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Abstract 

The Taylor approximation to the general n-input constant elasticity of substitution 
(CES) function is presented and compared to Kmenta’s well-known result for n=2. It 
is shown that the approximation to the n-input CES function is a translog function as 
for n=2, but that the restrictions on the translog parameters are more complex than 
in the general case. Bias and consistency of the Taylor approximation to the general 
n-input CES function are discussed and it is argued that the approximation will only 
give reliable results for a very limited regime of CES parameters and input values. 
 
 
 

                                                
1 I wish to thank Peter Allerup, Danish University of Education, Hans Frost, Danish Research Insti-
tute of Food Economics and Niels Vestergaard, University of Southern Denmark, for valuable dis-
cussions and support on the work presented in the paper. 
 
 



 
2 Constant Elasticity of Substitution Production Function, FØI 

1. INTRODUCTION 

Within fishery economics much attention is currently being paid to establishing pro-
duction relationships between landings (weight or value) and effort exerted, such as 
days at sea, number of crew members, vessel characteristics etc. Proper understanding 
of such relationships is important when discussing relevant management initiatives 
with the aim to sustain the fish resource. 
 
Investigation of production relationships divides into two tracks, non-parametric and 
parametric. The former focuses on the Data Envelopment Analysis (DEA), which is 
gaining increasing attention as a non-parametric tool for estimating excess capacity in 
fisheries. The latter, the parametric approach, focuses on production functions and 
production frontiers, the former of which is addressed in this paper.  
 
A production function assumes a parametric functional relationship between output 
(landings) y and input effort vector x and, if available, fish stock B, y=f(x,B). Early 
investigations of such relationships dates back to Shaefer (1957) who proposed a lin-
ear relationship between catch (y) as the dependent variable and effort (E) and fish 
stock (B) as the explanatory variables, i.e. a relationship y=qEB, where q is the 
catchability coefficient. This form has in later work been recognised as being rather 
restrictive (Hanneson, 1983), and the Schaefer form has thus been extended to several 
different forms, of which the Cobb-Douglas (CD), the Constant Elasticity of Substitu-
tion (CES) and the translog are all well-known and widely employed. Of these the CD 
form is a special case of the CES form. The interest for these two forms is associated 
with their simplicity, the straightforward interpretation of the parameters of the func-
tions and hence with their direct applicability in policy matters (Varian, 1992). 
 
The translog function is more general than the CD and CES, as it allows for varying 
returns to scale and varying factor elasticity of substitution. The translog form may 
generally be viewed as a second order Taylor approximation to an arbitrary produc-
tion form (Heathfield and Wibe, 1987), and does as such cover a wide variety of pro-
duction functions, the reason why the translog function is gaining increased attention 
and is widely employed. 
 
While the translog form and the logarithm of the CD are both linear, the CES form is 
on the contrary non-linear and cannot be linearised analytically. Estimating functional 



 

 
 Constant Elasticity of Substitution Production Function, FØI 3

parameters for the CES function thus includes non-linear fitting techniques, which are 
generally complicated.  
 
Kmenta (1967A) presents a linear approximation to the two-input CES function, em-
ploying Taylor approximation. His result is a translog form fulfilling certain restric-
tions on the translog parameters. Kmenta’s approximation is widely applicable as the 
two-input case is often encountered in production theory, the inputs being capital and 
labour. 
 
Within fishery economics more than two inputs are however often present, as the ef-
fort may include several different factors. It is thus often necessary to consider the n-
input forms of the above-described production functions2, such as the CD, the CES 
and the translog form. In this respect the question has been raised whether the Kmenta 
translog approximation to the two-input CES function is directly applicable in the n-
input case. As it has not been possible to find any literature on this subject, a general 
analysis of the Taylor approximation to the n-input CES function has been performed, 
and it has been shown that the result is a translog function, as in the two-input case, 
but with more general restrictions on the translog parameters than for the two input 
case. This general result is of course consistent with Kmenta’s result when n is set 
equal to 2. 
 
The purpose of this paper is to present this Taylor approximation to the general n-
input CES function. A short introduction to two- respectively n-input elasticities of 
substitution and to the two respectively n-input CES functions will be given, followed 
by at short presentation of Kmenta’s result, leading to the core result of the paper, the 
first order Taylor approximation to the n-input CES function, the proof of which may 
be found in the appendix. 
 
The paper is concluded with at discussion of the bias and consistency of the general 
translog approximation to the CES function, and it will be shown that the approxima-
tion only gives reasonable results in a very limited regime of the CES parameters as 

                                                
2 This has e.g. been the case in the EU-project ‘The Relationship Between Fleet Capacity, Landings, 
and the Component Parts of Fishing Effort’ (DGI-FISH, Study 99/65), for which the general pur-
pose has been to fit different production forms to observed landings and employed effort, where the 
effort include several different factors, such as days at sea, maximum horsepower, number of crew 
members etc.  
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well as range of input values, thus indicating that caution should generally be exerted 
when employing approximations to the CES function. 
 
The paper is divided into 7 sections and one appendix. Section 2 gives a general in-
troduction to the concept of elasticity of substitution, and discusses the two-input case 
against the multiple input case. Section 3 presents the constant elasticity of substitu-
tion (CES) functions for the two-input respectively the multiple input case. Section 4 
presents Kmenta’s translog approximation to the two-input CES function, while sec-
tion 5 gives the main result of the paper, namely the general translog approximation 
to the multiple input CES function. Moreover this section presents an alternative and 
easier, but still linear, testing procedure. Section 6 presents the results of an analysis 
of bias and consistency of the translog approximation to the CES function, while sec-
tion 7 sums up the work. 

2. ELASTICITY OF SUBSTITUTION 

The degree of substitutability between the input factors of a production is an essential 
concept within production theory. Hicks (1932) was the first to introduce and discuss 
a dimensionless measure of substitutability of the input factors, the so-called elasticity 
of substitution, for a two-factor production. The Hicks elasticity of substitution is de-
fined as the relative change in the proportion of the two input factors as a function of 
the relative change of the corresponding marginal rate of technical substitution. The 
elasticity of substitution for a two-input technology is as such defined as: 
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where x1 and x2 are the input values and MP1 and MP2 are the marginal products of 
the technology. σ is thus the rate at which the relative input proportion will change 
given a small relative change in the rate of which the two inputs must substitute for 
each other in order to keep output fixed.  
 
It is straightforward to show that when the technology is described by the production 
function y=f(x1,x2), equation (1) reduces to: 
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where fi is the i’th derivative of f ( ixf ∂∂ ),  fij the ij’th derivative ( ji xxf ∂∂∂ 2 ) 
and |H| is the determinant of the Hessian matrix: 
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When more than two inputs are present in the technology there exists no ‘empirical’ 
formula for the elasticity of substitution. Chambers (1988) lists three alternatives, 
which are the most widely used and well known in the literature: 
 

i. The direct elasticity of substitution (DES). 
ii. The Allen Partial Elasticity of substitution (AES). 

iii. The Morishima elasticity of substitution (MES). 
 
The direct elasticity of substitution (DES) is defined by: 
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i.e. Hick’s two-input elasticity of substitution extended directly to the n-input case. 
This definition reduces to the two-input definition of the elasticity of substitution 
(equation 2) when n=2. As mentioned by Chambers (1988) this measure should be 
interpreted as a short-run elasticity, since it measures the degree of substitutability be-
tween factors i and j, keeping all other factors fixed. As such this measure has only 
limited use, as it does not allow for adjustment of all other factors when one factor is 
changed (see also Blackorby and Russel, 1989). 
 
The Allen partial elasticity of substitution between two input factors xi and xj of the n-
input production is defined by: 
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where |H| is the determinant of the general Hessian matrix: 
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and Hij is the co-factor of the element fij in H. Comparison with equation (2) shows 
that when n=2 the Allen partial elasticity reduces to the Hicks definition for two in-
puts. Blackorby and Russel (1989) criticise this measure for being inadequate even 
though it tries to remedy the drawbacks of the DES measure. They show that the AES 
measure does not preserve the properties of the original Hicks measure (equation 1), 
such as providing information on relative factor shares etc.  
 
The Morishima elasticity of substitution (MES) is defined as: 
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Blackorby and Russel (1989) argue that this measure does preserve the properties of 
the original Hicks measure and should thus be preferred to the DES and the AES 
measures. 

3. THE CES FUNCTION 

An important question is which algebraic form a production function must possess in 
order to have constant elasticity of substitution between any two input factors. Arrow 
et al. (1961) have solved this problem for the two input case, i.e. for the Hicks elastic-
ity of substitution measure, and the resulting function is the well-known Constant 
Elasticity of Substitution (CES) production function, the form of which is generally 
accepted as being the CES form.  
 
Uzawa (1962), McFadden (1963) and Blackorby and Russel (1989) have derived the 
CES forms for the three different measures of n-input elasticity of substitution de-
scribed above. The Blackorby-Russel form (constant Morishima elasticity of substitu-
tion) is a direct generalization to n inputs of the Arrow et al. two-input form, while the 
Uzawa and McFadden forms are more complicated but may be reduced to the Black-
orby-Russel form as a special case. All three CES forms will be described in this sec-
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tion, but focus will in the remains of the paper be on the Blackorby-Russel CES func-
tion. 
 
Arrow et al. (1961) show that a necessary and sufficient condition for the elasticity of 
substitution to be constant in the two-input case (equation 1 and 2) is that the produc-
tion function has the form: 
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For this function the (constant) elasticity of substitution between the input factors is 
given by )1/(1 ρσ += , when σ≠1. Notice that the two input CES function reduces 
to the Cobb-Douglas form when σ=1. 
 
McFadden (1963) shows, that a necessary and sufficient condition for an n-input pro-
duction function to have constant elasticity of substitution under DES (equation 4) is 
that the function has the form: 
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Where the n input-variables are partitioned into S distinct sets Ns (not necessarily with 
equal numbers of elements), for which ),,,( 21 nss xxxN �� = . Furthermore 
McFadden shows, that when the S partitions contain an equal number of elements m, 
equation (9) reduces to the more simple form: 
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The constant DES elasticity of substitution of the McFadden form between any two 
inputs is given by  
 

)1/(1 ρσ +=DES
ij . 

Uzawa (1962) shows, that a necessary and sufficient condition for an n-input produc-
tion function to have constant elasticity of substitution given the AES measure of sub-
stitution (equation 5) is that the function has the form: 
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with the same partition of the input set as in the DES case.  The elasticity of substitu-
tion for this function is: 
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Thus Uzawa relaxes the condition of constant elasticity of substitution between any 
two input factors to constant elasticity of substitution between two input factors from 
the same input set. 
 
Finally Blackorby and Russel (1989) show that the MES measure of substitution 
(equation 7) is constant if and only if the production function has the form:      
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As for the two-input case it is observed that this form reduces to the Cobb-Douglas 
form in the limit ρ=0. The constant elasticity of substitution between any two inputs 
under MES is )1/(1 ρσ +=MES

ij . 
 
It is easily seen that the Uzawa form (11) reduces to equation (13) when all input val-
ues are contained in the same set, while the McFadden form (10) reduces to equation 
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(13) when the inputs are divided into n distinct sets each containing one input value. 
Blackorby and Russel (1989) argue, that the reason why the Uzawa and the McFad-
den forms are not directly comparable with the ‘basic’ CES structure given by Arrow 
et al. (equation 8) is that neither the DES nor the AES measures are natural generali-
zations of the two-variable elasticity of substitution. They continue by stating that 
since the MES measure gives a CES structure, which is directly comparable with the 
two-input case, the MES measure must be the ‘true’ measure of elasticity of substitu-
tion for multiple inputs. 
 
As noted by Kmenta (1967A) the form given in equation (13) has returns to scale 
equal to unity, which is quite restrictive. A more general form, which allows the re-
turns to scale to be different from unity, is (Kmenta, 1967A): 
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where ν is the return to scale. It is relatively straightforward to show that this function 
has constant elasticity of substitution given by )1/(1 ρσ +=ij  for all three measures 
of elasticity of substitution. 

4. TRANSLOG APPROXIMATION OF THE TWO INPUT CES FUNCTION 

This CES function is non-linear and cannot be linearised analytically as e.g. the 
Cobb-Douglas function (which is a special case of the CES function). Estimating 
functional parameters for the CES function thus includes non-linear fitting tech-
niques, which are generally recognised as being complicated and to have convergence 
problems (local extrema etc.). But as Kmenta (1967A) notes, the two-input CES form 
may in certain cases be approximated by a linear translog form, which will be pre-
sented below. 
 
For n=2, i.e. for two input factors, equation (14) reduces to the form: 
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Kmenta (1967A) states that the non-linear CES function given in (15) may in certain 
cases, depending on the magnitude of the parameter ρ, be approximated by a linear 
form, which may then be estimated by ordinary least squares techniques. This is pos-
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sible when ρ is in the neighbourhood of zero (i.e. when the elasticity of substitution σ 
is in the neighbourhood of unity), as (15) can in this case be approximated with a 
Taylor series expansion around ρ=0. The resulting form of (15) becomes: 
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The function given in (16) is recognized as a translog function: 
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for which the parameters fulfil the conditions: 
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Equation (16) shows, that when ρ=0, i.e. when σ=1, the translog form reduces to the 
well-known Cobb-Douglas form, which by construction has σ=1. It will be shown in 
the appendix (for the more general n-input case), that while (16) is an approximation 
for ρ>0, the reduction to the Cobb-Douglas form is analytically exact in the limit 
ρ=0, i.e. that: 
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The above discussion shows, that if a two-input technology is believed (i) to have 
constant elasticity of substitution, and (ii) to have this elasticity of substitution in the 
neighbourhood of unity, then the input and output values observed for the technology 
may be fitted to the translog form (17), and the restrictions stated in equation (18) 
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must then be utilized to (i) test whether the estimated translog form does in fact ap-
proximate a CES function, and (ii) estimate the CES parameters γ, ν, ρ and β. 
 
It should in this context be emphasized that a given two-input technology may in fact 
be CES, even though the estimated translog form does not obey the restrictions given 
in (18). The reason may be that the necessary condition σ∈ O(1) is not true. Thus 
when the aim is to test whether a given technology fulfils CES conditions, it is not 
sufficient to fit data to a translog form and test if the conditions given in (18) are ful-
filled. If the conditions are not fulfilled, and if it is still believed that the technology is 
in fact CES, the exact form given in equation (15) must be fitted to data employing 
non-linear techniques. A more throughout discussion of the ability of the translog ap-
proximation to estimate the true CES parameters is given in section 6. 

5. TRANSLOG APPROXIMATION OF THE CES FUNCTION WITH N IN-
PUTS 

Kmenta’s result presented in the preceding section is often cited (e.g. Campbell 1991, 
Pascoe and Robinson 1998), in the two-input as well as in the n-input case. But the 
result has, to the knowledge of the author of this paper, not to date been extended to 
the n-input case, and should thus not be cited when more than two inputs are present, 
as is often the case within e.g. fishery economics, where the purpose is frequently to 
investigate the mutual influence of several input factors on the landed catch of fish, 
employing different kinds of parametric production functions (e.g. Pascoe and Robin-
son 1998).  
 
This section presents an extension of Kmenta’s result to the n-input case, i.e. presents 
the Taylor approximation to the general n-input CES function. It is shown that the re-
sulting approximation reduces to Kmenta's result for n=2, but that the restrictions on 
the translog parameters are in the n-input case more complicated than in Kmenta’s 
two input case. 
 
Thus, corresponding to the results presented in the previous section, i.e. that the two-
input CES function (15) may for σ∈ O(1) be approximated by the translog function 
(17) given the restrictions on the parameters (18), it is shown in the appendix that 
when the general CES function (14) with n inputs is approximated by a first order 
Taylor approximation around ρ=0 (σ∈ O(1)), the result is a translog function as in the 
two-input case, but that the restrictions on the translog parameters are not equal to the 
two-input restrictions given in (18). Hence it is shown in the appendix that: 



 
12 Constant Elasticity of Substitution Production Function, FØI 

The general CES function (14) may for σ∈ O(1) be approximated by the translog 
form: 
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Condition (III) may be rewritten to the following form: 
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which can be compared directly with the two-input case. Comparison of (22) and (18) 
shows that the n-input approximation reduced to Kmenta’s result when n=2. 
 
Thus if a n-input technology is believed to have constant elasticity of substitution, and 
if it is furthermore believed that this elasticity of substitution is in the neighbourhood 
of unity, then the input and output values observed for the technology may be fitted to 
the n-dimensional translog form (20), and the restrictions (III) stated in equation (21) 
must then be utilized to test whether the estimated translog form does in fact ap-
proximate a CES function. If this is the case, the three conditions (I), (II) and (III) can 
then be employed to estimate the CES parameters γ, ν, ρ and β. 
 
It is clear, that the test of the restrictions (III) in (21) may be a lengthy and laborious 
procedure. It is in the appendix shown, that an alternative procedure may be followed, 
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which requires a bit more manipulation of observed data, but also yields a more ac-
cessible testing procedures. I.e. it is shown in the appendix that: 
 
The general CES function (14) may for σ∈ O(1) be approximated by the function: 
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for which the parameters obey 
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This last identity (iii) in (24) shows that a necessary conditions for (23) to represent 
the Taylor approximation to the CES function is that the factors )( mkkm ααα  are 
equal to the same constant for all k,m, i.e. especially that the factors are equal for all 
k,m. This is quit an easier condition to test than the conditions (III) in (21) for the di-
rect translog approximation. 
 
Thus an alternative to employing the direct translog function (20) to test whether an 
observed dataset complies with a CES function is firstly to calculate the identities 
ln(xk/xm)2 (or alternatively (ln(xk)- ln(xm))2) for all k,m, together with the identities 
ln(y) and ln(xk) for all k. This gives a bit more introductionary labour, but this is by far 
regained by the testing procedures (iii) in (24) when compared to (III) in (21). If the 
identity (iii) in (24) is fulfilled, and if the fit of the function (23) to data is generally 
acceptable, it may be concluded that the CES function is a good fit to data, and the 
translog parameters may then be estimated from conditions (i), (ii) and (iii) in (24). 
 
It must as in the previous section be stressed, that the technology considered may in 
fact be CES, even though the estimated linear forms (20) or (23) does not comply 
with the restrictions given in (21) respectively (24). The ability of the translog ap-
proximation to predict the n-input CES function is discussed in the next section. 
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6. CONSISTENCY OF THE TRANSLOG APPROXIMATION TO THE CES 
FUNCTION 

Thursby and Knox Lovell (1978) discuss the consistency of the CES parameters esti-
mated with Kmenta’s translog approximation (16) to the two-input CES function (15). 
They point to the fact that the translog approximation is a truncated Taylor series and 
that the hereby-estimated CES parameters must thus necessarily be biased by a trun-
cation error. They moreover stress that the estimated CES parameters may not even 
be asymptotically consistent when the examined sample size increases, as the Taylor 
series underlying the approximation is a power series in ln(x1/x2), which as such only 
converge to the true CES function when ln(x1/x2) is within the convergence circle 
having radius |1/(ρβ)|. Thursby and Knox Lovell perform a series of Monte Carlo 
simulations to test how well the two-input approximation estimates the CES parame-
ters and generally conclude that ‘the CES parameters are estimated consistently only 
under the most favourable circumstances’ (Thursby and Knox Lovell, 1978), i.e. for 
the input values and CES parameters limited within very restricted regimes.  
 
The result of Thursby and Knox Lovell logically extends to the n-input case, meaning 
(i) that the CES parameters estimated by the translog approximation are expected to 
be biased by the cut-off of the Taylor approximation, and (ii) that the Taylor series 
underlying the approximation will be a power series in the (n-1) terms ln(xi/x1) whose 
convergence radii will also depend on the (unknown) CES parameters, again resulting 
in a violation of asymptotically consistency of the estimated CES parameters if the 
input variables do not comply with the convergence radii.  
 
No attempt has been made in the present work to determine the convergence radii 
analytically in the n-input case. However the truncation error as well as bias and con-
sistency of the n-input approximation have been tested statistically, the results of 
which are presented below. 

6.1. Effect of CES parameter, input-range and input order of magnitude 

Two examples have been constructed to estimate the magnitude of the truncation er-
ror of the translog approximation to the CES function (i) when the CES parameter are 
varied and (ii) when of the range respectively order of magnitude of the input values 
are varied. The two examples have three respectively five input parameters. Table 1 
shows the CES parameters of the examples.  
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Table 1.  Parameters of test examples. A bracket {} indicates that the approxima-
tion to the CES function has been tested for each parameter within the 
bracket. Notation as in equation (14) 

 
Parameter Example I: 3 inputs Example II : 5 inputs
 
β1 0.35 0.4
β2 0.4 0.3
β3 0.25 0.1
β4 - 0.1
β5 - 0.1
γ {5,50} {5,50}
ν {0.5,2,10} {0.5,2,10}
ρ {0.1 , 0.2,…, 1} {0.1 , 0.2,…, 1}

 
 
Thus in order to estimate the truncation error as a function of the CES parameters, the 
translog approximation has in each case been tested for two values of the scale pa-
rameter γ  (5 and 50), three values of the returns to scale ν (0.5, 2 and 10) and 10 val-
ues of the parameter ρ (ranging from 0.1 to 1 with step 0.1). γ=5 and ν=2 is defined 
as the basis scenario against which the remaining scenarios are compared. I.e. either γ 
is kept constant at the value 5 while ν is varied or vice versa. 
 
Likewise in order to estimate the truncation error as a function of range and order of 
magnitude of input values, values ranging from 10 to 105 have been employed. The 
error has been estimated as a function of input range by employing input values in in-
tervals of increasing length given by: 
 

R1) 10 to 110 with step 20, i.e. inputs taking the values (10, 30, 50, 70, 90, 
 110). 
R2) 10 to 1010 with step 200, i.e. inputs taking the values (10, 210, 410, 610, 
 810, 1010). 
R3) 10 to 10010 with step 2000, i.e. inputs taking the values (10, 2010, 4010, 
 6010, 8010, 10010). 
R4) 10 to 100010 with step 20000, i.e. inputs taking the values (10, 20010, 
 40010, 60010, 80010, 100010). 
 

The truncation error has been estimated as a function of order of magnitude of inputs 
by employing input values coming from intervals confined to 10, 102, 103 and 104. 
More specifically input values for the simulations have been taken from four different 
intervals defined as:  
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 M1)  10 to 110 with step 20, i.e. order of magnitude 10-102 (each input can 
 take the values (10, 30, 50, 70, 90, 110)). 
 M2)  110 to 1110 with step 200, i.e. order of magnitude 102-103 (each input 
 can take the values (110, 310, 510, 710, 910, 1110)). 
 M3) 1010 to 11010 with step 2000, i.e. order of magnitude 103-104 (each
 input can take the values (1010, 3010, 5010, 7010, 9010, 11010)). 
 M4) 10010 to 110010 with step 20000, i.e. order of magnitude 104-105 (each 
 input can take the values (10010, 30010, 50010, 70010, 90010, 110010)). 

 
The truncation error of employing the Taylor approximation to the CES function has 
been measured as: 
 

(25) 
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where CES
exactf  is the exact CES function (14) and CES

transf log  the approximative CES 
function (20) with the restrictions (21) employed to calculate the translog parameters. 
 
For each of the parameter and input scenarios the relative truncation error (25) has 
been evaluated for each distinct input combination, and the maximum ∆max and mini-
mum ∆min of these relative errors recorded. E.g. in the 5-input case, where the inputs 
are ranging between 10 and 110 with step 20, each of the five inputs can realize the 
six values (10, 30, 50, 70, 90, 110), leading to 65=7776 input combinations. The rela-
tive error (25) is calculated for each of these input sets, and finally the maximum and 
minimum values of this set of 7776 relative errors are recorded. ∆max and ∆min as such 
give the total range of the truncation error of the translog approximation. 
 
Figure 1-8 show the results of testing the influence of the range of the input parame-
ters. Each figure shows ∆max and ∆min as a function of ρ for each of the four different 
input ranges R1 to R4, given a specific (γ,ν) scenario. E.g. figure 1 shows the ∆max 
and ∆min for the basic scenario γ=5 and ν=2 in the three-input case. In the figure the 
‘R1 Min’ and ‘R1 Max’ curves shows the ∆min and ∆max values for input range R1 (cf. 
page 15) and for each test value of ρ, and likewise for the remaining curves.  
 
Figure 1 and 2 show the basic scenario γ=5 and ν=2 for three respectively five inputs 
(i.e. for example I respectively II in table 1). Comparison of the two figures firstly 
shows that the truncation error of the translog approximation increases with increas-
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ing number of input variables, when the input range is more than one order of magni-
tude (R2 to R4). This observation is confirmed by figure 3 to 8. 
 
The two figures secondly show what must be expected, that the truncation error of the 
translog approximation to the CES function increases when ρ increases, for three as 
well as for five input values. This is confirmed by figure 3 to 8 as well. 
 
Thirdly the two figures show that the truncation error of the translog approximation 
increases when the range of the input values increases for three as well as for five in-
puts. This is expected given the results presented by Thursby and Knox Lovell 
(1978), as the parameters ln(xi/x1) must at some point exceed the convergence radii as 
the range of the input values increases. The two figures generally indicate that the 
range of the input values should not be more than one order of magnitude as the trun-
cation error of the approximation decreases fast for the other three range regimes R2 
to R4 (cf. page 15). This observation is confirmed by figure 3 to 8. 
 
Figure 3 and 4 show the relative truncation errors for three respectively five inputs 
when γ=50 is employed. Comparison with figure 1 and 2 (the basic scenario) indi-
cates, that increasing the γ value does not change the accuracy of the approximation. 
Further tests have shown that the value of γ does not generally affect the magnitude of 
the truncation error. 
 
Figure 5 and 6 show the relative errors when ν=10 for three respectively five inputs, 
while figure 7 and 8 show the relative errors for ν=0.5. Comparison with figure 1 and 
2 indicates that the accuracy of the translog approximation decreases with increasing 
ν, i.e. with increasing returns to scale.  
 
When the influence of the order of magnitude of the input values (M1 to M4) is 
tested, it turns out that the order of magnitude does not influence the accuracy of the 
approximation. I.e. that the accuracy of the translog approximation to the CES func-
tion is not changed by moving one or more orders of magnitude up or down, inde-
pendently of the magnitude of the remaining parameters γ, ν and ρ.   
 
To summarise, the above-described estimates of the truncation error of the translog 
approximation to the CES function have indicated the following guidelines for appli-
cability of the approximation: 
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• The substitution parameter ρ should not exceed 0.1-0.2, i.e. the elasticity of 
substitution σ should not be much less than 0.9. 

• Decreasing returns to scale  (ν<1) should generally be preferred.  
• The range of the input variables should generally be at the most one order of 

magnitude. 
 
Thus generally a translog approximation to the CES function must be handled with 
care, and avoided if it is suspected (i) that the elasticity of substitution is much less 
than 0.9 and/or (ii) that there is increasing returns to scale, and/or (iii) the observed 
input values can not be scaled to be within at the most one order of magnitude of each 
other. 

6.2. Bias and consistency 

The bias and consistency of the CES parameters estimated by the translog approxima-
tion have been tested against variation of the dependent variable y and number N of 
observations included in the estimation. 
 
A dataset has been constructed for which the dependent variable y is calculated from 
the vector of explanatory variables x with the CES function (14). This dataset is thus 
an exact fit to the true CES function. The input vector has been chosen to be three-
dimensional (x1, x2, x3) and confined to the interval [1;106]. The CES parameters of 
the example have been set to (notation as in equation 14): 
 

• β1=0.35 

• β2=0.4 

• β3=0.25 

• γ=5 

• ν=0.5 

• ρ =0.1.  

The choice of parameters and range of input values ensures that the constructed ex-
ample is within safe truncation limits as outlined in section 6.1. 
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It is additionally assumed that the logarithm of the observed dependent variable y is 
iid. normally distributed around the true ln(y) with standard deviation s0. Thus for a 
given set of input values (x1, x2, x3) the logarithm of the output value is determined 
by: 
 

(26) ( )[ ] uxxxy +⋅+⋅+⋅=
−−−− 1.0/5.01.0

3
1.0

2
1.0

1 25.04.035.05ln)ln(                                             

where u is iid N(0,s0). Standard deviations of 0, 0.01, 0.1, 0.3 and 0.5 have been 
tested. 
 
Four different sets of input values in the range [1;106] have been tested with varying 
number N of observations. The four sets are: 
 

i) Inputs in the range 1 to 101 with step 50, resulting3 in N=27. 

ii) Inputs in the range 1 to 101 with step 25, resulting in N=125. 

iii) Inputs in the range 1 to 101 with step 20, resulting in N=216. 

iv) Inputs in the range 1 to 106 with step 15, resulting in N=512.  
 
For each of these sets of input values, 1000 realisations have been created of the data-
set ( ))ln(,3,2,1, iiii yxxx , where xi,j is the j’th input for the i’th observation (i running 
from 1 to N), and ln(yi) the logarithm of the i’th dependent variable, calculated from 
equation (26) using a random number generator for the normal distribution N(0, s0). 
 
Each constructed dataset thus has CES properties, i.e. will comply with the CES func-
tion (14), the fit of which to the dataset will only depend on the stochastic error s0. 
 
Finally the function (23) is fitted to each realisation of the dataset (using Ordinary 
Least Square regression) and the conditions (24) have been employed in each run (a) 
to test whether the fitted linear function (23) predicts the CES structure of data (em-
ploying condition (iii) in equation 24) and (b) to obtain estimates of the CES parame-
ters γ, ν and ρ.  
 

                                                
3 Each of the three inputs can take the values (1 , 51 , 101), and thus there is in total N=33=27 differ-
ent input combinations. 
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Thus for each value of N and s0 1000 fits to equation (23) and 1000 corresponding 
tests of equation (24) have been obtained, resulting in distributions of the regression 
coefficient of determination R2, of the test parameter for condition (iii) in (24) and of 
the CES parameters γ, ν and ρ estimated by (24). The following characteristics of 
these distributions have been recorded for each N and s0: 
 

• The 25%, 50% (median) and 75% quantiles of the resulting R2 distributions. 
 

• The percentage of experiments for which the test (iii) in (24) is rejected on a 
5% level. The null hypothesis of the test is that the fractions 

)/( mkkm ααα are equal, and thus the recorded percentage indicates the over-
all probability of falsely rejecting the true CES structure of data. 

 
• 25%, 50% (median) and 75% quantiles for the γ, ν and ρ distributions for the 

sample of experiments for which the null hypothesis has been accepted. In 
each of these experiments the ρ values have been calculated as the arithmetic 
mean of the three ρ values obtained from condition (iii) in (24). 

 
The recorded R2 values estimate the truncation error of the translog approximation as 
a function of variation of the dependent variable and as a function of number of ob-
servations. The probability of rejection and the γ, ν and ρ distributions estimates the 
consistency of the translog approximation. 
 
Table 2-5 presents the results of the simulations. The four tables firstly show that the 
R2 value is generally high when s0=0, indicating a very good fit of the CES data to the 
translog function when no stochastic variation is included. 
 
It is moreover observed from the tables that the ρ and γ values obtained for s0=0 are 
biased some (the true value are 0.1 and 5), which is due to the truncation of the Taylor 
approximation discussed above.  
 
Finally it is seen that the null hypothesis of CES properties of data is accepted for 
s0=0 in the cases N=27 and for N=125, while it is rejected for N=216 and for N=512. 
The null hypothesis thus shifts from being accepted to being rejected for N some-
where around 200 observations when there is no stochastic variation of the dependent 
variable. This is expected, as the deviation of the estimated translog parameters de-
creases as the number of observations N increases, thus making the test (24) more re-
strictive. This indicates the rather important result that the translog approximation to 
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the CES function will not in general asymptotically predict true CES structure, due to 
the truncation error of the Taylor approximation. 
 
The four tables secondly show that the overall fit R2 of equation (23) to data decreases 
with increasing N and with increasing s0 when s0>0. That R2 decreases with increas-
ing N when s0>0 is assumed to be due to the fact that the errors of each observation 
are amplified over the number of observations in the fit, and thus the overall fit of 
(23) decreases for increasing number of observations. That R2 decreases with increas-
ing s0 is expected, as the fit will naturally be less reliable when the error of the de-
pendent variable increases.  
 
The four tables further show that when s0>0 there is less than a 10% chance of ne-
glecting the null hypothesis of CES structure, and that this probability seems to de-
crease with increasing s0. This is expected due to the fact that the error on the regres-
sion parameters of equation (23) will increase with increasing s0 and thus condition 
(iii) in (24) becomes less restrictive. On the other hand there does not seem to be any 
relationship between number of observations N and the probability for neglecting the 
null hypothesis.  
 
Finally the four tables show that the range of the CES parameters estimated when the 
null hypothesis is accepted increases with increasing s0 and decreases with increasing 
N, and that this effect is most severe for the substitution parameter ρ and the scale γ, 
while it is not so pronounced for the returns to scale ν. This result is in accordance 
with what is found by Thursby and Knox Lovell (1978). The effect is expected as the 
error on the estimated CES parameters will naturally increase with increasing error on 
the dependent variable, but decrease with increased number of observations, as the 
latter will reduce the error on the regression parameters. 
 
Thus generally these results indicate, that if data does actually possess CES structure, 
and if the dependent variable does have some stochastic variation, then the translog 
approximation to the exact CES function will predict this CES structure in more than 
9 out of 10 cases. 
 
On the other hand the consistency of the hereby estimated CES parameters will de-
pend strongly on the variation of the dependent variable and moreover on the number 
of observations. 
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It is finally also observed that the less the variation is of the dependent variable the 
greater will the chance be for neglecting the null hypothesis even though it is true, due 
to the truncation error of the Taylor function.  
 
The conclusion is that if the null hypothesis is accepted, care should be taken in trying 
to determine the error of the thus estimated CES parameters, while if the null is not 
accepted the function may still be a CES but just with small variation of the depend-
ent variables.  
 
The latter observation leads back to the earlier discussion, that if the translog ap-
proximation of the CES function does not predict CES properties of the dataset in 
question, this is actually not a final indication that data does not have CES properties, 
as the translog approximation test is only necessary but certainly not sufficient. If the 
null hypothesis is therefore neglected, effort must be made in performing a non-linear 
fit of data to the exact CES function (14). 

7. DISCUSSION AND CONCLUSION 

This paper presents a generalization to n inputs of Kmenta’s (1967A) translog lineari-
sation of the two-input CES function. It is shown that the n-input CES function may 
generally be approximated by a translog function employing a first order truncated 
Taylor series, when the elasticity of substitution is in the neighbourhood of unity. It is 
moreover shown, that while quit simple restrictions are shown to hold on the translog 
parameters in the two-input case (cf. Kmenta, 1967A), these restrictions become more 
complicated in the n-input case, but that the n-input result reduces to Kmenta’s result 
for n=2. An alternative testing procedure is presented, which is a re-writing of the 
translog function and thus still linear, but is more simple to employ in the test of CES 
properties than the direct translog function. 
 
The truncation error together with bias and consistency of employing the translog ap-
proximation are moreover discussed. It is shown that the translog approximation is 
only valid for a limited range of the elasticity of substitution, and that the translog ap-
proximation should be employed only if decreasing returns to scale is expected, and if 
the input values of the problem can be scaled to have a variation of at the most one 
order of magnitude.  
 
Finally it has been shown that the ability of the translog approximation to predict true 
CES structure is generally high when there is some stochastic variation of the ob-
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served dependent variable (which may often be expected), and that the error of the 
estimated CES parameters generally increases with increasing variation of the de-
pendent variable but decreases with increasing number of observations. 
 
As a conclusion it must be stressed that a given n-input technology may in fact be 
CES, even though the estimated translog form does not predict CES structure of data. 
The reason may be, that the necessary condition σ∈ O(1) is not true, or that one or 
more of the other conditions listed above are not met. I.e. the CES test for the translog 
function is a necessary but by no means sufficient condition for CES properties of 
data. 
 
Thus when the aim is to test whether a given technology fulfils CES conditions, it is 
not sufficient to fit data to a translog form and test whether this function predicts 
translog properties of data. If the test is neglected the exact CES form given (14) 
should be fitted to data. 
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Table 2.  Test of the influence of stochastic variation of the dependent variable on 
the bias and consistency of the translog approximation to the CES func-
tion with N=27 observations in the dataset. ‘Q1’=25% quantile, ‘Q2’=50% 
quantile (median) and ‘Q3’=75% quantile of distributions. 

  
----------------------------------------------- s0 -------------------------------------------------------------

N=27 0 0.01 0.1 0.3 0.5
  

Q1 0.999742 0.977393 0.830583 0.645861
Q2 0.999792 0.981777 0.863878 0.710382R2 

Q3
0.999977

0.999892 0.985313 0.890224 0.767077
  
Reject 0% 6.1% 7.8% 7.1% 4.1%
  

Q1 0.1006843 0.07199213 0.0134944 -0.0601043
Q2 0.1041359 0.10603599 0.1207598 0.1456164ρ 
Q3

0.103877
0.1072417 0.14182115 0.2349434 0.3883328

  
Q1 0.496758 0.485271 0.457711 0.435039
Q2 0.498128 0.498337 0.495067 0.495701ν 
Q3

0.49811
0.499518 0.511711 0.535462 0.559876

  
Q1 5.00819 4.76531 4.38303 3.86613
Q2 5.03553 5.02138 5.09524 5.10422γ 
Q3

5.03523
0.06372 5.33428 5.94481 6.71214

 
 
Table 3.  Test of the influence of stochastic variation of the dependent variable on 

the bias and consistency of the translog approximation to the CES func-
tion with N=125 observations in the dataset. ‘Q1’=25% quantile, 
‘Q2’=50% quantile (median) and ‘Q3’=75% quantile of distributions. 

  
----------------------------------------------- s0 --------------------------------------------------------------

N=125 0 0.01 0.1 0.3 0.5
  

Q1 0.999618 0.964087 0.747466 0.515773
Q2 0.999649 0.967022 0.769215 0.551196R2 

Q3
0.999987

0.999679 0.969823 0.786951 0.587799
  
Reject 0% 6.3% 4.6% 5.9% 4.7%

 
Q1 0.1030322 0.0827412 0.05111057 0.0147659
Q2 0.1052476 0.1054818 0.11464814 0.1300330ρ 
Q3

0.10546
0.1074796 0.1283289 0.18900186 0.2620772

  
Q1 0.497259 0.507229 0.469041 0.453258
Q2 0.498095 0.497877 0.496429 0.498362ν 
Q3

0.498145
0.499152 0.489295 0.524019 0.538532

  
Q1 5.01680 4.85345 4.50341 4.24482
Q2 5.03710 5.03632 5.07871 5.01430γ 
Q3

5.03712
5.05500 5.22385 5.69794 6.02682
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Table 4.  Test of the influence of stochastic variation of the dependent variable on 
the bias and consistency of the translog approximation to the CES func-
tion with N=216 observations in the dataset. ‘Q1’=25% quantile, 
‘Q2’=50% quantile (median) and ‘Q3’=75% quantile of distributions. 

  
----------------------------------------------- s0 -------------------------------------------------------------

N=216 0 0.01 0.1 0.3 0.5
  

Q1 0.999565 0.959637 0.722376 0.480528
Q2 0.999593 0.961958 0.738024 0.506749R2 

Q3
0.999989

0.999620 0.964366 0.754917 0.537153
  
Reject 100% 5.2% 5.4% 4.9% 6.1%

 
Q1 0.1038736 0.0857869 0.04802916 0.0377255
Q2 0.1056101 0.1065727 0.10508421 0.1284052ρ 
Q3

0.105467
0.1075181 0.1246820 0.16845500 0.2352758

  
Q1 0.497462 0.490426 0.477696 0.454299
Q2 0.498235 0.498375 0.501457 0.495497ν 
Q3

0.498292
0.499039 0.506229 0.523193 0.534070

  
Q1 5.01978 4.88316 4.54437 4.33639
Q2 5.03561 5.03168 4.94939 5.06866γ 
Q3

5.03433
5.05085 5.19298 5.49269 6.00490

 
 
Table 5.  Test of the influence of stochastic variation of the dependent variable on 

the bias and consistency of the translog approximation to the CES func-
tion with N=512 observations in the dataset. ‘Q1’=25% quantile, 
‘Q2’=50% quantile (median) and ‘Q3’=75% quantile of distributions. 

  
----------------------------------------------- s0 --------------------------------------------------------------

N=512 0 0.01 0.1 0.3 0.5
  

Q1 0.999488 0.951863 0.686396 0.435922
Q2 0.999509 0.953772 0.699865 0.455359R2 

Q3
0.999992

0.999529 0.955914 0.711085 0.474413
  
Reject 100% 7.3% 5.2% 5.9% 3.9%

 
Q1 0.1039587 0.0922761 0.0703005 0.04504422
Q2 0.1052505 0.1052290 0.1084335 0.11370608ρ 
Q3

0.105335
0.1065867 0.1185540 0.1478851 0.19390381

  
Q1 0.497934 0.493190 0.481723 0.468192
Q2 0.498531 0.498635 0.499289 0.496859ν 
Q3

0.498534
0.499129 0.504441 0.516409 0.526893

  
Q1 5.01757 4.91110 4.66048 4.48144
Q2 5.02958 5.03099 5.02116 5.07769γ 
Q3

5.02995
5.04208 5.14001 5.37464 5.68456
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Figure 1. Test of input range for three inputs, basic scenario γ=5 and ν=2. ‘R1’ to 
‘R4’ are input range regimes and ‘Min’ resp. ‘Max’ are min resp. max er-
ror of approximation. 

 

 
 
Figure 2. Test of input range for five inputs, basic scenario γ=5 and ν=2. ‘R1’ to 

‘R4’ are input range regimes and ‘Min’ resp. ‘Max’ are min resp. max er-
ror of approximation. 
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Figure 3. Test of input range for three inputs, γ=50 and ν=2. ‘R1’ to ‘R4’ are input 
range regimes and ‘Min’ resp. ‘Max’ are min resp. max error of approxi-
mation. 

 

 
 
Figure 4. Test of input range for five inputs, γ=50 and ν=2. ‘R1’ to ‘R4’ are input 

range regimes and ‘Min’ resp. ‘Max’ are min resp. max error of approxi-
mation. 
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Figure 5. Test of input range for three inputs, γ=5 and ν=10. ‘R1’ to ‘R4’ are input 
range regimes and ‘Min’ resp. ‘Max’ are min resp. max error of approxi-
mation. 

 

 
 
Figure 6. Test of input range for five inputs, γ=5 and ν=10.  ‘R1’ to ‘R4’ are input 

range regimes and ‘Min’ resp. ‘Max’ are min resp. max error of approxi-
mation. 
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Figure 7. Test of input range for three inputs, γ=5 and ν=0.5. ‘R1’ to ‘R4’ are input 
range regimes and ‘Min’ resp. ‘Max’ are min resp. max error of approxi-
mation. 

 

 
 
Figure 8. Test of input range for five inputs, γ=5 and ν=0.5.‘R1’ to ‘R4’ are input 

range regimes and ‘Min’ resp. ‘Max’ are min resp. max error of approxi-
mation. 

 

Range, three inputs, γ=5, ν=0.5

-0,5

-0,3

-0,1

0,1

0,3

0,5

0,7

0,9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

ρ

∆

R1 Min R1 Max R2 Min R2 Max R3 Min

R3 Max R4 Min R4 Max

 

Range, five inputs, γ=5, ν=0.5

-1,5

-1

-0,5

0

0,5

1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

ρ

∆

R1 Min R1 Max R2 Min R2 Max R3 Min

R3 Max R4 Min R4 Max



 
30 Constant Elasticity of Substitution Production Function, FØI 

Appendix A 

The proof of equation (20) and (21) builds on Taylor’s formula: 
 

If f: I→ℜ  is n times differentiable on I⊂ℜ  and if f(n) (the n’th differential of f) is con-
tinuous in a∈ I, then  
 
(27) ( )1

1

)( )())((
!

1
)()( +

=
−+−+= �

i
n

i

ii axOaxaf
i

afxf                                                                        
 
The proof of this is part of any introductionary text on mathematical analysis. It 
should especially be noticed that f must be continuous in a for the formula to hold, i.e. 
have a well-defined limiting value in x=a. This formula will be employed for n=1 to 
prove equation (20) and (21). Moreover L’Hospital’s rule will be employed: 
 
If f,g: I→ℜ  both are n times continuously differentiable on I⊂ℜ   and if: 
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for a∈ I, and if further g(n)(a)≠0, then f(x)/g(x) is defined in a and  
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 Taylor’s formula given by equation (27) will be employed directly in the proof of 
equation (20) and (21). It may be argued that it is simpler to use the following lemma 
(the proof of which is straightforward): 
 
Lemma 1 
Let )(ℜ∈ nCf be given by  
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Where )(1 ℜ∈ +nCg . Assume furthermore that axxgf x == → /)(lim)0( 0 , i.e. 
that f is defined in x=0 with the value a. Then the Taylor polynomial of the n’th order 
of f in x=0, )(xf n

T  is given by: 
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The disadvantage of employing the lemma is that the Taylor approximation of f ends 
up being defined on ℜ /{0}. Furthermore the lemma does not encourage the user to in-
vestigate whether f is actually defined in zero or not, which is a basic condition for the 
Taylor approximation to hold. It is thus more ‘sound’ to employ Taylor’s formula di-
rectly for f, although this involves a bit more labour. 
 
Thus Taylor’s formula (27) will be employed for n=1 to approximate the CES func-
tion given in equation (14). This function may be rewritten to: 
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It is this function f which will be Taylor approximated to the first order around ρ=0. 
The first step is to determine f(0): 

)(

ln

lim

ln

lim)(lim)0(

1
0

1
00

ρ
ρ

β
ρ

ρ

β
ρ

ρ

ρ

ρ

ρρ

∂
∂

�
�

�
�
�

�

∂
∂

=

�
�

�
�
�

�

==

�

�

=

−

→

=

−

→→

n

k
kk

n

k
kk

x

x

ff

                                             

(34) �
�

�

=

=

−

=

−

→→ −=
�
�
�
�

�

�

�
�
�
�

�

� −

==⇔
n

k
kk

n

k
kk

n

k
kkk

x

x

xx

ff
1

1

1

00 )ln(
1

)ln(

lim)(lim)0( β
β

β

ρ

ρ

ρ

ρρ                            



 
32 Constant Elasticity of Substitution Production Function, FØI 

where it is used (i) that the numerator as well as denominator of f are equal to zero for 
ρ=0, and thus that L’Hospital's rule (27) may be applied, and (ii) that the sum of the β 
values is equal to unity. This shows that f is continuous in ρ=0, and thus that the Tay-
lor approximation of f may be applied around ρ=0. 
 
The first derivative of f is: 
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It is easily seen that the numerator N as well as denominator D of this expression are 
zero for ρ=0, and thus L’Hospital’s rule may be applied to find the value of the de-
rivative of f in ρ=0. For this purpose the derivatives of N and D must be determined: 
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It has been employed that the sum of the β values is equal to unity, and that the limit-
ing value of ρβ ρ /)ln(
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)ln(β , as shown in equa-
tion (34).   
 
The first order Taylor approximation of f thus becomes: 
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This may be rewritten to the more elegant form 
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Using equation (32), (33) and (40) it is seen that 
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or more generally, employing equation (39) 
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Comparison of equation (42) with the general translog function: 
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shows that this will be equal to equal to equation (42) if (i) 
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employing that the sum of the β values is equal to unity. 
 
The third condition is (iii) 
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Finally the fourth conditions is (iv) 
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Rearrangement of this gives: 
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The above derivation shows that the CES function given in equation (14) may for 
)0(O∈ρ  be approximated by the general translog function (43) given the restric-

tions (44)-(48) on the translog parameters. Thus to test whether the CES function is a 
reasonable fit to an observed dataset, this may in certain cases, i.e. if it is suspected 
that ρ is close to zero (or correspondingly if σ is close to unity) be done by fitting a 
translog function to data and test whether the conditions (47)-(48) are fulfilled for the 
translog parameters. If the translog is a good fit to data and if  (47)-(48) are fulfilled it 
may be concluded that the CES function is a good fit to data, and the CES parameters 
may then be estimated by equation (44)-(48). 
 
It is clear that to test the restrictions (47)-(48) may be a lengthy and laborious proce-
dure. The testing procedure may be eased quit a bit by working with the form of the 
Taylor approximation to ln(y) given in equation (41). This form shows that the ap-
proximation may be written as: 
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Comparison of this form with the more general: 
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shows that these are equal if (i) the conditions given in (45) and (46) are fulfilled to-
gether with (ii): 
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This last identity (51) shows that a necessary conditions for (50) to represent the Tay-
lor approximation to the CES function is that the factors )( mkkm ααα  are equal to 
the same constant for all k,m, i.e. especially that the factors are equal for all k,m. This 
is quit an easier condition to test than the conditions (47) and (48) for the direct trans-
log approximation. 
 
Thus an alternative to testing whether a given data set complies with a CES function 
is firstly to calculate the identities ln(xk/xm)2 (or alternatively (ln(xk)- ln(xm))2) for all 
k,m, together with the identities ln(y) and ln(xk) for all k. Of course this gives a bit 
more introductionary labour, but compared with what is saved when testing the re-
striction (51) compared with testing the restrictions (47) and (48) the second method 
is believed to be the easiest to use. If the identity (51) is fulfilled in the second 
method, and if the fit of the function (50) to data is generally good it may the be con-
cluded that the CES function is a good fit to data, and the translog parameters may 
then be estimated from (45), (46) and (51). 
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Corollary 1 
The CES function given in equation (14) is equal to the Cobb-Douglas function 
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in the limit ρ=0 (corresponding to σ=1). 
 
This is shown by combining equation (32), (33) and (34), as 
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Equitation (52) is then obtained by taken the exponential of both sides of this identity. 
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