Mapping student online actions
J Bruun¹, P Jensen², and L Udby²
¹Department of Science Education, University of Copenhagen, Denmark, ²Niels Bohr Institute, University of Copenhagen, Denmark

1. Keeping track of student learning

In this study, we investigate how students in a physics course on neutron scattering use a web-based wiki-formatted textbook while they are in class [2].

Inspired by [1], we use server log-files to track and construct networks of user sessions on a web-site for learning.

Network analysis has previously been employed to online forum discussions [3,4]. We focus on behaviours while solving problems that are related to learning.

We have constructed so-called wiki-problems. In solving these problems, we aim for students to make use of hints, solutions and other parts of the web-site.

We ask the question: “What patterns of engagement can we discern from network representations of student interactions?”

2. Student online actions while learning as networks

The learning situation

As part of class, students work with online problems that contain hints and solutions to learning outcomes. We are in the process of identifying strategies.

We have constructed so-called wiki-problems. In solving these problems, we aim for students to make use of hints, solutions, and other parts of the web-site.

We ask the question: “What patterns of engagement can we discern from network representations of student interactions?”

2.1. Student online actions while learning as networks

The learning situation

As part of class, students work with online problems that contain hints and solutions to learning outcomes. We are in the process of identifying strategies.

We have constructed so-called wiki-problems. In solving these problems, we aim for students to make use of hints, solutions, and other parts of the web-site.

We ask the question: “What patterns of engagement can we discern from network representations of student interactions?”

2.2. Resulting output and networks

As part of class, students work with online problems that contain hints and solutions to learning outcomes. We are in the process of identifying strategies.

We have constructed so-called wiki-problems. In solving these problems, we aim for students to make use of hints, solutions, and other parts of the web-site.

We ask the question: “What patterns of engagement can we discern from network representations of student interactions?”

3. Comparison between students from different years

We compare sessions recorded during the weeks in which students engage with online material.

We only consider sessions with duration d>5 min.

Using non-parametric tests, we find the target entropy for 2014 is significantly higher than for 2012 and for 2013 (p<0.01).

The plots show that students focus their engagement early in the course. This is also when they are given time during class to solve these problems.

3.1. Comparison between students from different years

We compare sessions recorded during the weeks in which students engage with online material.

We only consider sessions with duration d>5 min.

Using non-parametric tests, we find the target entropy for 2014 is significantly higher than for 2012 and for 2013 (p<0.01).

The plots show that students focus their engagement early in the course. This is also when they are given time during class to solve these problems.

3.2. Session and target entropy per week for three iterations of course. Not log-scale on y-axis. Sessions with 0 target entropy, 174, 300, and 189 sessions for 2012-2014 respectively are not in the plot.

Selected References