Physiological levels of nitrate support anoxic growth by denitrification of Pseudomonas aeruginosa at growth rates reported in cystic fibrosis lungs and sputum

Line, Laura; Alhede, Morten; Kolpen, Mette; Kühl, Michael; Ciofu, Oana; Bjarnsholt, Thomas; Moser, Claus Ernst; Toyofuku, Masanor; Nomura, Nobuhiko; Høiby, Niels; Jensen, Peter Østrup

Published in:
Frontiers in Microbiology

DOI:
10.3389/fmicb.2014.00554

Publication date:
2014

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Physiological levels of nitrate support anoxic growth by denitrification of *Pseudomonas aeruginosa* at growth rates reported in cystic fibrosis lungs and sputum

Laura Line^{1,2}, Morten Alhede^{1,2}, Mette Kolpen^{1,2}, Michael Kühl^{4,5}, Oana Ciofu², Thomas Bjarnsholt^{1,2}, Claus Moser¹, Masanori Toyofuku⁶, Nobuhiko Nomura⁶, Niels Høiby^{*1,2} and Peter Ø. Jensen¹[*]

¹Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
²Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
³Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
⁴Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
⁵Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
⁶Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan

INTRODUCTION

Chronic *Pseudomonas aeruginosa* lung infection is the most severe complication in cystic fibrosis (CF) patients (Koch and Høiby, 2000). The infection is characterized by biofilm aggregates of *P. aeruginosa* within the endobronchial mucus surrounded by high densities of active polymorphonuclear leukocytes (PMNs) (Bjarnsholt et al., 2009). The activity of PMNs has been shown to be the major cause of O₂ depletion due to production of the reactive oxygen species superoxide (O₂⁻) and nitric oxide (NO) within sputum samples (Kolpen et al., 2010, 2014a). Combined with the O₂ consumption by lung epithelial cells, micro-oxic to anoxic conditions can develop in the airways of CF patients (Worlitzsch et al., 2002), which have been further evidenced by the upregulation of the O₂ sensing anaerobic global regulator (Ans) in *P. aeruginosa* isolates (Hoboth et al., 2009) and the presence of obligate anaerobes such as *Prevotella* within sputum (Tunney et al., 2008). While O₂ depletion by microbial aerobic respiration is thus diminutive, *P. aeruginosa* has been shown to be actively growing within the mucus of lungs (Kragh et al., 2014) and sputum (Yang et al., 2008). As a facultative anaerobe, this growth may be attributable to *P. aeruginosa*'s ability to perform anaerobic respiration by denitrification.

Denitrification was first described as the liberation of gaseous nitrogen oxides (N-oxides) by bacteria (Gayon and Dupetit, 1886) and involves the utilization of N-oxides as alternative electron acceptors for respiration (Figure 1). This definition of
Denitrification means that while nitrate (NO_3^-) reduction to nitrite (NO_2^-) contributes directly to energy generation via the proton pumping action of the membrane-bound nitrate reductase (NarGHIJ) (Chen and Strous, 2013), the first step in strict denitrification is actually NO_2^- reduction, where NO is the first gaseous product arising from NO_3^- reduction (Zumft, 2005).

Engagement of denitrification in infected CF lungs is in accordance with the production of the denitrification intermediate nitrous oxide (N_2O) in sputum (Kolpen et al., 2014b), the presence of the denitrification marker OprF and antibodies against OprF in lung secretions and sera (Yoon et al., 2002), antibodies against Nar in sera (Beckmann et al., 2005) and the upregulation of the denitrification reductases in CF isolates (Son et al., 2007; Hoboth et al., 2009; Lee et al., 2011). Additionally, after antimicrobial treatment the infected sputum content of NO_3^- increases (Grasemann et al., 1998) indicating a reduction in the activity of denitrifying cells.

MATERIALS AND METHODS

BACTERIAL STRAINS AND PLASMIDS

The strains and plasmids used in this study are listed in Table 1. Primers used in this study are listed in Table 2. The wild type strain used for experiments and reporter plasmid insertion was PAO1 obtained from the Pseudomonas Genetic Stock Center (www.pseudomonas.med.ecu.edu, strain PAO0001). The Holloway PAO1 wild type was used as the control for the examinations of the Holloway PAO1 ΔnirS-N and the Holloway PAO1 ΔnosZ mutants. The PAO1 strains grew at similar rates under anoxic conditions.

<table>
<thead>
<tr>
<th>STRAINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
</tr>
<tr>
<td>S17-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P. aeruginosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAO1 MH340</td>
</tr>
<tr>
<td>PAO1 egfp</td>
</tr>
<tr>
<td>PAO1 dsredexpress</td>
</tr>
<tr>
<td>PAO1 narK1-eGFP</td>
</tr>
<tr>
<td>PAO1 nirS-dsredexpress</td>
</tr>
<tr>
<td>PAO1 norC-eGFP</td>
</tr>
<tr>
<td>PAO1 nosR-dsredexpress</td>
</tr>
<tr>
<td>Holloway PAO1</td>
</tr>
<tr>
<td>Holloway ΔnirS-N</td>
</tr>
<tr>
<td>Holloway ΔnosZ</td>
</tr>
<tr>
<td>I M/NM</td>
</tr>
<tr>
<td>II M/NM</td>
</tr>
<tr>
<td>III M/NM</td>
</tr>
<tr>
<td>IV M/NM</td>
</tr>
<tr>
<td>V M/NM</td>
</tr>
<tr>
<td>VI NM</td>
</tr>
<tr>
<td>VII NM</td>
</tr>
</tbody>
</table>

Gm$^\text{R}$ (Gentamicin resistant), Ap$^\text{R}$ (Ampicillin resistant), Mucoid (M), Non-mucoid (NM), Wild type (WT).
Table 2 | Primer sequences used in this study.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequence</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORTER PLASMIDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gfp F1</td>
<td>5′ – ACGCCAAGCTTGCATGCTGC – 3′</td>
<td>Toyofuku et al., 2013</td>
</tr>
<tr>
<td>pET15b-kpn</td>
<td>5′ – GGGTACCACCATTTAAGAGGAGATACACATG – 3′</td>
<td>Toyofuku et al., 2013</td>
</tr>
<tr>
<td>dsred R1</td>
<td>5′ – GGCTCGAGGTCGTTGATTCTACACCGG – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>dsred R2</td>
<td>5′ – CGGATCCGATGAACTGATACGGCATGATTGACG – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>pNarK1 F</td>
<td>5′ – GGAATTCCGCGGTGGTATGATGACG – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>pNarK1 R</td>
<td>5′ – TGAAGGTGGTGTCGACGTAGAG – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>pNirS F</td>
<td>5′ – CGGAATTCCGCGGTGGTATGATGACG – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>pNirS R</td>
<td>5′ – TGAAGGTGGTGTCGACGTAGAG – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>pNorC F</td>
<td>5′ – CCCAAGCTTGGATCACCTGCAGGTTGATCGG</td>
<td>This study</td>
</tr>
<tr>
<td>pNorC R</td>
<td>5′ – CCCAAGCTTGGATCACCTGCAGGTTGATCGG</td>
<td>This study</td>
</tr>
<tr>
<td>pNosR F</td>
<td>5′ – CCCAAGCTTGGATCACCTGCAGGTTGATCGG</td>
<td>This study</td>
</tr>
<tr>
<td>pNosR R</td>
<td>5′ – CCCAAGCTTGGATCACCTGCAGGTTGATCGG</td>
<td>This study</td>
</tr>
<tr>
<td>MUTANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∆nirS-N F1</td>
<td>5′ – CGGAATTCCGCGGTGGTATGATGACG – 3′</td>
<td>Toyofuku et al., 2013</td>
</tr>
<tr>
<td>∆nirS-N R1</td>
<td>5′ – CGGAATTCCGCGGTGGTATGATGACG – 3′</td>
<td>Toyofuku et al., 2013</td>
</tr>
<tr>
<td>∆nirS-N F2</td>
<td>5′ – CGGAATTCCGCGGTGGTATGATGACG – 3′</td>
<td>Toyofuku et al., 2013</td>
</tr>
<tr>
<td>∆nirS-N R2</td>
<td>5′ – CGGAATTCCGCGGTGGTATGATGACG – 3′</td>
<td>Toyofuku et al., 2013</td>
</tr>
<tr>
<td>∆nosZ F1</td>
<td>5′ – CGGAATTCCGCGGTGGTATGATGACG – 3′</td>
<td>Toyofuku et al., 2013</td>
</tr>
<tr>
<td>∆nosZ R1</td>
<td>5′ – CGGAATTCCGCGGTGGTATGATGACG – 3′</td>
<td>Toyofuku et al., 2013</td>
</tr>
<tr>
<td>∆nosZ F2</td>
<td>5′ – CGGAATTCCGCGGTGGTATGATGACG – 3′</td>
<td>Toyofuku et al., 2013</td>
</tr>
<tr>
<td>∆nosZ R2</td>
<td>5′ – CGGAATTCCGCGGTGGTATGATGACG – 3′</td>
<td>Toyofuku et al., 2013</td>
</tr>
<tr>
<td>qPCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>narK1 F</td>
<td>5′ – CTCTCTCGGCTCCGCTGTGC – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>narK1 R</td>
<td>5′ – CTCTCTCGGCTCCGCTGTGC – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>nirS F</td>
<td>5′ – CTCTCTCGGCTCCGCTGTGC – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>nirS R</td>
<td>5′ – CTCTCTCGGCTCCGCTGTGC – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>norC F</td>
<td>5′ – CTCTCTCGGCTCCGCTGTGC – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>norC R</td>
<td>5′ – CTCTCTCGGCTCCGCTGTGC – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>nosZ F</td>
<td>5′ – CTCTCTCGGCTCCGCTGTGC – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>nosZ R</td>
<td>5′ – CTCTCTCGGCTCCGCTGTGC – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>rpoD F</td>
<td>5′ – ACAAGATCCGCGAAGTACTGGAG – 3′</td>
<td>This study</td>
</tr>
<tr>
<td>rpoD R</td>
<td>5′ – ACAAGATCCGCGAAGTACTGGAG – 3′</td>
<td>This study</td>
</tr>
</tbody>
</table>

Plasmids containing eGFP or DsRed-Express tagged reporter genes were derived from pME as pG19nin and pG19nos plasmids carrying deletion cassettes of nirS to nirN and nosZ were constructed with the same procedure described previously (Maseda et al., 2004). The pG19II-derived plasmids were transferred into Holloway PAO1 by conjugation with E. coli S17-1 (Simon et al., 1986) followed by homologous recombination described elsewhere (Maseda et al., 2004). The mutants were analyzed by polymerase chain reaction (PCR) (Toyofuku et al., 2013).

The eGFP-based promoter probe plasmid, pMEXGFP, was constructed as described previously (Toyofuku et al., 2013). The promoter regions of narK1 and norC were amplified with pNarK1 F/pNarK1 R or pNorC F/pNorC R primer pairs and cloned into pMEXeGFP for promoter activity assays. pMEXdsREDex was constructed in the same way, with dsredexpress amplified using the primer pairs Gfp F1/dsred R1 (Table 2) and post subcloning, the primer pair pET15b-kpn/dsred R2 (Table 2) was used to amplify a RBS-fused DsRed-Express to clone into the pMEX9 plasmid (Toyofuku et al., 2007). The promoter regions of nirS and nosR were amplified with the primer pairs pNirS F/pNirS R or pNosR F/pNosR R (Table 2) and cloned into the pMExdsREDex for promoter activity assays.

The reporter plasmid insertion was achieved by preparation of electro-competent cells as previously described (Choi et al., 2005) and subsequent electroporation at 25 μF, 200 Ω, 2.5 kV with 1 μl of plasmid DNA for 100 μl of electro-competent cells. Transformed cells were selected for by plating with 30 ng ml⁻¹ gentamicin (Sigma-Aldrich, St. Louis, MO, USA) and frozen cultures were produced from a single colony.

Clinical strains (5 mucoid and 7 non-mucoid) were isolated from expectorated sputum of 7 chronically infected CF patients (Kolpen et al., 2014b).

ANOXIC GROWTH EXPERIMENTS

In this study, we first establish experimental evidence for the ability of physiological levels of NO₃⁻ to support anoxic growth of...
P. aeruginosa PAO1 wild type and 12 clinical isolates at rates comparable to those in CF lungs and sputum. To discern that a significant portion of the attained growth was attributable to denitrification, a strain incapable of denitrification due to a mutation in the nitrite reductase (Nir) operon was studied.

All experiments requiring anoxic conditions were performed in an anoxic bench (Concept 400, Thermo Scientific, Waltham, MA, USA) with O2 <0.02% routinely monitored with a luminescence dissolved oxygen O2 sensor (HQ40d multi, HACH Company, Loveland, CO, US). Media was sealed with parafilm (Bemis, Neenah, WI, USA) and allowed to equilibrate for a minimum of 3 days. Strains were plated from frozen cultures and single colonies were used to initiate normoxic overnight cultures. They were then adjusted to OD600 0.1 and regrown to OD600 0.4 to ensure all cells were in the exponential growth phase. The culture was inoculated by diluting 1:100 in relevant anoxic Luria-Bertani broth (LB) media supplemented with KNO3 (Sigma-Aldrich) to obtain the noted concentrations of NO3 in 2 ml glass vials (Schuett Biotec, Göttingen, DE), which were sealed inside the anoxic bench before transfer to shaking at 200 rpm. Physiological levels of NO3 were here considered to be approximately 400 µM with a maximum of 1 mM based on the concentrations of NO3 detected in CF sputum (Grasemann et al., 1998; Palmer et al., 2007; Kolpen et al., 2014a). Vials were shown to remain anoxic for a minimum of 2 days using anaerobic indicator strips (SSI Diagnostica, Hillerød, Denmark) that shown to remain anoxic for a minimum of 2 days using anaerobic indicator strips (SSI Diagnostica, Hillerød, Denmark) that changed from white to blue in the presence of oxygen. Optical density was measured directly in the vials at 600 nm (OD600) by a spectrophotometer (Shimadzu, Kyoto, JP) and values obtained were shown to correlate linearly to dilutions of an overnight culture in LB at OD600 values > 0.02. Accordingly, only OD values higher than 0.02 were used in growth rate calculations. Growth rates were calculated as described (Widdel, 2007).

The suitability of the assay was demonstrated in cultures of PAO1 supplemented with 100 mM NO3, where our measured growth rate of 0.7 divisions h−1 and final OD600 of 1.0 (data not shown) corresponded well with previously reported growth rates of **P. aeruginosa** (Alvarez-Ortega and Harwood, 2007; Lee et al., 2012; Fang et al., 2013).

PROMOTER ACTIVITY—REPORTER STRAINS

To further confirm the engagement of denitrification, the transcripts and promoter activity of the four N-oxide reductases (Nar, Nir, Nor, Nos) were studied using qRT-PCR and fluorescent reporter strains, respectively. Reporter strains with the promoter region of the four denitrification reductase operons; narK1K2GHIJ, nirSMCFDLGHJEN, norCBD, nosRZDFYL (Schobert and Jahn, 2010) fused to fluorescent tags of either eGFP (Schroeder and Jahn, 2010) or DsRed-Express (Schobert and Jahn, 2010) fused to fluorescent tags of either eGFP (Schroeder and Jahn, 2010) or DsRed-Express (Schobert and Jahn, 2010) were used to study promoter activation under anoxic conditions with 400 µM KNO3 supplemented LB as described above.

GFP and DsRed require O2 for chromophore maturation (Crags, 2009; Strack et al., 2010). Consequently, 1600 ng ml−1 chloramphenicol (Sigma-Aldrich) was added to the cultures to prevent new protein synthesis (Toyofuku et al., 2013) with shaking for 1 h at 37°C in atmospheric air prior to measurement to allow the chromophore to develop—termed oxic fluorescence recovery (OFR) (Zhang et al., 2005). The signal was detected by flow cytometry as described below. The fluorescence values obtained were corrected for background fluorescence seen in the control strains with eGFP and dsRedExpress unconjugated to a promoter.

FLOW CYTOMETRY

Detection of reporter strain fluorescence was performed using a FACSCanto flow cytometer (BD Biosciences, San Jose, CA, USA) with a 488 nm argon laser. eGFP was detected in FL-1 with a 502 nm long pass filter and a 530/30 nm band pass emission filter. DsRed-Express fluorescence was collected in FL-2 with a 556 nm long pass filter and 585/42 nm band pass emission filter. To maximize resolution, samples were analyzed at low flow rate corresponding to 10 µl min−1. At least 10,000 events were recorded for each sample. Cytometer Setup and Tracking Beads (BD Biosciences) were used for instrument calibration, and flow data were processed and analyzed by Diva (BD Biosciences).

DENITRIFICATION GENE TRANSCRIPT EXPRESSION—RNA EXTRACTION AND REVERSE TRANSCRIPTION

PAO1 was grown in triplicate for 3 h under anoxia with either unsupplemented LB or LB with 400 µM KNO3. The 3 h time point was chosen as it represented the approximate peak of promoter activity, as seen in the reporter strains. After 3 h, the cultures were mixed with 2 volumes of RNAlater (Ambion, Austin, TX, USA) within the anoxic bench for transcript stabilization and kept at 4°C overnight before freezing at −80°C. The cultures were subsequently thawed on ice, centrifuged to harvest the cells and lysed with 100 µl of 1 mg ml−1 lysozyme (Affymetrix, Cleveland, OH, USA) at room temperature for 13 min. Total RNA was extracted with RNeasy Mini Kits (Qiagen Danmark, Limburg, NL) and containing chromosomal DNA was removed by treatment with RQ1 RNase-free DNase (Promega, Madison, WI, USA). RNA quality was detected in a NanoDrop spectrophotometer with a 260/280 nm ratio of >1.8. RNA was synthesized from 250 to 500 ng of RNA (depending on the concentration extracted) and High Capacity RNA-to-cDNA Master Mix (Applied Biosystems, Foster City, CA, US) with a final reaction volume of 20 µl in a 1°C Thermal Cycler (Applied Biosystems). The conditions consisted of 5 min at 25°C, 30 min at 42°C, 5 min at 85°C and subsequent holding at 4°C. cDNA was frozen at −20°C. Negative controls contained template with the Master Mix replaced with water. cDNA was diluted 1:100 for qPCR.

PRIMER DESIGN

Primers for the denitrification genes narK1, nirS, norC, nosR and the reference gene rpoD were designed using Integrated DNA Technologies Primer Quest software (http://www.idtdna.com) using sequences from the PA01 Genome Sequence, Pseudomonas Genome Database (Winsor et al., 2011) (Table 2).

QUANTITATIVE PCR

Each PCR mix had a final volume of 20 µl containing 10 µl SYBR Green qPCR Master Mix 2x (Applied Biosystems) 2 µl cDNA, 2 µl of 2 pmol µl−1 forward and reverse primers and 4 µl water. Quantitative real-time PCR was performed with a StepOnePlus.
Real-Time PCR system (Applied Biosystems) with initial denaturation at 95°C for 10 min followed by 40 cycles of 95°C for 15 s, 60°C for 30 s and 72°C for 30 s.

Data were normalized to the expression of *rpoD*, a housekeeping gene encoding the primary sigma factor for RNA polymerase found to be constitutively expressed in *P. aeruginosa* (Savli et al., 2003). To control for variations between runs, the housekeeping and target genes for each of the three samples were amplified in one 96-well plate. Expression of the target genes in the cultures with 400 µM KNO₃ was compared to the unsupplemented cultures and the difference expressed as n-fold change.

NO₃⁻ AND NO₂⁻ QUANTIFICATION

For measuring NO₃⁻ and NO₂⁻ concentration in the culture media, the supernatant was harvested and filtered through a syringe filter (TRP, Trasadingen, SUI) (pore size 0.22 µm) and frozen at −20°C for later measurement. NO₃⁻ and NO₂⁻ were detected in 96-well microtiter plates using a modified Griess nitrite/nitrate colorimetric assay (Cayman Chemicals, Ann Arbor, MI, USA) according to manufacturer's instructions and as previously described (Kolpen et al., 2014a). Briefly, NO₃⁻ concentration was estimated by incubating with the Griess Reagent, converting NO₃⁻ into a purple azo-compound detected by absorbance at 540 nm in a Multiskan EX plate reader (Thermo Scientific). For NO₂⁻ concentration, NO₃⁻ was first converted to NO₂⁻ by incubation with NO₃⁻ reductase and subsequent addition of the Griess reagent to detect total NO₃⁻ plus NO₂⁻. The NO₃⁻ concentration was calculated as the difference between the total NO₂⁻ and NO₃⁻ concentration and the NO₂⁻ concentration. The detection limit of the assay was ~2 µM for NO₂⁻ and ~5 µM for NO₃⁻.

MICROSENSOR MEASUREMENTS OF N₂O

Additionally, reductase activity was elucidated by measuring consumption of NO₃⁻ and production of NO₂⁻ as well as measurements of N₂O gas accumulation in a ΔnosZ mutant strain incapable of the final reduction step in denitrification of N₂O to N₂. Each small glass vial (Schuett Biotec, Göttingen, DE) containing anoxic planktonic cultures of either PAO1 WT or the ΔnosZ mutant were placed in a 37°C heated rack and kept sealed prior to individual measurements, upon which they were shaken and the lid removed. Immediately after, N₂O was detected in the media using an amperometric N₂O microsensor (Andersen et al., 2001) with a tip diameter of 25 µm (Unisense A/S, Aarhus, DK) as previously described (Kolpen et al., 2014a). Each measurement consisted of a 5 s wait period followed by 5 s measurements taken at 7, 1 mm intervals with data acquisition and sensor positioning controlled by the Sensortrace Pro 2.0 (Unisense A/S) dedicated software. Mean experimental N₂O concentration was calculated from triplicates of three individual experiments. The final mean was corrected for the background signal detected in pure LB.

STATISTICAL ANALYSIS

Data was analyzed for statistical significance with Prism 4 software (GraphPad Software, Inc., La Jolla, CA, USA). Unless otherwise mentioned, parametric data was analyzed by One-Way ANOVA with Dunnett’s multiple comparison test and non-parametric by Friedman’s test with Dunn’s multiple comparison. *P < 0.05* was considered significant.

RESULTS

DENITRIFICATION HAS A SIGNIFICANT ROLE IN ANOXIC GROWTH OF PAO1 AND CLINICAL ISOLATES AT PHYSIOLOGICAL LEVELS OF NO₃⁻

The specific growth rates of *P. aeruginosa* grown for 20 h in anoxic LB supplemented with physiologically relevant concentrations of NO₃⁻ (0–1 mM of NO₃⁻) were calculated. PAO1 (Figure 2A) and 12 clinical isolates (5 mucoid and 7 non-mucoid) (Figure 2B) displayed a significant increase in specific growth rate as compared to the unsupplemented control at ≥150 µM NO₃⁻ (p = 0.0138) and ≥100 µM (p = 0.0132) NO₃⁻, respectively. Despite the considerable variation between the growth rates of the clinical isolates, there was no significant correlation with the duration of infection as well as no significant difference between the growth rates of the mucoid and non-mucoid clinical isolates.

FIGURE 2 Specific growth rates (µ) of *P. aeruginosa* in anoxic LB supplemented with NO₃⁻. (A) PAO1, mean ± s.e.m. of triplicate experiments, (B) clinical isolates, N = 12, 7 non-mucoid strains indicated by diamonds and 5 mucoid strains indicated by circles. Colors indicate the 7 patients isolated from *p ≤ 0.05* significant change from 0µM.
The suitability of the assay was demonstrated in a pilot study with anoxic cultures of PAO1 supplemented with 100 mM NO$_3^-$, where our measured growth rate of 0.7 divisions h$^{-1}$ and final OD$_{600}$ of 1.0 (data not shown) corresponded well with previously reported growth rates of P. aeruginosa (Alvarez-Ortega and Harwood, 2007; Lee et al., 2012; Fang et al., 2013).

To discern the portion of growth attributable to denitrification, we compared the specific growth rates in anoxic cultures supplemented with NO$_3^-$ of the WT to a Δ nirS-N mutant, which is able to reduce NO$_3^-$ to NO$_2^-$, but with a blocked first step of strict denitrification due to the inability to reduce NO$_2^-$ to NO (Figure 3A). NO$_3^-$ supports modest growth of the Δ nirS-N mutant with increasing NO$_3^-$ supplementation in accordance with Nar's contribution to proton motive force generation (Chen and Strous, 2013), but with a significant reduction in growth as compared to the WT at NO$_3^-$ \geq400 μM ($p = 0.0316$). One mM NO$_3^-$ was required to initiate a significant increase in growth rate from the unsupplemented control in the Δ nirS-N mutant ($p = 0.0021$).

The consumption of NO$_3^-$ and the accumulation of NO$_2^-$ in the sterile filtered growth media of the Δ nirS-N mutant at 20h confirmed that the ability to reduce NO$_3^-$ to NO$_2^-$ was present in the Δ nirS-N mutant, but that the mutant failed to further reduce NO$_2^-$ as opposed to the total consumption of NO$_3^-$ by the WT. Furthermore, we demonstrated very low concentrations of NO$_3^-$ and NO$_2^-$ pre-inoculation in LB and that the concentration of NO$_3^-$ was not affected by NO$_3^-$ (Figures 3B,C).

FIGURE 3 | (A) Specific growth rates (μ) of P. aeruginosa (WT and Δ nirS-N PAO1) grown in anoxic LB supplemented with NO$_3^-$.

The reporter strains were grown under anoxia for 20h supplemented with 400 μM NO$_3^-$ and the fluorescence measured post chloramphenicol addition with OFR by flow cytometry (Figure 4). The activity of all four promoters was significantly increased during supplementation with 400 μM NO$_3^-$, but the time course varied. The Nar activity showed a small peak at 2h ($p < 0.0001$) in comparison to Nor, which showed a stronger peak at 2–3h ($p < 0.0001$). Nir and Nos first showed significant upregulated promoter activity after 1h and continued to be so over 20h ($p < 0.0001$ and 0.0273). In all reductases other than the Nos, there were also periods of significant upregulation in the unsupplemented control, but for shorter periods of time and with lower peaks. The transcripts of the denitrification reductases in PAO1 grown under anoxia with 400 μM NO$_3^-$ hours showed significant upregulation of nirS, norC and nosR after 3h (p-values = 0.014, 0.014, and 0.04) (Figure 5).

We noted that anoxic conditions alone were apparently sufficient to trigger upregulation of some denitrification reductases as previously observed in other planktonic and biofilm studies (Härtig and Zumft, 1999; Hentzer et al., 2005; Schreiber et al., 2007) and that LB is a rich medium which we found to contain ~20 μM NO$_3^-$.

DYNAMIC INCREASE IN DENITRIFICATION REDUCTASE PROMOTER ACTIVATION AT 400 μM NO$_3^-$

The activity of all four promoters was significantly increased during supplementation with 400 μM NO$_3^-$, but the time course varied. The Nar activity showed a small peak at 2h ($p < 0.0001$) in comparison to Nor, which showed a stronger peak at 2–3h ($p < 0.0001$). Nir and Nos first showed significant upregulated promoter activity after 1h and continued to be so over 20h ($p < 0.0001$ and 0.0273). In all reductases other than the Nos, there were also periods of significant upregulation in the unsupplemented control, but for shorter periods of time and with lower peaks. The transcripts of the denitrification reductase genes in PAO1 grown under anoxia with 400 μM NO$_3^-$ hours showed significant upregulation of nirS, norC and nosR after 3h (p-values = 0.014, 0.014, and 0.04) (Figure 5).

We noted that anoxic conditions alone were apparently sufficient to trigger upregulation of some denitrification reductases as previously observed in other planktonic and biofilm studies (Härtig and Zumft, 1999; Hentzer et al., 2005; Schreiber et al., 2007) and that LB is a rich medium which we found to contain ~20 μM NO$_3^-$.

We speculate that this is an explanation for the observed upregulation in our unsupplemented controls. However, the focus of the present study is on the differences due to the additional physiological levels of NO$_3^-$ supplementation.
NO$_3^-$ IS RAPIDLY CONSUMED WITH A SUBSEQUENT TRANSIENT INCREASE OF NO$_2^-$ IN ANOXIC GROWTH MEDIA

Medium from the reporter PAO1 strains showed that 400 µM NO$_3^-$ was depleted below the detection level of the Griess assay within just 2 h with a transient increase in the product of its reduction, NO$_2^-$ (Figure 6). This rapid depletion combined with the time taken to harvest the supernatant is the likely explanation for the initial time point showing somewhat less than the expected 400 µM NO$_3^-$, as the media pre-inoculation was tested and confirmed to contain 400 µM NO$_3^-$.

N$_2$O IS PRODUCED IN RESPONSE TO NO$_3^-$ SUPPLEMENTATION

The ΔnosZ mutant and a WT PAO1 strain were grown with physiological concentrations of NO$_3^-$ under anoxia and the average N$_2$O accumulation over 20 h detected. With as little as 62.5 µM NO$_3^-$, a significant production of N$_2$O was stimulated ($p = 0.0125$) (Figure 7). The WT produced <10 µM of N$_2$O at all experimental concentrations of NO$_3^-$; confirming
the defective conversion of N₂O to N₂ by the ΔnosZ mutant.

DISCUSSION

P. aeruginosa is able to thrive under anoxic conditions by performing denitrification. Our initial studies performed with clinical isolates and PAO1 under anoxic conditions showed that physiological concentrations of NO₃⁻ are sufficient to support a significant increase in growth rate, even in cultures supplemented with less NO₃⁻ than the 400 μM applied by Palmer et al. (2007).

The anoxic growth rates obtained are comparable to those reported in CF lungs and sputum, except for the very low growth rates in some of the clinical samples from CF lungs and sputum (Yang et al., 2008; Kragh et al., 2014). This is likely due to our planktonic studies representing a slightly faster growth rate as the shaken cells have equal access to nutrients in the media, whereas in the biofilm mode of growth in the lungs, internal cells are assumed to have access to less nutrients, including NO₃⁻, due to diffusion limitation and utilization by cells at the periphery of the biofilm (Bjarnsholt et al., 2009). Additionally, ~10% of the cells in clinical samples appear to be in stationary phase (Yang et al., 2008) whereas the growth rates in our experiments are calculated from the exponential growth phase. In the lungs, *P. aeruginosa* is also under continual attack from the host inflammatory response and antibiotic stress (Høiby, 2006), which is also likely to reduce the rate of growth.

Nar is required for anoxic growth at physiological levels of NO₃⁻ in CF sputum (Palmer et al., 2007) and accordingly NO₃⁻ reduction alone is able to generate some growth as seen in the ΔnirS-N mutant, unable to perform the subsequent NO₂⁻ reduction and therefore blocking denitrification. However, we demonstrate that the ΔnirS-N mutant requires the highest physiological concentration of 1 mM NO₃⁻, seen only in exacerbated CF patients following antimicrobial treatment (Grasemann et al., 1998), to enable a significant increase in growth rate as well as a significant reduction of growth as compared to the WT. This indicates a substantial additional contribution of denitrification to the observed anoxic growth of *P. aeruginosa* at physiological levels of NO₃⁻. Anoxic growth of mutants with defective Nir was also reduced at concentrations of NO₃⁻ greater than physiological levels [10 mM (Schreiber et al., 2007) and 100 mM (Filiatrault et al., 2006)].

In addition to supporting anoxic growth, Nir may promote the persistence of *P. aeruginosa* in the infected CF lungs as Nir is required for type III secretion resulting in prolonged survival in human monocytes (Van Alst et al., 2009) and enhanced virulence (Filiatrault et al., 2006). This supports the idea that denitrification is necessary for achieving the observed growth of *P. aeruginosa* in the lungs.

The dynamic increase in the promoter activity of all four denitrification reductases over 20 h and increased expression of all transcripts but the narK₁ at 3 h with 400 μM NO₃⁻ further emphasized the engagement of denitrification. The explanation for the transient peak in Nar expression and lack of upregulation at 3 h became apparent after analysing the growth media for NO₃⁻ content, showing depletion after just 2 h. Expression of Nar is controlled in part by the two-component NO₃⁻-sensing regulator NarX-L (Schreiber et al., 2007; Schobert and Jahn, 2010) so presumably after NO₃⁻ depletion Nar expression is no longer induced. The Nor is also proposed to be under NarX-L control (Schobert and Jahn, 2010), which would explain the decrease in promoter activity after 2 h.

The Nar product, NO₃⁻ displayed a transient increase in the growth media which was similarly rapidly depleted by 3 h. However, the expression of Nir and Nos appeared to be less tightly regulated by N-oxide concentration as they were still significantly upregulated at 20 h, and in the case of the Nir, only a modest increase in expression was stimulated by NO₃⁻ supplementation. The additional O₂-sensing Anr regulator and downstream NO sensing dissimilative nitrate respiration (Dnr) regulator (Schreiber et al., 2007; Schobert and Jahn, 2010; Trunk et al., 2010; Arai, 2011) may play a more important role in Nir and Nos regulation (Schreiber et al., 2007; Schobert and Jahn, 2010) and hence their expression more responsive to the anoxic conditions and the downstream denitrification product NO resulting in prolonged increase in expression.

As N-oxides are not exclusively utilized in strict denitrification—NO₃⁻ reduction is also able to feed into dissimilatory pathways for ammonia excretion or into assimilatory pathways for incorporation into biomolecules (Zumft, 1997)—we also studied NO₂-O production. The known pathways for NO₂-O production are denitrification and nitrification via oxidation of hydroxylamine to N₂O (Khallia et al., 2004). As of yet, there is no evidence to suggest that *P. aeruginosa* performs or possesses homologs of the enzymes required for nitrification [PAO1 Genome Sequence, Pseudomonas Genome Database (Winsor et al., 2011)]. Additionally, the process requires O₂ (Meyer et al., 2008) and thus for our anoxic experiments we assumed that all detected N₂O was produced via the denitrification pathway and therefore acted as a specific marker. In the *P. aeruginosa* nitrous oxide reductase mutant ΔnosZ, unable to reduce N₂O to N₂, we found a significant accumulation of N₂O in the anoxic growth media with as little NO₃⁻ supplementation as 62.5 μM. This finding further supports that *P. aeruginosa* employs denitrification to

![FIGURE 7 | N₂O production by *P. aeruginosa* PAO1 grown over 20 h in anoxic LB supplemented with NO₃⁻ in triplicate. Mean ± s.e.m. *p ≤ 0.05 indicating significant increase of N₂O production by ΔnosZ.](image-url)
obtain energy for growth at physiological levels of NO$_3^-$ in anoxic conditions.

Interestingly, one late clinical strain isolated from a patient chronically infected for 35 years, was unable to grow in anoxic conditions with NO$_3^-$. This may relate to adaptations of more flexible nitrate metabolism over time, with denitrification suggested to no longer be essential for growth for some strains at later phases of infection (Oberhardt et al., 2010; Cramer et al., 2011). While NO$_3^-$ was unable to stimulate anoxic growth of the late isolate, alternative anoxic growth may occur by arginine fermentation (Vander Wauven et al., 1984) and survival could be facilitated by pyruvate fermentation (Eschbach et al., 2004) and phenazine redox cycling (Glasser et al., 2014; Quinn et al., 2014). Alternatively, the late isolate may have adapted to favor growth in the alveoles where oxygen is supplied by inspired air and capillaries surrounding the alveoles (West, 2000).

It has previously been shown that microoxic conditions are able to support growth of *P. aeruginosa* (Alvarez-Ortega and Harwood, 2007). Here we substantiate that physiological concentrations of NO$_3^-$ are also able to support growth by denitrification in anoxic conditions, highlighting the flexibility of *P. aeruginosa's* ability to survive in a range of environments in the CF airways (Worlitzsch et al., 2002; Aanaes et al., 2011; Kolpen et al., 2014a). Interestingly, physiological concentrations of NO$_3^-$ may also enhance growth of *P. aeruginosa* even at micro-oxic conditions since a growth advantage of laboratory strains carrying a lasR mutation, which is associated with severe lung damage in infected CF patients (Hoffman et al., 2009), was obtained with supplementation of only 125 μM NO$_3^-$ in conditions with limited O$_2$ mass-transfer (Hoffman et al., 2010).

In conclusion, *P. aeruginosa* is readily able to adapt to the physiological levels of NO$_3^-$ and lack of O$_2$ in the infected CF lungs by employing denitrification. The ability of *P. aeruginosa* to grow under anoxia has clinical relevance as multiple classes of antibiotics are known to have reduced efficacy in the absence of O$_2$ (Walters et al., 2003; Dwyer et al., 2014). Denitrification may consequently be a major factor in *P. aeruginosa's* observed tolerance to antibiotic treatment in CF patients (Hoiby et al., 2010). This tolerance may be overcome by directing antibacterial treatment against denitrification as suggested by the downregulation of narG and narH resulting in increased susceptibility of *P. aeruginosa* to fosfomycin and tobramycin combination treatment under anoxic conditions (McCaughhey et al., 2013). Denitrification has also recently been proposed to contribute to the pathogenicity of bacterial species infecting CF lungs due to its activity in *P. aeruginosa* as well as the highly pathogenic species *Achromobacter xylosoxidans* and *Burkholderia multivorans* in comparison to the less pathogenic *Pseudomonas maltophilia* which is unable to perform denitrification (Kolpen et al., 2014c). Accordingly, our results underline the importance of developing novel treatments that target *P. aeruginosa's* flexible metabolism more broadly, with the denitrification reductases presenting potential targets, and that can be administered to reach the varied lung microenvironments that *P. aeruginosa* is able to adapt to and persist within.

ACKNOWLEDGMENTS

With many thanks to The British Council Erasmus Work Placement programme for making this study possible, to the Danish Cystic Fibrosis Association and to Anne Kirstine Nielsen for technical assistance.

REFERENCES

Line et al. Denitrification supports growth of P. aeruginosa

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 14 August 2014; accepted: 03 October 2014; published online: 24 October 2014.

Copyright © 2014 Line, Alhede, Kolpen, Kähl, Ciofu, Bjarnsholt, Moser, Toyofuku, Nomura, Høiby and Jensen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.