Diversity of the tetracycline resistance gene tet(M) and identification of Tn916- and Tn5801-like (Tn6014) transposons in Staphylococcus aureus from humans and animals

de Vries, Lisbeth Elvira; Christensen, Henrik; Skov, Robert L.; Aarestrup, Frank Møller; Agersø, Yvonne

Published in:
Journal of Antimicrobial Chemotherapy

DOI:
10.1093/jac/dkp214

Publication date:
2009

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Diversity of the Tetracycline Resistance Gene \textit{tet}(M) and Identification of Tn916- and Tn5801-like (Tn6014) Transposons in \textit{Staphylococcus aureus} from Human and Animals

\textit{Lisbeth Elvira de Vries}1,2, \textit{Henrik Christensen}1, \textit{Robert L. Skov}3 \textit{Frank M. Aarestrup}2,* \textit{Yvonne Agersø}2,*

1 Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
2 National Food Institute, The Technical University of Copenhagen, Copenhagen, Denmark
3 Statens Serum Institute, Copenhagen, Denmark

* Corresponding author: Mailing address: National Food Institute, Bülowsvej 27, 1790 Copenhagen V, Denmark. E-mail: yvoa@food.dtu.dk. Telephone: +4572346273. Fax: +4572346001

Short running title: \textit{tet}(M) in \textit{S. aureus}

Keywords: \textit{tet}A(M), horizontal gene transfer, conjugative transposons, mobile elements
Abstract

Objectives: To analyse the sequence diversity of the tetracycline resistance gene \textit{tet(M)} in \textit{Staphylococcus aureus} from human and animals and to determine mobile elements associated with \textit{tet(M)} in \textit{S. aureus}.

Methods: In total 205 tetracycline resistant isolates were screened for \textit{tet(M)} by PCR. \textit{tet(M)} were sequenced and compared to \textit{tet(M)} deposited with GenBank. Based on phylogenetic analysis isolates were screened for Tn916- and Tn5801-like \textit{xis/int} genes and transposons were confirmed by linking PCR. \textit{spa} typing was performed and selected isolates were used as donors in a filter mating experiment.

Results: Forty-one isolates (21.3 %, 60.7 %, 2.6 % and 4.4 % of the human, pig, poultry and cattle isolates, respectively) were \textit{tet(M)} positive. \textit{tet(M)} was located on Tn5801-like and Tn916-like transposons in humans and on a specific Tn916-like element in animals. Human isolates were of different \textit{spa} types (t034, t008, t037, t051, t065, t078, t318 and t964) corresponding to different clonal complexes (CC398, CC8, CC25 and CC30). Animal isolates were of \textit{spa} type t034, t011 or t0571 corresponding to CC398. \textit{tet(M)} sequence types correlated with CC types. Tn916-like and Tn5801-like (Tn6014) transposons were able to transfer to \textit{S. aureus} recipients.

Conclusion: \textit{S. aureus} of human origin contained diverse \textit{tet(M)} located on Tn916- and Tn5801-like (Tn6014) transposons and \textit{S. aureus} of animal origin contained Tn916-like \textit{tet(M)} genes. This suggest that conjugative transposition play an important role in the evolution and horizontal spread of \textit{tet(M)} in \textit{S. aureus}. This is the first study showing horizontal transfer of Tn5801 (Tn6014).
Introduction

Staphylococcus aureus is part of the normal flora and a frequent cause of infection in humans and many animal species. S. aureus are often resistant to tetracycline and two known mechanisms of tetracycline resistance have been identified among staphylococci. Active efflux is a result of acquisition of the genes \(\text{tet}(K) \), \(\text{tet}(L) \) or \(\text{tet}(38) \), mainly located on plasmids. Ribosomal protection is conferred by the genes \(\text{tet}(M) \), \(\text{tet}(O) \), \(\text{tet}(S) \) or \(\text{tet}(W) \) that are mainly located on different transposons on the chromosome. In addition \(\text{tet}(U) \) has also been found in staphylococci but the mechanism is not fully understood.

\(\text{tet}(M) \) together with \(\text{tet}(K) \) are the most common genes conferring tetracycline resistance in *S. aureus*. \(\text{tet}(M) \) is widely distributed among both Gram-positive and Gram-negative bacteria and it has been found in 59 genera. This is probably due to the association of \(\text{tet}(M) \) with integrative and conjugative transposons, facilitating horizontal transfer. Particularly in Gram-positive streptococci and enterococci, \(\text{tet}(M) \) has been found associated with \(\text{Tn916/Tn1545} \)-like conjugative transposons which form the basis of a family of conjugative transposons that have an extremely broad host range. \(\text{tet}(M) \) associated with \(\text{Tn916} \) was originally identified in *Enterococcus faecalis* DS16 and \(\text{Tn1545} \) was identified in *Streptococcus pneumoniae*. Recently \(\text{tet}(M) \) was identified on a putative transposon \(\text{Tn5801} \) in *S. aureus* Mu50. \(\text{Tn5801} \) contains many open reading frames similar to \(\text{Tn916} \), but differs by using an integrase (\(\text{int} \)) different from the excisionase/integrase \(\text{(xis/int)} \) present in \(\text{Tn916} \) (Figure 1). Other conjugative transposons, like \(\text{Tn5397} \) and \(\text{CW459} \) have been found to harbour \(\text{tet}(M) \) in *Clostridium difficile* and *Clostridium perfringens*. In addition, \(\text{tet}(M) \) have also been found on different plasmids.

A limited number of studies concerning the diversity of the \(\text{tet}(M) \) gene have been performed. In streptococci and enterococci \(\text{tet}(M) \) has been found to be diverse and mainly present on \(\text{Tn916/Tn1545} \) like conjugative transposons whereas two different allele types of \(\text{tet}(M) \) from
Lactobacillus has been found to be located mainly on plasmids. Recently, Agersø et al. (2006) showed correlation between diversity of the tet(M) DNA sequence and their presence on Tn916, Tn5397 or plasmids in enterococci from different sources in Denmark. To our knowledge no one has studied the diversity of tet(M) and its association with mobile elements in S. aureus. A former study found only one out of thirty-four S. aureus strains to carry tet(M) on Tn916/Tn1545-like transposons. The aim of this study was to analyse sequence diversity of tet(M) in S. aureus from human and different animals mainly from Denmark, and thereby determine mobile elements associated with tet(M) in S. aureus.

Material and Methods

Strains

The 205 tetracycline resistant isolates used in this study (Table 1) were identified as S. aureus as previously described. The 94 human isolates from bacteraemia prospectively collected in Denmark, were selected to represent different phage types and time periods (1957-2002). All human isolates were tested for susceptibility to tetracycline, penicillin, gentamicin, streptomycin, erythromycin and methicillin by tablet diffusion on Danish blood agar as described by the manufacturer (Rosco Neosensitabs, Taastrup). Due to a change in the standard procedure, strains isolated after 1991 were additionally tested for susceptibility to fusidic acid, ciprofloxacin and rifampicin in the same way (Table 2).

Of the 111 animal isolates (Table 1), 39 poultry, 27 pig and 2 lamb isolates were diagnostic submissions to either The National Veterinary Institute or to The National Food Institute, Technical University of Denmark. One pig isolate (9b) was obtained from a healthy pig in 2007. All animal isolates were tested for susceptibility to tetracycline, penicillin, streptomycin, erythromycin, ciprofloxacin, spectinomycin, tiamulin, trimethoprim, ceftiofur, chloramphenicol, florfenicol and
sulphamethoxazole by use of sensititre method as described previously (Table 2). One pig isolate 9b was confirmed to be MRSA by mecA PCR.

Screening and sequencing of tet(M)

All 205 isolates were screened for tet(M) by PCR as described previously (Table 1). For all 41 tet(M) positive isolates three or four overlapping PCR fragments covering tet(M) including a downstream region were amplified and used as templates for sequencing. Different sequencing strategies were used in parallel as outlined in Figure 2. DNA Taq polymerase (Ampliqon, Denmark) was used for all PCR amplifications. Sequencing was performed by Macrogen, Korea. Primers 526, 540, 324, 525, 266, 323, 307, 323, 307 and 1756 were used (Table 3).

Detection of Tn916-like and Tn5801-like transposons

The presence of the int genes specific for Tn5801 was detected by PCR using primers 1811 and 1812 (product size 722 bp) and DNA Taq polymerase from Ampliqon. Tn916-like xis genes were detected by PCR as previously described. Tn916-xis screening PCR products from human isolates 8797 and 5377 were sequenced using amplification primers (327-328) and the Tn5801-int screening product from human isolate 1680 was sequenced with amplification primers (1811-1812). Primers are listed in Table 3.

Long PCR linking tet(M) to Tn916-like xis or Tn5801-like int was performed with Phusion™ High-Fidelity DNA Polymerase (Finnzymes, Finland) using condition as recommended by the manufacturer. Primers 328 and 804 (Table 3) were used for long PCRs linking tet(M) with Tn916-like xis. PCR conditions were 30 sec at 98°C followed by 30 cycles of 10 sec at 98°C, 30 sec at 51°C, 85 sec at 72°C and a final extension for 10 min at 72°C. Primers 709 and 1812 (Table 3) were used for long PCR linking Tn5801-like int with tet(M) using conditions of initial denaturation for 30 sec at 98°C followed by 30 cycles of 10 sec at 98°C, 30 sec at 61°C, 144 sec at 72°C and a final
extension for 10 min at 72 °C. The tet(M)-Tn5801-like int product from of human isolate 1680 was sequenced with primers 1812 and 1835-1840 (GenBank submission no. EU918655).

In all PCRs the reference strains E. faecalis DS16 and S. aureus Mu50 were used as positive control for the presence of Tn916- and Tn5801-like transposons, respectively. As negative control the reference strain containing the other transposon was used.

Phylogenetic analysis

GenBank was searched for full length tet(M) genes based on the definition that tet(M) genes share ≥80% similarity on the amino acid level. Fifty two unique gene sequences were selected to represent different species from different hosts. A Neighbor Joining (NJ) tree based on a multiple alignment of 41 sequences obtained in this study and 52 tet(M) genes from GenBank (1920 bp) was constructed in Clustal X and visualized by MEGA 3.1. The tree was rooted with the tet(O) gene (GenBank/EMBL/DDBJ accession nr. Y07780) as outgroup. Another tree based on the 450 bp region downstream of tet(M) was constructed in the same way. Sequences were compared pairwise with the EMBOSS program water used for local alignments.

spa and MLST typing

All tet(M) positive isolates were spa typed (Table 2) using primers and conditions recommended by SeqNet. The spa types were determined using BioNumerics 4.61 (Applied maths, Sint-Martens-Latem, Belgium). Two human and one pig isolate (1591, 34801 and 9b) were also MLST typed as recommended by MLSTnet.

Clustering of tet(M) versus spa types in clonal complexes

CC types were deduced from the spa types by using information available from the Ridom Spa Server and from MLSTnet. In cases where the CC type could not be deduced from the spa type
(isolate 1591, 34801 and 9b), the CC type was determined from the MLST type by using the
eBURSTv3 algorithm.39 Related \textit{spa} types within different CC types were revealed by using the
Minimum Spanning Tree method in BioNumerics, cut off distance ≤ 3.

\textbf{Filter mating}

Filter mating experiments were performed as described previously40 using nine human isolates
(1591, 1680, 21995, 34148, 34168, 34801, 35366, 4520, 8797) and five animal isolates (7413532-2,
7611472-1, 9877324-3, USA42, 9b) as donors and the two \textit{S. aureus} recipients, R1 (8794RF)41 and
R2 (RN4220RF).42 The detection limit of transconjugants and the rates of spontaneous mutations
were calculated for each of the mating experiment. In all experiments the donors tend to grow faster
than the recipient, therefore the transfer rates and the detection limits were calculated as
transconjugants per recipient. Transconjugants were selected on brain heart infusion agar plates
(Becton, Dickinson and Company, USA), supplemented with 8 mg/L of tetracycline, 12.5 mg/L of
rifampicin and 12.5 mg/L of fusidic acid. The numbers of donors and recipient were counted on
brain heart infusion agar plates supplemented with 8 mg/L of tetracycline or 12.5 mg/L of
rifampicin and 12.5 mg/L of fusidic acid, respectively. Transconjugants were further verified by \textit{spa}
typing and screened for \textit{tet}(M) by PCR. Long PCR linking \textit{tet}(M) to Tn916-like \textit{xis} or Tn5801-like
\textit{int} verified that \textit{tet}(M) was present on either Tn916- or Tn5801-like transposons in the
transconjugants.

\textbf{Results}

\textbf{Screening \textit{S. aureus} isolates for \textit{tet}(M)}

Out of 205 tetracycline resistant \textit{S.aureus} isolates, 20 human and 21 animal isolates were shown to
be positive for \textit{tet}(M) by PCR (Table 1). The highest prevalence of \textit{tet}(M) was found among
isolates from pigs with 60.7% \textit{tet}(M) positives compared to 21.3% in humans, 4.3% in cattle and 2.6% in poultry.

Sequencing of \textit{tet}(M)

The \textit{tet}(M) gene including a downstream region from 41 \textit{S. aureus} isolates were sequenced according to the strategies shown in Figure 2. Comparing all 41 \textit{tet}(M) gene sequences (1920 bp) revealed 6 unique sequence types, of which one type was sequenced with strategy 1 and the other five types were sequenced with either strategy 2a or 2b.

Phylogenetic analysis predicts mobile elements associated with \textit{tet}(M)

The result of the phylogenetic analysis is shown in Figure 3. The sequences fell into three groups. All staphylococci sequences including the 41 \textit{tet}(M) from \textit{S. aureus}, \textit{Tn5801 tet}(M) from \textit{S. aureus Mu50 (BA000017)} and \textit{Tn916 tet}(M) from \textit{E. faecalis DS16 (U09422)} fell into group II. \textit{Tn5397 tet}(M) from \textit{C. difficile (AF333235)} and two similar \textit{Tn5397-like tet}(M) from \textit{E. faecium} were contained in group I and \textit{Tn1545 tet}(M) from \textit{E. faecalis (X04388)} and other composite transposons (\textit{Tn2009} and \textit{Tn5251}) fell into group III.

Based on similarity, the 41 \textit{tet}(M) genes from \textit{S. aureus} (consisting of 6 sequence types) were divided into three subgroups within group II (Figure 3). Subgroups 1 and 2 were identical or highly related (98.8-100% similarity at DNA level) to \textit{tet}(M)-\textit{Tn916} from \textit{E. faecalis DS16}, however subgroup 2 formed an individual branch supported with a bootstrap of 100%. Sequences of subgroup 3 were identical to \textit{tet}(M) \textit{Tn5801} from \textit{S. aureus Mu50 (BA000017)}. This indicates that \textit{tet}(M) of subgroups 1 and 2 were located on \textit{Tn916-like transposons} and that \textit{tet}(M) sequences of subgroup 3 were located on the putative transposon \textit{Tn5801}. This was further supported by a phylogenetic tree based on the 450 bp region downstream of \textit{tet}(M) that divided the sequences into
two groups (data not shown). One group was identical or highly related to the downstream region of Tn916 (99.8-100%) and the second group was identical to the downstream region of Tn5801.

S. aureus tet(M) genes are located on Tn916-like and Tn5801-like transposons

The presence of tet(M) on Tn916-like transposons in subgroups 1 and 2 and on the putative transposon Tn5801 in subgroup 3 (Figure 3) was confirmed by PCR. All isolates from subgroup 1 and 2 were positive for Tn916-xis and negative for Tn5801-int and all isolates from subgroup 3 were positive for Tn5801-int and negative for Tn916-xis (data not shown). Two xis and one int PCR screening products from the human isolates 8797, 5377 and 1680 representing subgroup 1, 2 and 3 respectively were sequenced. Both xis sequences were 100% identical to the corresponding xis sequence from Tn916 in E. faecalis DS16 and the int sequence were 100% identical to the corresponding int sequence from Tn5801 in S. aureus Mu50.

For all isolates with tet(M), linking PCR confirmed that the Tn916-xis and Tn5801-int genes detected in the PCR screen were actually located in the same element as tet(M) (Figure 4A). The DNA sequence of tet(M)-int (GenBank accession no. EU918655) from human isolate 1680 (subgroup 3) had 99.9% similarity with the corresponding sequence in Tn5801 (BA000017). Thus tet(M) of subgroups 1 and 2 are located on Tn916-like elements and tet(M) of subgroup 3 is located on Tn5801-like elements.

Dissemination of tet(M) within S. aureus of human and animal origin

In Table 2, spa types and corresponding CC types are shown. Most animal isolates had spa type t034 except two pig isolates of spa type t011 and one pig isolate with spa type t571, all belonging to CC398. The human isolates had different spa types: t034 (CC398), t008, t037 and t051 (CC8), t065 (CC45), t078 (CC25), t318 and t964 (CC30) and t668 (CC5). Thus isolates of spa type t034 (CC398) were found both in different animals and in humans.
In order to compare how the different tet(M) genes may have been disseminated within and between different CC types of *S. aureus*, the tet(M) sequences were grouped according to their CC type (Figure 5). Figure 5 shows a clear correlation between different tet(M) sequence types and different CC types of *S. aureus*. Moreover, tet(M) of subgroup 3 was identical to tet(M)-Tn5801 from *S. aureus* Mu50 belonging to CC5, indicating horizontal transfer of Tn5801 between CC5 and CC8 (Figure 5C).

Horizontal transfer of Tn916- and Tn5801-like (Tn6014) transposons

To test whether the identified Tn916-like and Tn5801-like transposons were functional conjugative transposons, filter mating experiments with 14 selected isolates as donors and two *S. aureus* recipients were performed. The detection limits for the mating experiments were between 2.7×10^{10} to 1.5×10^{-9} transconjugants/recipient except for mating with donor 1591 and recipient R1 (8794) where the detection limit was 2.5×10^{-8} transconjugants/recipient. Spontaneous mutations to rifampicillin and fusidic acid were observed only for donor 8797 (1.4-1.9×10^{-8}) and donor 34801 (0.9-8.5×10^{-10}). Transconjugants conferring resistance to tetracycline, but not containing tet(M) were observed only in matings with donor 9877324-3 to both recipients (1×10^{-7} and 9×10^{-9} transconjugants/recipient, respectively).

Tn916-like tet(M) from the human isolates 34801 and 35366 from subgroup 1 were able to transfer to R1 (8794RF) at transfer rates of 1×10^{-9} transconjugants/recipient and 3×10^{-8} transconjugants/recipient, respectively. Transfer from isolate 35366 into R2 (RN4220RF) was also observed (1×10^{-9} transconjugants/recipient). Tn5801-like tet(M) of the human isolate 1680 from subgroup 3 was able to transfer to R2 (RN4220RF) with a transfer rate of 1×10^{-9} transconjugants/recipient (Figure 4B and 4C). This transfer was in addition to spa typing verified by a PFGE analysis showing the recipient R2 and the transconjugant (1680R2_4) to have the same PFGE pattern distinct of the donor (1680) after *Sma*I digestion (data not shown). The Tn5801-like
element from human isolate 1680 was therefore registered as a novel conjugative transposon, Tn6014 in the Transposon Nomenclature Database from the UCL Eastman Dental Institute, London (http://www.ucl.ac.uk/eastman/tn/).

Discussion

The screening of tetracycline resistant S. aureus isolates showed the highest prevalence of tet(M) among the tetracycline resistant pig isolates (60.7 %) and the lowest in tetracycline resistant poultry (2.6 %) and bovine-mastitis (4.4 %) isolates. All animal isolates belonged to CC398 that has recently emerged as a Methicillin-resistant clone in the Netherlands and other countries including Denmark. Beside the animal isolates four of the twenty one human isolates also belonged to CC398 and contained the same Tn916-like tet(M) gene as all the animal isolates. CC398 isolates are usually tetracycline resistant and a recent study detected tet(M) in all methicillin-resistant S. aureus (MRSA) CC398 studied from human and companion animals in Germany and Austria. This suggests that a Tn916-like tet(M) was integrated and adapted early in the evolution of the clone and may be disseminated vertically within CC398.

In our study one of the human CC398 isolates dates back to 1992. The two CC398 isolates from cattle are from the beginning of the 1990s and the turkey CC398 isolates is from 1998. The rest of CC398 were isolated between 2000 and 2008. Thus already in the early 1990s inter-species transmission of CC398 may have occurred. Whether the high occurrence of CC398 among the pig isolates found in this study reflects that pigs are the main reservoir for CC398 tet(M) is unknown.

Sequence analysis divided the sequenced tet(M) into three subgroups corresponding to two different transposons. tet(M) of subgroup 1 and 2 were located on Tn916-like transposons and subgroup 3 was located on Tn5801-like transposons. Subgroup 1 contained human isolates from different spa types (and phage types) and all animal isolates from the time span 1959-2007. The sequence variations of tet(M) within subgroup 1 correlated with different CC types of S. aureus (see
Figure 5A) which supports the general idea that *S. aureus* of different lineages are not very good at sharing DNA. Subgroup 2 formed an individual branch with five identical *tet*(M) sequences, all from human isolates of phage type 94/96 isolated between 1970-1992. All were shown to have the same *spa* type (t078) belonging to CC25. Thus *tet*(M) of subgroup 2 appears to have been integrated in this clone over 30 years ago without changing. PCR mapping of the elements in subgroup 2 were of expected size (data not shown), indicating that all the ORFs necessary to conjugate were present. Whether or not this new Tn916-like transposon is functional is however not clear. Subgroup 3 consisted of seven isolates from 1957-2000 with identical *tet*(M), different phage types and *spa* types all belonging to CC8. Comparing the isolates within this group shows a correlation between *spa* type and resistance pattern (see Table 2). The three isolates from *spa* type t037 (all from 2000) were resistant to the same seven antimicrobial agents including Methicillin and were suspected to be from the same outbreak. The two other *spa* types in this group, t008 and t051 (1957-1963) are clonally related and are only resistant to 3 and 5 agents respectively, the latter was Methicillin-resistant. These differences may be time dependent or reflect resistance profiles in different sub-clones of CC8.

As shown by the phylogenetic tree in Figure 3, *S. aureus* *tet*(M) sequences belonging to subgroups 1A, 1C and 3 were identical to *tet*(M) of *Streptococcus agalactiae* (AAJQ1000009), Tn916-*tet*(M) from *E. faecalis* DS16 (U09422) and to *tet*(M) found in *Streptococcus agalactiae* COH1 (NZ_AAJR01000021), respectively. This indicates horizontal transfer of *tet*(M) from subgroup 1 and subgroup 3 between *S. aureus* and other Gram-positive species of enterococci and streptococci. Previously horizontal transfer of Tn916-like *tet*(M) from *Bacillus cereus* group into *S. aureus* has been shown. Clustering of CC *spa* types versus *tet*(M) sequences type suggested that horizontal transfer of Tn5801 between different CC types of *S. aureus* has occurred.
The filter mating experiment showed that the Tn916-like element from subgroup 1A (CC398) could be transferred into both recipient stains (8794RF, CC121 and RN4220RF, CC8) whereas the Tn916-like element from subgroup 1D (CC5) was only transferred into one of the recipient strains (8794RF, CC121). The Tn5801-like element, Tn6014 from subgroup 3 (CC8) was transferred into the other recipient strain (RN4220RF, CC8). The new tet(M)-like elements of subgroup 2 did not transfer into any of the recipients. Although, both recipients are known to be very good in taking up foreign DNA, transconjugants were obtained with very low frequencies. Recently the restriction-modification system, SauI was suggested to control horizontal gene transfer between S. aureus of different lineages.48 RN4220RF was shown to have a mutation in this system making it able to take up DNA from different CC types. However, in our study RN4220RF only received tet(M) from two of the 14 tested donors which indicates that other factors may also play a role or that transfer occurs at rates below our detection limit.

Staphylococci tet(M) were only located in part of the phylogenetic tree associated with the well characterized conjugative transposon Tn916 and with Tn5801 described in S. aureus Mu50 and Mu314, 49 (group II, Figure 3). tet(M) from other Gram-positive bacteria were distributed in the whole tree and were besides Tn916-like elements associated with Tn5397 (group I) and/or composite transposons like Tn1545, Tn2009 and/or Tn5251 (group III). Moreover, tet(M) from E. faecium (DQ223243 and DQ223244) has also been found on plasmids (group I).21 Thus tet(M) from S. aureus appear to be less diverse than tet(M) from other Gram-positive bacteria.

The predicted mobile elements associated with tet(M) in S. aureus from different origins were confirmed experimentally by long PCR. The same approach was also used successfully in a previous study of the diversity of tet(M) among Enterococci.21 Thus in general tet(M) appear to be more related to its mobile element than to the host species, however module exchange between transposons and recombination within tet(M) may also have occurred.10, 21 Module exchange seems
to be the case for putative transposon CW459tet(M) from *Clostridium peringens*.\(^1\) In this transposon tet(M) is highly related to Tn916-tet(M) whereas the rest of the transposon sequence is more related to Tn5801.\(^2\)

In conclusion, we have used the diversity of the tet(M) gene to determine associated mobile elements in *S. aureus* from human and different animal origin. *S. aureus* of human origin was shown to contain diverse tet(M) genes located on Tn916-like and Tn5801-like conjugative transposons that corresponded with different CC types. *S. aureus* of different animal origin contained one specific type of tet(M) located on Tn916-like elements, all belonging to CC type 398. This is the first report showing that a Tn5801-like element, Tn6014 can transfer between *S. aureus* isolates.

Acknowledgements

We want to thank Maria Louise Johannsen, Jacob Dyring Jensen and Hanne Mordhorst for excellent technical assistance. Part of this work was presented as a poster at the 47th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), 2007 and at the 1st International ASM meeting on Antimicrobial Resistance in Zoonotic bacteria and foodborne pathogens, 2008.

Funding

This study was founded by a grant from the The Danish Research Council for Technology and Production Sciences (274-05-0117).

Transparency declarations

None to declare
Reference

16. Roberts AP, Johanesen PA, Lyras D, et al. Comparison of Tn5397 from *Clostridium difficile*, Tn916 from *Enterococcus faecalis* and the CW459tet(M) element from *Clostridium perfringens* shows that they have similar conjugation regions but different insertion and excision modules. *Microbiology* 2001; 147: 1243-51.

Figure 1: Comparison of the 18 kb conjugative transposon Tn916 (U09422) and the 25 kb putative transposon Tn5801 (BA000017/NC002758). Besides tet(M) (dark grey arrows) they both consist of 3 structural domains containing genes associated with conjugation, regulation (light grey arrows) and excision/integration (dotted arrows).\(^{11,15,50}\) Both elements contain an integrase (int) gene, however these int genes are very different. In addition, Tn916 also contains an annotated excisionase (xis) gene (black arrow). Tn5801 contains several open reading frames (white arrows) whose functions are unknown. sav415 may however encode a transposase.\(^{15}\) The relation between open reading frames of Tn916 and Tn5801 are shown in percent identity on nucleotide level calculated with the EMBOSS program water.\(^{34}\)

Figure 2.: Amplification and sequencing strategy for tet(M). Top: The tet(M) gene sequence including a downstream region. Primers used for amplification and sequencing are illustrated with arrows. Bottom: Two different sequencing strategies using different combination of primers. Strategy 1: Sequences from 7 human isolates (213, 229, 1680, 1742, 33597, 34148, 34168) were obtained. Strategy 2a: 3 human, 8 pig, 1 lamb and 1 bovine isolate (22034, 35414, 35679, 9b, 7215311, 7311242, 7413093-4, 7413714-1, 7512986-1, 7611472-1, 7611995-1, 7612628-4, sw356). Strategy 2b: 10 human, 9 pig, 1 turkey and 1 bovine isolate (617, 1591, 4520, 4865, 5331, 5377, 8797, 21995, 35801, 35366, 7215190-1, 7312330-1, 7412791, 7413532-2, 7413727, 74140355-2, 7512166-1, 7611280, 7711730-1, 9877324-3, usa42).

Figure 3: Phylogenetic gene tree of tet(M). Bootstrap values are indicated at branch points (out of 1000 generated NJ trees). Group I is supported by a bootstrap value of 87.8%, group II by a
bootstrap value of 48.7% at the first branching and 93.7% at the second branching and group 3 by a
bootstrap value of 99.4%.

Figure 4: PCR products linking *tet* (M) to Tn916-like *xis* and Tn5801-like *int* genes with the
expected size of 2835 bp and 4820 bp respectively. **A:** A representative from every *tet* (M) type
from different origins are shown. Lane 1: 9877324-3 (turkey), 2: USA42 (cattle), 3: 7611472-1
(lamb), 4: 9b (pig), 5: 21995 (human), 6: 617 (human), 7: 8797 (human), 8: 34801 (human), 9: 4520
(human), 10: positive control (*E. faecalis* DS16), 11: negative control (*S. aureus* Mu50), 12: 1680
(human), 13: positive control (*S. aureus* Mu50), 14: negative control (*E. faecalis* DS16). **M:** Gene
Ruler 1Kb ladder from Fermentas. **B:** Transconjugants (TC), donors (D) and recipients showing
horizontal transfer of Tn916-like transposons. Lane 1: 34801_1_R1 (TC), 2: 34801 (D), 3:
35366_1_R1 (TC), 4: 35366_1_R2, 5: 35366 (D), 6: R1 (8794RF), 7: R2 (RN4220RF), 8: positive
control (*E. faecalis* DS16), 9: negative control (*S. aureus* Mu50). **C:** TC, D and recipient showing
horizontal transfer of the Tn5801-like transposon Tn6014. Lane 1: 1680R2_4 (TC), 2: 1680 (D), 3:
R2 (RN4220RF), 4: positive control (*S. aureus* Mu50), 5: negative control (*E. faecalis* DS16).

Figure 5: CC *spa* type clustering versus different *tet* (M) sequence types in *S. aureus*. Predicted
horizontal gene transfer of *tet* (M) is illustrated by an arrow. Related *spa* types are illustrated with a
black line: *spa* type t034 is related to t011 by a deletion of two repeats in t011 compared to t034.
Furthermore, t034 is related to t571 by a deletion of one repeat in t571 compared to t034. *spa* type
t051 is related to t008 by a deletion of one repeat in t008 compared to t051. *spa* types t964 and t318
shared 8 out of their 9 or 10 repeats, respectively and one repeat varies by one substitution.
Table 1: Origin, source, phage types, country, year and numbers of *S. aureus* isolates screened for \textit{tet}(M) by PCR and the number found positive for \textit{tet}(M).

<table>
<thead>
<tr>
<th>Source</th>
<th>Humana</th>
<th>Pig</th>
<th>Poultry</th>
<th>Sheep</th>
<th>Cattleb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phage types</td>
<td>80 complex, gr1, gr2, gr3, 83A, 94/96, 95, MIX, NI</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Country/Region</td>
<td>Denmark</td>
<td>Denmark</td>
<td>Denmark</td>
<td>Denmark</td>
<td>Europe & US</td>
</tr>
<tr>
<td>Isolates</td>
<td>94</td>
<td>28</td>
<td>39</td>
<td>2</td>
<td>42 51</td>
</tr>
<tr>
<td>\textit{tet}(M) positive</td>
<td>20 (21.3%)</td>
<td>17 (60.7%)</td>
<td>1 (2.6%)</td>
<td>1 (50%)</td>
<td>2 (4.3%)</td>
</tr>
</tbody>
</table>

a bacteraemia, b mastitis, ND: Not determined
Table 2. *S. aureus* strains with *tet(M)* used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Source/year</th>
<th>Other resistance phenotypes</th>
<th>Mobile element carrying tet(M)</th>
<th>spa type/CC types</th>
<th>GenBank accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>213</td>
<td>Human/1957</td>
<td>Pen*, St*, Ery*</td>
<td>Tn5801-like</td>
<td>008/CC8</td>
<td>EU918651</td>
</tr>
<tr>
<td>229</td>
<td>Human/1957</td>
<td>Pen*, St*, Ery*</td>
<td>Tn5801-like</td>
<td>008/CC8</td>
<td>EU918652</td>
</tr>
<tr>
<td>1680</td>
<td>Human/1963</td>
<td>Pen*, St*, Ery*, Mel*</td>
<td>Tn5801-like</td>
<td>051/CC8</td>
<td>EU918655</td>
</tr>
<tr>
<td>1742</td>
<td>Human/1963</td>
<td>Pen*, St*</td>
<td>Tn5801-like</td>
<td>008/CC8</td>
<td>EU918656</td>
</tr>
<tr>
<td>4520</td>
<td>Human/1970</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>078/CC25</td>
<td>EU918657</td>
</tr>
<tr>
<td>4865</td>
<td>Human/1970</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>078/CC25</td>
<td>EU918658</td>
</tr>
<tr>
<td>5331</td>
<td>Human/1971</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>078/CC25</td>
<td>EU918659</td>
</tr>
<tr>
<td>5377</td>
<td>Human/1971</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>078/CC25</td>
<td>EU918660</td>
</tr>
<tr>
<td>34801</td>
<td>Human/2001</td>
<td>Pen*, Fus*</td>
<td>Tn916-like</td>
<td>688/CC5*</td>
<td>EU918667</td>
</tr>
<tr>
<td>8797</td>
<td>Human/1977</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>065/CC45</td>
<td>EU918661</td>
</tr>
<tr>
<td>617</td>
<td>Human/1959</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>318/CC30</td>
<td>EU918653</td>
</tr>
<tr>
<td>1591</td>
<td>Human/1962</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>964/CC30*</td>
<td>EU918654</td>
</tr>
<tr>
<td>21995</td>
<td>Human/1992</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918662</td>
</tr>
<tr>
<td>35366</td>
<td>Human/2001</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918668</td>
</tr>
<tr>
<td>35414</td>
<td>Human/2001</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918669</td>
</tr>
<tr>
<td>35679</td>
<td>Human/2001</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918670</td>
</tr>
<tr>
<td>9877324-3 Tureky/1998</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918671</td>
<td></td>
</tr>
<tr>
<td>USA42</td>
<td>Cattle</td>
<td>Pen*, St*, Ery*, Chi*, Sul*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918673</td>
</tr>
<tr>
<td>Sw356</td>
<td>Cattle</td>
<td>Str*, Sp*, Tmp*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918672</td>
</tr>
<tr>
<td>7611472-1 Lamb/2004</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918679</td>
<td></td>
</tr>
<tr>
<td>7215190-1 Pig/2000</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918674</td>
<td></td>
</tr>
<tr>
<td>7215311-1 Pig/2000</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918675</td>
<td></td>
</tr>
<tr>
<td>7311242-1 Pig/2001</td>
<td>Ery*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918676</td>
<td></td>
</tr>
<tr>
<td>7312330-1 Pig/2001</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918677</td>
<td></td>
</tr>
<tr>
<td>7412791-1 Pig/2002</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918678</td>
<td></td>
</tr>
<tr>
<td>7413093-4 Pig/2002</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918679</td>
<td></td>
</tr>
<tr>
<td>7413332-2 Pig/2002</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918680</td>
<td></td>
</tr>
<tr>
<td>7413714-1 Pig/2002</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918681</td>
<td></td>
</tr>
<tr>
<td>7413727-1 Pig/2002</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918682</td>
<td></td>
</tr>
<tr>
<td>7414035-2 Pig/2002</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918683</td>
<td></td>
</tr>
<tr>
<td>7512166-1 Pig/2003</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918684</td>
<td></td>
</tr>
<tr>
<td>7512986-1 Pig/2003</td>
<td>Ery*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918685</td>
<td></td>
</tr>
<tr>
<td>7611280-5 Pig/2004</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918686</td>
<td></td>
</tr>
<tr>
<td>7611995-1 Pig/2004</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918688</td>
<td></td>
</tr>
<tr>
<td>7612628-4 Pig/2004</td>
<td>Ery*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918689</td>
<td></td>
</tr>
<tr>
<td>77113730-1 Pig/2005</td>
<td>Pen*</td>
<td>Tn916-like</td>
<td>034/CC398</td>
<td>EU918690</td>
<td></td>
</tr>
</tbody>
</table>

*: Determined by MLST

b: Isolates suspected to be from the same outbreak.

Pen*: penicillin, St*: streptomycin, Gen*: gentamicin, Ery*: erythromycin, Met*: methicillin, Cip*: ciprofloxacin,

Chi*: chloramphenicol, Sp*: spectinomycin, Sul*: sulphamethoxazo, Tia*: tiamulin, Tmp*: trimethoprin, Cef*: Cefitfur,

Fus*: fusidic acid

532

533
Table 3. Primers used in this study

<table>
<thead>
<tr>
<th>Primer number/name</th>
<th>Sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>266 (Tet(M)-1)</td>
<td>5'-GTTAAATAGTTCTTGGAG-3'</td>
<td>27</td>
</tr>
<tr>
<td>267 (Tet(M)-2)</td>
<td>5'-CTAAGATATGGCTCTAACA-3'</td>
<td>27</td>
</tr>
<tr>
<td>327 (Tn916-1)</td>
<td>5'-GCCATGACCTATCTTTATA-3'</td>
<td>21</td>
</tr>
<tr>
<td>328 (Tn916-2)</td>
<td>5'-CTAGATTGCGTCCAA-3'</td>
<td>29</td>
</tr>
<tr>
<td>1811 (intew459-1)</td>
<td>5'-CCGATATTGAGCCTATTGATGTG-3'</td>
<td>This study</td>
</tr>
<tr>
<td>1812 (intew459-2)</td>
<td>5'-GTCCATACGTTCTAAAGATCGTC-3'</td>
<td>This study</td>
</tr>
<tr>
<td>709 (TetM sekvens 6)</td>
<td>5'-TCGAGGTCCGTCTGAAC-3'</td>
<td>This study</td>
</tr>
<tr>
<td>804 (TET-Down-1)</td>
<td>5'-GTCGTCAAAATAGTCGGATA-3'</td>
<td>This study</td>
</tr>
<tr>
<td>323 (TetM-up)</td>
<td>5'-CTGGCAAAACAGTTCC-3'</td>
<td>21</td>
</tr>
<tr>
<td>324 (TetM-down)</td>
<td>5'-TAGCTCATGGATGC-3'</td>
<td>This study</td>
</tr>
<tr>
<td>526 (tet M upstream)</td>
<td>5'-TGAATGGGAAATC-3'</td>
<td>21</td>
</tr>
<tr>
<td>525 (tet M sekvens-1)</td>
<td>5'-TACTTTCCCTAAAGAAAGAATG-3'</td>
<td>21</td>
</tr>
<tr>
<td>540 (Tet M seq-3)</td>
<td>5'-GCAGAAATCAGTAAATGTC-3'</td>
<td>21</td>
</tr>
<tr>
<td>307 (Revers TetM-2)</td>
<td>5'-TTGTAGGAGCCATATCTTAG-3'</td>
<td>21</td>
</tr>
<tr>
<td>1835 (F1F)</td>
<td>5'-CGTGCAAATCCTAGGTATG-3'</td>
<td>This study</td>
</tr>
<tr>
<td>1836 (F2F)</td>
<td>5'-CATGAAGGAGTGTAAGAATG-3'</td>
<td>This study</td>
</tr>
<tr>
<td>1837 (F2R)</td>
<td>5'-GTTGTATACGTTCTGGAAAG-3'</td>
<td>This study</td>
</tr>
<tr>
<td>1838 (F3F)</td>
<td>5'-GACCTCTTATACATGTC-3'</td>
<td>This study</td>
</tr>
<tr>
<td>1839 (F3R)</td>
<td>5'-CATATCTCGTCTGTCATGC-3'</td>
<td>This study</td>
</tr>
<tr>
<td>1840 (F4)</td>
<td>5'-GCTAGTGCTTCCATTAAGGA-3'</td>
<td>This study</td>
</tr>
</tbody>
</table>
Figure 1

Tn5801

Tn916

conjugation
tetracycline resistance regulation recombination

73.3% 61.9% 61.1% 68.0% 97.7% 72.8% 38.6%

SAV413 SAV414 SAV415

SAV406

61.9% 73.3% 61.1% 97.7%

SAV404

SAV410

68.0%

SAV393

38.6%
Figure 2

$tet(M): 1920 \text{ bp}$

Strategy 1

- 526-540
- 324-525
- 266-323
- 307-1756

Strategy 2a

- 526-540
- 324-525
- 709-323
- 307-1756

Strategy 2b

- 526-525
- 709-323
- 307-1756
Figure 4

A. Subgroup 1
1A-D: turkey, cattle, lamb, pig, human

Subgroup 2

Subgroup 3

tet(M)-Tn916-like xis

tet(M)-Tn5801-like int

B. TC, D R1, R2

C. TC, D, R2