation, the direction of E_T^{miss} should be close to the direction of the poorly measured jet. Therefore additional criteria are imposed on angular quantities in order to suppress the multijet background: the azimuthal angle between E_T^{miss} and $p_{T\text{miss}}^{\text{miss}}$, $\Delta \phi(E_T^{\text{miss}}, p_{T\text{miss}}^{\text{miss}}) < \pi/2$; the minimum azimuthal angle between E_T^{miss} and any jet, $\min(\Delta \phi(E_T^{\text{miss}}, \text{jet})) > 1.5$; and the azimuthal angle between E_T^{miss} and the jet pair combination used to reconstruct the Higgs candidate, $\Delta \phi(E_T^{\text{miss}}, b\bar{b}) > 2.8$.

It is not possible to accurately reconstruct the invariant mass of the ZH system due to the missing neutrinos, so the transverse mass is used as the final discriminant: $m_T^{ZH} = \sqrt{(E_T^{bb} + E_T^{\text{miss}})^2 - (p_T^{bb} + E_T^{\text{miss}})^2}$, where p_T^{bb} is the transverse momentum of the Higgs candidate. The total acceptance times selection efficiency varies from 15% for $m_{R_1} = 400$ GeV, to 30% for $m_{R_1} = 1000$ GeV and down to 2% for $m_{R_1} = 2000$ GeV. The drop at very high masses is due to the merging of the jets.

5.2 $\ell\nu b\bar{b}$ channel

In order to suppress the multijet background and ensure the single-lepton triggers are fully efficient, tighter identification
criteria are placed on the lepton in this channel. The lepton p_T requirement is raised to $p_T > 25$ GeV and, for the muon channel, the pseudorapidity is restricted to $|\eta| < 2.5$. Moreover, the tracking isolation is tightened and required to be less than 4\% of the lepton p_T. Similarly, the sum of transverse energy deposits in the calorimeter within a cone of $\Delta R = 0.3$ around the lepton, excluding the transverse energy due to the lepton and the correction for the expected pile-up contribution, is required to be less than 4\% of the lepton p_T.

The multijet background is further reduced by requiring $\Delta \phi(E_T^{miss}, jet) > 1.0$. W boson candidates are selected by requiring $E_T^{miss} > 30$ GeV and the transverse mass reconstructed from the lepton and E_T^{miss}, $m_T^W = \sqrt{2 E_T^\ell E_T^{miss} (1 - \cos \Delta \phi(\ell, E_T^{miss}))} > 20$ GeV.

The WH system mass, m_{WH}, is reconstructed from the lepton, the E_T^{miss} and the two jets. The momentum of the neutrino in the z-direction, p_z, is obtained by imposing the W boson mass constraint on the lepton and neutrino system, which leads to a quadratic equation. Here p_z is taken as either the real component of the complex solutions or the smaller of the two real solutions.

In order to reduce the W+jets background, a requirement is imposed on the transverse momentum of the W boson, $p_T^W > 0.4 \times m_{WH}$. The cut depends on m_{WH} since the background is generally produced at low p_T^W, whereas for signal the mean p_T^W increases with m_{WH}. The total acceptance times selection efficiency varies from 8\% for $m_{R_1} = 400$ GeV, to 20\% for $m_{R_1} = 1000$ GeV and down to 2\% for $m_{R_1} = 2000$ GeV.

6 Background estimation

All backgrounds except the multijet background are estimated from simulation, with data-based corrections for the dominant W/Z+jets background as described in the following. The rate and shape of the multijet (MJ) background are estimated with data-driven methods.

The MJ background is estimated in the 0-lepton channel using an "ABCD method" based on two uncorrelated variables: $\min[\Delta \phi(E_T^{miss}, jet)]$ and $\Delta \phi(E_T^{miss}, p_T^{miss})$. The data are divided into four regions such that three of the regions are dominated by background. The signal region (A) is defined as explained in Sect. 5. The MJ-dominated region C is obtained by inverting the $\Delta \phi(E_T^{miss}, p_T^{miss})$ requirement. An MJ template in region A is obtained using events in region C after subtracting the contribution of other backgrounds, taken from simulation. The template is then normalized by a fit to the regions with $\min[\Delta \phi(E_T^{miss}, jet)] < 0.4$ [18] (regions B and D with orthogonal $\Delta \phi(E_T^{miss}, p_T^{miss})$ requirements).

In the 1-lepton channel, the MJ background is determined separately for the electron and muon sub-channels. An MJ-background template is obtained from an MJ-dominated region after subtracting the small contribution from the other backgrounds. An MJ-dominated region is obtained by loosening the lepton identification requirements and reversing the isolation criteria. A binned fit of the full E_T^{miss} spectrum of the data to the sum of the MJ contribution, W/Z+jets and other MC contributions is then used to extract the MJ normalization. The templates are validated in a control region enriched in MJ events, selected by reversing the E_T^{miss} requirement.

For the 2-lepton channel in the $ee\bar{b}\bar{b}$ final state, the MJ background shape is determined by selecting events with reversed electron isolation criteria and its normalization is extracted by fitting the full data m_{ee} distribution including Z sidebands. The MJ background in the $\mu\mu\bar{b}\bar{b}$ final state is found to be negligible.

The W/Z+jets simulated samples are split into different components according to the true flavour of the jets, i.e. $W/Z + qq$, $W/Z + cq$, where q denotes a light quark (u, d, s) or a gluon, and W/Z plus heavy flavour (hf). The latter includes: $W/Z + b\bar{b}$, $W/Z + bq/W/Z + bc$, $W/Z + cc$. The normalizations of $W + cq$, $Z + cq$ and $W + hf$, $Z + hf$ are free parameters of the global likelihood fit. The scale factors after the fit are all consistent with 1, except for the Z+hf normalization that is 15\% higher as seen in previous measurements [18]. The W/Z+jets modelling is checked in control regions selected by requiring events with no b-tagged jets or in the m_{bb} sideband region in the 1-tag and 2-tag channels. A difference between data and simulation is observed in the 0-tag control region and a correction is extracted as a function of the azimuthal angle difference between the two leading p_T jets, $\Delta \phi(jet_1, jet_2)$. This is used to reweight the $Z + qq$ and $W + qq$ components. After this correction is
applied a discrepancy is observed in the $p_T^{\ell\ell}$ distribution in the 2-lepton channel after the requirement of at least one b-tagged jet. A correction is extracted and used to reweight the $Z + q\bar{q}$ and $Z + f\bar{f}$ components. The full procedure is described in detail in Ref. [18].

The background contributions from single top quark and diboson production are normalized to the number of background events predicted by simulation while the $t\bar{t}$ normalization is a free parameter in the likelihood fit. The description of the shape of the $t\bar{t}$ background from MC simulation has been validated in samples dominated by top pair events. Good agreement within uncertainties is observed between data and expectation in these validation regions.

The $t\bar{t}$ control region is defined by requiring exactly one electron and one muon, one of which has $p_T > 25$ GeV, and two b-tagged jets. It is included in the likelihood fit to constrain the $t\bar{t}$ normalization. The scale factor for the $t\bar{t}$ normalization is found to be 1.03 ± 0.04 after the likelihood fit to the 0- and 2-lepton channel plus the $t\bar{t}$ control region, and 0.99 ± 0.09 from the fit to the 1-lepton channel. The fit procedure is described in more detail in Sect. 8.

7 Systematic uncertainties

The most important experimental systematic uncertainties come from the jet energy scale (JES) and b-tagging efficiency.

The JES systematic uncertainty arises from several sources including uncertainties from the in-situ calibration, the corrections dependent on pile-up and the jet flavour composition [52]. The fractional systematic uncertainty on the JES ranges from 3% for a 20 GeV jet to 1% for a 1 TeV jet.

The uncertainty due to the jet energy resolution is also considered. It varies from 20% for a jet with $p_T > 20$ GeV to 5% for a jet with $p_T > 1$ TeV. The jet energy scale and resolution uncertainties are propagated to the reconstructed E_T^{miss}. The uncertainty on E_T^{miss} also has a contribution from hadronic energy that is not included in jets [53].

The b-tagging efficiency uncertainty depends on jet p_T and comes mainly from the uncertainty on the measurement of the efficiency in $t\bar{t}$ events [50]. Uncertainties are also derived for c- and light-flavour jet tagging [54].

Other experimental systematic uncertainties that have a smaller impact are those on the lepton energy scale and identification efficiency and the efficiency of the triggers.

In addition to the experimental systematic uncertainties, uncertainties are taken into account for possible differences between data and the simulation model that is used for each process. For the background modelling uncertainties the procedure described in Ref. [18] is followed. The $Z +$jets and $W +$jets backgrounds include uncertainties on the relative fraction of the different flavour components, and shape uncertainties on the modelling of $m_{b\bar{b}}$, $\Delta\phi(\text{jet}_1, \text{jet}_2)$ and $p_T Z$ distributions. For $t\bar{t}$ production, shape uncertainties are included for the modelling of top quark transverse momentum, $m_{b\bar{b}}$ and m_{VH} distributions. The uncertainty on the MJ background shape in the 1-lepton channel is evaluated by using alternative templates obtained by changing the definition of the data sidebands. The uncertainty on the MJ background normalization is taken to be 100, 30 and 50% for the 0-, 1- and 2-lepton channels, respectively. These are extracted from fits using alternative templates.

The dominant uncertainties on the signal acceptance arise from the choice of PDFs (2–5%) estimated by comparing the default PDFs to other sets, and from the factorization and renormalization scales (5–10%) obtained by varying these up and down by a factor of two.

8 Results and limit extraction

The reconstructed mass distributions for events passing the selection are shown in Fig. 1. The background expectation is shown after the profile likelihood fit to the data. Table 1 shows the number of events expected and observed in each final state.

No significant excess of events is observed in the data compared to the prediction from SM background sources. Exclusion limits at the 95% confidence level (CL) are set on the production cross section times the branching fraction for MWT and HVT models. The limits for the charged resonance are obtained by performing the likelihood fit over the $\ell\nu b\bar{b}$ channel alone, while the $\ell\ell b\bar{b}$, $\nu\nu b\bar{b}$ channels as well as the $t\bar{t}$ control region are used for the neutral resonance.

The exclusion limits are calculated with a modified frequentist method [55], also known as $C_{\ell\nu}$, and the profile-likelihood test statistic [56], using the binned m_{VH} mass distributions for $\ell\nu b\bar{b}$, $\ell\ell b\bar{b}$ and $\nu\nu b\bar{b}$ final states. Systematic uncertainties and their correlations are taken into account as nuisance parameters. None of the systematic uncertainties considered are significantly constrained or pulled in the likelihood fit. Figure 2 shows 95% CL upper limits on the production cross section multiplied by the branching fraction into WH and ZH as a function of the resonance mass separately for the charged R_1^{\pm} and for the neutral R_2^0 final states. The experimental limits are obtained using samples with a single resonance R_1, where the cross section for R_2 has been set to zero to be less model-dependent. The theoretical predictions for the HVT benchmark model A with coupling constant $g_V = 1$ allow exclusion of $m_{\nu\nu} < 1360$ GeV ($m_{V\nu} < 1470$ GeV). For the MWT model, since there are two resonances of different mass, the results are displayed for the first one, $R_1^{0,\pm}$. The excluded regions are $m_{R_1^0} < 410$ GeV,
Fig. 1 Distributions of the reconstructed, a transverse mass \(m_{\ell\nu}^{T} \nu\nu jj \) for the \(\nu\nu b\bar{b} \) final state, b invariant mass \(m_{\ell\nu} \ell\nu b\bar{b} \) for the \(\ell\nu b\bar{b} \) final state and c invariant mass \(m_{\ell\ell} \ell\ell b\bar{b} \) for the \(\ell\ell b\bar{b} \) final state for the 1-b-tag (upper) and 2-b-tag (lower) channels. The background expectation is shown after the profile likelihood fit to the data. Any overflow is included in the last bin. The signals are shown stacked on top of the background and correspond to the benchmark models MWT with \(m_{R_{1}} = 700 \text{ GeV} \) and HVT with \(m_{V} = 1000 \text{ GeV} \) normalized to the expected cross sections.

Table 1 The number of expected and observed events for the three final states. The expectation is shown after the profile likelihood fit to the data. The quoted uncertainties are the combined systematic and statistical uncertainties. The overall background is more constrained than the individual components, causing the errors of individual components to be anti-correlated.

<table>
<thead>
<tr>
<th>Two b-tags</th>
<th>(\nu\nu b\bar{b})</th>
<th>(\ell\nu b\bar{b})</th>
<th>(\ell\ell b\bar{b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z+\text{jets})</td>
<td>224 ± 14</td>
<td>3.2 ± 0.2</td>
<td>1198 ± 47</td>
</tr>
<tr>
<td>(W+\text{jets})</td>
<td>82 ± 29</td>
<td>61 ± 21</td>
<td>–</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>166 ± 10</td>
<td>718 ± 42</td>
<td>321 ± 14</td>
</tr>
<tr>
<td>Single top</td>
<td>23.2 ± 2.6</td>
<td>71.3 ± 8.1</td>
<td>–</td>
</tr>
<tr>
<td>Diboson</td>
<td>10.1 ± 1.1</td>
<td>2.8 ± 0.6</td>
<td>25.9 ± 5.8</td>
</tr>
<tr>
<td>SM VH</td>
<td>20.3 ± 8.1</td>
<td>4.6 ± 1.9</td>
<td>24.4 ± 6.1</td>
</tr>
<tr>
<td>Multijet</td>
<td>< 3</td>
<td>29 ± 13</td>
<td>12.1 ± 9.1</td>
</tr>
<tr>
<td>Total bkg.</td>
<td>524 ± 20</td>
<td>889 ± 28</td>
<td>1581 ± 39</td>
</tr>
</tbody>
</table>

| Data | 511 | 879 | 1593 |

One b-tag

\(Z+\text{jets} \)	2120 ± 150	53.6 ± 4.7	9120 ± 550
\(W+\text{jets} \)	1450 ± 360	1892 ± 590	–
\(t\bar{t} \)	928 ± 43	4650 ± 370	425 ± 10
Single top	221 ± 25	832 ± 94	–
Diboson	48.2 ± 3.8	32.1 ± 2.5	124 ± 17
SM VH	13.4 ± 5.2	6.9 ± 2.7	17.6 ± 7.0
Multijet	< 10	316 ± 83	139 ± 70
Total bkg.	4761 ± 69	7782 ± 97	9830 ± 100
Data	4758	7854	9827

750 < \(m_{R_{1}} \) < 1200 GeV (700 < \(m_{R_{1}} \) < 1150 GeV). The dip near 500 GeV in this theory curve is due to the interference between \(R_{1} \) and \(R_{2} \) [7]. To study the scenario in which the masses of charged and neutral resonances are the same, a combined likelihood fit over all signal regions and the \(t\bar{t} \) control region is also performed. The exclusion contours in the \{\(m_{A}, \tilde{g} \)\} plane for MWT are presented in Fig. 3. For this result, both resonances predicted by MWT, \(R_{1} \) and \(R_{2} \), are fitted simultaneously and, at each \(\tilde{g} \), the different branching ratios to \(WH \) and \(ZH \) are taken into account. Electroweak precision data, a requirement to remain within the walking technicolor regime and constraints from requiring real-valued physical decay constants exclude a portion of the plane. This analysis is particularly sensitive at high \(\tilde{g} \) values, where the limits exceed those from the dilepton resonance search [21].

The exclusion contours in the HVT parameter space \{\(g^{2}/g_{VJ} \)\(c_{R}, g_{VCH} \)\} for resonances of mass 1, 1.5 and 1.8 TeV are shown in Fig. 4 where all three channels are combined, taking into account the branching ratios to \(WH \) and \(ZH \) from the HVT model. These contours are produced by scanning the parameter space, using the HVT tools provided in a web-interface [15,57].
Fig. 2 Combined upper limits at the 95% CL for \(a\) the production cross section of \(R_1^0 (V^0)\), times its branching ratio to \(ZH\) and branching ratio of \(H\) to \(b\bar{b}\) and \(b\) the production cross section of \(R_1^\pm (V^\pm)\), times its branching ratio to \(WH\) and branching ratio of \(H\) to \(b\bar{b}\). The experimental limits are obtained using samples with a single resonance \(R_1\); however, the theory curve line for MWT includes both \(R_1\) and \(R_2\). The dip near 500 GeV in this theory curve is due to the interference between \(R_1\) and \(R_2\) [7].

Fig. 3 Exclusion contours at 95% CL in the plane of the Minimal Walking Technicolor parameter space defined by the bare axial-vector mass versus the strength of the spin-1 resonance interaction \(\{m_A, \tilde{g}\}\). Electroweak precision measurements exclude the (green) area in the bottom left corner. The requirement to stay in the walking regime excludes the (blue) area in the right corner. The large (red) area (black dashed line) shows the observed (expected) exclusion. The blue dashed line shows the observed exclusion from the dilepton resonance search [21]. The upper region is excluded due to non-real axial and axial-vector decay constants. Here both resonances predicted by MWT, \(R_1\) and \(R_2\), are fitted simultaneously.

Fig. 4 Observed 95% CL exclusion contours in the HVT parameter space \(\{(g^2/g_V)_{cF}, g_V c_H\}\) for resonances of mass 1 TeV, 1.5 TeV and 1.8 TeV. The areas outside the curves are excluded. Also shown are the benchmark model parameters \(A(g_V = 1), A(g_V = 3)\) and \(B(g_V = 3)\) on the production cross sections of \(R_1\) and \(V^1\) for the Minimal Walking Technicolor and Heavy Vector Triplets models respectively. Exclusion contours at 95% CL in the MWT parameter space \(\{m_A, \tilde{g}\}\) and in the HVT parameter space \(\{(g^2/g_V)_{cF}, g_V c_H\}\) are presented.

9 Summary

A search for a new heavy resonance decaying to \(WH/ZH\) is presented in this Letter. The search is performed using 20.3 fb\(^{-1}\) of \(pp\) collision data at 8 TeV centre-of-mass energy collected by the ATLAS detector at the Large Hadron Collider. No significant deviations from the SM background predictions are observed in the three final states considered: \(\ell\ell b\bar{b}, \ell v b\bar{b}, v v b\bar{b}\). Upper limits are set at the 95% confidence level on the production cross sections of \(R_1\) and \(V^1\) for the Minimal Walking Technicolor and Heavy Vector Triplets models respectively. Exclusion contours at 95% CL in the MWT parameter space \(\{m_A, \tilde{g}\}\) and in the HVT parameter space \(\{(g^2/g_V)_{cF}, g_V c_H\}\) are presented.

Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic;
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Anhui, China; (c) Department of Physics, Nanjing University, Jiangsu, China; (d) School of Physics, Shandong University, Shandong, China; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China; (f) Physics Department, Tsinghua University, Beijing 100084, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, NY, USA
36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
39 Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
40 Physics Department, Southern Methodist University, Dallas, TX, USA
41 Physics Department, University of Texas at Dallas, Richardson, TX, USA
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, USA
46 SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova, Genova, Italy; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, UK
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, USA
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; (b) Department of Physics, The University of Hong Kong, Pok Fu Lam, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
61 Department of Physics, Indiana University, Bloomington, IN, USA
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City, IA, USA
64 Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, UK
(a)INFN Sezione di Lecce, Lecce, Italy; (b)Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
Olive Laboratory, University of Liverpool, Liverpool, UK
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, UK
Department of Physics, Royal Holloway University of London, Surrey, UK
Department of Physics and Astronomy, University College London, London, UK
Louisiana Tech University, Ruston, LA, USA
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, UK
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, MA, USA
Department of Physics, McGill University, Montreal, QC, Canada
School of Physics, University of Melbourne, Melbourne, VIC, Australia
Department of Physics, The University of Michigan, Ann Arbor, MI, USA
Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
(a)INFN Sezione di Milano, Milan, Italy; (b)Dipartimento di Fisica, Università di Milano, Milan, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
Group of Particle Physics, University of Montreal, Montreal, QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
(a)INFN Sezione di Napoli, Naples, Italy; (b)Dipartimento di Fisica, Università di Napoli, Naples, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
Department of Physics, Northern Illinois University, De Kalb, IL, USA
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York, NY, USA
Ohio State University, Columbus, OH, USA
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
Department of Physics, Oklahoma State University, Stillwater, OK, USA
Palacký University, RCP, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene, OR, USA
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford, MA, USA
Centro de Investigaciones, Universidad Antonio Narino, Bogotá, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
(a)INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b)ICTP, Trieste, Italy; (c)Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana, IL, USA
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
Department of Physics, University of Warwick, Coventry, UK
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, WI, USA
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, CT, USA
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Also at Department of Physics, King’s College London, London, UK
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at Novosibirsk State University, Novosibirsk, Russia
Also at TRIUMF, Vancouver, BC, Canada
Also at Department of Physics, California State University, Fresno, CA, USA
Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
Also at Departamento de Física e Astronomia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
Also at Tomsk State University, Tomsk, Russia
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at Università di Napoli Parthenope, Naples, Italy
Also at Institute of Particle Physics (IPP), Victoria, Canada
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
Also at Louisiana Tech University, Ruston, LA, USA
Also at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
Also at Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
Also at CERN, Geneva, Switzerland
Also at Georgian Technical University (GTU), Tbilisi, Georgia
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
Also at Manhattan College, New York, NY, USA
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at School of Physics, Shandong University, Shandong, China
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at International School for Advanced Studies (SISSA), Trieste, Italy
Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA

Springer
ae Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
af Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
ag Also at National Research Nuclear University MEPhI, Moscow, Russia
ah Also at Department of Physics, Stanford University, Stanford, CA, USA
ai Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
aj Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA
ak Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
al Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
* Deceased