Spatial and temporal analysis of the transmissibility and mortality burden of a 1853 cholera epidemic in Copenhagen
Phelps, Matthew David; Andreasen, Viggo; Pitzer, Virginia; Lewnard, Joseph; Jensen, Peter Kjær Mackie; Simonsen, Lone

Publication date: 2015

Document license: Unspecified

Spatial and temporal analysis of the transmissibility and mortality burden of a 1853 cholera epidemic in Copenhagen

M. Phelps¹, V. Andreasen², V. Pitzer³, J. Lewnard³, P.K.M. Jensen¹, L. Simonsen¹

¹COPE Copenhagen Center for Disaster Research; ²Roskilde University; ³Yale School of Public Health

1. Context
- Cholera is still a serious disease responsible for several million cases annually (Sack, Sack et al.).
- Uncertainty persists on the relative roles that human-to-human vs. environment-to-human routes of transmissions play in outbreak situations (King, Ionides et al., Chao, Longini et al.).
- Little quantitative historical research has been done on cholera outbreaks, most have been qualitative in nature.

2. Motivation
- To characterize the spatial and temporal spread of cholera in a fully susceptible population.
- To provide historic data needed to validate models of contemporary cholera epidemics used to guide vaccine and other interventions (Andrews and Sack, 2012).

3. Data & methods
- Outbreak morbidity & mortality data digitized from 1854 Health Commission report.
- All-cause mortality data for 1852 – 1854 digitized from the “Statistisk Tabeller” surveillance system. Population data was interpolated from 1850 and 1855 censuses.

4. Results

4.1 Daily cholera morbidity and mortality

Figure 1. Case surveillance listed 7,219 patients (5.6% of population) as cholera cases. Of these, 4,737 died for a Case Fatality Ratio (CFR) of 66%.

4.2 How did the outbreak look in different parts of the city?

Figure 2. Normalized weekly incidence rates show each city quarter experiencing only a single epidemic peak with much variability in severity across quarters.

4.3 How did mortality vary with age?

Figure 3. Stratifying and adjusting for age shows that the elderly were disproportionately affected: 15% of persons over age 70 died as compared to <1% of children.

5. Conclusions
- A high CFR of 66% is comparable to other cholera outbreaks in Scandinavia at the time but may be biased upwards as a result of the cholera case definition used at the time.
- The double peak apparent in the city-level analysis is likely an artifact of aggregation and disappears at higher spatial resolutions. We are investigating if this same phenomenon can explain the double peak seen in cholera outbreaks in other Danish cities (data not shown) of the time period (1853 – 1857).
- The outbreak was spatially heterogeneous, even across the small area represented in this dataset, City-level or larger analyses of cholera outbreaks may not be appropriate.
- Future work will combine a meta-population model (Azman, Luquero et al.) with data on water-flow in 19th century Copenhagen to address uncertainty on the strength of the different transmission pathways of cholera.

Acknowledgments
- Funding generously provided by the Changing Disasters 2014 project: changingdisasters.ku.dk
- Additional support provided by: Mads Linnet Perren, Emma Davidsen, Helene von Ahren A S Haugaard

Literature cited