High-resolution bioactivity profiling combined with HPLC-HRMS-SPE-NMR: accelerated identification of bioactive constituents in food and medicinal plants

Stærk, Dan

Publication date: 2015

Citation for published version (APA):
High-resolution bioactivity profiling combined with HPLC-HRMS-SPE-NMR: accelerated identification of bioactive constituents in food and medicinal plants

D. Staerk

Abstract

Purpose: Foods and medicinal plants are rich sources of bioactive constituents, but identification of these using bioactivity-guided fractionation is a time-consuming and laborious task. The purpose of our research is to advance profiling of bioactive constituents in foods and medicinal plants by analytical-scale microfractionation in 96-well plates followed by bioassaying, i.e., microplate-based high-resolution bioactivity profiling [1,2].

Experimental description: Crude methanol or ethyl acetate extracts of selected food sources and medicinal plants were assessed for α-glucosidase-, α-amylase-, and aldose reductase inhibitory activity as well as radical scavenging activity. Extracts with inhibitory activities below 20 µg/ml were subjected to microplate-based high-resolution bioactivity profiling for targeting subsequent HPLC-HRMS-SPE-NMR analyses towards bioactive constituents only. The experimental workflow is shown in Figure 1, and can be divided into i: analytical-scale HPLC separation, ii: micro-fractionation into 96-well microplates followed by aldose reductase inhibition assay, α-glucosidase inhibition assay, and ABTS** reduction assay, iii: results from bioassays plotted against their respective retention time to produce triple high-resolution biochromatogram, iv: identification of bioactive analytes from biochromatogram, v: HPLC-HRMS-SPE-NMR analysis targeted bioactive constituents, and vi: structural identification of bioactive constituents.

Results: High-resolution profiling of foods (seaweed, vegetables, spices, etc) and medicinal plants (e.g., traditional Chinese medicine) followed by structural characterization using HPLC-HRMS-SPE-NMR will be presented. This allowed identification of, e.g., flavonoids, flavonoid glycosides, stilbenoids, stilbenoid glycosides, unsaturated fatty acids, N-p-comaroyloctopamine, and N-p-feruloyltyramine as antidiabetic principles in the investigated species [1-3].

Conclusions: High-resolution bioactivity profiling combined with HPLC-HRMS-SPE-NMR is an efficient technique for identification of known as well as new compounds direct from crude extracts of foods and medicinal plants.

Key Words: High-resolution bioassay, HPLC-HRMS-SPE-NMR, antidiabetic, functional food, medicinal plant.

Acknowledgements: Carlsbergfondet and the Danish Agency of Science, Technology and Innovation are acknowledged for financial support.

Correspondence: Professor Dan Staerk, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen. E-mail: ds@sund.ku.dk.