Immunization strategy for induction of local genital immunity in the minipig model of human genital Chlamydia infection

Lorenzen, Emma Kathrine; Follmann, Frank; Bøje, Sarah Henriette; Erneholm, Karin Susanne; Olsen, Anja W.; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter

Publication date:
2015

Document version
Peer reviewed version

Citation for published version (APA):
Immunization strategy for induction of local genital immunity in the minipig model of human genital Chlamydia infection

Emma Lorenzen1,2, Frank Follmann1, Sarah Bøje1,2, Karin Erneholt1,2, Anja W. Olsen1, Jørgen S. Agerholm1, Gregers Jungersen1, Peter Andersen1.

1Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark. emal@ssi.dk
2Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Introduction

International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity.

We used a promising minipig model with a reproductive cycle and genital tract very similar to humans, to evaluate immunization strategies, with intramuscular priming and intranasal boosting.

We used a multi-subunit vaccine consisting of C. trachomatis antigens capable of inducing neutralizing antibodies and a broad T cell response, formulated with the Th1/Th17 promoting adjuvant CAF01.

Methods

Animals: 18 female sexually mature Göttingen Minipigs (3 groups with 6 pigs in each).

Vaccine: Recombinant subunit fusion proteins (Hirep1 and CTH93) with fragments of the VD4 region of MOMP capable of inducing neutralizing antibodies and a broad T cell response formulated with the Th1/Th17 adjuvant CAF01.

Vaccinations: Intramuscular (IM) and intranasal (IN), (see the immunization schedule).

Samples: Blood samples, nasal swabs and vaginal swabs.

Analyses: ELISA with vaccine antigens, detecting IgG, IgA and secretory component (SC). Restimulation of PBMCs and evaluation of the IFN-γ and IL-17 content in the supernatant. All immune responses are shown against the vaccine antigen Hirep1.

Results

Following genital challenge infection an accelerated and highly significant genital IgA response was mounted from day 5 pi in the IN boosted group (Fig. 1), which correlated with accelerated bacterial clearance on day 3 pi in the IN boosted (Fig. 2).

Conclusions

We demonstrate that an immunization strategy with IM priming and IN boosting, results in an accelerated and highly significant secretory IgA response in the genital tract of female minipigs following genital challenge. The genital IgA response was correlated with enhanced clearance of C. trachomatis infection, suggesting that IgA in the minipig model is involved in protection against C. trachomatis.