High-resolution -glucosidase and radical scavenging profiling combined with HPLC-HRMS-SPE-NMR for identification of bioactive constituents in crude extract of Pueraria lobata

Liu, Bingrui; Kongstad, Kenneth Thermann; Nyberg, Nils; Qinglei, Sun; Jäger, Anna; Stærk, Dan

Publication date:
2015

Document version
Early version, also known as pre-print

Citation for published version (APA):
High-resolution α-glucosidase and radical scavenging profiling combined with HPLC-HRMS-SPE-NMR for identification of bioactive constituents in crude extract of Pueraria lobata

Bingrui Liu, Kenneth T. Kongstad, Nils T. Nyberg, Sun Qinglei, Anna K. Jäger, and Dan Staerk

Abstract:
This work describes the identification of active constituents in Pueraria lobata root extract by dual high-resolution α-glucosidase inhibition and radical scavenging profiling combined with HPLC-HRMS-SPE-NMR. This analytical platform enabled pinpointing of bioactive constituents in HPLC chromatograms directly from crude extracts. Bioactive constituents were cumulatively trapped on SPE cartridges and the structures identified and elucidated by spectral data obtained in the HPLC-HRMS-SPE-NMR mode. A total of 24 compounds were identified, and several of these showed radical scavenging activity while two isoflavonoids showed α-glucosidase inhibitory activity.

METHOD
Methanol extract of Pueraria lobata was investigated by dual high-resolution α-glucosidase/radical scavenging profiling combined with HPLC-HRMS-SPE-NMR.

RESULTS
Dual high-resolution α-glucosidase/radical scavenging profiling provided an α-glucosidase inhibition profile (red trace in Figure 3) and a radical scavenging profile (blue trace in Figure 3) below the HPLC chromatogram. This showed several constituents with radical scavenging activity as well as two constituents, i.e., 18 and 23, with α-glucosidase inhibitory activity.

Conclusion
In this work, dual high-resolution α-glucosidase inhibition and radical scavenging profiling combined with HPLC-HRMS-SPE-NMR allowed direct analysis of α-glucosidase inhibitors and radical scavengers in crude extract of Pueraria lobata without prepurification. Furthermore, 24 constituents — including new compounds 6 and 14 — were identified by analysis of HRMS and NMR spectral data. This work shows the full advantage of high-resolution bioactivity profiling/HPLC-HRMS-SPE-NMR, and promises even more efficient research in functional food, dietary supplements and traditional medicine.

REFERENCES