Analyse af IPCC delrapport 2 - Effekter, klimatilpasning og sårbarhed

Christensen, Jens Hesselbjerg; Arnbjerg-Nielsen, Karsten; Grinsted, Aslak; Halsnæs, Kirsten; Jeppesen, Erik; Madsen, Henrik; Olesen, Jørgen Eivind; Porter, John Roy; Refsgaard, Jens Christian; Olesen, Martin

Publication date:
2014

Document Version
Tidlig version også kaldet pre-print

Citation for published version (APA):
Analyse af IPCC delrapport 2
Effekter, klimatilpasning og sårbarhed
- med særligt fokus på Danmark
Titel: Analyse af IPCC delrapport 2 – Effekter, klimatilpasning og sårbarhed

Redaktion:
Louise Grøndahl
Nanet Poulsen

Bidragydere fra CRES (Center for Regional Change in the Earth System; et center under Det Strategiske Forskningsråd):
Jens Hesselbjerg Christensen, CRES-centerleder, Danmarks Meteorologiske Institut
Karsten Arnbjerg-Nielsen, Danmarks Tekniske Universitet
Aslak Grindsted, Københavns Universitet
Kirsten Halsnæs, Danmarks Tekniske Universitet
Erik Jeppesen, Aarhus Universitet
Henrik Madsen, DHI
Jørgen Eivind Olesen, Aarhus Universitet
John Roy Porter, Københavns Universitet
Jens Christian Refsgaard, De Nationale Geologiske Undersøgelser for Danmark og Grønland (GEUS)
Martin Olesen, Danmarks Meteorologiske Institut

Udgiver:
Naturstyrelsen
Haraldsgade 53
2100 København Ø
www.nst.dk

Foto:
Per Sørensen, Søren Svendsen, David Woodfall og Colourbox

Illustration:
IPCC og bidragydere fra CRES

år:
2014

ISBN nr.
978-87-7091-633-2

Må citeres med kildeangivelse.
Indhold

Forord... 5

1. Vurdering og håndtering af risici i et klima under forandring .. 7

2. Observerede konsekvenser, sårbarhed og tilpasning til et klima i forandring 11
 2.1 Ferskvandsressourcer .. 11
 2.2 Landbaserede økosystemer ... 11
 2.3 Kystnære områder .. 12
 2.4 Fødevare-forsyningssikkerhed og fødevareproduktion ... 13
 2.5 Urbane områder og infrastruktur ... 14
 2.6 Menneskelig påvirkning af klimesystemet ... 14

3. Fremtidige risici og muligheder for klimatilpasning ... 17
 3.1 Ferskvandsressourcer .. 17
 3.2 Landbaserede økosystemer ... 18
 3.3 Kystnære områder .. 19
 3.4 Fødevareproduktion og -forsyning ... 20
 3.5 Urbane områder og infrastruktur .. 21

4. Risikohåndtering og modstandsdygtighed i et klima under forandring 23
 4.1 Ferskvandsressourcer .. 23
 4.2 Landbaserede økosystemer .. 24
 4.3 Kystnære områder .. 24
 4.4 Fødevare-forsyningssikkerhed og fødevareproduktion ... 24
 4.5 Urbane områder og infrastruktur .. 25
 4.6 Veje til en klimarobust fremtid ... 25

5. Specielle danske forhold ... 31
 5.1 Temperatur og nedbør i Danmark .. 34
 5.1.1 Klimaet i dag ... 34
 5.1.2 Fremtidens klima .. 36
 5.2 Ferskvandsressourcer .. 37
 5.3 Landbaserede økosystemer .. 39
 5.4 Kystnære områder .. 41
 5.5 Fødevare-forsyningssikkerhed og fødevareproduktion .. 43
 5.5.1 Klimaændringeres effekter på produktionen ... 44
 5.5.2 Nye muligheder inden for landbrug og fiskeri .. 44
 5.5.3 Samspil til miljøreguleringen og arealanvendelse ... 46
 5.6 Urbane områder og infrastruktur ... 47
 5.7 Flere ekstreme vejrhændelser ... 49
 5.8 Veje til en klimarobust fremtid ... 49
 5.9 Danmark i et fremtidigt klima ... 50

Referencer ... 53
Forord

Af miljøminister Kirsten Brosbøl

Ødelagt indbo, oversvømmede biler og væltede skove. Det er nogle af de skader, vi har oplevet i forbindelse med voldsomt vejr i Danmark i de seneste år. Et voldsommere vejr som har konsekvenser både for den enkelte dansker og for samfundet.

De voldsomme begivenheder er et varsel om, hvad vi kan komme til at se mere af fremover. For uanset om vi helt stoppe med at udlede CO₂ nu, er klimaforandringerne i gang. Det har FN's klimapanel, IPCC, beskrevet.

Der er derfor et presserende behov for, at vi ruster os til det ændrede klima og klimatilpasser samfundet.

Indsatsen for at beskytte os mod især oversvømmelser er i gang. Kommunerne har med de kommunale klimatilpasningsplaner nu et redskab til at prioritere indsatsen – skal områder holdes fri af bebyggelse fremover, skal særlige bygninger sikres, skal der bygges diger? Mulighederne er mange, og aktørerne, der skal inddrages i arbejdet er mange.

Vi er ved at skabe et godt udgangspunkt for klimatilpasningen af Danmark, men vi må samtidig hele tiden holde os opdaterede om den nyeste viden om klimaforandringerne.

IPCC’s delrapport om klimatilpasning, effekter og sårbarhed gennemgår en række områder som landbrug, fødevareforsyning, kystområder, byer og natur, hvor klimaforandringerne vil få konkrete følger af såvel positiv som negativ art.

Jeg har bedt en række forskere om at trække al den information ud af rapporten, som kan have betydning for Danmark og den region, vi er en del af. Jeg har samtidig bedt forskerne sammenfatte den seneste opdaterede danske viden om konsekvenser, effekter og handlemuligheder.

Det er den viden, jeg her vil give videre til danske beslutningstagere i kommuner, virksomheder og organisationer – nationalt og lokalt, så I har det bedst mulige grundlag for at handle i det nye klima.

God læselyst!

Kirsten Brosbøl
1. Vurdering og håndtering af risici i et klima under forandring

Denne rapport analyserer hovedbudskaberne fra delrapport 2 i den 5. hovedrapport fra FN’s klimapanel IPCC med særligt fokus på, hvordan man via klimatilpasning og afbodning kan mindske virkninger og risici i forbindelse med klimaændringer. Rapporten vurderer behov, muligheder, begrænsninger, modstandsdygtighed, og andre aspekter, der er forbundet med klimatilpasning.

I boks 1 er der en kort beskrivelse af IPCC og dets opgaver.

Mennesker påvirker klimaet
Det er ekstremt sandsynligt, at menneskelig påvirkning har været den dominerende årsag til den globale opvarmning i de seneste 50 år. Det viser den 5. hovedrapport fra IPCC med endnu større sikkerhed end de tidligere rapporter. Vurderingen kommer fra Arbejdsgruppe 1 (WGI) under IPCC. Den globale opvarmning fører til klimaændringer, som indebærer en risiko for både mennesker og natur. Det er ændringer som opvarmning af atmosfæren og havene, ændringer i det globale vandkredsløb, mindre mængder is og sne, stigning i verdenshavenes gennemsnitsniveau samt flere ekstreme vejrfænomener som fx tørke og voldsomme regnevjr.

Vi kan til en vis grad tilpasse os klimaændringerne
Arbejdsgruppe II under IPCC (WGII) har vurderet virkninger af, tilpasning til og sårbarhed over for klimaændringer. I denne rapports kapitel 2, 3 og 4 beskrives en række af disse vurderinger, som enten har afgørende international betydning, eller som har betydning for Danmarks muligheder for at tilpasse sig klimaforandringerne samt for danske forhold generelt. Beskrivelserne bygger direkte på WGII's bidrag til den 5. hovedrapport og temaerne er:

Kapitel 2: Observerede konsekvenser, sårbarhed og tilpasning til et klima i forandring
Kapitel 3: Fremtidige risici og muligheder for klimatilpasning
Kapitel 4: Risikohåndtering og modstandsdygtighed i et klima i forandring

Sådan påvirker klimaet Danmark
Som afslutning på denne rapport findes et femte og mere uddybende kapitel med danske vinkler på nogle af IPCC-rapportens hovedområder. I dette kapitel inddrages viden fra dansk klimatilpasningsforskning, som kan medvirke til at belyse særlige danske forhold.

Selv de delrapport 2 og dens sammendrag for beslutningstagere (Summary for Policymakers; SPM) har ikke et direkte fokus på konsekvenserne af klimaændringerne for Danmark. Men baggrundsrapporten indeholder informationer, der relaterer sig til forholdene i Danmark, Skandinavien og det nordlige Europa. Analysen i denne rapport udgør derfor en forenklet genskrivning af resumé for beslutningstagere med særlige fremhævninger af de forhold, som kan have specifik betydning for Danmark.

Effekter og konsekvenser
Klimaændringerne indebærer komplekse samspil. Og sandsynligheden for forskellige påvirkninger er ikke statiske – de forandrer sig løbende. I boks 2 er der en definition af flere af de begreber, som er centrale for at forstå virkningerne af klimaforandringerne. Tilgangen er som noget nyt baseret på risiko. Det betyder, at effekterne ikke bare er listet op. Det kan fx være vigtigt at forsøge at undgå meget alvorlige konsekvenser, selv om der kun er en lille sandsynlighed for, at de realiseres.

Det er også vigtigt at huske, at der er en tidsforskydning mellem den videnskabelige litteratur inden for klimaeflektforskning og den bagvedliggende forskning i klimaforandringer. Derfor bygger de klimascenarier for fremtiden, som WGII har haft mulighed for at vurdere i en vis grad på ældre data end de forhold WGI har arbejdet med. Men scenarierne kan på mange punkter sammenlignes uden tab af væsentlig information. Boks 3 på side 28 giver en kort sammenfatning af de nye scenarier, som WGI har benyttet.

Boks 1: Om IPCC, FN’s klimapanel

IPCC står for the Intergovernmental Panel on Climate Change. Det er et mellemstatsligt videnskabeligt organ, der blev oprettet i 1988 af FN’s særoganisiationer for meteorologi (WMO) og miljø (UNEP). IPCC’s formål er at give verden et klart videnskabeligt syn på aktuel viden om klimaændringer og deres potentielle konsekvenser for miljø og samfundsekonomi.

IPCC’s hovedaktivitet er med jævne mellemrum at udgive vurderingsrapporter om den naturvidenskabelige viden om klimaændringer, klimatilpasning og afbødning af klimaændringerne. IPCC udfører ikke selv forskning, men vurderer den eksisterende viden og litteratur. Arbejdet i IPCC understøtter arbejdet under FN’s Klimakonvention (UNFCCC).

IPCC’s arbejde er politisk relevant som information for beslutningstagere, men IPCC kommer ikke selv med politiske anbefalinger. Arbejdet er organiseret i tre arbejdsgrupper. De tre grupper har følgende opgaver:

Arbejdsgruppe I, WGI: Foretager den videnskabelige vurdering af klimasystemet.
Arbejdsgruppe II, WGII: Vurderer virkninger af klimaændringer samt muligheder for klimatilpasning.
Arbejdsgruppe III, WGIII: Vurderer de videnskabelige, tekniske, miljømæssige, økonomiske og samfundsmæssige muligheder for at begrænse/afdæmpe klimaændringer.

I 2014 afsluttes den 5. hovedrapport fra klimapanelet med bidrag fra alle tre arbejdsgrupper.
Boks 2: Vigtige begreber og ordforklaringer

Adaptiv forvaltning: Et tilpasningsorienteret forvaltningskoncept som løbende tager hensyn til behovet for at justere praksis i forhold til udfordringerne fra klimaforandringerne

Eksponering: Lokaliteter hvor følgende kan blive påvirket negativt: mennesker, livsgrundlag, arter eller økosystemer, miljø, tjenester og ressourcer, infrastruktur, eller økonomiske, sociale eller kulturelle aktiver.

Institutionelle rammer: Det samlede system af myndigheders aktiviteter i form af lovgivning, bekendtgørelser, vejledninger samt formelle eller uformelle procedurer og konventioner, der påvirker et samfunds aktiviteter.

Katastrofe: Forekomst af en fysisk eller menneskeskabt begivenhed der kan forårsage tab af liv, påføre skade eller have anden sundheds- eller økonomisk konsekvens, eller give skader og tab på ejendom, infrastruktur, livsgrundlag, tjenesteydelser, økosystemer og miljømæssige ressourcer. I denne rapport bruges udtrykket katastrofe især om klimarelaterede fysiske begivenheder eller deres virkninger.

Klimafaktor: Forholdet mellem værdien af en klimaparameter (fx gentagelsesperioden for kraftigt regnvejr) under et fremtidigt klima og det nuværende klima. En klimafaktor på 1,3 svarer fx til øgning på 30% af en given nutidig gentagelsesperiode.

Klimascenarie: En beregning af klimaudviklingen baseret på et scenarie for atmosfærens indhold af drivhusgasser og andre menneskeskabte forandringer som fx ændret arealanvendelse og udslip af forureningsspartikler (aerosoler)

Klimatilpasning: Processen at justere til faktiske eller forventede klimaforhold og deres virkninger. I menneskelige systemer har klimatilpasning til formål at moderere eller undgå skade eller udnytte fordelagtige muligheder. I nogle naturlige systemer kan mennesket gribe ind og lette tilpasningen til forventede klimaændringer og deres virkninger.

Sårbarhed: Tilbøjelighed til eller disponering for at blive påvirket negativt. Sårbarhed omfatter rækkeelementer, fx følsomhed eller modtagelighed over for skade- og manglende evne til at klare og tilpasse sig.

Virkninger: Effekter på naturlige og menneskeskabte systemer. Udtrykket anvendes primært om virkningerne på naturlige og menneskeskabte systemer, som skyldes ekstreme vejr- og klimabegivenheder samt klimaændringer. Der kan være tale om virkninger på liv, livsgrundlag, sundhed, økosystemer, økonomi, samfund, kulturer, tjenester og infrastruktur på grund af samspillet mellem klimaforandringer eller farlige klimabegivenheder inden for en bestemt periode. Der kan også være tale om sårbarhed af et udsat samfund eller (øko-)system. Påvirkninger kaldes også for konsekvenser.
2. Observerede konsekvenser, sårbarhed og tilpasning til et klima i forandring

I de seneste år har ændringer i klimaet påvirket naturlige og menneskeskabte systemer på alle kontinenter og på tværs af oceanel.

De mest markante påvirkninger af menneskelige systemer er sket i Arktis og syd for ækvator. Der er især påvist ændringer i naturlige systemer på den nordligste halvkugle, hvilket formentlig hænger sammen med, at langt flere studier er gennemført i disse områder.

2.1 Ferskvandsressourcer

Der er ikke konstateret markante tendenser i nedbøren i det 20. århundrede på det globale plan. Derimod er der påvist tendenser i flere regioner i verden. Blandt andet er der i Nordeuropa påvist en sammenhæng mellem stigende mængde drivhusgasser og øget nedbør om vinteren. I Nordeuropa er der også påvist en øget vandføring i vandløb.

Ekstrem nedbør skyldes menneskelig aktivitet

De økonomiske tab fra oversvømmelser i Europa er øget markant gennem de seneste år. Det skyldes især, at der er øgede økonomiske aktiviteter i de oversvømmelsesstruede områder, og det giver større skadevirkninger fra de enkelte oversvømmelser.

2.2 Landbaserede økosystemer

Desuden er omfanget af invasive arter øget. De invasive arter etablerer, fordeler og formerer sig mere effektivt. Men det er fortsat uklart, i hvilket omfang det hænger sammen med klimaændringerne.
Tørke og ekstrem regn har medført flere og alvorligere forstyrrelser i økosystemerne. Antallet af sygdomsangreb er også øget, og dette tilskrives i nogle tilfælde klimaændringer.

Det er nu blevet mere klart, at der er tale om synergieffekter, så klimaændringer i de fleste tilfælde forstærker effekterne af de øvrige indgreb i naturen.

2.3 Kystnære områder
I kystområder kan det være svært at se, om påvirkninger skyldes klimaforandringer eller andre menneskelige indgreb. Kystområderne forandrer sig hele tiden som følge af forurening og ændring i summerhusområder, byer, skov og landbrug.

Det er nemmere at observere temperaturafhængige klimaændringer i fx havet, når det gælder nye arter eller fx koralrev. Havgræsene er allerede under pres på grund af klimaændringer. Det gælder især, fordi maksimumstemperaturen allerede nærmer sig nogle arters fysiologiske grænse.

Indtrængning af saltvand

Når man skal vurdere, om klimaændringer indtil nu har betydet en stor ændring i kystområderne, må man altså se på, hvilke ændringer der er tale om. Se endvidere figur 2.1.

![Figur 2.1: Figuren viser på x-aksen, hvor stor tiltroen er til, at observationerne viser reelle tendenser i klimafølsomme kystnære systemer. På y-aksen viser figuren, hvor stor tiltroen er til, at de observerede tendenser kan tilskrives klimaændringer. Kilde: CRES på baggrund af IPCC.](image-url)
Øget havniveau giver stormfloder og erosion af kyster
Jo mere havniveauet stiger, jo værre bliver stormfloder og erosion af kyster. I det 20. århundrede steg det globale havniveau med 1,7 mm/år, men siden 1993 er det steget med 3,2 mm/år. Globalt set er nettoresultatet, at der er blevet mere hav og mindre land i sidste århundrede. Der er dog mange andre påvirkninger, der bidrager til kysterosion. Det gælder nedsat sedimenttransport og nye måder at anvende kystområder på. Der er desuden ikke klare tegn på, at der er sket en forværring i de vejforhold, der forårsager stormfloderne.

Større opvarmning ved kyster end i havet

Højere temperaturer giver iltsvind
På globalt plan er der næsten hvert år siden 1960 sket en fordobling i antallet af døde zoner i havet, det vil sige områder med meget lavt iltindhold. I Østersøen er arternes mulighed for at migrere begrænset. Det gør livet i Østersøen særlig følsomt over for opvarmning. Østersøen er desuden stærkt påvirket af udledning af næringsstoffer.

2.4 Fødevare-forsyningssikkerhed og fødevareproduktion
Klimaforandringerne påvirker i høj grad afgrøder og landbaseret fødevareproduktion i mange af verdens regioner. Der har været flere negative end positive virkninger af klimaforandringer.
Tydelige positive påvirkninger forekommer på nordlige breddegrader. Fødevare- og kornpriser er steget mange steder som følge af ekstreme klimaforhold i vigtige produktionsområder. Det viser, at de nuværende fødevaremarkedes er følsomme over for ekstreme klimahændelser.

Sårbare grupper rammes særligt at klimaændringer
Klimaændringer påvirker mængden og fordelingen af fangsten af fisk (fx fiske-dambrug) i forskellige dele af verden. Især i tropiske områder kan det fortsætte den negative påvirkning af ernærings- og fødevaresikkerhed for sårbare befolkningssager. Derimod kan det give positive påvirkninger i andre regioner, som bliver mere velegnede til fersk- og saltvandsbaseret fiskeri og akvakultur.

Invasive ukrudtsarter kan få lettere spil

Fødevaresikkerhed bliver påvirket

Observerede konsekvenser, sårbarhed og tilpasning til et klima i forandring
Klimaefekten giver både fordele og ulemper

2.5 Urbane områder og infrastruktur

Byområder er generelt meget sårbare, og det er også her, de fleste nuværende risici i forbindelse med klima er koncentreret. Sårbarheden er primært knyttet til ekstreme vejrhændelser som ekstremnedbør, hedebedrager, cykloner og stormfloder. Desuden har byområder en størrelse, hvor de i sig selv kan ændre det lokale klima – man taler om urban opvarmning. Det kan i nogle tilfælde medføre yderligere behov for klimatilpasning.

Sårbarheden øges af hyppigere og mere intense ekstremer i et klima i forandring. Sårbarheden kan også øges af forhold, der ikke er klimarelaterede. Især i lav- og middelindkomstlande øges sårbarheden således, når der sker intensiv urbanisering og bosættelser i højrisikooområder.

Forberedelse til klimaændringer kræver regulering

2.6 Menneskelig påvirkning af klimasystemet

Den menneskelige påvirkning af klimasystemet er tydelig. Dette er fastslået i IPCC’s WGI. I 5. hovedrapport tages der afsæt i vurderingen af klimaændringerernes forskellige risici på tværs af forskellige sektorer og regioner. Dette skaber grundlag for at vurdere, hvornår niveauet af klimaændringerne risikerer at blive farligt. På globalt plan har klimaændringerne været særligt fremherskende inden for fem hovedområder. Det er samtidig de fem områder, som IPCC vurderer som særligt risikofyldte. Områderne er:

- Unikke og truede økosystemer som Arktis, gletsjere og koralrev.
- Ekstreme varme hvor varmeudbrud har påvirket systemer som koralrev. Det gør på risikoen ved ekstreme vejrhændelser. Andre steder har ekstreme hændelser forårsaget stigende problemer og økonomisk tab, men det har her været vanskeligt præcist at kunne koble hændelserne til klimaændringer.
- Virkninger af klimaforandringer dokumenteret på globalt plan med en hidtil uset udbredelse, men med utilstrækkelig dokumentation af geografiske konsekvenser.
- Risici forbundet med store påvirkninger, som er identificeret for:

Observerede konsekvenser, sårbarhed og tilpasning til et klima i forandring

14
- kryosfæren, det vil sige den del af jorden, der er dækket af is og sne (her kun isvolumen)
- landbaserede økosystemer (nettoproduktivitet, kulstoflagre)
- menneskelige systemer (høstudbytte, tab i forbindelse med katastrofer).

- Voldsomme enkelstående begivenheder der indebærer uafvendelige skift, som igen rummer betydelig mulighed for tilbagekoblinger, der endnu ikke er påvist. Dog er der tidlige tegn på klimaforårsagede regimeskift i Arktis (stærkt reduceret snedække sidst på vinteren og meget ringe havisudbredelse om sommeren) og for tropiske koralrev, hvor koralerne i stigende grad dør bort på grund af for høje vandtemperaturer.

3. Fremtidige risici og muligheder for klimatilpasning

Fortsat opvarmning øger sandsynligheden for alvorlige, gennemgribende og uoprettelige konsekvenser.

Hvis man begrænser hastigheden og omfanget af klimaændringerne, kan man reducere de generelle risici fra klimaændringerne virkninger.

Ved at klimatilpasse kan man mindske risikoen for hovedparten af de konsekvenser, der kan komme af klimaændringer i den nære fremtid (2030-2040).

3.1 Ferskvandsressourcer
Klimaændringer vil øge risici for vandressourcer markant. Globalt set vil flere mennesker komme til at leve i områder med vandmangel.

Vandbalancerne ændrer sig
3.2 Landbaserede økosystemer

Økosystemer på land og i de ferske vande vil komme under betydeligt pres i anden halvdel af dette århundrede. Det gælder i høj grad i de høj-opvarmnings scenarier, som IPCC har opstillet (se boks 3 under scenarierne RCP6.0 og RCP8.5). Effekterne vil dog i de kommende 30 år være mindre end fra andre mennesketabte påvirkninger som fx landbrug og forurening. Der vil opstå synergieffekter, så klimaændringer forsterker effekterne af de øvrige indgreb i naturen. Der er desuden øget risiko for markante ændringer, når der opstår ekstreme hændelser som øget nedbør og særligt varme perioder. Ændringerne i de landbaserede økosystemer kan også påvirke klimaet fx gennem ændringer i stofkredsløbet (kulstof og kvælstof), landskabet og ferskvandskredsløbet.

Øgede temperaturer vil forringe vandkvaliteten i de ferske vande ikke mindst i de vandområder, som i forvejen er væsentligt påvirket af menneskelige aktiviteter, og det gælder hovedparten af de danske ferske vande.

Plante- og dyrearter flytter sig

Der vil være bedre muligheder for skovproduktion, men nåleskoven vil komme under fortsat større pres. Ændringer i klimaet har i de seneste årier medført forskydninger i plante- og dyrearters udbredelse og fordeling. Det vil fortsætte i takt med opvarmningen. IPCC’s midt- og høj-opvarmnings-scenarier (Se boks 3: RCP6.0 og RCP8.5) viser, at nogle arter vil komme under pres, fordi de ikke kan flytte sig hurtigt nok til at finde passende klimaforhold. Andre menneskelige påvirkninger kan også begrænse arternes evne til at tilpasse sig klimaændringer. Der vil desuden være øget risiko for indvandring af invasive arter, specielt arter der spredes i samme grad, når de vokser op. Der vil endvidere være større risiko for udbredelse af sygdomme hos planter og dyr.

Forstyrrelser i fødekæden

De forskellige arter – og led i fødekæden – kan komme ud af takt med hinanden, og det kan få store følger, hvis arterne er indbyrdes afhængige. Nogle arter vil fx få tidligere sæsonopstart i foråret, og det er et problem, hvis artens føde ikke også har ændret sin sæsonopstart. Det vil især have effekt på dyr, der lever af planter, insekter eller andre dyr, fordi føden ikke længere er tilgængelig i samme grad, når de vokser op. Der vil endvidere være større risiko for udbredelse af sygdomme hos planter og dyr.

Regulering kan modvirke klimaændringer

3.3 Kystnære områder

Globalt set forventes havniveauet at stige 0,28-0,98 m ved år 2100 men med regionale forskelle (se kapitel om specielle danske forhold). Der er dog en risiko for, at delområder af Antarktis reagerer kraftigere end modelleregningernes forudsigelser. Hvis Antarktis smelter hurtigere end antaget, er vurderingen, at der er op til 33 % risiko for, at havet kan stige mere end dette.

Større og større havstigning

Havstigningen i det 21. århundrede vil være større end havstigningen i det 20. århundrede, og det gælder, uanset hvilket scenarie der benyttes for udledning af drivhusgas. Havniveauet vil fortsætte med at stige efter det 21. århundrede, og stigningen i det 22. århundrede vil højst sandsynligt være større end i det 21. århundrede. Det er derfor vigtigt at have en tilstrækkelig robust planlægning, der kan tage højde for det langsigtede perspektiv i fremtidige havniveaustigninger.

Der er ikke en åbenbar tendens i klimafremskrivningerne af storme ved kysten. Men selv om stormforholdene er uændrede, vil kystnære områder alligevel i stigende grad opleve ekstreme vandstande som følge af det stigende middel-havniveau.

Erosion af kystnære områder

Skadeomkostninger kan bringes ned

I EU estimerer man de årlige potentielle skadesomkostninger ved havniveauet til at være 25 milliarder €/år. Hertil kommer, at 250.000 personer/år potentielt vil være påvirket af oversvømmelser i 2080’erne (i tilfælde af et scenarie med 37 cm havniveauet i år 2100). Kystbeskyttelse kan nedsætte skadeomkostningerne betragteligt. De årlige udgifter til klimatilpasning i EU estimeres til at være 1,5 milliarder €/år i 2050’erne. Hvis man ikke indfører disse tiltag, bliver de estimerede udgifter til genopretning og erstatninger seks gange så høje. Denne relative økonomiske fordel ved klimatilpasning vil blive større gennem århundredet.
3.4 Fødevareproduktion og -forsyning
Fødevareproduktionen bliver påvirket af klimaændringer på flere måder både direkte og indirekte. Inden for landbruget ændres vilkårene for planteproduktion, når der sker ændringer i temperatur, nedbør og CO₂-koncentration. Det giver i nogle tilfælde et øget udbytte og i andre tilfælde et formindsket udbytte.

Ekstreme hændelser vil påvirke hvedeproduktion

Kvaliteten af naturressourcerne vil ændre sig

Fremtidige risici og muligheder for klimatilpasning

20 Fremtidige risici og muligheder for klimatilpasning
3.5 Urbane områder og infrastruktur

Risiko for oversvømmelse af byer

På globalt plan er oversvømmelse af byer i kystområder en dominerende fremtidig risiko med en forventet tredobling i antallet af berørte mennesker og en tidobling af de økonomiske konsekvenser ved en havniveaustigning på 0,5 m. Generelt bliver stigning i intensiteten af ekstremregn på 10-60 % frem mod 2100. Det giver en forøget risiko for oversvømmelser og overløb fra kloaksystemer med op til 400 %. Befolkning i byer som er påvirket af disse oversvømmelser vil stige fra nuværende 150 millioner til 1 milliard mennesker i 2050.

Klimatilpasning kræver investeringer

4. Risikohåndtering og modstandsdygtighed i et klima under forandring

Klimatilpasning skal tage udgangspunkt i det konkrete sted og den konkrete sammenhæng. Der findes nemlig ikke en enkelt tilgang til at reducere risici hensigtsmæssigt på tværs af alle sektorer og geografiske områder.

Supplerende foranstaltninger, fra enkeltpersoner til regeringer, medvirker til at forbedre planlagt klimatilpasning og dens gennemførelse.

Et første skridt i retning af tilpasning til fremtidige klimaændringer er at reducere sårbarheden og eksponeringen, til de variationer i klimaet vi lever med nu.

Adaptiv forvaltning er effektiv til at håndtere de betydelige usikkerheder, der samlet set indgår i klimatilpasning. I adaptiv forvaltning foretager man analyser af fremtidsscenarioer og forsøgsmæssige anvendelser af nye innovative løsninger på pilotbasis.

4.1 Ferskvandsressourcer

4.2 Landbaserede økosystemer
De landbaserede økosystemers modstandsdygtighed over for klimaforandringer stiger generelt i, takt med at andre stressfaktorer mindskes. Den adaptive forvaltning skal derfor sikre mere naturlige økosystemer. Det kan ske på flere måder: Ved at nedsætte tilførslen af næringsstoffer fra land og by, ved at mindske påvirkning fra pesticider, ved at genskabe landskabets selvrensende effekt, hvor man retablerer og gensynger vandløb, ved at fjerne spærringer og planter træer langs vandløb (ikke mindst på sydstræden), ved at retabliere søer og moser, og ved at sikre mere naturskov og bedre korridorer i landskabet. Disse tiltag vil under alle omstændigheder føre til forbedringer af økosystemernes kvalitet, uanset hvilke effekter klimaforandringerne vil have.

4.3 Kystnære områder

Ingen fast øvre grænse for havstigninger
Der er ingen konsensus omkring den øvre grænse for havniveausstigninger i det 21. århundrede. Det er derfor nødvendigt at vurdere, hvor stor en risiko der bliver anset for acceptabel i det specifikke tilfælde samt at tilpasse tiltag til ny aktuel viden. For eksempel antog det hollandske Delta Program 1,3 m som en øvre grænse for havstigningerne over det 21. århundrede, mens der for Danmark ikke er en officiel øvre grænse. DMI vurderer på baggrund af RCP8.5 (se boks 3), at en øvre grænse baseret på et usikkerhedsestimat er 0,9 m.

Behov for fleksibel kystbeskyttelse
Det er svært at anvende traditionelle cost-benefit-analysers på grund af de lange tidshorisonter for investeringer i klimatilpasning ved kysten. Dels er der økonomiske værdier på spil, og dels er der betydelig usikkerhed om påvirkningerne og om klimascenarierne inden for sådan en lang tidshorizont. Der kan derfor være en økonomisk fordel ved at investere i kystbeskyttelse, som er omstillingsparat og kan op- og nedjusteres, efterhånden som forudsigelser om klimaændringer bliver mere sikre.

4.4 Fødevarer-forsyningssikkerhed og fødevareproduktion
Klimatilpasning inden for fødevareproduktionen bør især fokusere på jord, vand og genetik som de basale ressourcer, der er grundlaget for produktionen. Hertil kommer ændringer i landbrugsproduktionens sammensætning og de tilhørende teknologier. Disse kan i mange sammenhænge tilpasse udnyttelsen af de basale ressourcer bedre til et ændret klima. For jordens vedkommende er der brug for bedre beskyttelse af jordkvaliteten og den vandholdende evne. I andre egne vil øget erosion på grund af vind eller vand være væsentlige trusler. Og endnu andre steder kan øgede nedbørmængder medføre behov for øget drenning af markerne. I mange egne af verden vil klimaændringerne medføre længere og mere alvorlige tørkesituationer, og det øger presset på vinding. Der er derfor behov for at udbygge kapaciteten til oplagring og forsyning med vand til vanding men også til øget effektivitet i
vandingen. Inden for genetikken er der brug for øget fokus og muligvis nye metoder til fremavl af afgroder og husdyr, der bedre tilpasset både et varmere og et mere variabelt klima.

4.5 Urbane områder og infrastruktur

Når man skal sikre en effektiv klimatilpasning for et byområde, er der flere ting at tage højde for. Der skal give lokal information om såvel det nuværende som det forventede fremtidige klima, samt hvordan det vil påvirke den samlede risiko for byområdet. Samtidig bør der være oplysninger, som peger på de gode muligheder for tilpasning til det nye klima baseret på den nyeste viden omkring klimaændringer og sosioøkonomiske fremskrivninger.

4.6 Veje til en klimarobust fremtid
Klimapolitikken er udtryk for en samlet balance mellem:
- samfundets vurdering af risiko ved klimaændringer
- klimatilpasning
- muligheder og omkostninger ved at begrænse klimaændringerne ved mindre drivhusgasudslip.

Klimasystemet forstyrres af den menneskelige påvirkning, og klimaændringerne udgør en risiko for både menneskeskabte og naturlige systemer. Dette illustreres i figur 4.1. Figuren viser, hvordan både ændringer i klimasystemet og i de samfundsmæssige forhold medvirker til ændringer i katastrofer, eksponering og sårbarhed.

Hvordan der skal satses på henholdsvis at reducere udslippet af drivhusgasser, og hvor meget der skal satses på klimatilpasning, er en prioritering, der bør træffes af verdenssamfundet. Et eksempel på en sådan beslutningstagning er FN-forhandlingerne om, hvad det indebærer at begrænse globale gennemsnitlige temperaturstigninger til fx højst 2°C. Det er her vigtigt at holde sig for øje, at der stadig er behov for klimatilpasning, selvom der bliver indført drivhusgasreduktioner, som svarer til bestemte mål for gennemsnitlig temperaturstigning. IPCC's 5. hovedrapport nævner da også, at verden vil kunne miste op til 2% af det samlede bruttonationalprodukt (se boks 3 for definition) ved en temperaturstigning på fx 2°C. Det fremgår samtidig af rapporten, at klimatilpasning kan reducere det økonomiske tab væsentligt.

Klimatilpasning som samlet politisk strategi
IPCC anbefaler i 5. hovedrapport en strategi for udvikling og implementering af klimatilpasnings tiltag for at reducere de usikkerheder, som knytter sig til disse tiltag. Der er tale om en slags udviklingsstrategi for klimapolitik, hvor opgørelser af omkostninger og fysiske konsekvenser suppleres med klimatilpasning gennem en samlet klimapolitisk strategi. Denne strategi sigter på, at tilpasningsplanerne løbende bliver justeret ud fra monitering af klimarisici og effektiviteten af den udførte indsats. Målet er endvidere at effektivisere klimapolitikken over tid ved at høste større viden om klimaændringer og erfaringsopsamling for klimatilpasning. Det vil
tilsammen nedsætte usikkerhederne forbundet med de klimapolitiske tiltag. IPCC’s illustration af en sådan strategi for klimatilpasning med indbygget læring er vist i figur 4.2.

Figur 4.1: Figuren viser, at risikoen for klimarelaterede virkninger er et resultat af samspillet imellem klimarelaterede katastrofer samt eksponering og sårbarhed over for disse begivenheder (synergieffekt). Både ændringer i klimasystemet (venstre side) og samfundsmæssige forhold (højre) er kilder til ændringer i katastrofer, eksponering og sårbarhed. Kilde: IPCC
Boks 3: IPCC har taget nye klimascenarier i anvendelse, de såkaldte RCP-scenarier (Representative Concentration Pathways)

Forudsigelser af klimaforandringer kræver oplysninger om fremtidige udledninger eller koncentrationer af drivhusgasser, aerosoler og andre faktorer, der påvirker klimaet. Disse oplysninger udtrykkes ofte som et scenerie af menneskelige aktiviteter. IPCC’s WGI-scenarier har fokuseret på menneskeskabte udledninger og omfatter ikke ændringer i naturlige påvirkningsfaktorer såsom påvirkning fra solen, vulkaner eller naturlige udledninger af fx metan (CH₄) og lattergas (N₂O).

Graden af menneskeskabt global opvarmning bliver på længere sigt primært afgjort af de samlede udledninger over tid. De er derfor både afhængige af, hvornår udledningerne topuser, på hvilket niveau de topser, og hvor hurtigt de derefter aftager. Forud for arbejdet med IPCC’s 5. hovedrapport er defineret en række repræsentative scenarier for den fremtidige klimapåvirkning. De kaldes RCP-scenarierne (Representative Concentration Pathways), og de erstatter de tidligere SRES standardscenarier (Special Report on Emissions Scenarios). I modsætning til SRES-scenarierne er nogle af de nye scenarier specifikt formulert som stabiliserings-scenarier, der inddrager effekten af klimapolitiske beslutninger.

Formålet med de nye scenarier er at give beslutningstagerne bedre muligheder for at kunne vurdere konsekvenserne af de forventede klimaændringer under forskellige grader af global opvarmning. Dermed kan beslutningstagerne bedre vurdere passende tiltag for klimatilpasning og reduktion af drivhusgasudledningen.

Nedenfor vises de fire RCP-scenarier, og hvordan de udvikler sig.

<table>
<thead>
<tr>
<th>Betegnelse</th>
<th>Strålingsforcering</th>
<th>Drivhusgaskoncentration</th>
<th>Temperatur i 2100 (bedste estimat) ift. 1980 - 1999</th>
<th>Udvikling i forhold til 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCP8.5</td>
<td>Over 8,5 W/m² i 2100</td>
<td>Over 1370 ppm CO₂-ækvivalent i 2100</td>
<td>Ca. 4,5 °C</td>
<td>Stigende</td>
</tr>
<tr>
<td>RCP6.0</td>
<td>Ca. 6 W/m² ved stabilisering efter 2100</td>
<td>Ca. 850 ppm CO₂-ækvivalent ved stabilisering efter 2100</td>
<td>Ca. 2,6 °C</td>
<td>Stabilisering</td>
</tr>
<tr>
<td>RCP4.5</td>
<td>Ca. 4,5 W/m² ved stabilisering efter 2100</td>
<td>Ca. 650 ppm CO₂-ækvivalent ved stabilisering efter 2100</td>
<td>Ca. 1,7 °C</td>
<td>Stabilisering</td>
</tr>
<tr>
<td>RCP2.6 / RCP3-PD</td>
<td>Topper ved ca. 3 W/m² før 2100 og aftager derefter</td>
<td>Topper ved ca. 490 ppm CO₂-ækvivalent før 2100 og aftager derefter</td>
<td>Ca. 0,8 °C</td>
<td>Topper og aftager derefter</td>
</tr>
</tbody>
</table>

Figuren på næste side sammenligner udviklingen i global middeltemperatur for SRES- og RCP-scenarierne.
Boks 3 fortsat:

5. hovedrapport

4. hovedrapport

SRES-scenarierne fra 2001 er baseret på fremtidsvisioner, som generelt opererer med højere velstand end i dag. Scenarierne omfatter en lang række fremtidige niveauer for økonomisk aktivitet. Her stiger det samlede bruttonationalprodukt for alle verdens lande (et mål for værdien af et lands samlede produktion af varer og tjenester minus værdien af de anvendte råstoffer) til ti gange de nuværende værdier i år 2100 i det laveste og til 26 gange i de højeste scenarier. Mange af SRES-scenarierne forudsætter, at indkomstfordelser blandt de globale regioner bliver mindre.

I de fleste scenarier fortsætter reduktionen af det globale skovområde i nogle årtier. Det er hovedsageligt på grund af øget befolkning og indkomsttilvækst. Men i de fleste scenarier vender denne tendens, så vi ender med en stigning i skovområdet i år 2100 sammenlignet med 1990. Ændringer i forbindelse med udnyttelse af landbrugsjord sker hovedsageligt ved ændringer i efterspørgsel efter fødevarer, forårsaget af demografiske skift og kostændringer.
5. Specielle danske forhold

IPCC’s 5. hovedrapport afdækker i højere grad end tidligere systematisk klimaeffekter på regional skala. Klimaeffekterne i det nordlige Europa afviger på mange parametre fra effekterne i det sydlige Europa. Ikke desto mindre vil en række klimaeffekter i det sydlige Europa indirekte påvirke fx Danmark på mere nordlige breddegrader. Den 5. hovedrapport fremhæver, hvor vigtigt det er at forstå de globale og interregionale handelsmønstre og finansielle transaktioner for at kunne vurdere betydningen af regionale klimaændringer i Europa og hele verden.

De europæiske lande rammes forskelligt af klimaændringer

Globale ændringer kan få lokale konsekvenser
Selv om klimatilpasning i høj grad er regionalt eller lokalt betinget, er det væsentligt at have øje for den globale sammenhæng og kompleksiteten af de påvirkninger, som klimaforandringerne kan medføre. Figur 5.1 giver information om ligheder og forskelle på en global skala, mens figur 5.2 præsenterer et resume af de overordnede tendenser af klimavirkninger på tværs af sektorer i forskellige regioner i Europa (Alperne, Syd, Nord, Kontinentalt og Atlanterhavs-kystområder). De påvirkninger som resten af verden er udsat for, kan også få konsekvenser i Danmark. I nogle tilfælde kan det få betydning for både klimatilpasningsmuligheder og implementeringen af disse. Det kan fx skyldes international lovgivning, andre internationale forhold, eller at klimaeffekter (katastrofer) i fjerne egne fjerner et egentligt dansk fokus. Overordnet gælder dog for Europa:
Energiproduktionen.

Landbrugsproduktionen.

Fiskebestanden

Turismen
Turismen vil komme til at stige i det nordlige Europa og det sydlige Skandinavien til dels på grund af et mildere klima. Til gengæld vil turismen falde i den sydlige del af Europa – særligt om sommeren.

Havniveauet
Havniveauet vil stige, men konsekvenserne for befolkningen og infrastrukturen vil sandsynligvis være på et niveau, som Europas kystnære områder vil være i stand til at tilpasse sig. Derimod vil vores kulturarv være særligt udsat herunder historiske bygninger, landskaber og arkæologiske områder, da de ikke kan flyttes.

Storme
Forekomsten af storme er forbundet med store naturlige variationer. En række videnskabelige studier tyder på, at vi på grund af den globale opvarmning vil opleve flere store storme med ødelæggelser til følge i løbet af dette århundrede. Der er dog ikke bevis for, at den hidtil observerede stigning i europæiske storme kan tilskrives udledningen af drivhusgasser til atmosfæren.
Temperatur og nedbør i Danmark

5.1 Temperatur og nedbør i Danmark

I Danmark stiger middeltemperaturen omtrent som den globale temperatur. Vinternedbøren forventes at stige i takt med opvarmningen.

5.1.1 Klimaet i dag

Det danske vejr er foranderligt, og variationerne fra landsdel til landsdel kan være betydelige. Det gælder både på den enkelte dag og fra den ene dag til den anden.

Det danske klima gælder i de fleste sammenhænge for hele landet. Men selv om Danmark har en relativ lille udstrækning, er der alligevel tydelige forskelle i de klimatiske karaktertræk. De regionale

Specielle danske forhold

<table>
<thead>
<tr>
<th>Europa</th>
<th>Alpint</th>
<th>Sydlig</th>
<th>Nordlig</th>
<th>Kontinental</th>
<th>Atlantisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vindenergi-produktion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vandkraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jordvarme mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energiforbrug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trafikulykker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Togforsinkelser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lastning indlands skibe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transporttid og omkostninger til havs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mindre samfund</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oversvømmede floder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oversvømmede kyststrækninger</td>
<td>Ej relevant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turisme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Længden af skisæsonen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helbred</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedebevægelige-dødsfald</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fødevare-sikkerhed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

forskelle fremgår tydeligst, når årsmiddelnedbøren bliver gjort op. Men temperaturerne udviser også en vis geografisk variation.

Stor forskel på det vådeste og tørreste danske område

Perioden 2001-2010 adskiller sig fra klimanormal-perioden, men det har ikke væsentlig betydning for indholdet af dette afsnit. De vådeste områder modtog over 1000 mm med et maximum på 1021 mm ved Grønbjerg mellem Skjern og Holstebro. Til sammenligning fik områder omkring Storebælt under 600 mm, hvor 518 mm ved Frederiksdal lidt nord for Nakskov er minimum. Det vådeste sted modtager altså næsten dobbelt så stor mængde nedbør som det tørreste. Temperaturfordelingen viser ikke de samme variationer. Men de viser dog alligevel, at det er varmest mod syd og koldest i det indre af landet.

![Figur 5.3: Figuren viser årsnedbør (øverst) og årsmiddeltemperatur for Danmark i perioden 2001-2010, som illustrerer de nuværende klimatiske forhold. Kilde: DMI.](image)

Nedbør

Årsum - 2001-2010 (mm)

Temperatur

Årsmiddel - 2001-2010 (°C)

Variationerne over tid for hele landet er derfor ikke altid udtryk for et helt og aldeles dækkende billede af lokale forhold. Men variationer i temperaturen over tid regnes for at være mere robuste, end tilfældet er for nedbøren.
5.1.2 Fremtidens klima

Fremtidige ændringer i temperatur og nedbør over Danmark bliver beregnet med avancerede klimamodeller. IPCC’s 5. hovedrapport beskæftiger sig med regionale ændringer i langt højere grad end tidligere rapporter. Men Danmark er dog stadig repræsenteret ved en større region i Europa (Atlanterhavsregionen), som går fra det Nordvestlige Spanien via Vestfrankrig, de Britiske Øer, Benelux-landene, det vestlige Tyskland til Danmark. For at give et præcist billede af forholdene i Danmark har DMI foretaget beregninger med regionale klimamodeller samt evalueringer af globale modeller med henblik på at karakterisere fremtidens klima i Danmark.

Bagvedliggende beregninger

De bagvedliggende udslips-scenarier for drivhusgasser har indtil for nylig været de såkaldte SRES-scenarier (se boks 3). Disse beregninger har været anvendt i mange tidligere beregninger af klimaeffekter for Danmark. Anvendelse af de nye RCP-scenarier vil betyde en opdatering og nyudvikling af de tidligere regionale fremskrivninger for Danmark. Nogle af disse fremskrivninger stammer fra arbejdet i Centre for Regional Changes in the Earth System (CRES) og er anvendt i de følgende afsnit.

I Danmark er der konstateret en signifikant øgning af nedbør, temperatur og vandløbsafstrømning gennem det forrige århundrede. Denne tendens har været størst i Vestjylland, hvor eksempelvis nedbør og temperatur er steget henholdvis 26 % og 1,3 °C i perioden 1875-2010 (figur 5.6).
Grundvand og vandindvinding

De danske vandløb er grundvandsdominerede, og næsten al vandindvinding i Danmark foregår fra grundvand. Klimaændringer indflydelse på grundvandsforhold er derfor af special betydning for danske forhold. Øget vinternedbør og mere tørre somre vil påvirke grundvandsdannelsen i hver sin retning. Landsdækkende beregninger baseret på klimaprojektioner fra flere klimamodeller har vist, at det er usikkert, om grundvandsdannelsen bliver øget eller reduceret i det fremtidige klima (figur 5.7). Det illustrerer, at klimatilpasningsløsninger skal være robuste over for usikkerheder.

Mere ekstreme vandløbsafstrømninger

Beregninger for Danmark viser, at ekstreme vandløbsafstrømninger generelt bliver mere ekstreme. Det er illustreret i figur 5.8 i form af klimafaktorer for en såkaldt 100 års-hændelse, som er den maximale vandføring, der i gennemsnit overskrides én gang for hvert 100 år. Figuren til venstre illustrerer, at der er store regionale forskelle på, hvordan klimaændringer påvirker ekstreme vandføringer forskellige steder i landet. Figuren til højre viser, at der er betydelige usikkerheder på vurderingen af klimafaktoren.
Vand på terræn (oversvømmelse) kan forekomme, fordi:

- der falder kraftigere nedbør, end jorden kan nå at opsuge
- grundvandsspejlet stiger op til terræn
- vandspejlet i et vandløb/rør stiger til kanten, og vandet løber ud på terrænet.

På grund af den grundvandsdominerede hydrologi i Danmark vil oversvømmelser på lokal skala i Danmark ofte være grundvandsbetingede⁶. Danske analyser har vist, at behovet for markvanding i Vest- og Sydjylland vil blive øget med 50 - 100 % ved slutningen af det 21. århundrede som følge af klimaændringer⁷,⁸.

5.3 Landbaserede økosystemer

Danske skove, søer og vandløb påvirkes overvejende negativt som følge af stigende temperaturer. Klimatilpasning er nødvendig, og det er en udfordring i forhold til vandkvalitet og opfyldeelse af kravene i EU’s vandrammedirektiv.

Det danske landskab er intensivt udnyttet, og størstedelen af arealet anvendes til intensivt landbrug. Det påvirker i sig selv de resterende terrestriske og akvatiske økosystemer og sætter den biologiske mangfoldighed under pres⁹,¹⁰,¹¹. Øget opvarmning forstærker effekten.

Økosystemerne bliver mindre stabile

Konsekvenserne af klimaændringerne for natur på land afhænger af naturtypen fx heder, enge eller klitområder samt levestedet for specifikke dyr og planter. Det skyldes, at de enkelte naturtyper og arters vækst og overlevelse bliver påvirket forskelligt af de forskellige klimafaktorer (temperatur, nedbør, vind osv.).

I takt med ændringerne i naturen bliver økosystemerne stadigt mindre stabile. Det gør dem mere sårbare over for påvirkninger. Den øgede sårbarhed er en udfordring i forhold til at opfylde fastlagte målsætninger for naturkvalitet i Danmark⁸,⁹,¹⁰.

Større produktion af biomasse i dansk natur

Øget udvaskning af næringsstoffer

Erosion og tilbagerykning af kyster

Temperaturstigning kan true koldvandsarter blandt fisk
Temperaturen i søer og vandløb er øget i de seneste årtier, og vandets temperatur vil forbyde sommeren og højere temperaturer har også denne effekt, fordi iltindholdet falder som følge af den højere temperatur og et større iltforbrug. Forsøg på danske vandløb har vist, at skygge fra træer til dels kan modvirke opvarmningen og forbedre iltforholdene.

Større belastning med næringsstoffer
Øget afstrømning på årsbasis i vandløbene betyder øget samlet næringsstoffelastning af søer. Det er beregnet, at alene den stigning der har været i afstrømningen på ca. 100 mm i de sidste 150 år, svarer til en stigning i næringsstoffelastningen af søerne på 30-40 %. Modelberegninger peger på en stigning i afstrømningen på 9-34 % for A2-scenarioet fra kontrolperioden (1961-1990) til scenarioperioden (2071-2100). Den største stigning er set i Storebæltområdet og det sydlige Bæltområdet.
5.4 Kystnære områder

Danmark kan opleve havniveaustigninger på omkring 70 cm over det 21. århundrede. Usikkerheden på bidragene fra Grønland og Antarktis gør, at den øvre grænse også er meget usikker og kan være endnu større.

Danmark er et af de fem lande i EU, der står til de højeste skadesomkostninger ved havniveaustigninger rel ativt til bruttonationalproduktet. Danmark vil også være blandt de dyreste lande at beskytte på grund af vores lange kystlinje.

Havet vil ikke stige jævnt over hele kloden. For Danmark gælder det fx, at der er en landhævning i Nordøstdanmark, som falder mod sydvest. For København betyder det, at landhævningen kompenserer for en del af havniveaustigningen med omkring 1 mm/år. Afsmeltningen af is fra polerne har også en indflydelse på hele jordens tyngdefelt og dermed også på havniveauet. Dette gør, at vi vil se relativt mindre til afsmeltning fra Grønlands inlandsis end resten af kloden som helhed. På den anden side vil vi mærke ekstra meget til afsmeltningen fra Antarktis. Disse lokale forhold er taget i betragtning i figur 5.9. Den største usikkerhed i fremskrivningerne af havniveau hænger sammen med risikoen for et muligt kollaps (hurtig nedbrydning) af store isdækkede områder langs Antarktis’ rand, og denne risiko er særlig vigtig for Danmark pga. af den såkaldte tyngdefeltseffekt. Figur 5.10 viser intervallet for fremskrivningen af havniveaustigningen for København og indeholder en vurdering af de usikkerheder, der er forbundet med forholdene omkring Antarktis.

Pres på økosystemerne i Østersøen

Østersøen vil forsures i takt med at temperaturen stiger. Østersøen vil også blive mindre salt pga. øget nedbør over land og øget afstrømning fra floder. Klimaændringerne vil dermed lægge yderligere pres på økosystemer i Østersøen, som allerede er under stress på grund af udledningen af næringsstoffer.

Stormfloder kan blive voldsommere

Øget risiko for oversvømmelser fra havet

I dag er risikoen for oversvømmelser fra havet forholdsvis lille. Men den vil stige i fremtiden i takt med stigende havniveau. Desuden vil ændringer i stormintensitet og -mønstre have en effekt på frekvensen og intensiteten af stormfloder i de danske farvande. Klimamodelresultater viser en uændret eller endog en lidt mindre ekstrem stormfloodsvandstand (dvs. uden stigning i havniveauet) i de indre danske farvande.

Figur 5.10: Figuren illustrerer den sandsynlige havniveaustigning for København. Det fremgår, at sandsynligheden vurderes størst omkring 0,7 m, men værdier på 2 m eller højere kan ikke udelukkes, ligesom mindre stigninger heller ikke kan udelukkes. Denne figur er baseret på RCP’erne (se boks 3) kombineret med usikkerheden i forholdene omkring de store iskapper\(^2\). Kilde: CRES.
På Jyllands vestkyst vil der derimod ske en stigning i stormfloodsvandstanden. Højvandsstatistikken vil dog blive ændret betragteligt alene på grund af den generelle stigning i havniveauet. Det vil bevirke en voldsom forøgelse af risikoen for oversvømmelser af kystnære byområder i fremtidens klima. Effekten vil dog være forskellig i de indre danske farvande og på den jyske vestkyst. Dette er illustreret i figur 5.11, der viser nuværende og fremtidig højvandsstatistik i år 2100 med en havniveaustigning på 1 m i Esbjerg og København. I Esbjerg vil en nuværende 100-års vandstand på 4,05 m i et fremtidigt klima i 2100 have en gentagelsesperiode på omkring 5 år og en nuværende 500-års vandstand på 4,4 m en gentagelsesperiode på omkring 10 år. Dette giver en betragtelig stigning i risikoen for oversvømmelse. I København vil effekten dog være langt større. Her vil en nuværende 500-års hændelse på 1,7 m overskrides flere gange om året i et fremtidigt klima med 1 m havniveaustigning.

Høje fremtidige skadeomkostninger i Danmark
Beregninger viser, at Danmark er et af de fem lande i EU, der står til de højeste skadeomkostninger ved havniveaustigninger relativt til bruttonationalproduktet. Og Danmark vil også være blandt de dyreste lande at beskytte på grund af vores lange kystlinje. Danmark er i denne sammenhæng desuden blandt de lande i EU, der kan vinde mest ved afbodning af klimaforandringerne gennem målrettede reduktioner i udslip af drivhusgasser.

5.5 Fødevare-forsyningssikkerhed og fødevareproduktion

Klimaforandringerne giver bedre vilkår for landbrug, skovbrug og fiskeri i de nordiske lande men også nye udfordringer for den offentlige regulering af fødevareproduktionen. Det vil dels være i forhold til, hvordan ressourcer fordeles mellem lande, regioner og aktører, og dels hvordan landbrug og fiskeri påvirker andre naturressourcer, miljø og klima.

Specielle danske forhold
grundvand og overfladevand. Samtidig spiller ændringer i muligheder for produktion og eksport af højværdiprodukter inden for landbrug og fiskeri en stor rolle for aktiviteterne i disse sektorer. Hvis betingelserne for en sådan produktion forringes eller bliver mere usikre i lande under sydligere himmelstød, kan det styrke fødevaresektoren i Danmark.

Varmere vinter vil udfordre nuværende landbrugsproduktion
Den nordiske region inklusive Danmark er det eneste sted på jorden, hvor de klimatiske forhold tillader produktivt landbrug og fiskeri på høje breddegrader med mørke vintre. Denne unikke geografiske placering gør det vanskeligt at overføre viden fra andre dele af verden til de særegne miljømæssige betingelser i Norden, hvor både planter og dyr er tilpasset til at overleve lange, mørke og kolde vintre. I store dele af regionen vil klimaændringerne betyde varmere vinter med mere variable betingelser i form af regn, sne og isdække. Dette vil udgøre en udfordring for de nuværende produktionssystemer og kræver nye løsninger i form af driftsledelse og genotyper for både afgrøder og husdyr.

Opvarmningen vil føre til nye og ukendte forhold for planter og dyr om vinteren. Virkningerne af sådanne ændringer er vanskelige at forudsige, og der er kun lidt forskning at basere vurderinger af potentielle virkninger på økosystemernes funktion, og hvordan dette vil påvirke produktiviteten inden for landbrug og fiskeri.

5.5.1 Klimaændringerers effekter på produktionen

Øget behov for plantebeskyttelse

5.5.2 Nye muligheder inden for landbrug og fiskeri
Den længere og varmere vækstsæson åbner for dyrkning af nye afgrøder og opdræt af nye fiskearter. Væksten i frugt og bær vil blive påvirket af klimaændringer og vil give nye og mere produktive systemer. Et eksempel er den aktuelle udvidelse af vindyrkningen i Danmark. I Norden vil der i de nordlige egne være en stigning i markafgrøder i almindelighed, mens der i Danmark især vil være ændringer i form af dyrkning af varmekrævende afgrøder som fx majs. Det danske areal med fodermaj er steget fra ca. 11.000 ha i 1980 til ca. 200.000 ha i 2013 (figur 5.12). Hovedparten bliver stadig anvendt som foder til malkehør. Majs har i perioden langsomt erstattet föderroer og kornafgrøder som det vigtigste kvægfoder om vinteren og er endvidere et vigtigt tilskudsfoder om

![Figur 5.12. Figuren viser udviklingen i det danske areal med majs til ensilage (kvægfoder) og kernemajs (svinefoder). Kilde: forfatterne til denne rapport.](image)

Ny og bæredygtig proteinproduktion

Behov for nye modstandsdygtige plantesorter

Planteavlens står over for nye udfordringer. Det hænger sammen med ændringer i temperatur og nedbør og variationen fra år til år i kombination med øget atmosfærisk CO₂-koncentration. Planteavlere bliver nødt til at levere sorter, der er mere modstandsdygtige over for ekstreme vejforhold og over for nye sygdomme. Planteforædlings er en langsigtet aktivitet, og at fremføre sådanne sorter vil kræve tidlig planlægning i forhold til nye vilkår. Med de særlige klimatiske
forhold i de nordiske lande skal planterationen formentlig i en vis udstrækning foregå lokalt eller tilpasses forholdene.

Regulering af fødevareproduktionen
Klimaændringer vil udfordre den nuværende offentlige regulering af fødevareproduktionen på flere måder. En udfordring vil være i forhold til, hvordan ressourcerne fordeles mellem lande, regioner og aktører både på EU-niveau og i Danmark. En anden udfordring vil være, hvordan landbrug og fiskeri påvirker andre naturressourcer, miljø og klima.

Fiskeriet og klimaforandringerne
Ændringer i havtemperaturer påvirker fiskebestandenes produktivitet og geografiske fordeling, som kan have betydelige økonomiske konsekvenser. Vandringer af fiskebestande kan også lægge pres på de eksisterende aftaler om udnyttelse af fiskebestandene og gøre det nødvendigt med helt nye aftaler. Den endelige skæbne for mange fiskearter selv under klimaforandringerne vil afhænge af fiskeriet og dermed af, hvordan dette fiskeri styres, og det kræver nye fleksible og adaptive forvaltninger af fiskebestandene.

5.5.3 Samspil til miljøreguleringen og arealanvendelse
Ændringer i klimatisk egnethed kan føre til store ændringer i arealanvendelse, som ikke kun vil påvirke landbrugsproduktionen men også kvaliteten af naturen, miljøet, grundvandet og ferskvandssystemerne. Det vil udfordre den nuværende planlægning af arealanvendelse, og det vil kræve et strategisk og langsigtet perspektiv på arealanvendelsespolitik under klimaforandringerne.

Større risiko for udvaskning af kvalstof og fosfor til vandmiljøet

Dræning af landbrugsjord – og vandindvinding
Dyrkning af landbrugsafgrøder kræver passende og veldrænet jord. Den forventede stigning i vinternedbør vil læge yderligere belastninger på de nuværende drænsystemer. Dette spørgsmål vil blive stadig vigtigere i områder, hvor landbrugsproduktionen kan udvides på grund af øget egnethed. Øget dræning af landbrugsjord kan ikke gennemføres uden at sikre, at vand effektivt kan transporteres i vandløbene. Afvejning af behovet for dræning af landbrugsarealer med behovet for at beskytte dele af landskabet fra oversvømmelser kan give anledning til nye og flere konflikter mellem landskabets aktører, og det vil kræve ny planlægning på landskabs- og oplandsniveau. Tilsvarende overvejelser skal tages i betragtning i forhold øget risiko for sommertørke og behovet for kunstvanding af afgrøderne, hvor en øget vandindvinding vil kunne true vandføringen i vandløbene og dermed kvaliteten i vandmiljøet.
5.6 Urbane områder og infrastruktur

Ekstrem nedbør vil blive hyppigere og mere intens i det fremtidige varmere klima med øget risiko for oversvømmelser i byer til følge. Kombinationen af ekstrem nedbør med højere havniveau fører til øgede oversvømmelsesrisici i havnebyer og kystområder.

I relation til byområder og infrastruktur i Danmark er den største konsekvens af klimaændringer en forøget risiko for oversvømmelser. Flere og mere intense nedbørshændelser vil give en forøget risiko for oversvømmelser, hvor kapaciteten af afløbsystemerne bliver overskredet. Desuden vil der i et fremtidigt klima med højere havniveau og ændringer i stormfloder være en høj risiko for oversvømmelser fra havet i kystnære områder. Ændringer i nedbørsmønstre med mere nedbør om vinteren og mindre om sommeren og flere og kraftigere ekstremnedbør vil give større fluktuationer i grundvandsstanden. Og det vil give øget risiko for sætninger og underminering af bygninger og vej- og baneanlæg. Endelig vil højere temperaturer og flere og mere intense hederbølger give en forøget sundhedsrisiko og forøget risiko for mikrobiel og kemisk forurening i vanddistributionsystemer.

Udredninger har indtil videre fokuseret på risikoen for oversvømmelser, hvorfor det ikke er muligt at give konkrete anbefalinger af hvilke tiltag, der eventuelt måtte være nødvendige og ønskelige for andre klimarelaterede ændringer som fx vind og temperatur. En oversigt over de væsentligste klimaændringer, konsekvenser og nuværende og fremtidigt risikoniveau er vist i tabel 5.1. I tabellen er desuden givet eksempler på klimatilpasning og tilhørende omkostningsniveau med en vurdering af potentielle for reduktion af risikoen.

<table>
<thead>
<tr>
<th>Effekt af klimaændringer</th>
<th>Konsekvens</th>
<th>Risikoniveau¹</th>
<th>Eksempler på klimatilpasning og tilhørende omkostningsniveau¹</th>
<th>Reduktion af risiko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ændringer i nedbørsmønstre</td>
<td>Øget risiko for sætninger og underminering af bygninger og vej/baneanlæg</td>
<td>Nuværende: lav Fremtidig: middel</td>
<td>Ændring i design af bygninger og vej/baneanlæg (middel) Anlæg af drænsystemer (middel)</td>
<td>Middel -> lav</td>
</tr>
<tr>
<td>Højere temperaturer og flere og mere intense hederbølger</td>
<td>Forøget sundhedsrisiko Forøget risiko for mikrobiel og kemisk forurening i vanddistributionsystemer</td>
<td>Nuværende: lav Fremtidig: middel</td>
<td>Brug af køling i vanddistributionsystemer (lav)</td>
<td>Middel -> lav</td>
</tr>
</tbody>
</table>

Tabel 5.1. Oversigt over de mest betydelige effekter og konsekvenser af klimaændringer for byområder og infrastruktur med vurdering af risikoniveau samt eksempler på klimatilpasningstiltag og deres potentielle for reduktion af risikoen. Risikoniveau og omkostningsniveau for klimatilpasning er vurderet kvalitativt ved graduering lav, middel og høj. Kilde: CRES.

¹ Lav, Middel, Høj
Ekstremregn og stormfloder
Med hensyn til ændringer i ekstremregn viser alle analyser en stigning i både antallet og intensiteten. Men der er meget stor usikkerhed, som skyldes forskelle i resultater fra forskellige klimamodeller, forskellige scenarier og forskellige analysemetoder. For de mest ekstreme scenarier (RCP8.5 og 6°C global temperaturstigning) er der en meget stor stigning i intensiteten på op til henholdsvis 130% og 170% for en 100-års nedbørshændelse. I mere moderate scenarier er der tale om ændringer i størrelsesorden 20-40%. I det nuværende klima kan risikoen fra oversvømmelser i byområder fra ekstremregn og fra havet betragtes hver for sig. Ekstremregn og stormfloder optræder på hver sin årstid - ekstremregn om sommeren og efteråret og stormfloder om vinteren - og der er derfor en meget lille risiko for, at de vil optræde på samme tid. Dette forhold vil ændre sig i fremtidens klima, hvor kombinationen af ekstrem nedbør og højere havniveau vil føre til øgede oversvømmelsesrisici i kystområder.

En moderat og en ekstrem fremtidsberetning

<table>
<thead>
<tr>
<th></th>
<th>Omkostningsindeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekstremregn, uden klimatilpasning</td>
<td></td>
</tr>
<tr>
<td>Nuværende klima</td>
<td>100</td>
</tr>
<tr>
<td>2100, bedste estimat</td>
<td>170</td>
</tr>
<tr>
<td>2100, global temperaturstigning på 6 °C</td>
<td>770</td>
</tr>
<tr>
<td>Ekstremregn, skybrudsplanen fuldt implementeret</td>
<td></td>
</tr>
<tr>
<td>Nuværende klima</td>
<td>10</td>
</tr>
<tr>
<td>2100, bedste estimat</td>
<td>20 – 30</td>
</tr>
<tr>
<td>2100, global temperaturstigning på 6 °C</td>
<td>120 – 210</td>
</tr>
<tr>
<td>Stormfloder og havniveaustigning, uden klimatilpasning</td>
<td></td>
</tr>
<tr>
<td>Nuværende klima</td>
<td>0</td>
</tr>
<tr>
<td>2100, begge fremskrivninger</td>
<td>660</td>
</tr>
</tbody>
</table>

Tabel 5.2. Figuren viser beregnede omkostninger af skader fra ekstremregn og stormfloder for København med og uden klimatilpasning under to klimafremskrivninger: nuværende bedste estimat anvendt i Københavns skybrudsplan, og en global temperaturstigning på 6 °C. Nuværende omkostning til ekstremregn er sat til indeks 100. Kilde: Forfatterne til denne rapport.
5.7 Flere ekstreme vejrhændelser

Enkeltstående ekstremhændelser i de senere år kan ikke direkte tilskrives den globale opvarmning. Men sandsynligheden for forekomsten af sådanne hændelser stiger i takt med opvarmningen. Styrken og hyppigheden af mange ekstreme hændelser er steget markant sammenlignet med forindustrielle atmosfæriske betingelser, og der er stor sandsynlighed for, at de er betinget af den globale opvarmning.

Effekten af øget mængde drivhusgasser

Formelt set kræves der tilsvarende undersøgelser for danske ekstremhændelser, før man kan besvare spørgsmålet om, hvorvidt disse kan tilskrives den menneskeskabte globale opvarmning, som allerede har fundet sted. Men ekstremreghændelserne både i København og andre egne af landet er gode eksempler på hændelser, hvor man må formode, at det er sandsynligt, at risikoen for disse begivenheder er forstærket på grund af den globale opvarmning og den tilsvarende opvarmning, som også er påvist i og omkring Danmark.

5.8 Veje til en klimarobust fremtid

Erfaringsgrundlaget er stadig begrænset

Vigtigt med fleksibilitet i klimatilpasning
I arbejdet med at klimatilpasse samfundet skal flere parametre holdes op mod hinanden. Det gælder for omkostningerne og de fysiske konsekvenser af klimatilpasning, der skal vurderes i forhold til risikoen for en given hændelse, og hvor effektiv indsatser for at imødegå hændelsen vil være. Dette kan fx anvendes i indsatser for færre oversvømmelser i byer ved ekstreme nedbørshændelser. Og det vil derfor indebære, at tilpasningsmulighederne som fx afvanding via overlader til ubebyggede områder, udvidede kloaksystemer, regnvandsbassiner og grønne områder bliver vurderet både på omkostninger og effektivitet, men også på hvor fleksible tiltagene er. Fleksibiliteten oges, hvis vi satser på investeringer, som kan justeres over tid, efterhånden som vores viden om klimaændringerernes effekter øges. Et vigtigt forhold i den forbindelse er at foretage en nøje afvejning af flere forhold. Blandt andet skal man forholde sig til, om den nuværende sårbarhed er acceptabel. Og man skal forholde sig til, om de investeringer, der foretages, er robuste over for fx ændringer i forventninger til fremtidens ekstremregn, stigning af havniveau og byens øvrige udvikling. Behovet for fleksibilitet gælder særligt for investeringer med forventet lang levetid som fx kloaksystemer, vejanlæg og bygninger. For sådanne investeringer anbefales ofte at vente med irreversible investeringer, indtil der er et bedre vidensgrundlag.

5.9 Danmark i et fremtidigt klima
IPCC’s 5. hovedrapport viser, at det er ekstremt sandsynligt, at menneskelig påvirkning har været den dominerende årsag til den globale opvarmning i de seneste 50 år. Samtidig har de seneste årter vist, at ændringer i klimaet har påvirket naturlige og menneskeskabte systemer på alle kontinenter og på tværs af oceander.

I Danmark stiger middeltemperaturen omtrent som den globale temperatur. En af konsekvenserne er, at Danmark fremover vil få vådere vintre og mere tørre somre. Samtidig vil forekomsten af oversvømmelser og tørke blive mere ekstrem i det fremtidige varmere klima.

Danmark er desuden et af de fem lande i EU, der står til de højest sandsomkostninger ved havniveaustigninger set i forhold til bruttonationalproduktet. Danmark vil også være blandt de dyreste at beskytte på grund af vores lange kystlinje. Omvendt giver klimaændringerne bedre villkår for landbrug, skovbrug og fiskeri i de nordiske lande men også nye udfordringer for den offentlige regulering af fødevareproduktionen.

Effekter i Danmark

Fortsat opvarmning øger sandsynligheden for alvorlige, gennemgribende og uoprettelige konsekvenser. Men hvis man begrænser hastigheden og omfanget af klimaændringerne, kan man reducere de generelle risici fra klimaændringeres virkninger. Og via klimatilpasning kan man reducere sårbarheden og eksponeringen til de variationer i klimaet, vi lever med nu.

Adaptiv forvaltning
Klimatilpasning skal tage udgangspunkt i det konkrete sted og den konkrete sammenhæng. Der findes nemlig ikke en enkelt tilgang til at reducere risici hensigtsmæssigt på tværs af alle sektorer og geografiske områder. Her kan adaptiv forvaltning være effektiv til at håndtere de betydelige usikkerheder, der samlet set indgår i klimatilpasning. I adaptiv forvaltning foretager man analyser af fremtidsscenarier og forsøgsmandlige anvendelser af nye innovative løsninger på pilotbasis.
Alt i alt står Danmark over for nye udfordringer såvel i forhold til de klimaændringer, der konkret kommer til at ske i vores land men også i forhold til konsekvenserne af klimaændringer i andre dele af verden. Mange sektorer i Danmark vil blive påvirket. En præcis fremskrivning af det fremtidige klima er ikke muligt, og det er derfor nødvendigt at sikre, at den planlægning der foretages nu, er tilstrækkeligt robust. Det betyder, at det er nødvendigt løbende at vurdere de tiltag, der allerede er igangsat og foretage justeringer dér, hvor det er nødvendigt.
Referencer

2. Olesen M, Madsen KS, Ludwigsen CA, Boberg F, Christensen T, Christensen OB, Christensen JH, Andersen KK (2014): Fremtidige klimaforandringer i Danmark. DMI-publikation; Danmarks Klimacenterrapport 14-06

9. DCE (2014) - Klima og vandplaner, Nationalt Center for Miljø og Energi, under udarbejdelse

