Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

Thaysen, Eike Marie; Jacques, Diederik; Jessen, Søren; Andersen, C.E.; Laloy, Eric; Ambus, Per Lennart; Postma, Dieke; Jakobsen, Iver

Published in:
Biogeosciences

DOI:
10.5194/bg-11-7179-2014

Publication date:
2014

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

E. M. Thaysen¹, D. Jacques², S. Jessen³, C. E. Andersen⁴, E. Laloy², P. Ambus³, D. Postma⁵, and I. Jakobsen⁶

¹Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), CSIC, Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
²Institute for Environment, Health, and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400, Mol, Belgium
³Department of Geosciences and Natural Resource Management, Copenhagen University, 1350, Copenhagen, Denmark
⁴Centre for Nuclear Technologies, Technical University of Denmark, 4000 Roskilde, Denmark
⁵Department of Geochemistry, Geological Survey of Denmark and Greenland, 1350, Copenhagen, Denmark
⁶Department of Chemical and Biochemical Engineering, Centre for Ecosystems and Environmental Sustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark

Correspondence to: E. M. Thaysen (eikethaysen@idaea.csic.es)

Received: 1 October 2013 – Published in Biogeosciences Discuss.: 17 March 2014
Revised: 1 November 2014 – Accepted: 12 November 2014 – Published: 17 December 2014

Abstract. The efflux of carbon dioxide (CO₂) from soils influences atmospheric CO₂ concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying mechanisms. Carbon dioxide partial pressure in the soil gas (pCO₂), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO₂, alkalinity and the water flux at the mesocosm bottom. Carbon dioxide exchange between the soil surface and the atmosphere was measured at regular intervals. The soil diffusivity was determined from soil radon-222 (²²²Rn) emanation rates and soil air Rn concentration profiles and was used in conjunction with measured pCO₂ gradients to calculate the soil CO₂ production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software.

The average CO₂ effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 ± 0.07 and 4.9 ± 0.07 µmol C m⁻² s⁻¹, respectively, and grossly exceeded the corresponding DIC percolation fluxes of 0.01 ± 0.004 and 0.06 ± 0.03 µmol C m⁻² s⁻¹. Plant biomass was high in the mesocosms as compared to a standard field situation. Post-harvest soil respiration (Rₛ) was only 10% of the Rₛ during plant growth, while the post-harvest DIC percolation flux was more than one-third of the flux during growth. The Rₛ was controlled by production and diffusivity of CO₂ in the soil. The DIC percolation flux was largely controlled by the pCO₂ and the drainage flux due to low solution pH. Modeling suggested that increasing soil alkalinity during plant growth was due to nutrient buffering during root nitrate uptake.

1 Introduction

The global flux of carbon dioxide (CO₂) from the soil to the atmosphere amounts to 59–76.5 Gt carbon (C) yr⁻¹ and is one of the largest fluxes in the global C budget (Raich and Potter, 1995; Houghton, 2007). Agriculture strongly enhances this flux, accounting for 10–12% of global anthropogenic emissions (Robertson et al., 2000; Barker et al., 2007; Vermeulen et al., 2012). The flux of CO₂ from the soil to the groundwater as dissolved inorganic carbon (DIC) is estimated at 0.2 Gt C yr⁻¹ and is hence much less than the upward flux of CO₂ (Kessler and Harvey, 2001). Agriculture enhances the DIC percolation flux by up to 4 times compared to undisturbed systems (Barnes and Raymond, 2009). Although numerous measurements have been made of either gas or aqueous phase CO₂ emission from cropland to

Published by Copernicus Publications on behalf of the European Geosciences Union.
the atmosphere and groundwater, respectively, few studies have investigated the total CO$_2$ emission with regard to its controls. In the light of the climate change induced by the present atmospheric concentration of CO$_2$ of 400 ppm and its increment rate of ~ 2 ppm yr$^{-1}$ (IPCC, 2007; Lal, 2011), the magnitudes and underlying mechanisms of the soil CO$_2$ effluxes to the atmosphere and groundwater from agricultural systems are of crucial importance for prediction of the climate forcing. The residence time of DIC in groundwater is at least as long as the residence time of groundwater itself, which may be in the order of hundreds to thousands of years (Kessler and Harvey, 2001). The atmospheric residence time of CO$_2$ may be as low as 5 years (Solomon et al., 2007; Archer and Brovkin, 2008) implying that even small changes in the C emission balance can have important effects on the atmospheric CO$_2$ concentration (Schimel, 1995). The present study explores the total CO$_2$ emission for a cropland mesocosm system and investigates the underlying mechanisms.

The soil partial pressure of CO$_2$(pCO$_2$) and the soil CO$_2$ efflux to the atmosphere, also referred to as the soil respiration (R_s), are a function of the combined CO$_2$ production from microorganisms and roots, the soil gas diffusivity and a limited contribution from mineral reactions via the carbonate system (Kuziyakov, 2006; Trumbore, 2006). Soil temperature and moisture are the main abiotic factors controlling the biological production of CO$_2$ (Schlesinger, 1973; Maier et al., 2011). Further factors such as the overall soil nutrient content, soil mineralogy, land use history and plant phenology also play an important role for the magnitude of the soil CO$_2$ production (Lohila et al., 2003; Trumbore, 2006).

Diffusion of CO$_2$ in air is about 10^4 times faster than in water (Suarez and Šimůnek, 1993). Rain increases the R_s due to a stimulation of microbial respiration and/or due to displacement of CO$_2$-rich soil air by advection (Huxman et al., 2004, Lee et al., 2002). However, frequent and heavy rains eventually result in a high soil water content that lowers the soil gas diffusivity, leading to accumulation of CO$_2$ in air-filled pores (i.e., higher pCO$_2$) and a reduced R_s (Jassal et al., 2005; Zhang et al., 2010).

Dissolved inorganic carbon is the sum of C in carbonic acid, H$_2$CO$_3^-$ (where H$_2$CO$_3$ = CO$_2$(aq) + H$_2$CO$_3$), bicarbonate, HCO$_3^-$, and carbonate, CO$_3^{2-}$. The concentration of DIC, [DIC], is closely linked to the pCO$_2$ via Henry’s law. In addition, the [DIC] depends on soil solution chemistry because of the pH-dependent solubility of inorganic C species, and is as such largely influenced by processes that increase soil alkalinity, e.g., the weathering of carbonate and silicate minerals (Appelo and Postma, 2005; Walmsley et al., 2011). The DIC percolation flux to the groundwater can be described by multiplying the [DIC] by the recharge flux (Appelo and Postma, 2005; Thaysen et al., 2014a).

Here, we measured upward and downward CO$_2$ transport in both gas and aqueous phases in unplanted and planted mesocosms to quantify the total CO$_2$ emission from ecosys-
Table 1. Overview over mesocosm experiments. The post-harvest experiment was the successive of the barley growth experiment #1.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Duration of experiment (days)</th>
<th>Fertilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley growth #1</td>
<td>58</td>
<td>Addition to soil prior to experiments</td>
</tr>
<tr>
<td>Barley growth #2</td>
<td>78</td>
<td>Nutrient irrigation</td>
</tr>
<tr>
<td>Post-harvest</td>
<td>60</td>
<td>Addition to soil prior to experiments</td>
</tr>
<tr>
<td>(post growth #1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unplanted</td>
<td>78</td>
<td>Nutrient irrigation</td>
</tr>
</tbody>
</table>

for a reduction to a sample size of two for planted mesocosms. In further two mesocosms the growth period of barley was extended to 100 days with monitoring up to 78 days after sowing (barley growth treatment #2). In each planted mesocosm, 15 barley seeds were sown at 3 cm depth, and upon germination the seedlings were thinned to eight per mesocosm, corresponding to 280 plants m⁻².

Prior to packing of the mesocosms for the barley growth treatment #1, basal nutrients were mixed into the upper 9 cm of the A horizon in the following amounts (mg kg⁻¹ soil): NH₄NO₃, 30; K₂SO₄, 75; CaCl₂, 75; MgSO₄ × 7H₂O, 45; MnSO₄ × H₂O, 10.5; ZnSO₄ × 7H₂O, 5.4; CuSO₄ × 5H₂O, 2.1; Na₂MoO₄ 2H₂O, 0.2; CoSO₄ × 7H₂O, 0.4. Mesocosms in the barley growth #1 and post-harvest treatment were irrigated with milli-Q water at 1–2 days intervals throughout the experiment. Mesocosms in the barley growth treatment #2 were irrigated in the same manner before day 56 and thereafter daily, however, irrigation was with milli-Q water prior to germination of barley and subsequently with a 50 % strength Hoagland nutrient solution (Hoagland and Amon, 1950). The different mode of fertilizer application for the second barley growth treatment was implemented in order to avoid nutrient depletion of the soil during the longer experimental runtime. Unplanted mesocosms were initially irrigated using similar irrigation amounts as for planted mesocosms to compare the magnitude of soil respiration in unplanted and planted soil. Irrigation amounts were decreased after 24 days due to observed water logging at the mesocosm bottoms, but topsoil volumetric water content (VWC) was maintained at approximately the same level as in barley mesocosms (Fig. S1). Average irrigation amounts for the barley growth #1, the barley growth #2, the post-harvest and the unplanted treatments were 5.3, 13.5, 4.6 and 4.4 mm d⁻¹, respectively. Irrigation amounts exceeded those in the typical field situation because soil temperatures and plant biomass in mesocosms were elevated, leading to higher evapotranspiration (see Sect. 4.1). Maintenance of mesocosms was as in Thaysen et al. (2014a).

Figure 1. Mesocosm system with barley plants and sampling ports for gas and water sample collection, soil moisture and temperature measurement (a) and setup for CO₂ exchange measurements (b). During experiments, mesocosms were shaded from light with dark plastic bags.

2.2 Sampling and calculations

Due to the limited amount of replicates in this study, we report data ranges instead of averages for all our core measurements. Ranges represent either the smallest and highest measured value for the barley growth #1 and the post-harvest treatment or both values for the barley growth #2 and the unplanted treatment.

2.2.1 Inorganic C speciation calculations and DIC percolation

Soil water alkalinity (~ sum of [HCO₃⁻] and 2 × [CO₃²⁻]), soil pCO₂, soil temperature and moisture content were determined as function of depth and time, as described in Thaysen et al. (2014a). The speciation of inorganic C was calculated from the pCO₂, alkalinity and soil temperature using PHREEQC (Parkhurst and Appelo, 2013). The weekly DIC percolation flux in each mesocosm was estimated from the calculated [DIC] at the lowest sampling depth and the measured drainage flux. When low pCO₂ was measured at the
mesocosm bottoms due to high water content (see Thaysen et al. 2014a), the upper next sampler was used to obtain the pCO$_2$ value.

2.2.2 CO$_2$ exchange

The exchange of CO$_2$ between the soil surface of the mesocosms and the atmosphere was measured using the static closed chamber technique (Ambus et al., 2007). A transparent cylindrical chamber ($V = 22.6 \text{L}$) was carefully mounted gastight (Terostat sealant) on the mesocosm tops. Before deployment, the chamber was filled with air of ambient CO$_2$ concentration. During measurement, the pCO$_2$ in the chamber space was closed-loop analyzed continuously with an environmental gas monitor (EGM-2, PP-Systems, Amesbury, MA, USA) (Fig. 1b), and the CO$_2$ flux was estimated from the concentration change, volume and measurement time. Carbon dioxide exchange in barley mesocosms was measured under light and in the dark to quantify net ecosystem exchange (NEE) and ecosystem respiration (ER, R_s + canopy respiration), respectively. The barley plant canopy occupied an area that was approx. 4 times the surface area of the mesocosm, which implied careful insertion of shoots into the measurement chamber (Fig. 1). For unplanted mesocosms, only R_s was measured.

2.2.3 Radon profiles

Sedimentary produced radon-222 (222Rn) was measured at different VWCs for unplanted mesocosms and mesocosms of the barley growth #1 treatment, in order to determine the soil diffusivity. Evacuated ZnS(Ag)-scintillation cells ($V = 200 \text{mL}$) equipped with a manometer were attached to the mesocosm gas sampling ports. The scintillation cells were removed when their internal pressure had increased to 1013 hPa. Samples were analyzed on a scintillation counter (EDA-200, CAN). The background activity of Rn-222 inside the chamber was measured with an Alpha-guard PQ-2000 (Alphaguard, Genitron, DE) and was about 100 Bq m$^{-3}$. Radon emanation rates of each soil horizon were determined in the laboratory from five replicate soil aliquots of 200 g through incubation in a closed container for 2 months and subsequent scintillation counting of an air sample from the container. Experimentally determined Rn profiles were modeled with the RnMod3d software (Andersen, 2001) using measured VWCs and Rn emanation rates and assuming homogeneity within each soil horizon. Resulting bulk diffusivities were then used in the modeling of the CO$_2$ (Sect. 2.3) and to estimate the soil CO$_2$ production rate, R_{CO_2} (µmol m$^{-2}$ s$^{-1}$) from Fick’s first law of diffusion (e.g., Fierer et al., 2005):

$$ R_{CO_2} = D_{soil} \cdot (C_T - C_B)/z, $$

where D_{soil} (m2 s$^{-1}$) is the bulk CO$_2$ diffusion coefficient in the A horizon soil, C_T is the concentration of CO$_2$ at the mesocosm surface (µmol m$^{-3}$), C_B is the concentration of CO$_2$ at the sampling depth of peak pCO$_2$ (µmol m$^{-3}$), and z is the depth interval (m). The variable D_{soil} was determined by dividing the CO$_2$ diffusion coefficient in air with the ratio between the Rn diffusion coefficient in air and the Rn bulk diffusion coefficient for the A horizon. Equation (1) assumes isobaric conditions, no downward flux of CO$_2$ beyond C_B, and CO$_2$ transport by gaseous diffusion only. It also neglects the effect of spatial differences in VWC.

2.2.4 Evapotranspiration

Weekly evapotranspiration was estimated from the difference between calculated and measured mesocosm weights. The calculated weight of a given mesocosm was obtained by subtracting the water removal due to effluent and sampling, from the sum of the mesocosm weight and the volume of irrigation water.

2.3 Modeling of CO$_2$ fluxes

In order to determine the controls on gaseous and dissolved CO$_2$ fluxes, results from barley growth experiments were modeled using the HP1 module of the Hydrus software (Šimůnek et al., 2006; Jacques et al., 2008). Due to the similarity between mesocosms (Figs. 3, S1), only simulation results of one mesocosm from the second barley growth experiment are presented herein. Besides the coupling between variably-saturated water flow, multicomponent transport, heat transport and biogeochemistry, particular features of the conceptual model are (i) CO$_2$ production accounting for respiration of both soil organisms and plant roots based on the SOILCO2 model (Šimůnek and Suarez, 1993; Suarez and Šimůnek, 1993), linking explicitly soil respiration to root growth, (ii) cation exchange reactions and geochemical buffering by minerals, and (iii) root growth and root solute uptake.

2.3.1 Model setup

The mesocosm model contained three materials. The first two materials represented the A- and C horizons, respectively. The suction plate at the bottom of the mesocosm, the quartz flour layer and the layer of quartz flour mixed with the C horizon were lumped in the third material at 80–83 cm depth. The model domain was discretized in 157 nodes with the highest node densities at the mesocosm top and at the interfaces of the soil materials. Water flow was described by the Richards equation (Richards, 1931) and the constitutive relations of the van Genuchten–Mualem model without hysteresis (Mualem, 1978; van Genuchten, 1980). Upper boundary conditions for the water flow accounted for temporally variable irrigation rates and potential evapotranspiration, which was modeled using weekly estimates (Sect. 2.2.4). At the domain bottom, a variable pressure head boundary condition was used to account for the applied suction range of -0.1
to \(-0.75\) bar relative to atmospheric pressure (Thaysen et al., 2014a). The root depth was fixed at 30 cm throughout the experiment, corresponding to a measured root depth of 30 cm on simulation day 0 (day 15 after sowing) and allocation of \(\sim 90\%\) of the root mass in the A horizon at the end of the experiment (as measured in a similar experiment; Thaysen et al. 2014b). A normalized exponential root distribution function was employed to describe the vertical root distribution within the A horizon (Hoffmann and van Genuchten, 1983). Root water uptake was modeled using the root distribution and the S-shaped water uptake model without solute stress and default parameterization (van Genuchten, 1987). Water retention parameters were obtained from inverse modeling of the water flow in an unplanted mesocosm (data not shown) using Hydrus 1-D (Šimůnek et al., 2013) and a global stochastic optimization algorithm (Vrugt et al., 2009).

Solute transport was modeled with the advection-dispersion equation. Carbon dioxide transport processes included in HP1 are diffusion in the gas phase and advective-hydrodynamic dispersion in the aqueous phase. Carbon dioxide diffusion in the water and gas phase, respectively, was modeled by scaling the CO\(_2\) diffusion coefficient in water and air with the Millington and Quirk tortuosity (Millington and Quirk, 1961). The boundary layer height was set at 0.02 m. Equilibrium CO\(_2\) distribution between the gas and the water phase is described in HP1 by Henry’s law. More details are available in Šimůnek et al. (2006) and Jacques et al. (2008).

Heat transport was also described with an advection-dispersion equation using thermal conductivity data for sand (Chung and Horton, 1987). Soil temperatures of 22 and 18 \(^\circ\)C were chosen for the upper and lower boundary conditions, respectively, corresponding to the measured temperature decline from the top to the bottom of the mesocosm (Fig. S1). Day and night cycles were modeled with temperature amplitudes of 5 \(^\circ\)C.

2.3.2 \(\text{CO}_2\) production and root growth

Soil CO\(_2\) production was modeled through implementation of equations and parameters from the SOILCO2 model (Šimůnek and Suarez, 1993; Suarez and Šimůnek, 1993), making a few modifications. The total CO\(_2\) production rate, \(S\) (mol m\(^{-2}\) s\(^{-1}\)), is considered as the sum of the production by the soil microorganisms, \(\gamma_s\) (mol m\(^{-2}\) s\(^{-1}\) g\(_{\text{DW root}}^{-1}\); grams dry weight root biomass)), and the production by plant roots, \(\gamma_p\) (mol m\(^{-2}\) s\(^{-1}\) g\(_{\text{DW root}}^{-1}\), according to

\[
S = (\gamma_s + \gamma_p) \text{RMI},
\]

where the subscripts \(s\) and \(p\) refer to soil microorganisms and plant roots, respectively, and RMI is the root mass index in the system (g DW). Both \(\gamma_p\) and \(\gamma_s\) were linked to the root distribution, since microbial respiration is primed by root mass (Kuzuyakov, 2002; Zhu and Cheng, 2011). It is assumed that individual CO\(_2\) producing processes are additive and that it is possible to superpose individual mechanisms that reduce production from an optimal value. The production rates for microbial and root respiration at any given point in time and space are described by Eqs. 3–5

\[
\gamma_s = \gamma_{s0} \prod_i f_{si},
\]

\[
\gamma_p = \gamma_{p0} \prod_i f_{pi},
\]

\[
\prod_i f_i = f(h) f(T) f_{CO_2}(c_u) f(h_\text{a}) f(z),
\]

where \(\gamma_{s0}\) and \(\gamma_{p0}\) are the optimum respiration rates for microorganisms and roots (mol m\(^{-2}\) s\(^{-1}\) g\(_{\text{DW root}}^{-1}\)), respectively, and the term \(\prod f_i\) multiplies all reduction coefficients. The coefficient \(f(h)\) is the reduction coefficient as a function of pressure head (unitless), \(f(T)\) is the reduction coefficient as a function of temperature (unitless) and \(f_{CO_2}(c_u)\) is the reduction coefficient as a function of CO\(_2\) concentration (reduced oxygen availability) (unitless). These coefficients are assumed to be equal for \(\gamma_{s0}\) and \(\gamma_{p0}\). The coefficient \(f(h_\text{a})\) is the reduction coefficient as a function of osmotic head (unitless) which is set to 1 for \(\gamma_{s0}\) (no reduction). Expressions for all reduction coefficients except for the reduction coefficient as a function of depth in the soil profile (m\(^{-1}\)), \(f(z)\), are identical to those in SOILCO2, more details are available in Šimůnek and Suarez (1993). The coefficient \(f(z)\) is described differently for \(\gamma_{s0}\) and \(\gamma_{p0}\), as defined below. All reduction terms have values between 0 and 1, except the \(f(T)\) which is higher than 1 above 20 \(^\circ\)C and smaller than 1 below 20 \(^\circ\)C.

Increasing CO\(_2\) production due to the evolving root mass, RMI, is described by a linear biomass increase with time:

\[
\text{RMI} = \text{R}_{\text{init}} + (\text{time} \cdot r),
\]

where \(\text{R}_{\text{init}}\) is the initial root mass at simulation time zero (g DW), and \(r\) is the root growth rate (g s\(^{-1}\)).

The depth reduction factor for root respiration, \(f_p(z)\), is directly linked to the modeled vertical root distribution. For the microbial respiration, \(f_s(z)\) is described with an exponential function containing an \(a\) parameter (see Šimůnek and Suarez, 1993) which was set to 0.0015 m\(^{-1}\) in our simulations.

In SOILCO2, there is no time dependency of microbial respiration (i.e., \(\gamma_s\) is not linked to RMI), and the Verhulst–Pearl logistic growth function is used to describe root growth from differences in vertical root penetration depth. The use of these assumptions revealed a poor fit to our data set. For our simulations, \(\text{R}_{\text{init}}\) and \(r\) were fixed at 2 g DW and 2.4 \times 10\(^{-6}\) g s\(^{-1}\), respectively. Assuming linear root growth, the \(r\) was calculated by dividing the measured root biomass at the end of a similar mesocosm experiment (13.7 g at 70 days after sowing and 64.5 days after plant emergence; Thaysen et al., 2014b) with 64.5 days of plant growth. The \(\text{R}_{\text{init}}\) was then calculated from multiplication of the \(r\) with the number
of days after plant emergence at simulation time zero (i.e., 15 days after sowing minus 5.5 days of plant emergence). The \(\gamma_0 \) and \(\gamma_0 \) parameters were set to 0.8 \(\mu \text{mol m}^{-2} \text{s}^{-1} \text{g}_{\text{DW root}}^{-1} \), assuming equal contributions of microbial and root respiration to the total \(R_t \) (mean of reported contributions of root respiration to the total \(R_t \) of 10–90 \%; Swinnen, 1994; Hanson et al., 2000; Kocyigit and Rice, 2006; Moyano et al., 2007). When multiplied by the root mass at the end of the experiment, the sum of \(\gamma_0 \) and \(\gamma_0 \) resulted in a \(\text{CO}_2 \) production of 16 \(\mu \text{mol m}^{-2} \text{s}^{-1} \), which was within the calculated range of the actual average \(\text{CO}_2 \) production of 15–31 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) in planted mesocosms (Sect. 3.4). An overview of all applied parameters is given in Table S1 in the Supplement.

The simulated \(\text{CO}_2 \) efflux from the ecosystem to the atmosphere is essentially the soil respiration, \(R_t \), because there is no plant module in this conceptual model. Hence, our ER measurements could not be directly compared to the simulated \(\text{CO}_2 \) efflux. Anticipating that (1) canopy respiration was roughly 50 \% of the total plant respiration (Poorter et al., 1990; Loveys et al., 2002), and (2) root respiration accounted for 50 \% of the total \(R_t \) (see above), we corrected the ER by a factor of 0.67 to get an estimate of the \(R_t \).

2.3.3 Root solute uptake

Root solute uptake was simulated based on literature values on the average plant content of major ions. Average plant nutrient contents were (\(\mu \)mol g \(\text{DW} \) plant\(^{-1} \); from Marschner, 1995): K\(^+\), 250; Ca\(^{2+}\), 125; Mg\(^{2+}\), 80; PO\(_4^{3-}\), 60; SO\(_4^{2-}\), 30; Na\(^+\), 0; total N (modeled as NO\(_3^-\)), 1000. The daily influx per g DW root, \(J \), was calculated by multiplying the average plant nutrient content by the rate of total plant biomass increase over the experiment (1.05 g d\(^{-1}\)) and dividing by the total root mass at the end of the experiment (~13.7 g). The root mass dependent influx, \(J_{\text{TIME}} \) (mol s\(^{-1}\)), was then obtained by multiplication of \(J \) with the RMI and the normalized vertical root distribution, \(f_p(z) \), (Eq. 7).

\[
J_{\text{TIME}} = J \cdot \text{RMI} \cdot f_p(z) .
\]

Because the root length was fixed at 30 cm (Sect. 2.3.1), but the root mass within this depth increased by the RMI, root solute uptake was simulated to increase linearly over time within the A horizon.

Root cation uptake was described by simultaneous excretion of protons, except for K\(^+\) for which Na\(^+\) was assumed to be excreted. Anion uptake was modeled by OH\(^-\) excretion. This approach for root solute uptake modeling is in agreement with general knowledge on root nutrient uptake mechanisms (Marschner, 1995).

2.3.4 Geochemistry

Aqueous speciation and complexation were accounted for using PHREEQC (Parkhurst and Appelo, 2013) and the wateq4f.dat database. Cation exchange capacities and initial compositions were as measured from soil extractions (Kjøller et al., 2004). Initial exchanger compositions were equilibrated with a solution composition in contact with a \(p\text{CO}_2 \) of 1 \% and with 0.3 meq L\(^{-1}\) alkalinity, as measured on day 15 after sowing. Charge balance of the initial solution was achieved using Li\(^+\) and an equilibrium constant for the exchange reaction of \(\log k = -100 \). Nutrient irrigation was modeled using the Hoagland solution composition diluted 1 : 1 by H\(_2\)O.
Figure 3. Gaseous and dissolved CO₂ fluxes from mesocosms. (a): ecosystem respiration (ER) from barley mesocosms during growth (black) and soil respiration (Rₛ) from barley mesocosms after harvest and unplanted mesocosms (green). (b): net ecosystem exchange (NEE) from mesocosms with barley. (c): dissolved inorganic carbon (DIC) percolation flux recalculated into gaseous efflux unit. (d): cumulative DIC percolation flux as a function cumulative drainage.

3 Results

3.1 Distribution of total inorganic carbon between gas and aqueous phase species

The total inorganic C distributed between gaseous and aqueous phase species (i.e., CO₂(g) and DIC) increased during barley growth and decreased after harvest (Fig. 2a and b). Over time, inorganic C was mainly found as CO₂(g) and changed little beyond 20 cm depth. A downward moving front of elevated [DIC] was not visible. The latter was expected in the middle to bottom range of the C horizon due to the downward movement of initially present pore water. In unplanted mesocosms, the amount of inorganic C and distribution between species hardly changed over the course of the experiment (Fig. 2c).

3.2 CO₂ exchange and aboveground biomass

The ER increased with time during plant growth (Fig. 3a). After harvest of the aboveground biomass, the Rₛ declined logarithmically (Fig. 3a). The Rₛ from unplanted mesocosms was much lower than from barley mesocosms and was relatively constant. The negative NEE, i.e., ecosystem CO₂ uptake, increased with plant age up to day 54 after which it decreased to less negative values similar to those observed 20 days after sowing (Fig. 3b). Soil surface temperatures were 20–23 °C during measurements (Fig. S1). The aboveground biomass in mesocosms of the barley growth treatment #2 was 2918 ± 83 g m⁻².

3.3 DIC percolation

The DIC percolation flux varied considerably in all treatments but tended to increase with plant growth (range: 0.02–1 µmol CO₂ m⁻² s⁻¹), decrease after harvest (0.03–0.3 µmol CO₂ m⁻² s⁻¹), and remain fairly constant in unplanted soil (0.01–0.2 µmol CO₂ m⁻² s⁻¹; Fig. 3c).

The cumulative amount of DIC that leached from barley mesocosms in the first growth treatment and post-harvest was 303–311 mmol C m⁻² at a cumulative drainage of 212–234 mm (Fig. 3d). This drainage corresponded to an estimated 1.8–2.0 times the initially water-filled pore volumes, with 0.6–0.7 times the water-filled pore volumes flushed during growth. The average [DIC] during the pre-harvest and post-harvest periods was 1.8–2.0 and 1.1–1.3 mmol L⁻¹, respectively.

In the second barley growth treatment, the cumulative amount of DIC that leached was 360–440 mmol C m⁻² and significantly higher than the 80–82 mmol C m⁻² leached from the corresponding unplanted mesocosms (Fig. 3d). The cumulative drainage from barley mesocosms of the second barley treatment and from unplanted mesocosms was 139–168 and 141–158 mm, respectively (Fig. 3d) and corresponded to 1.3–1.5 and 1.1–1.3 times the initially water-filled pore volumes. The average [DIC] in mesocosms of the second barley treatment and in unplanted mesocosms was 2.5 and 0.4–0.5 mmol L⁻¹, respectively. The cumulative DIC percolation fluxes from all mesocosms were highly correlated with the cumulative drainage (Fig. 3d; R² = 0.96–0.99).
3.4 CO₂ emission partitioning

The cumulative CO₂ effluxes to the atmosphere from unplanted and planted soil (barley growth #2) during 78 days of experiment, using linear interpolation between measurements, were 0.4–1.1 and 32.8–33.4 mol C m⁻², respectively (not shown). The corresponding cumulative DIC percolation fluxes of 0.080–0.082 and 0.36–0.44 mol C m⁻², respectively, constituted 7.3–20.5 and 1.6–2.0 % of the aboveground CO₂ emission. The cumulative post-harvest CO₂ efflux to the atmosphere during 60 days of experiment was 2.4–2.7 mol C m⁻² at a cumulative DIC percolation flux of 0.15–0.16 mol C m⁻², corresponding to a relative magnitude of the cumulative DIC percolation flux compared to the cumulative aboveground CO₂ efflux of 5.6–6.7 %.

3.5 Soil diffusivity and CO₂ production

The Rn emanation rates of the soil A and C horizons were 4.93 ± 0.46 and 2.65 ± 0.13 atoms s⁻¹ kg⁻¹, respectively. At a VWC of ~ 20 % in the A horizon, the Rn concentration [Rn] was 1.5 times larger in unplanted mesocosms than in planted mesocosms, with a difference of ~ 1000 Bq m⁻³ (Fig. 4). The bulk soil diffusivity was determined by comparing measured [Rn] profiles at a given VWC with modeled [Rn] at different bulk diffusivities. The code RnMod3d could reproduce the Rn profiles in unplanted mesocosms using bulk diffusivities of 0.6 × 10⁻⁶ and 2.0 × 10⁻⁶ m² s⁻¹ for the A and C horizon, respectively. For barley mesocosms, the bulk diffusivities for the A and C horizon were 2.1 × 10⁻⁶ and 1.9 × 10⁻⁶ m² s⁻¹, respectively (Fig. 4). The confidence intervals in Fig. 4 mark the range of diffusivities at which agreement between measured and modeled [Rn] could be achieved. Modeled soil bulk diffusivities of the unplanted
A and C horizons showed reasonable agreement with bulk diffusivities of 0.44×10^{-6} and $0.9 \times 10^{-6} \text{m}^2 \text{s}^{-1}$, respectively, calculated from empirical formulas in Rogers and Nielsen (1991) and Andersen (2001) (see Text S1 in the Supplement).

The CO$_2$ diffusion coefficient in unplanted and barley mesocosms was estimated to 1.2–2.3 $\times 10^{-6}$ and 1.8–6.8 $\times 10^{-6} \text{m}^2 \text{s}^{-1}$, respectively, using the Rn bulk diffusivities (Eq. 1). Average soil CO$_2$ production as calculated from the range for the A horizon bulk diffusivities was 1.0–1.8 and 15.1–31.1 μmol m$^{-2} \text{s}^{-1}$ for mesocosms of the unplanted and barley growth #2 treatment, respectively, where CO$_2$ production during barley growth increased from \sim5 to 59 μmol m$^{-2} \text{s}^{-1}$ (confidence intervals: 3.5–7.4 to 30–87 μmol m$^{-2} \text{s}^{-1}$).

3.6 Modeling of CO$_2$ fluxes

The CO$_2$ diffusivity and production estimates (Sect. 3.5) were used to simulate the measured CO$_2$ fluxes in one mesocosm of the second barley growth treatment. Different geochemical constraints were applied in three scenarios. In scenario 1, root nutrient uptake was coupled to cation exchange. Scenario 2 had cation exchange and equilibrium (saturation index = 0) for amorphous aluminium hydroxide, Al(OH)$_3(a)$, as the soil solution chemistry in the mesocosms revealed a possible control by Al(OH)$_3(a)$ (Fig. S2 in the Supplement). Scenario 3 was equal to scenario 2 except that root nutrient uptake was included. The fit of scenarios 2 and 3 to measured parameters was poor (not shown) and hence the discussion of our modeling is limited to scenario 1.

Due to the dependency of the pCO$_2$ and the R_s on the VWC, a correct description of the VWC in the mesocosms at any given point in time was crucial. The dependency of the DIC percolation flux on the drainage flux implied a need for an exact simulation of the drainage flux. Both water flow and drainage flux were generally well described (Fig. S5 in the Supplement).

The temporal variation of the simulated pCO$_2$ and R_s captured the main trends in the observations (Fig. 5a, i). However, in the upper part of the mesocosm, the simulated pCO$_2$ was somewhat higher than the measured pCO$_2$ up to day 36 despite a good agreement between simulated and observed topsoil VWC (Fig. S5) and the R_s (Fig. 5i). The simulated cumulative DIC percolation provided a good fit to the measured data up to day 46 but underestimated the measured DIC percolation on day 53 (Fig. 5j) due to lower simulated alkalinity towards the mesocosm bottom (Fig. 5b).

A general increase in alkalinity over time was caused by the high root uptake of NO$_3$ that exceeded uptake of any other plant nutrients (Fig. S3 in the Supplement) and caused a net excretion of OH$^-$. This counteracted the pH drop caused by CO$_2$ dissolusion and buffered the pH around 5.6–6.0 (Fig. 5c). Mismatch between the simulated and the calculated pH were largely caused by differences between measured and simulated alkalinity and pCO$_2$. The simulated high near-surface pH (Fig. 5c) was due to low pCO$_2$ caused by the diffusional loss of CO$_2$ and high alkalinity caused by evaporation processes (see tracer simulation, Fig. S4 in the Supplement).

Scenario 1 simulated increasing [Al$^{3+}$] and [Ca$^{2+}$] with time that approached the measurement on day 71 (Fig. 5d and f, respectively). Increasing [Al$^{3+}$] resulted from displacement of exchanger-bound Al by cations in the incoming nutrient solution. High [Al$^{3+}$] led to supersaturation of Al(OH)$_3(a)$ (not shown), in accordance with Fig. S3 in the Supplement. Calcium was displaced on the A horizon exchanger as well (Fig. 5e), resulting in increasing [Ca$^{2+}$] with time. However, the largest increase in [Ca$^{2+}$] resulted from irrigation with nutrient solution and subsequent up-concentration due to evapotranspiration (Fig. 5f). Root uptake rates of Ca$^{2+}$ (and other nutrients) were small compared to [Ca$^{2+}$] in the soil solution (Figs. 5h, S3) but the accompanying release/uptake of protons had a big impact on the soil alkalinity and pH (Fig. 5b and c). Exchanger-bound Al and Ca were displaced by K (not shown), probably due to higher [K$^+$] in the nutrient solution compared to other ions, and the high ionic strength of the nutrient solution (13.9 mmol kg$^{-1}$ water) (Appelo and Postma, 2005).

4 Discussion

In this work, we have quantified the inorganic C dynamics in planted and unplanted soil mesocosms representing the vadose zone of a cultivated podzol. The data were generated from a detailed collection of gaseous and aqueous samples and from subsequent modeling enabled by the novel implementation of SOILCO$_2$ into HP1. We show that inorganic C dynamics in ecosystems are not well described from measurements of the CO$_2$ pools and fluxes alone, and that biogeochemistry has a potentially major impact on the movement of dissolved CO$_2$ in the vadose zone. In the following section, our results are discussed in the context of soil type effects on CO$_2$ fluxes and differences between mesocosm and field studies are addressed.

4.1 Soil respiration: gaseous CO$_2$ efflux

The R_s and the pCO$_2$ (Figs. 3a and S1) in unplanted mesocosms were generally in agreement with field studies on a range of different arable soils (Table 2). In barley mesocosms, the ER and the pCO$_2$ were generally higher than in published field studies but were in accordance with Potter and root biomass was 3–4 times and 2–5 times higher, respectively, than the values reported from field studies.
Table 2. Ranges of soil respiration (R_s) and soil partial pressure of CO$_2$ (pCO$_2$) in unplanted mesocosms as compared to other studies (one in pots, four in the field). NA represents not available, VWC represents volumetric water content.

<table>
<thead>
<tr>
<th>R_s (μmol m$^{-2}$ s$^{-1}$)</th>
<th>pCO$_2$ (%)</th>
<th>Crop</th>
<th>Soil type</th>
<th>Soil texture</th>
<th>Soil surface temperature (°C)</th>
<th>Daytime air temperature (°C)</th>
<th>VWC (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>−3.0–3.2</td>
<td>0.2–1.2</td>
<td>Fallow</td>
<td>Podzol</td>
<td>Coarse sand</td>
<td>22–23</td>
<td>18</td>
<td>20–25</td>
<td>This study (mesocosms)</td>
</tr>
<tr>
<td>∼0.7–1.5</td>
<td>NA</td>
<td>Fallow</td>
<td>Gleyic Cambisol</td>
<td>Sandy soil</td>
<td>18–22</td>
<td>NA</td>
<td>NA</td>
<td>(Weihermüller et al., 2009)</td>
</tr>
<tr>
<td>∼0.05–0.3</td>
<td>NA</td>
<td>Fallow</td>
<td>Arenosol</td>
<td>Sandy soil</td>
<td>3–20</td>
<td>10–28</td>
<td>10–25</td>
<td>(Herbst et al., 2008)</td>
</tr>
<tr>
<td>0.5 ± 0.1</td>
<td>NA</td>
<td>Fallow</td>
<td>Fine Montmorillonitic, Mesic Udolic Ochraqualfs</td>
<td>Silt loam</td>
<td>15–20</td>
<td>13–15</td>
<td>27–30</td>
<td>(Buyanovsky and Wagner, 1983)</td>
</tr>
<tr>
<td>1.5–8</td>
<td>NA</td>
<td>Fallow</td>
<td>Orthic Humic Gleysol</td>
<td>Loam</td>
<td>10–26</td>
<td>NA</td>
<td>25–40</td>
<td>(Rochette et al., 1992)</td>
</tr>
<tr>
<td>−2–10</td>
<td>NA</td>
<td>Fallow</td>
<td>Endocalcaric–Epiphythogleyic Cambisol</td>
<td>Clay loam</td>
<td>19–27</td>
<td>11–22</td>
<td>NA</td>
<td>(Feizene et al., 2008)</td>
</tr>
</tbody>
</table>

(Barralough and Leigh, 1984; Xu and Juma, 1992; Malhi and Gill, 2002; Lohila et al., 2003; Walmsley et al., 2011). Additional increase in the ER may have been caused by 3 to 5 °C higher day- and night time temperatures in the growth room than in the field (e.g., Kotroczo et al., 2008). Some artificial increase in the ER (and a decrease in the NEE) can be expected to result from the application of the chamber for CO$_2$ exchange measurements since the plant canopy covered a larger surface area than the surface area of the mesocosms (Fig. 1a).

The soil CO$_2$ efflux to the atmosphere was about 1 order of magnitude higher in planted mesocosms than in unplanted mesocosms at peak time (Fig. 3a). As previously shown by Lee (1997) this revealed a strong impact of vegetation on CO$_2$ dynamics in the unsaturated zone. Post-harvest R_s were higher than from unplanted soil, indicating a stimulation of microbial respiration by root-derived substrates (Kuzyakov, 2002). Respiration rates after harvest were within the range of previously reported R_s from sandy soil (0.5 µmol C m$^{-2}$ s$^{-1}$) (Heitkamp et al., 2012) and silty clay loam (1–11 µmol C m$^{-2}$ s$^{-1}$) (Moyano et al., 2007). The relatively high post-harvest R_s and its rapid decline are in accordance with the high root biomass in mesocosms combined with a fast depletion of labile C from sandy soil (Heitkamp et al., 2012).

Table 3. Ranges of ecosystem respiration (ER) and soil partial pressure of CO$_2$ (pCO$_2$) during growth in barley mesocosms as compared to other studies (two in mesocosms, seven in the field). NA represents not available, VWC represents volumetric water content.

<table>
<thead>
<tr>
<th>ER (μmol m$^{-2}$ s$^{-1}$)</th>
<th>pCO$_2$ (%)</th>
<th>Crop</th>
<th>Soil type</th>
<th>Soil texture</th>
<th>Soil surface temperature (°C)</th>
<th>Daytime air temperature (°C)</th>
<th>VWC (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8–52</td>
<td>0.2–8.8</td>
<td>Barley</td>
<td>Podzol</td>
<td>Clay</td>
<td>20–24</td>
<td>18</td>
<td>20–25</td>
<td>This study (mesocosms)</td>
</tr>
<tr>
<td>NA</td>
<td>∼2–10</td>
<td>Barley</td>
<td>Humic clay soil</td>
<td>Clay</td>
<td>NA</td>
<td>NA</td>
<td>15–32</td>
<td>(Simojoki et al., 1991)</td>
</tr>
<tr>
<td>NA</td>
<td>∼1–16</td>
<td>Barley</td>
<td>Podzol</td>
<td>Sandy soil</td>
<td>−7 to 29 (mean ∼8)</td>
<td>8 (mean)</td>
<td>6–34</td>
<td>Our field site</td>
</tr>
<tr>
<td>NA</td>
<td>0.3–2</td>
<td>Barley</td>
<td>Eutric Cambisol</td>
<td>Sandy soil with high humus content</td>
<td>12–23</td>
<td>18–30</td>
<td>13–23</td>
<td>Lohila et al., 2003</td>
</tr>
<tr>
<td>NA</td>
<td>0.2–16</td>
<td>Barley</td>
<td>Haplic Phaeozem</td>
<td>Clay loam</td>
<td>−2 to 22</td>
<td>NA</td>
<td>21–27</td>
<td>(Moyano et al., 2007)</td>
</tr>
<tr>
<td>−3–9</td>
<td>Barley, winter wheat</td>
<td>Endocalcaric- Epiphythogleyic Cambisol</td>
<td>Clay loam</td>
<td>19–26</td>
<td>11–22</td>
<td>NA</td>
<td>(Feizene et al., 2008)</td>
<td></td>
</tr>
<tr>
<td>2.8–4.5</td>
<td>0.3–6</td>
<td>Winter wheat</td>
<td>Montmorillonitic, Mesic</td>
<td>Fine silt loam</td>
<td>10–25</td>
<td>13–27</td>
<td>15–30</td>
<td>(Buyanovsky and Wagner, 1983)</td>
</tr>
<tr>
<td>2.3–0.75</td>
<td>NA</td>
<td>Barley</td>
<td>Orthic Humic Gleysol</td>
<td>Loam</td>
<td>10–19</td>
<td>NA</td>
<td>10–35</td>
<td>(Rochette et al., 1992)</td>
</tr>
</tbody>
</table>

4.2 Percolation: DIC fluxes

The DIC percolation flux was calculated from the alkalinity, the pCO$_2$ at the mesocosm bottom and the drainage flux but was primarily a function of the latter two variables. The smaller effect of the alkalinity on the downward DIC flux was caused by the low soil pH that shifted DIC primarily towards H$_2$CO$_3^*$ (Fig. 2). The absence of a downward moving DIC front was caused by the fact that H$_2$CO$_3^*$ is a direct function of the pCO$_2$ that was constant with depth (Fig. S1).

The higher pCO$_2$ in barley mesocosms caused about a 4 times higher DIC percolation flux than in unplanted mesocosms at similar drainage (Fig. 3c and d). Average post-harvest [DIC] were significantly higher than the average [DIC] in the percolation water from unplanted soil but may have partly been influenced by high [DIC] during plant growth due to incomplete exchange of the initial water-filled pore volume of during barley growth in the first barley treatment. The latter implies that high [DIC] arising from high pCO$_2$ conditions at the mesocosm top during barley growth were not transported all the way to the mesocosm outlet.

The DIC percolation flux and the average [DIC] under barley were within the range of reported values for cropland soil (Table 4). Further comparison of the [DIC] in the percolation water is impeded by the numerous factors influencing soil pCO$_2$ and the [DIC] (see Sects. 1 and 4.1). The DIC
percolation flux from unplanted soil was similar to the previously reported percolation fluxes from sandy forest soils (Kindler et al., 2011).

4.3 CO₂ emission partitioning and controls on CO₂ fluxes in the vadose zone

Our measurements revealed a pivotal influence of vegetation on CO₂ fluxes in the vadose zone as both upward and downward transport of CO₂ was strongly increased in planted mesocosms (Fig. 3). The cumulative DIC percolation flux was small relative to the cumulative aboveground CO₂ efflux. Results from planted mesocosms (1.6–2.0 %) were higher than the global emission flux partitioning (0.26 %) (Raich and Potter, 1995; Kessler and Harvey, 2001) but lower than a 2.5 % fraction reported for an onion field (Sawamoto et al., 2003). The relatively higher ratio between cumulative DIC percolation flux and the cumulative R₆ in unplanted mesocosms resulted from lower cumulative R₆ in unplanted soil that was further decreased by periods of net uptake of CO₂ (Fig. 3a). The potential for manipulating the emission balance by increasing the DIC export to the groundwater via irrigation is substantial after harvest where the absence of plant transpiration facilitates fast percolation of water through the soil and where relatively high soil pCO₂ may transmit to increases in the [DIC].

The interpretation of CO₂ fluxes in mesocosms needs to take into account the high plant biomass density in mesocosms, the constant summer conditions in the climate chamber and the coarse-sanded, acidic soil of this study. Elevated biomass of plants grown at relatively high temperature increased the soil respiration which again increased both upward and downward flux of CO₂. Smaller [Rn] in barley mesocosms (Fig. 4) indicated that root growth and decay increased the soil diffusivity (by ~1.5 x 10⁻⁶ m² s⁻¹). This may have enhanced the R₆, implying a decreased net uptake of atmospheric CO₂ (NEE) by the plant-soil ecosystem. Increased diffusivity due to the presence of biopores and cracks has indeed been reported (Holford et al., 1993; Hoff, 1997). However, some reduction in the [Rn] in planted soil may have been caused by Rn removal via plant transpiration (Lewis and MacDonell, 1990; Jayaratne et al., 2011). In any case, the high soil diffusivity of the coarse sand and the relatively low soil pH of ~6 caused much less downward transport of DIC compared to the CO₂ emission to the atmosphere (Fig. 3).

Modeling of the CO₂ fluxes using different explanatory scenarios was a valuable tool for identifying the key processes behind the observed evolution in the dissolved CO₂ fluxes. Scenario 1 (root nutrient uptake coupled to cation exchange) was in accordance with previous demonstrations of slight soil alkalization when nitrate is the dominating inorganic N species (Marschner et al., 1991; Weligama et al., 2010). However, our modeling of the nutrient uptake remains somewhat uncertain due to lack of data for actual nutrient uptake. A control of Al(OH)₃(a) on the soil solution was unlikely but other buffering processes such as the dissolution of small pieces of lime (Fig. S2) may be possible.

Soil pCO₂ and R₆ were hardly affected by any buffering process, despite the low subsoil pH that caused partitioning of DIC towards H₂CO₃ and some degassing to CO₂(g) (Fig. 2). This is in accordance with existing knowledge that mineral reactions affecting the carbonate system have only marginal effects on the pCO₂ (Kuzyakov, 2006).

The modified SOILCO₂ model made use of several simplifications of reality, one of them being the linkage of the y₆ to the RMI without inclusion of a bulk soil y₆. However, due to the dense root growth in the A horizon (see Thaysen et al., 2014b, Fig. 1 and Sect. 4.1) plant root independent y₆ was probably negligible in the A horizon. The exponential decline in the y₆ with soil depth by the f₆(z) (Eqs. 3–5) further implied that the y₆ in the C horizon was small compared to the topsoil. Hence, for the experimental conditions of this study, the omission of a plant-root independent y₆ in our model seems justified.

Table 4. Dissolved inorganic carbon (DIC) percolation fluxes from different types of cropland.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Annual DIC Percolation (g C m⁻² yr⁻¹)</th>
<th>Drainage (mm yr⁻¹)</th>
<th>Average DIC (mmol L⁻¹)</th>
<th>Soil type</th>
<th>Soil texture</th>
<th>Carbonates (in soil)</th>
<th>Country</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean/winter wheat</td>
<td>7.6–8.0</td>
<td>782</td>
<td>0.8–0.9</td>
<td>Fluvisol</td>
<td>Clay loam over loam</td>
<td>No</td>
<td>Japan</td>
<td>(Minamikawa et al., 2010)</td>
</tr>
<tr>
<td>Onion</td>
<td>13.2</td>
<td>1200</td>
<td>0.9</td>
<td>Mesic Mollic Fluvaquent</td>
<td>Aquic clay</td>
<td>No</td>
<td>Japan</td>
<td>(Sawamoto et al., 2003)</td>
</tr>
<tr>
<td>Cropland, not further specified</td>
<td>~ 9–10.2</td>
<td>241–537</td>
<td>~ 0.7–1.8</td>
<td>Fluvial/glacial sands and gravel</td>
<td>Sandy loam over gravelly sand</td>
<td>Not specified</td>
<td>Ireland</td>
<td>(Janghae and Library, 2012)</td>
</tr>
<tr>
<td>Cropland, not further specified</td>
<td>19.4</td>
<td>975</td>
<td>1.7</td>
<td>Stagnol</td>
<td>Silt loam</td>
<td>No</td>
<td>Germany</td>
<td>(Kindler et al., 2011)</td>
</tr>
<tr>
<td>Maize</td>
<td>9.2–18</td>
<td>~ 250–400</td>
<td>3–3.8</td>
<td>Mesic Typic Argiudoll</td>
<td>Fine silt loam</td>
<td>Not specified</td>
<td>USA</td>
<td>(Bry et al., 2002)</td>
</tr>
<tr>
<td>Winter wheat/ winter barley</td>
<td>2.0</td>
<td>88</td>
<td>1.9</td>
<td>Luvissol</td>
<td>Sandy loam</td>
<td>Yes</td>
<td>Germany</td>
<td>(Siemes et al., 2012)</td>
</tr>
<tr>
<td>Spring barley</td>
<td>20.1</td>
<td>603</td>
<td>2.8</td>
<td>Eutric Cambisol</td>
<td>Coarse sandy loam over gravelly sand</td>
<td>Yes</td>
<td>Ireland</td>
<td>(Walmsley et al., 2011)</td>
</tr>
<tr>
<td>Barley</td>
<td>4.3–5.3*</td>
<td>139–168</td>
<td>2.5</td>
<td>Podsol</td>
<td>Silt loam</td>
<td>Yes</td>
<td>Denmark</td>
<td>This study</td>
</tr>
<tr>
<td>Cropland, not further specified</td>
<td>13.3</td>
<td>189</td>
<td>5.9</td>
<td>Calcaric Cambisol</td>
<td>Silt loam</td>
<td>Yes</td>
<td>France</td>
<td>(Kindler et al., 2011)</td>
</tr>
</tbody>
</table>

* DIC percolation fluxes in during barley growth (treatment #1) for a growth period of 78 days.
5 Conclusions

The DIC percolation flux of ~ 5 mmol C m$^{-2}$ d$^{-1}$ during barley growth was ~ 1.6–2.0% of the R_s at increased plant biomass and elevated soil pCO$_2$ compared to the field situation. After harvest, the magnitude of the DIC percolation flux was lowered to ~ 2.5 mmol C m$^{-2}$ d$^{-1}$ but the importance of DIC percolation flux for the overall cropland CO$_2$ emission increased to ~ 6–7% of the R_s.

At constant conditions of temperature and water content, the R_s was controlled by the production and diffusivity of CO$_2$ in the soil, both of which were increased by plant growth. The DIC percolation flux was primarily controlled by the recharge flux and the pCO$_2$ due to the low soil pH in the acidic soil of our study. Modeling suggested that nutrient buffering during root nitrate uptake dominated any mineral control on the soil solution in planted mesocosms.

This study showed that the integration of experimental and modeling work is a powerful tool in advancing process-understanding of CO$_2$ fluxes in the vadose zone. Our findings are important for improving current base understanding of CO$_2$ partitioning in the vadose zone and may be included in the optimization of climate models. Further research is needed to outline the effect of different crops and soil amendments on the CO$_2$ emission portioning of croplands.

The Supplement related to this article is available online at doi:10.5194/bg-11-7179-2014-supplement.

Acknowledgements. The authors thank Mette Hem Flodgaard, Anja C. Nielsen, Christina Lyne and Szymon Kopalski for skilled technical and laboratory support during sampling procedures and analysis, as well as Nina Wiese Thomsen for invaluable assistance in sampling events, and Rasmus Jakobsen and Jirka Šimůnek for support and discussion during the modeling. The project was financed by the Danish Council for Strategic Research (DSF-09-067234).

Edited by: P. Stoy

References

Hoff, A.: Radon transport in fractured soil: Laboratory experiments and modelling, Risø-R-975(EN), Risø National Laboratory, Roskilde, Denmark, 151 pp., 1997.

Sawamoto, T., Kusa, K., Hu, R., and Hatano, R.: Dissolved N

