Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens

Majse Nafisi, Lorenzo Fimognari, Yumiko Sakuragi

Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark

This paper forms part of a special issue of Phytochemistry dedicated to the memory and legacy of Professor (Godfrey) Paul Bolwell, MA DSc (Oxon). (1946–2012), internationally-recognised plant biochemist and Regional Editor of Phytochemistry (2004–2012). He is much missed by his friends.

abstract
The plant cell wall surrounds every cell in plants. During microbial infection, the cell wall provides a dynamic interface for interaction with necrotrophic phytopathogens as a rich source of carbohydrates for the growth of pathogens, as a physical barrier restricting the progression of the pathogens, and as an integrity sensory system that can activate intracellular signaling cascades and ultimately lead to a multitude of inducible host defense responses. Studies over the last decade have provided evidence of interplays between the cell wall and phytohormone signaling. This review summarizes the current state of knowledge about the cell wall-phytohormone interplays, with the focus on auxin, cytokinin, brassinosteroids, and abscisic acid, and discuss how they impact the outcome of plant–necrotrophic pathogen interaction.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The plant cell wall surrounds every cell in plants and forms a dynamic physical barrier that protects the cell from microbial infection. The main constituents of the plant cell wall are cellulose, hemicelluloses, pectins, and glycoproteins (Carpita and Gibeaut, 1993). Cellulose form crystalline microfibres and provides a scaffold to the cell wall, hemicelluloses crosslink with celluloses to provide support to the cellulose microfibril network, while pectins not only crosslink cell wall polymers but also serve as hydrated extracellular matrix components (Somerville et al., 2004). The exact composition of the cell wall polysaccharides varies between species and can differ in the same tissues during developmental processes. During pathogen infections, the cell wall undergoes dramatic structural and chemical changes (Egert et al., 2014; Voigt, 2014; Vorwerk et al., 2004), including lignification (Vance et al., 1980; Zhao and Dixon, 2014), deposition of collose (Luna et al., 2011), cell wall protein cross-linking (Bradley et al., 1992), accumulation of reactive oxygen species and antimicrobial compounds (phytoalexins) (Franke et al., 2005; Lamb and Dixon, 1997; O'Brien et al., 2012), which can culminate to restrict the infection and prevent further pathogen progression. Emerging notion is that the cell wall integrity is sensed by plants and, when compromised, it can activate intracellular events involving phytohormone signaling cascades that can in turn activate defense responses (Hamann, 2012). In addition, degradation of cell wall constituents, particularly by necrotrophic pathogens, are sensed by a plasmamembrane receptor(s), leading to activation of defense signaling cascades and eventual mounting of inducible defense responses (Fry et al., 1993; Monaghan and Zipfel, 2012).

The aim of the present review is to provide a brief summary of the current state of our understanding regarding the interplay between plant cell wall integrity and phytohormones in the context of defense against necrotrophic pathogens. Plant pathogen infections are often classified into two major classes: necrotrophic and biotrophic pathogens. Lifestyle, infection strategy, and host defense responses vary greatly between the two classes. Necrotrophic pathogens use a suite of cell wall degrading enzymes and toxins to kill and macerate the host tissues to feed on; in contrast, biotrophic pathogens cause relatively minor damage on the host cell wall and maintain host viability to acquire nutrients. Some plant pathogens can manifest biotrophic-like strategies at earlier stages of infection and then switch to necrotrophic-like strategies at later stages; such pathogens are referred to as hemibiotrophic (Laluk and Mengiste, 2010). The cell wall maceration and damages on the host tissue by necrotrophic phytopathogens causes devastating economic losses in agriculture (Williamson et al., 2007). In the Botrytis cinerea genome, the large capacity for plant cell wall degradation was illustrated by the identification of 118 genes unambiguously associated with plant cell wall degradation (Amselem et al., 2011). Plants defend against necrotrophic phytopathogens through a complex interplay of phytohormone signaling and defense responses, and this topic has been extensively reviewed during the past few years (Cao et al., 2011; De Bruyne et al., 2014; De Vleesschauder et al., 2013; Grant and Jones, 2009; Perez and Goossens, 2013; Pieterse et al., 2012). Thus plant–necrotrophic pathogens interaction offers unique and valuable insights into interplays between cell wall stress perception and phytohormone signaling cascades that culminate to determine the necrotrophic disease outcome. In this review we discuss (i) roles of phytohormones, namely auxin, cytokinin, brassinosteroids (BR), and abscisic acid (ABA), in defense against necrotrophic phytopathogens, (ii) how these phytohormones modulate the cell wall properties, and (iii) how the cell wall can modulate the homeostasis of these phytohormones signalings and impact pathogen resistance. Although the main focus is on the interaction between the plant cell wall and necrotrophic pathogens, evidence based on interaction between plants and biotrophic pathogens are discussed where relevant. Involvement of jasmonates (JA), ethylene (ET), and salicylic acid (SA) in the cell wall-mediated defense has been extensively discussed in recent years (Hamann, 2012; Malinovsky et al., 2014) and will not be dealt with in this article.

2. Auxin

2.1. Roles of auxin in plant defense against necrotrophic pathogens

In plants, auxin can be found in the forms indole-3-acetic acid (IAA), 4-chloroindole-3-acetic acid, phenylacetic acid, and indole-3-butyric acid, however, IAA is the most potent auxin in plants (Woodward and Bartel, 2005). The negative impact of auxin in SA-mediated defense against biotrophic pathogens has recently been demonstrated (Chen et al., 2007; Wang et al., 2007) and a role(s) of auxin in defense against necrotrophic pathogens is also emerging (Kazan and Manners, 2009; Korolev et al., 2008; Llorente et al., 2008). Treatment of plants with the auxin transport inhibitor, 2,3,5-triodobenzoic acid, has been shown to lead to increased necrotrophic infection by Plectosphaerella cucumerina (Llorente et al., 2008). Furthermore, the aux1 mutant, which is defective in auxin influx, cannot develop induced systemic resistance against Botrytis cinerea (Korolev et al., 2008) and auxin signaling mutants, axr1, axr2 and axr6, are more susceptible towards B. cinerea and P. cucumerina than the wild type (Korolev et al., 2008; Llorente et al., 2008). The altered defense response of auxin signaling mutants towards B. cinerea and P. cucumerina does not appear to be due to altered activation of SA and JA/ethylene defensive pathways as the expression of marker genes PR1 and PDF1.2 was not altered. These data suggest that auxin signaling is required for full defense capacity towards B. cinerea and P. cucumerina in Arabidopsis. The authors speculated that the changes in disease outcome in response to exogenous IAA were not directly caused by the hormone because IAA can induce ethylene and the IAA-induced resistance was not observed in the ethylene insensitive ein2 mutant (Savatin et al., 2011). In the case of enhanced susceptibility, it was suggested that conversion of IAA to IAA-Asp is responsible (González-Lamothe et al., 2012). The study showed that the infection by B. cinerea increases the level of IAA-Asp in Arabidopsis and exogenous application of IAA-Asp and IAA, but not the synthetic auxin, 2,4-D, enhanced susceptibility to B. cinerea and Pseudomonas syringae. Conversely the gh3.2 mutant, defective in an auxin-conjugating enzyme and as a result has a lower level of IAA-Asp, exhibited enhanced resistance to B. cinerea and P. syringae. It was found that IAA-Asp promotes the expression of certain virulence genes in the pathogens during infection of plants (González-Lamothe et al., 2012).

It is noteworthy that B. cinerea can synthesize auxin and secrete it to the media when grown in vitro (Sharon et al., 2007), but the exact function of the pathogen-derived IAA during infection and in interaction with the plant host has not been elucidated. Following infection of Arabidopsis by B. cinerea, a number of the host IAA biosynthetic genes were upregulated (Windram et al., 2012) and the concentration of IAA increased (Pan et al., 2008), further supporting involvement of auxin in the response to necrotrophic pathogens. Interestingly, in a meta-analysis of publically available transcriptomic data it was found that many auxin signal-transduction related genes were downregulated upon infection with B. cinerea (Llorente et al., 2008). Given the importance of auxin signaling genes for full defense capacity against this pathogen, it might suggest that B. cinerea is manipulating the host to downregulate auxin signaling, although at present this is merely a speculation.
2.2. How does auxin impact the cell wall?

Auxin is involved in a number of growth and developmental processes and has a prominent role in the acid growth during cell expansion (McQueen-Mason et al., 1992; Woodward and Bartel, 2005; Zhao, 2010). Auxin lowers pH in the apoplasm by activating plasma membrane proton pumps and this is known to activate expansins which causes the cell wall to relax (McQueen-Mason et al., 1992). The exact mechanisms by which expansins mediate creep of cell walls are not well understood (Cosgrove, 1998). They do not alter the covalent linkages in the wall, instead their loosening effect is observed only while the wall is in tension (Cosgrove, 1998). Expression of expansins are also induced by ABA (Zhao et al., 2012), BRs (Sun et al., 2005), gibberellins (Cho and Kende, 1997), cytokinins (Downes and Crowell, 1998), SA, JA and ethylene (Cho and Cosgrove, 2002).

Auxin influences the expression and activity of cell wall modifying enzymes. Auxin treatment induces expansins and pectin methylesterase (PME) activity in roots (Bryan and Newcomb, 1954; Laskowski et al., 2006; Yoda, 1958). The most abundant enzymes among extracellular proteins are class III peroxidases (E.C.1.11.1.7). They are key players in secondary cell wall remodeling and have been proposed to act in the polymerization of phenolic monomers into lignins and suberin and to mediate the cross-linking between lignins, polysaccharides and proteins (Passardi et al., 2004). Two classes of peroxidases were isolated from the cell wall of pea roots: ionically bound peroxidases (iPOD) and covalently-bound peroxidases (cPOD), which are hypothesized to mediate cell elongation and cell wall stiffening, respectively (Kukavica et al., 2012). Treatment of pea roots with IAA, which inhibits root elongation, has led to decrease in the iPOD activity and increase in the cPOD activity (Kukavica et al., 2012). While in Catharanthus roseus cell suspension cultures the addition of the synthetic auxin 2,4D, which is required for cell division and growth, reduced the POD activity and enhanced the iPOD activity (Limam et al., 1998).

Pectins are highly methyl-esterified during biosynthesis but after secretion into the cell wall they are de-esterified by PMEs (Ridley et al., 2001). De-esterification makes pectin more susceptible to degradation by pathogen-secreted pectic enzymes (Limberg et al., 2000; Lionetti et al., 2007; Raiola et al., 2011), such as pectygalacturonases (PGs) that can release elicitor active oligogalacturonides (OGs) as detailed below (Ferrari et al., 2013). A link between auxin signaling and the PME activity modulating cell wall physical properties at the shoot apical meristem was investigated with atomic force microscopy (Braybrook and Peaucelle, 2013). The study showed that local application of IAA led to demethylation of pectin and tissue softening, which in turn affected organ formation.

The Arabidopsis WALLS ARE THIN 1 (wat1) mutant, which shows enhanced resistance to Ralstonia solanacearum and other vascular pathogens, has reduced secondary wall deposition in fibers and reduced auxin content (Denance et al., 2012; Ranocha et al., 2010). The gene was found to encode an auxin vacuolar transporter, which suggests that auxin has a role in promoting xylem fiber development (Ranocha et al., 2013). However, it seems that defense responses in wat1 are influenced by SA and not auxin, as the wat1 mutant had a higher level of SA in roots compared to the wild type and the enhanced resistance could be circumvented by introduction of NahG, the bacterial SA-degrading salicylate hydroxylase gene (Denance et al., 2012). In addition, it was shown that the AUXIN BINDING PROTEIN 1 (ABP1) modulates the expression of cell wall related genes and remodeling of hemicellulose xyloglucan side chain structure (Paque et al., 2014). These studies highlight interplays between auxin signaling, cell wall biosynthesis and remodeling.

2.3. Interplay between cell wall, auxin, and resistance to necrotrophic pathogens

Necrotrophic pathogens secrete polygalacturonases and degrade the pectic homogalacturan, which results in release of short fragments of OGs, effective in eliciting defense responses and thus are known as a damage associated molecular pattern (DAMP) (Cervone et al., 1989). OGs are also generated by the action of endogenous polygalacturonases induced by mechanical damage (Orozco-Cardenas and Ryan, 1999). These OGs can induce a number of defense responses in plants such as accumulation of phytoalexins (Davis et al., 1986), glucanase and chitinase (Broekaert and Penaumes, 1988; Davis and Hubbard, 1985), deposition of callose, production of reactive oxygen species (Bellincampi et al., 2000; Galletti et al., 2008), and nitric oxide (Rasul et al., 2012). Notably, exogenous application of OGs enhances resistance to B. cinerea in leaves of grape, tobacco and Arabidopsis (Aziz et al., 2004; Ferrari et al., 2007, 2008) and transgenic plants expressing a fungal PG exhibit constitutive activation of defense responses and enhanced resistance to B. cinerea (Ferrari et al., 2008). The optimal size of OGs for induction of defense responses is a degree of polymerization between 10 and 15 whereas OGs with a degree of polymerization between 3 and 6 cause developmental impact (Ferrari et al., 2013). Interestingly, the actions of OGs are antagonized by auxin and vice versa. It was shown that OGs inhibit auxin-induced elongation in pea stem segments (Branca et al., 1988), rooting of tobacco explants (Bellincampi et al., 1993), and IAA-induced DRE expression and up-regulation of early IAA response genes (Savatin et al., 2011). Conversely, enhanced resistance to B. cinerea of tobacco plants expressing a fungal endo-PG, which is likely mediated by constitutive generation of OGs, could be abolished by auxin (Ferrari et al., 2008). However, exogenous application of OGs does not alter the level of auxins, thus the mechanisms of OG-auxin antagonisms are still unknown (Savatin et al., 2011; Ferrari et al., 2013).

Plants express PG inhibiting proteins (PGIPs) that slow down the catalytic activity of pathogen PGs and limit the degradation of homogalacturonan, leading to generation of the elicitor-active OGs (Ferrari et al., 2013). Plants overexpressing PGIPs showed enhanced resistance to B. cinerea (Agiero et al., 2005; Ferrari et al., 2003; Joubert et al., 2006; Powell et al., 2000). Interestingly, tobacco plants (Nicotiana tabacum SR1) overexpressing a grapevine PGIP (Vvpgip1) has an increased level of IAA and a slightly decreased level of SA (Alexandersson et al., 2011). Microarray studies revealed that 219 probes showed downregulation whereas 58 probes showed upregulation in the Vvpgip1 overexpressing line as compared to the wild type, with marked changes in the expression of genes in the following categories: cell wall biogenesis and organization, carbon metabolism, photosynthesis and stress defense signaling (Alexandersson et al., 2011). The transgenic plant had a higher content of lignins and a decreased level of xyloglucan endotransglycosylase activity. A detailed cell wall analysis by carbohydrate microarray polymer profiling revealed that overexpression of Vvpgip1 leads to constitutive compositional changes in the leaf arabinoxylglucan network (N'Gueva-Ona et al., 2013). These data suggest that PGIP-induced initial changes in the cell wall lead to altered auxin accumulation and altered stress responses, leading to additional structural and compositional changes in the cell wall.

As described above, auxin modulates the expression of cell-wall modifying enzymes including peroxidases and PMEs. Arabidopsis PME3 is induced upon fungal infection and is necessary for initial colonization by necrotrophic fungi (Raiola et al., 2011). Importance of the pectin methylesterification status in plant resistance was supported by a recent study that showed the level of pectin methylation decreased upon infection by P. syringae or Alternaria.
brassicicola due to the action of PMEs and several pme mutants had enhanced susceptibility to P. syringae whereas resistance to A. brassicicola was unchanged (Bethke et al., 2014). Aside from PMEs, plant genomes also encode PME inhibiting proteins (PMEIs) to regulate pectin methylesterification. For instance, the Arabidopsis genome encodes two PMEs, AtPMEI-1 and AtPMEI-2 (Raïola et al., 2004) and constitutive expression of AtPMEI-1 or AtPMEI-2 in Arabidopsis increases pectin methylesterification and enhanced resistance towards B. cinerea, possibly through decreased ability of the fungus to degrade the plant cell wall (Lionetti et al., 2007).

Auxin exerts an impact on the action of nitric oxide (NO). NO is an important signal in plants, it is generated in response to biotic and abiotic stresses and is emerging as an important player in plant–pathogen interaction and signaling (Crawford and Guo, 2005; Mur et al., 2013). Notably, NO has been implicated in the regulation of the cell wall structure and composition (Pacoda et al., 2004). High and low NO concentration inhibit or promote cellulose synthesis, respectively (Correa-Aragunde et al., 2008), and NO application has been found to alleviate cadmium and aluminum stress by altering cell wall composition (Xiong et al., 2009; Zhang et al., 2011). Generation and signaling of NO is modulated by phytohormones; for instance, a synergistic effect between NO and auxin have been observed in a number of developmental and morphological plant responses whereas the interaction between NO and cytokinin is complex and the outcome seems to depend on tissue type and plant species (Freschi, 2013).

3. Cytokinin

In plants, cytokinin can be found in the form of kinetin, zeatin and 6-benzylaminopurine and is involved in cell growth and differentiation (Hwang et al., 2012). Recently, cytokinins have been shown to be involved in nutrient assimilation and defense against pathogens.

3.1. How does cytokinin impact disease resistance?

The fungal pathogen Plasmodesmophora brassicaceae, the causal agent of the Brassicaceae clubroot disease, has been shown to downregulate the cytokinin degradation pathway during infection of Arabidopsis, and transgenic overexpression of cytokinin oxidases/dehydrogenases suppressed clubroot development, indicating the importance of cytokinin in the pathogenicity of P. brassicaceae (Siemens et al., 2006). Transgenic plants with increased cytokinin levels exhibited delayed leaf senescence and enhanced resistance to B. cinerea infection in tomato (Swartzberg et al., 2008) and enhanced resistance to A. brassicicola KACC40036 in Arabidopsis (Choi et al., 2010), whereas in tobacco, increased cytokinin levels had no effect on resistance to Schlerotinia sclerotiorum and even enhanced susceptibility to B. cinerea (Grosskinsky et al., 2011). It appears that the role of cytokinin varies in different pathosystems, reflecting the outcome of coevolutionary interactions between pathogens and their host plants.

3.2. How does cytokinin impact the cell wall?

Application of cytokinin to plants or plant cell cultures induces expression of many cell wall–related genes such as cell wall loosening expansins (13 expansins, 4 laccases, 6 pectin-modifying enzymes) as well as reactive oxygen species (ROS) producers and scavengers and antioxidants (Brenner et al., 2012). One of the most frequently listed genes in a meta-analysis of cytokinin-induced genes was EXPANSIN 1 (Brenner et al., 2012). Twelve other expansin genes were found in at least two microarray studies along with 18 other cell wall-related genes (Brenner et al., 2012). Previously, cytokinin was found to regulate an expansin in soy bean (Downes and Crowell, 1998) and a cytokinin-induced change of cell wall extensibility has also been directly measured (Thomas et al., 1981), whereas a negative influence of cytokinin signaling on cell wall thickness has been reported (Jung et al., 2008). Cytokinin-induced stress genes are suppressed by auxin secreted from Agrobacterium tumefaciens (Lee et al., 2009), suggesting that pathogen-derived auxin can specifically suppresses the cytokinin-induced defense response during infection (Choi et al., 2011).

To date, little is known about how alterations in the cell wall affect the cytokinin level in plants. OGS promote cytokinin (benzyladene, BA)-induced vegetative shoot formation (Falasca et al., 2008). The level of cytokinin was enhanced in alfalfa mutants with lower lignin and constitutive defense responses, but also the levels of SA and JA were enhanced, pointing to an overall deregulation of hormone pathways in this mutants (Gallego-Giraldo et al., 2011).

4. Brassinosteroids

Brassinosteroids (BRs) comprise a class of functionally related steroid hormones where more than 40 variants have been isolated (Khripach et al., 2000). BRs are important for several plant processes such as stimulation of seedling development, second organogenesis and reproductive processes (Ryu and Hwang, 2013). They have been used as growth hormones in fields for many years and several encouraging outcomes have been reported, including improvement of crop yield and quality, resistance to environmental stresses, and phytoremediation owing to the ability to interfere with plant ion homeostasis (Khripach et al., 2000).

4.1. How do BRs impact disease resistance?

BRs can interfere with pathogen responses mediated by JA, ethylene, SA, auxin, ABA, cytokinin, and gibberellic acid (Choudhary et al., 2012; Nakashita et al., 2003). During virus infection, BR precursors were found to accumulate (Nakashita et al., 2003). Effects of brassinolide, the most biologically active BR, have been studied on defense responses in tobacco and rice during infection with tobacco mosaic virus, P. syringae pv. tabaci and powdery mildew (Nakashita et al., 2003). Exogenous application of brassinolide increased plant resistance but did not affect the accumulation of the PR1, PR2 and PR5 transcripts, indicating that the effect was not mediated by SA signaling. Similarly, exogenous application of brassinolide was found to increase the resistance of cotton towards the necrotrophic fungal pathogen Verticillium dahlia (Gao et al., 2013) as well as reducing the virulence of Xanthomonas oryzae pv. oryzae and Magnaporthe grisea in rice, demonstrating a protective effect of BRs extends to monocot (Nakashita et al., 2003).

A higher resistance against B. cinerea was observed in Arabidopsis plants overexpressing 3-hydroxy-3-methylglutaryl-CoA synthase, an enzyme involved in the cytosolic mevalonate pathway that is important for providing precursors of several isoprenoids including BRs (Wang et al., 2012). The transgenic overexpression line exhibited a higher sterol content in leaves, higher expression of the last enzyme in the BR biosynthetic pathway (RBOX2), higher resistance to B. cinerea, and reduced occurrence of cell death induced by hydrogen peroxide. The authors hypothesized that the higher resistance was due to activation of SA signaling pathway since SA-dependent genes (PR1, PR2 and PR5) were upregulated. JA responsible genes were concomitantly upregulated, suggesting that BR-induced protection may also be mediated by JA. Notably, when the negative regulators of BR signaling, GBL4-3-3c and GBL4-3-3d, were downregulated by virus-induced gene silencing,
the transgenic cotton were found to be more resistant to the pathogen, underpinning the importance of BRs in plant resistance.

Direct alteration of MAMP-triggered immunity (MTI) by BRs has been investigated. Briefly, in the brassinosteroid perception and signaling pathway, BRs bind the BR receptor BRI1 (BRASSINOSTEROID INSENSITIVE 1) in the plasmamembrane (Kinoshita et al., 2005) and trigger dissociation of BRI1-inhibitory protein (BKI1), allowing the complex formation with BAK1 (BAK1-ASSOCIATED RECEPTOR KINASE1), a coreceptor of BRI1 (Hao et al., 2013; Wang et al., 2008). Phosphorylation between BRI1 and BAK1 fully activates the BRI1 kinase activity, which, through a signal transduction cascade, ultimately leads to activation of two transcriptional factors, BES1 and BZR1, that control the expression of BR responsible genes (Wang et al., 2008). Apart from the BR signaling pathway, BAK1 is also involved in MTI through protein complex formation with FLS2 (FLAGELLIN-SENSING 2) and BIK1 (BOTRYTIS-INDUCED KINASE 1) (Belkhadid et al., 2012). It was shown that overexpression of BRI1 in Arabidopsis can inhibit MTI by titrating BAK1 away from forming the complex with FLS2 and BIK1. However, increased signaling in the BR pathway triggered by the hyperactive allele BRI1^{ild} did not suppress MTI, rather it enhanced MTI as compared to the wild type plants. Interestingly, the BRI1^{ild} enhancement of MTI defenses was BAK1 dependent, suggesting that BAK1 may mediate the positive effect of BR signaling on plant immunity (Belkhadid et al., 2012). The exact molecular mechanism by which BR signaling enhances MTI in a BAK1 dependent manner remains to be elucidated. To add more complexity to the interaction between BR signaling and MTI, it was found that brassinolide treatment hindered MTI in a loss of function bak1-4 background (Albrecht et al., 2012). This outcome suggested that modulation of MTI caused by BR signaling may also be BAK1-independent or further downstream in the pathway.

4.2. How do BRs impact the cell wall?

BRs have been shown to exert notable impacts on cell wall properties. Transcriptomic analysis revealed that, in Arabidopsis, BR treatment upregulated a variety of genes involved in cell wall elongation and remodeling including xyloglucan endotransglycosylases, PMEs, putative expansins, putative pectin acetyltransferases, endo-xylanases and others (Godna et al., 2002). Together with other microarray data (Mussig et al., 2002; Yin et al., 2002), these discoveries underpin the impacts of BRs on plant cell walls. It was found that BR-deficient or BR-perception deficient mutants contain less cellulose than the wild type (Xie et al., 2011). The expression of CESAs, especially those involved in the primary cell wall synthesis, was reduced in det2-1 and bri1-301, which was restored by application of BRs. Chromatin immunoprecipitation experiments showed that the BR-activated transcription factor BES1 can associate with upstream elements of the CESAs genes involved in the primary cell wall synthesis. Furthermore, it was found that BIL2, a protein involved in BR signaling and BR gene expression, is required for cell elongation, and overexpression of BIL2 resulted in cell elongation even in the presence of BR biosynthesis inhibitors, suggesting that BIL2 functions downstream of BR perception (Bethke et al., 2014). BIL2 was found to be a mitochondria-localized Dan/Heat shock protein 40 (DnaJ/Hsp40) family protein involved in protein folding (Bekh-Ochir et al., 2013). It is speculated that BIL2 is required for proper folding of ATPase in mitochondria, while how this impacts the cell wall gene expression remains unknown.

4.3. How does altering cell wall impact BRs and defense capacity?

A direct impact of cell wall modification in BR synthesis or signaling is emerging (Wolf et al., 2012). It was recently found that alteration of Arabidopsis cell wall architecture by increasing the pectin methylesterification state either genetically (PME1S ectopic overexpression) or pharmacologically results in a number of growth phenotypes including cell swelling, root waving and twisted organs. Through a forward genetic screen, Höfte and colleagues identified that a mutation in the brassinosteroid receptor (BRI1) was responsible for suppressing the growth phenotypes caused by the altered cell wall methylesterification. As the pectin methylesterification level reached abnormally high levels, the stiffness of the cell wall increased due to the higher Ca²⁺ cross-links and root tissue exhibited loss of cell wall integrity. The assumption is that this triggers the BR signaling system leading to the BR-mediated expression of cell wall loosening genes and at least two PMEs in order to re-establish optimal cell wall architecture (Wolf et al., 2012).

Current evidence clearly indicates that the pectin methylesterification status is linked to the intracellular BR signaling cascade and that BR signaling homeostasis has a profound impact on cell wall biosynthesis, e.g. cellulose, and resistance against pathogens in a range of host-pathogen systems. Given the existing data, it is to be expected that the PME1S overexpressing Arabidopsis is to exhibit a higher resistance against at least B. cinerea, because of lower digestibility of the cell wall and elevation of the BR signaling, and possibly, increased cellulose deposition that may hinder the pathogen progress, although this assumption remains to be tested.

5. Abscisic acid (ABA)

Abscisic acid (ABA) is a plant hormone that plays important roles in regulating drought, cold stress and osmotic stress responses. Moreover, it plays a role in promoting seed dormancy while antagonizing the growth-inducing effects of phytohormones like gibberellin (Ng et al., 2014). As described below, several studies have demonstrated a negative role of ABA in plant resistance against necrotrophic pathogens. As in the case of BRs, ABA interferes with the other hormone signaling pathways.

5.1. How does ABA impact disease resistance?

Currently roles of ABA in plant resistance towards pathogens are better understood in the context of biotrophic interactions than necrotrophic interactions. ABA can promote resistance through its ability to induce stomata closure, thus interfering with pathogen entry (Lopez et al., 2008). On the other hand, ABA may promote pathogen virulence as increasing ABA signaling or exogenous ABA application enhanced P. syringae growth and vice versa (de Torres-Zabala et al., 2007). It was suggested that P. syringae effectors are able to modulate ABA signaling, leading to a favorable environment for infection. Callose deposition is a hallmark of inducible cell wall fortification upon pathogen infection (Huckelhoven, 2007; Ton and Mauch-Mani, 2004). ABA promotes the callose formation through repression of a callase gene, PR2. Overexpression of PR2 in the pad3 mutant background of Arabidopsis reduced the callose content and further enhanced susceptibility towards B. cinerea, A. brassica, and hemibiotrophic Leptosphaeria maculans as compared to the pad3 mutant (Oide et al., 2013). The effect of ABA on plant interaction against necrotrophic pathogens appears to be complex. Upon ABA treatment enhanced resistance of Arabidopsis was observed against the necrotrophic pathogens A. brassicicola and P. cucumerinum (Ton and Mauch-Mani, 2004). It was suggested that the increased resistance was mediated by enhanced callose production. While siliens, an ABA deficient mutant of tomato, is more resistant to B. cinerea (Asselbergh et al., 2007; Audebert et al., 2002; Curvers et al., 2010) and exogenous application of ABA increased susceptibility.
towards the fungus (Audenaert et al., 2002). It was suggested that the more permeable cell wall and cutin layer in *sitiens* may lead to faster diffusion of DAMPs or MAMPs and faster defense activation (Curvers et al., 2010). The same study also showed the differential methylesterification state of the cell wall in *sitiens* as compared to the wild type and that incubation of *B. cinerea* inoculation droplets on the leaves of the wild type and *sitiens* led to the release of oligosaccharides with different profiles, which may suggest that *sitiens* generates more bioactive OGs. In Arabidopsis, interplay between ABA, cuticle permeability and ROS has been also found to affect resistance against *B. cinerea* (L’Haridon et al., 2011). ABA biosynthesis mutants (aba2 and aba3) were more resistant to *B. cinerea*, had higher cuticle permeability as well as higher ROS accumulation. Higher resistance against *B. cinerea* was also observed in cuticular mutants with enhanced surface permeability (L’Haridon et al., 2011). This outcome was explained as higher cuticle permeability in ABA mutants facilitates sensing of elicitors and therefore triggers faster ROS production.

Arabidopsis mutants defective in ABA synthesis or signaling were more resistant to the necrotrophic pathogen *P. cucumerina* but were more susceptible to *R. solanacearum* (Hernandez-Blanco et al., 2007; Sanchez-Vallet et al., 2012). Disrupting ABA synthesis or signaling has led to upregulation of defense marker genes (PDF1.2, PR1, PR4, and ORA59). Moreover, genetic upregulation of ABA signaling in the triple *hab1-1 ab1-1 abi2-2* mutant increased susceptibility of Arabidopsis towards *P. cucumerina* (Rubio et al., 2009). Interestingly, no correlation between the ABA mutants and ROS levels were observed (Sanchez-Vallet et al., 2012). The increased resistance to *P. cucumerina* was partly mediated by ethylene, SA and JA since mutations in these signaling pathways reverted the resistant phenotype of the ABA biosynthetic mutant.

5.2. How does ABA impact the cell wall?

A number of reports have described the roles of ABA in altering cell wall properties and compositions. ABA treatment was shown to induce expression of the cell wall loosening gene *EXPANSIN-LIKE A2* in Arabidopsis (Abuqamar et al., 2013). Mutations in this gene increased resistance to *B. cinerea* and oxidative stress, suggesting a link between ABA, the cell wall, and resistance towards *B. cinerea* in Arabidopsis (Abuqamar et al., 2013). Exogenously applied ABA induced enhanced accumulation of pectic arabinin in root meristem of *Arabidopsis* (Talboys et al., 2011). Because arabinan is involved in the cell-to-cell adhesion (Iwai et al., 2001), mechanical property of the cell wall (Ulvskov et al., 2005; Verherbruggen et al., 2013), and that endo-arabinanase activity is required for the full virulence of *B. cinerea* (Nafisi et al., 2014), it is plausible that ABA-mediated change in arabinan too may have a role in influence the outcome of necrotrophic infection. ABA deficient tomato mutant, *sitiens*, exhibits several notable changes related to the cell wall: an elevated crosslinking in the cell wall as a result of a faster induction and enhanced level of ROS burst during infection with *B. cinerea*, and altered expression of cell wall modifications genes including pectin esterase and xyloglucan endotransglycosylase (Asselbergh et al., 2007). In addition, Curvers et al. (2010) observed that the *sitiens* has an abnormal cuticle and cell wall deposition and its leaves are more resistant to pectinase treatment. Sanchez-Vallet et al. (2012) found that the *aba1-6* mutant of Arabidopsis with impaired ABA biosynthesis displays an alteration in cell wall structure and composition by Fourier transform infrared spectroscopy. Interestingly, however, mutants with disrupted ABA signaling did not display the same differences in cell wall structure or composition. In contrast, an ABA signaling mutant, *abi8*, identified through a genetic screening exhibited stunted growth and was found to be allelic to *kobito1* (Pagant et al., 2002) and elongation defective 1 (*kobito1*; Cheng et al., 2000), which are impaired in cellulose synthesis cell elongation, respectively (Brocard-Gifford et al., 2004).

5.3. How does altering cell wall impact ABA and pathogen resistance?

In a forward genetic screen, a mutant of Arabidopsis, *leaf wilting 2* (*lew2*) that exhibits higher drought and salt tolerance than the wild type was identified (Chen et al., 2005). *lew2* was found to be allelic to *irx1/cesA8* (*IRREGULAR XYLEM1*) and retained the collapsed xylems phenotype characteristics of *irx* mutants (Turner and Somerville, 1997). These *irx* mutants are defective in secondary cell wall biosynthesis and exhibit collapsed xylems because their thinner cell walls are not able to cope with the negative pressure generated by water transport in the xylem. *lew2/irx1/cesA8* was shown to overaccumulate ABA and soluble sugars, which permitted higher fitness with respect to abiotic stresses. Despite these observations, it is unclear whether the increased ABA accumulation is due to a direct effect of cell wall alteration or due to the triggering of drought stress responses caused by the impaired water transport though the xylem.

A link between the secondary cell wall cellulose synthesis, ABA, and pathogen resistance has been identified (Hernandez-Blanco et al., 2007). Mutations in the secondary cell wall cellulose synthases, *CESA4/IRX5, CES7/IRX3*, and *CES8/IRX1*, resulted in increased resistance against *R. solanacearum* and *P. cucumerina*. Transcriptomics analysis of the mutants indicated upregulation of several genes involved in ABA signaling as well as defense-related genes (e.g. antimicrobial compounds and PR proteins). Mutants defective in ABA signaling (*abi1-1*, *abi2-1*) and biosynthesis (*abai1-6*) showed increased susceptibility to *R. solanacearum* and enhanced resistance to *P. cucumerina*. It was proposed that the increased resistance observed for the *cesA4/irx4, cesA7/irx3*, and *cesA1/irx8/lew2* mutants against the pathogens was due to possible accumulation of the secondary metabolites glucosinolates and camalexin based on the transcriptional upregulation of *CYP79B2* and *CYP79B3* involved in the biosynthesis of these compounds.

6. Conclusions

Based on the mounting evidence it is unmistakable that phytohormones and cell wall integrity are highly interconnected and control plant growth and development. Degradation of plant cell walls by necrotrophic phytopathogens is sensed by the host through DAMP recognition and likely through the cell wall integrity sensory systems. These events lead to activation of signaling cascades involving phytohormones crosstalks and consequently activate expression of defense related genes. Moreover, phytohormones exert a considerable impact on the cell wall composition and structure, altering not only the ability of necrotrophic phytopathogens to digest the cell wall but also the capacity of the cell wall to generate DAMP and possibly to activate the cell wall integrity sensory systems. These processes are highly integrated and likely to form a cell wall-phytohormone homeostasis that plays an important role in plant–necrotrophic pathogen interaction.

Acknowledgements

This work was supported by the Danish Advanced Technology Foundation [Biomass for the 21st century, grant number 001-2011-4]; The Danish Council for Strategic Research [Plant Power, grant number 12-131834]; The EU FP7 People Programme Marie
References

Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens. Mol. Plant Microbe Interact. 24, 432–440.

