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7
Characterization of Polymer Blends and Block Copolymers by
Neutron Scattering: Miscibility and Nanoscale Morphology
Kell Mortensen

7.1
Introduction

The interaction between materials and radiation takes a variety of forms, includ-
ing absorption and fluorescence, refraction, scattering and reflection. These types
of interaction are all tightly related in terms of physical quantities. In this chapter,
attention will be focused on the scattering term, when used to determine materi-
als’ properties such as miscibility and nanoscale structure. The method relies on
the wave-character of the radiation; this is the case whether using electromagnetic
beams of light or X-rays with oscillating electric and magnetic fields, or particle
radiation such as neutrons or electrons. In the latter cases, it is the de Broglie
wave character of the particles that is the relevant quantity.

Insight into structural properties using scattering techniques appears as a result
of the interference between radiation that is scattered from different sites in the
sample. A simple illustration is given in the Young interference experiment,
shown in Figure 7.1, where the radiation of plane waves propagate through two
slits, making an interference pattern that depend on the separation distance
between the two slits, and the wavelength of the radiation.

7.2
Small-Angle Scattering

The principle of small-angle scattering is illustrated schematically in Figures 7.2
and 7.4. A sample is placed in a collimated, monochromatic beam and the scat-
tered beam is monitored. The detected scattering pattern reflects the structural
properties of the sample. Small-angle scattering by X-rays (SAXS) or by neutrons
(SANS) are ideal techniques for studying structures on the length scale of 1 to
500 nm, that is, nanoscale structural properties such as macromolecules, nanopar-
ticles or molecular density fluctuations. Neutron sources for SANS experiments
may be either continuous (typical for reactor sources) or pulsed (typical for spall-
ation sources). For the pulsed sources, the demand for a monochromatic beam
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can be obtained using the time-profile of the elastic scattered beam, or the beam
can be monochromatized as required in the reactor case. SAXS instruments may
be either laboratory instruments based on an irradiated anode source, or located at
synchrotron facilities.

Figure 7.1 Experiments using scattering methods rely on interference between wave-like radia-
tion, here illustrated schematically in Young’s two-slit experiment.

Figure 7.2 Illustration of small-angle scattering.
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The scattered beam is, beyond trivial factors such as incoming flux, trans-
mission and geometric factors, proportional to two terms: (i) a contrast factor
reflecting the ability of individual atoms to interact with the radiation; and (ii)
the structure factor resulting from interference effects of scattering originating
from different sites in the sample, providing information on structural
properties.

Reflectometry is somewhat related to small-angle scattering, especially grazing-
incidence reflectometry. Simple reflectometry measures the reflected beam from a
surface or interface of the sample investigated.

7.2.1
Contrast

In order to measure structural properties, there must be difference between the
ability to scatter radiation from the characteristic elements to be studied. There
must also be a contrast, as seen by the applied radiation.

Neutrons are probably best known as elementary particles that comprise the nuclei
of atoms. Typical nuclei contain approximately similar numbers of protons and neu-
trons. The free neutron has, as any particle, an associated wavelength determined by
the mass, mn, and the velocity, vn, according to the de Broglie relation:

ln …
h

mnvn

where h is Planck’s constant. At ambient temperatures, T … 300 K, vn …�����������������
kBT=mn

p
� 3000 m s�1 giving the thermal neutron wavelength: ln … 1.4 A

�
. This

value, which is of the same order of magnitude as that of X-radiation, makes neu-
trons effective as structural probes on the nanometer length scale.

The interaction between neutrons and matter is complex, and includes mag-
netic terms as the neutron itself is magnetic. The interaction between a neutron
and a nuclei can generally not be calculated ab initio, but is given in tables based
on experimental values of scattering lengths and scattering cross-sections. The
interaction between the electrons and the neutron is primarily via the magnetic
moment. The magnetic interaction makes neutron scattering ideal for studying
magnetic structures and fluctuations.

For nonmagnetic materials, the magnetic moments of the nuclei are completely
uncorrelated. The magnetic scattering is therefore not coherent, but gives rise to
an isotropic incoherent background that may be quite large for some materials.
An important example here is hydrogen 1H, which has a large incoherent scatter-
ing contribution. Oxygen 16O and carbon 12C, on the other hand, are examples of
elements that produce very little incoherent background due to the vanishing
magnetic moment in these nuclei.

The nonmagnetic interaction gives rise to coherent scattering, where inter-
ference effects are effective. This is the part of the scattering that provides
insight into the structural properties. The interaction with neutrons not only
depends on the atomic number within the periodic system; indeed, different
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isotopes of the same atom may have significantly different abilities to scatter
neutrons, and even different signs in the related scattering length, b. A most
important example of this is hydrogen, where the most common 1H isotope
(H) and the heavy hydrogen counterpart, 2H, deuterium (D) have significant
different scattering lengths: bH … �0:3739 � 10�12 cm and bD … 0:6671�
10�12 cm. The scattering lengths and incoherent scattering cross-sections for
selected isotopes are listed in Table 7.1.

Chemically, the two hydrogen isotopes are similar, and specific structural identi-
ties can thereby be highlighted by replacing H with D at given chemical sites;
specific units can be “colored” to make them visible in the neutron beam.

Important examples using deuterium labeling include polymer melts, where
individual polymer coils can be highlighted by mixing similar polymers with
respectively H and D atoms in the chain; this is illustrated in Figure 7.3.

The characteristics of small-angle scattering does not allow atomic resolution. It
is desirable, therefore, to substitute the nuclear scattering lengths, b, with a con-
tinuous scattering length density function, r, which averages the b-values over an
appropriate volume V , which should be small compared to the instrumental reso-
lution. r is thus defined as

r …
1
V

X

V

bi …
NAd
MV

X

V

bi ð7:1Þ

which is summed over the nuclear bi-values within the volume V . NA is Avoga-
dro’s number, d the mass density, and MV the molar mass corresponding to the
chosen volume. For a liquid, one would typically calculate r based on the sum
over a single solvent molecule, while for a polymer it would be that of the mono-
mer unit.

For X-rays, the interaction between radiation and matter is primarily via interac-
tion between the electrons and the oscillatory electric field of the electromagnetic
beam. E … E�cosðvtÞ. An electron will, in the X-ray beam, be accelerated by the
oscillating electric field; an accelerated charged particle, on the other hand, will

Table 7.1 Scattering length and incoherent scattering cross-section of typical nuclei of soft
matter materials. Nuclei with no index represent natural, mixed isotopes [http://www.ncnr.nist.
gov/resources/n-lengths].

Nuclei Coherent scattering length Incoherent cross-section

b sic

H �0:3739 � 10�12 cm 80:26 � 10�24 cm2

1H �0:3741 � 10�12 cm 80:27 � 10�24 cm2

2H … D 0:6671 � 10�12 cm 2:05 � 10�24 cm2

C 0:6646 � 10�12 cm 0:001 � 10�24 cm2

N 0:936 � 10�12 cm 0:5 � 10�24 cm2

O 0:5803 � 10�12 cm 0:0 � 10�24 cm2

Si 0:4149 � 10�12 cm 0:004 � 10�24 cm2
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irradiate radiation itself with frequency equal to the accelerating field. The result is
X-ray irradiated from the electron:

Erad / �
e2

mec2

E
r

ð7:2Þ

The pre-factor in Eq. (7.2) is the scattering length, b, for an individual electron,
that is,

be … �
e2

mec2
… 0:282 � 10�4 A ð7:3Þ

with the dimension of length. be of the electron is also called the Thompson scat-
tering length. To obtain the scattering of an atom, it is necessary to integrate over
all electrons in the atom which, for small angles (small q) approach be times the
number of electrons, that is,

batom � be � Z:

Different polymers have typically rather similar electron densities, giving only
weak X-ray contrasts. Neutron scattering is therefore usually superior for
studying the thermodynamics of polymer blends, using specific deuterium
labeling.

Figure 7.3 Neutron scattering contrasts of
polymer blend, illustrating good and weak con-
trast. The weak contrast examples illustrate the
contrast within typical polymer blends. The
good contrast example illustrates how contrast
between the A and B-polymers can be

enhanced using D-labeling. The coil contrast
example shows how “single” coils can be
labeled to study the conformation of individual
polymer chains in the mixed and in the dem-
ixed states. The units may be interpreted as the
Kuhn-length of the polymer chain.
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7.2.2
Scattering Function

Figure 7.4 describes schematically the radiation scattered into a given angle 2q
from two sites in the sample, Ri and Rj. The incoming radiation is characterized
by the wavelength l and direction given by wave vector k�.

The elastically scattered wave has the same wavelength, and we consider the
term scattered into a given angle 2q defined by the scattered wave vector kq. The
phase difference Dw between radiation origination from the two sites Ri and Rj is,
from the figure, seen to be 2p=l times the path length difference, which may be
expressed as

Dw … rij � ðkq � k�Þ … rij � q ð7:4Þ

where rij … Ri � Rj, and q � ðkq � k�Þ is the scattering vector. The numerical value
of q is

q … jqj …
4p
l

sinq ð7:5Þ

The radiation is for light, X-ray and neutrons expressed in terms of a plane wave
with amplitude oscillating in time (t) and space (R) which, using complex nota-
tion, is expressed as

AðR; tÞ … A� exp‰iðvt � k � RÞ� ð7:6Þ

where the real part of Eq. (7.6) reflects the physical value. The radiation scattered
from various sites may vary, thus reflecting the ability for different atoms to inter-
act with the beam. The probability that the plane wave is scattered from a given
site Ri of the sample is defined in terms of the scattering length density, r, as
discussed above.

Figure 7.4 Phase difference for scattering from different sites into given angle 2u.
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The amplitude of the radiation at a site R and time t scattered from a point Ri

into the angle 2q (i.e., with wave vector kq and momentum transfer q) depends on
the ability to scatter at the site Ri (rðRiÞ) and the phase is given by the specific
scattering site Dwi … Ri � q:

AðqÞRi
… A�rðRiÞexp‰iðvt � Dwi � kq � RÞ�
… A�rðRiÞexp‰�iðq � RiÞ�exp‰iðvt � kq � RÞ� ð7:7Þ

The phase-factor exp‰i q � Ri� explicitly gives the phase relative to that of the non-
interacting beam. The total radiation amplitude scattered into a given scattering
vector kq, that is, a scattering momentum q, is the simple sum over all sites in the
sample:

AðqÞ …
X

Ri

AðqÞRi
… A�

X

sample

rðRiÞexp‰�iðq � RiÞ�exp‰iðvt � kq � RÞ� ð7:8Þ

Now, it is only possibly to measure beam-intensity, but not the direct in time and
space oscillating wave. The intensity is equal to the numerically squared value of
jAðqÞj or, in complex numbers, the product of AðqÞ and the complex conjugated
AðqÞ	. Moreover, we measure the ensemble average, thus giving:

~IðqÞ … I�
X

i

X

j

hrðRiÞrðRjÞexp‰�iðq � rijÞ�i ð7:9Þ

with A2
� … I� equal to the intensity of the incoming beam, and where h. . .i denotes

ensemble average. Now, let us normalize with respect to I�, giving the scattering
function:

IðqÞ …
X

i

X

j

hrðRiÞrðRjÞexp‰�iðq � rijÞ�i ð7:10Þ

Let us further substitute the summations with integrals using that rðRÞ can be
treated as a continuous function. The scattering function Eq. (7.10) can then be
reformulated into integral-form, expressed as

IðqÞ …
R

Ri

R
RjhrðRiÞrðRjÞiexp‰�iq � rij�dRj dRi

…
R

R

R
rhrðRÞrðR þ rÞiexp‰�iq � r�dr dR

ð7:11Þ

where Ri and Rj are substituted with respectively R and R þ r. The averaged corre-
lation function hrðRÞrðR þ rÞi does not depend on the specific sites R and R þ r,
but only on the distance r. The R-integral of Eq. (7.11) can thus be eliminated,
thereby giving

IðqÞ … V �
R

hrðRÞrðR þ rÞiexp‰�iq � r�dr
… V �

R
cðrÞexp‰�iq � r�dr ð7:12Þ

with the correlation function cðrÞ � hrðRÞrðR þ rÞi. We thus see that, mathemati-
cally, the scattering function is the Fourier transform of the ensemble-averaged
correlation function cðrÞ correlating densities separated by distances r. For an iso-
lated polymer chain, the correlation function describes the probability of finding
segments of the chain separated by a distance r. In experimental systems this
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may be polymer chains in dilute solution, or few labeled chains in an environ-
ment of nonlabeled (see Figure 7.3). In polymer blends, the correlation function
describes the spatial correlation of concentration fluctuations, as illustrated in
Figure 7.5.

7.2.3
Gaussian Chain

The conformation of ideal polymer chains corresponds to that of a random walk.
The mutual distance between segments within the chain obey Gaussian statistics
[1]. The size of polymer chains is often given in terms of the end-to-end distance,
R�, or the radius of gyration, Rg . The radius of gyration is experimentally accessible
from scattering experiments.

Figure 7.5 Composition fluctuations in a polymer blend illustrated by blends of black and
grey chains.
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The end-to-end vector is given by

R� …
XN

i…1

Ri ð7:13Þ

where N is the number of Kuhn-segments (proportional to the degree of polymer-
ization) and Ri is the vector of the i-th segment. For an isotropic collection of
chains the average end-to-end vector must be zero: hR�i … 0. The mean-square
end-to-end distance, on the other hand, is non-zero:

hR2
�i …

XN

i…1

XN

j…1

hRi � Rji … Na2 ð7:14Þ

where a is the segment length: a … jRij. The center of mass of the coil is

Rc …
1
N

XN

i…1

Ri; ð7:15Þ

and the radius of gyration, Rg , is by definition given as

R2
g …

1
N

XN

i…1

hðRi � RcÞ2i ð7:16Þ

which with Eq. (7.15) inserted gives

R2
g …

1

2N2

XN

i…1

XN

j…1

hðRi � RjÞ2i ð7:17Þ

Gaussian polymer coils obey the relation (see e.g., Doi, [1])

hðRj � RiÞ2i … a2jj � ij ð7:18Þ

The radius of gyration is therefore

R2
g …

1

2N2

XN

i…1

XN

j…1

jj � ija2 ð7:19Þ

For large N we may replace the sum with integrals, getting

R2
g …

a2

2N2

Z N

0

Z N

0
jj � ijdj di …

1
6

Na2 …
1
6

hR2
�i ð7:20Þ

Gaussian chains are characterized by the distribution function of the two seg-
ments separated by n segments (see e.g., Ref. [1]):

Pðr; nÞ …
3

2pna2

� �3=2

exp �
3r2

2na2

� �
ð7:21Þ

Inserting this into the expression for the correlation function in the scattering func-
tion, we get the form factor of a Gaussian polymer chain equal the Debye function, gD:

PðqÞ … gDðq; RgÞ …
2
x2

ðe�x � 1 þ xÞ; x … R2
g q2 ð7:22Þ
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7.3
Thermodynamics of Polymer Blends and Solutions. Flory–Huggins Theory

The phase behavior of polymer blends and solutions is, like any other mixtures,
governed by enthalpic interactions between the different units and entropic
effects, as described in thermodynamics [1]. The stable phase is determined from
the minimum in free energy.

Flory and Huggins proposed a simple theory to calculate the free energy [2].
This theory will be presented based on the lattice model, assuming that polymer
segments all occupy equal unit volume (see Figure 7.6). Assume that we have an
ensemble of V lattice sites available, of which nA of the polymer chains are A
coils, each characterized having NA segments, that is, a volume fraction equal
wA … nANA=V. Correspondingly, there are nB coils of polymer B, each with NB

segments, corresponding to a volume fraction wB … nBNB=V. Note that an
incompressible material is assumed, corresponding to wA þ wB … 1. The partition
function of the system is given by

Z …
X

i

exp‰�Ei=kBT �; ð7:23Þ

where Ei is the energy associated to a given configuration, i, of the A- and B-poly-
mers. In the Flory–Huggins model, Z is calculated in a mean-�eld approach where
the site-dependent energy Ei is replaced with a mean value �E, and the number of
configurations available for respectively the nA and the nB polymer chains are
taken into account by a prefactor W. The partition function Z then becomes

Z � W expð��E=kBTÞ ð7:24Þ

Figure 7.6 The lattice model for a polymer blend.
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With the Helmholtz free energy

F … �kBT lnðZÞ … �TS þ U; ð7:25Þ

where S is the entropy and U the enthalpy; we thus get the result

F … �kBT lnðWÞ þ �E ð7:26Þ

It can be seen thereby that W represents the entropy of the system: kB ln W … S,
while �E is the enthalpic energy.

The average energy in the mixed state is calculated based on the average num-
ber of neighboring sites of respectively A and B segments (see Figure 7.6). The
enthalpic interaction energy associated with these pairs will be denoted respec-
tively -eAA, -eBB and -eAB. The average energy �E can then be written as

�Emixed … �Vz
1
2

eAAw2
A þ

1
2

eBBw2
B þ eABwAwB

� �
ð7:27Þ

where z is the number of nearest neighbors. The corresponding energy of
the demixed state is the simple sum of the eAA-energy of the wAVA-sites and
eBB-energies of the wBVB-sites,

�Edemixed … �VzðwAeAA=2 þ wBeBB=2Þ: ð7:28Þ

The change in average enthalpic energy upon mixing is thereby

D�E … �Emixed � �Edemixed … x wAwB kBT ð7:29Þ

where we have used that wB … 1 � wA and where x is the Flory–Huggins interac-
tion parameter

x � �
1

kBT
z
2

ðeAA þ eBB � 2eABÞ ð7:30Þ

The ensemble configuration term W , and thereby the entropy, is calculated
assuming that each chain can be placed randomly on the lattice, independent of
each other. In the homogeneous state, each polymer chain has then

wAðmixedÞ … wBðmixedÞ … V ð7:31Þ

possible positions of center of mass (translational states), while in the demixed
state, the A- and B-polymers have respectively

wAðdemixedÞ … NAnA … wAV and wBðdemixedÞ … NBnB … wBV ð7:32Þ

possible states. The entropy change by mixing, Ds … kB ln wðmixedÞ �
kB ln wðdemixedÞ is thus

Dsi … kB lnðVÞ � kB lnðwiVÞ … �kB ln wi; i … A or B ð7:33Þ

for each of the two polymer systems. Since the volume fractions are less than 1,
Eq. (7.33) tells us that the entropy change DsA and DsB upon mixing is always
positive; that is, the entropy term of the free energy drag the system toward mix-
ing. To calculate the total entropy of mixing, D~S, the entropy contribution from
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each polymer molecule DsA and DsB is summed:

D~Smix … nADsA þ nBDsB … �kBnA ln wA � kBnB ln wB ð7:34Þ

Substituting nA … wAV=NA and nB … wAV=NA, and dividing by the number of
lattice sites, we get the change of entropy per unit volume:

DSmix … �kB
wA

NA
ln wA þ

wB

NB
ln wB

� �
ð7:35Þ

The Helmholtz free energy of mixing is the sum of entropic and enthalpic contri-
bution according to

Fm … �TDS þ D�E ð7:36Þ

which, using Eqs (7.29) and (7.35), is rewritten into the Flory–Huggins formula

FmðwÞ … kBT
wA

NA
ln wA þ

wB

NB
ln wB þ xwAwB

� �
ð7:37Þ

For classical, low-molar-mass liquids (corresponding to NA and NB equal to 1 in
Eq. (7.37)), the driving force for mixing is typically the gain in entropy. For poly-
mer blends, the large molecular sizes (large N-values) markedly reduce the
entropic gain. The result is the general statement, that typical polymers do not
mix. Only when the enthalpic forces under special circumstances effectively
becomes very small, will the entropy cause polymers to mix.

Whether a system of two polymers, A and B remains phase-separated or will
mix can be predicted from the w dependence of the free energy function, FmðwÞ.
Suppose that the free energy function Fm has a U-shaped w-dependence, and con-
sider a sample with polymer A concentration equal to w. If the blend tend to
demix into concentrations w1 and w2 it will have the free energy, Fdemix , this being
the concentration-weighted average of the energies in the two concentrations w1

and w2. With the U-shaped w-dependence of Fm, the demixed energy will be
larger than the mixed, and the system equilibrium is in the mixed state. If the
w-dependence of the free energy of mixing Fm, on the other hand is \-shaped,
the free energy of the phase separated state is lower than that of the mixed, and
the thermodynamic stable state is phase separated. Thermodynamically, the free
energy has a U-shaped w-dependence of Fm nearby the two binodal points (B1 and
B2), which can be shown to fulfill the relation

@Fm

@w

����
wB1

…
@Fm

@w

����
wB2

ð7:38Þ

Thus, for phase-separated systems, the concentrations wB1 and wB2 of the two
thermodynamic stable phases are uniquely determined by the points of common
tangent. The inflection points separating U- from I-shaped FðwÞ will accordingly
represent an instability points, the so-called spinodal points given by the condition

@2Fm

@w2

����
wS1

…
@2Fm

@w2

����
wS2

… 0 ð7:39Þ
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Systems with concentrations between the two spinodal points will be unstable and
decompose spontaneously. Polymer mixtures with overall concentrations between
the binodal and the spinodal, will be metastable, and decompose following a
nucleation-and-growth mechanism. For polymer blends with concentrations “out-
side” the two binodals, the system is mixed in a thermodynamically stable single
phase.

The free energy function depends generally on temperature – that is, the bino-
dal and spinodal concentrations varies on changing temperature. At a given tem-
perature, the two binodals and the two spinodals all meet at one point in the
concentration–temperature phase-diagram. This is the critical point given by

@3Fm

@w3 … 0 ð7:40Þ

For a symmetric polymer blend, NA … NB … N, the equations above lead to a criti-
cal point given by relation

xcN … 2 ð7:41Þ

7.4
The Scattering Function and Thermodynamics

In the preceding chapter we have, based on the Flory–Huggins theory, discussed
the basis for the phase behavior of polymer blends. Miscible polymer blends and
polymer solutions have, even in the mixed one-phase system, spatial variations in
the polymer concentration. These concentration �uctuations reflect the thermo-
dynamic parameters of the free energy, as described in the Flory–Huggins model.

In a real polymer material, the fluctuations are not limited to chemical composi-
tion fluctuations. Thermal density fluctuations will generally also be present and
can be measured. According to the fluctuation–dissipation theorem, these fluctua-
tions are characterized by the material compressibility @ln V=@P, where V is the
volume and P the pressure [3]. In neutron scattering experiments using labeled
chains (see Figure 7.3), the thermal fluctuations are negligible as compared to
composition fluctuations. We will, for simplicity, neglect thermal density fluctua-
tions and assume a constant segment density; that is, in the lattice model (Fig-
ure 7.6) we assume that every lattice site is filled with polymer segments imposed
by the constraint

wAðRÞ þ wBðRÞ … 1 ð7:42Þ

satisfied for all sites R. The concentration fluctuations can be measured directly by
scattering methods; hence, scattering experiments can provide insight into the
thermodynamics of polymer systems.

The ensemble-averaged concentrations wA … hwAðRÞi and wB … hwBðRÞi must
fulfill the same relation wA þ wB … 1. The fluctuation terms are advantageously
described by the deviation of the segment density from average at each lattice site;
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rather than the concentrations themselves:

dwAðRÞ … wAðRÞ � wA
dwBðRÞ … wBðRÞ � wB

ð7:43Þ

With the density constraint the fluctuation dwA and dwB terms holds:

dwAðRÞ þ dwBðRÞ … 0 ð7:44Þ

The product

dwiðRÞdwjðR þ rÞ i … A; B; j … A; B: ð7:45Þ

characterizing the spatially correlated fluctuations is a unique measure of the ther-
modynamics. Equation (7.45) describes the correlation between segments i in a
position R with those of species j in position R þ r.

Usually, these correlations would be expect to have a relatively short range, since
distant segments will be completely independent. The products in Eq. (7.45) will
accordingly be nonzero only for relatively small values of r.

The thermodynamics of the system is described in terms of the ensemble aver-
age, cijðrÞ, of the spatially correlated fluctuations:

cijðrÞ … hdwiðRÞdwjðR þ rÞi i … A; B; j … A; B: ð7:46Þ

where h� � �i denotes the ensemble average. With dwA … �dwB, it follows that

cAAðrÞ … cBBðrÞ … �cABðrÞ … �cBAðrÞ; ð7:47Þ

which leads to the important and very simple result: The concentration fluctua-
tions of an incompressible two component system are characterized by a single
correlation function cðrÞ which, by definition, will be associated with the self-corre-
lation function:

cðrÞ � cAAðrÞ: ð7:48Þ

The correlation function is, as mentioned above, tightly related to the thermo-
dynamics of the system. Furthermore, the Fourier transform of the spatial correla-
tion functions can be measured directly in neutron scattering experiments, as
outlined in Eq. (7.12). This will be discussed further below.

7.4.1
The Forward Scattering

The experimentally accessible correlation function, cijðrÞ … hwiðRÞwjðR þ rÞi, can
be expressed in terms of thermodynamic parameters. In order to calculate the
correlation functions cijðrÞ, we follow basically the route of de Gennes [4] and Doi
[1], using the fact that the correlation function can be shown to express the propor-
tionality constant when using linear response theory to treat energy changes.

To find the thermodynamic relationship to the correlation function, we start to
calculate the response on the total energy upon perturbating individual segments
with a weak external potential. Let us assume that the potentials uAðRÞ and uBðRÞ
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act on, respectively, A and B segments in site R. The resulting change in the sys-
tem’s potential energy is then

Ue …
Z

‰uAðRÞwAðRÞ þ uBðRÞwBðRÞ�dR ð7:49Þ

where the subscript e denotes “external” and where we have used a continuous
description of the ensemble (

R
R ) rather than the lattice representation (

P
R ). The

uA and uB external potentials acting on individual sites will cause local deviation
from average composition; that is, generally we may expect that wAðRÞ is not equal
to wA and wBðRÞ is not equal to wB. With U� being the intrinsic energy of the
system, the equilibrium average can be written as

dwAðRÞ …
R

dwAðRÞexp‰�ðU� þ UeÞ=ðkBTÞ�drR
exp‰�ðU� þ UeÞ=kBT �dr

ð7:50Þ

according to statistical mechanics ([5]). We rewrite the formula into the form

dwAðRÞ …
hdwAðRÞexp‰�Ue=ðkBTÞ�i

hexp‰�Ue=ðkBTÞ�i
ð7:51Þ

where h� � �i �
R

ð� � �Þe�U�=kBT dr=
R

e�U�=kBT dr denotes the equilibrium average
without external fields. For weak external fields, Ue=kBT 
 1 we can make the
approximations

expð�Ue=ðkBTÞ � 1 � Ue=ðkBTÞ and
1

1 � Ue=ðkBTÞ
� 1 þ Ue=ðkBTÞ

making Eq. (7.51) into the form

dwAðRÞ � hdwAðRÞið1 þ hUe=kBTiÞ � hdwAUe=kBTi ð7:52Þ

to first order in Ue=ðkBTÞ. The first term in Eq. (7.52) vanishes, as the equilibrium
average of dwAðRÞ by definition is zero without external fields. With Eq. (7.49) it
thus follows from Eq. (7.52) that

dwAðRÞ � �
1

kBT
hdwAðRÞUei

which, when using the expression for U� can be rewritten into

dwAðRÞ � �
1

kBT
hdwAðRÞ

Z
‰wAuAðR þ rÞ þ wBuBðR þ rÞ�drþ

dwAðRÞ
R

‰dwAðR þ rÞuAðR þ rÞ þ dwBðR þ rÞuBðR þ rÞ�dðR þ rÞi
ð7:53Þ

Assuming that the potentials uAðRÞ and uBðRÞ varies little over the length scale
of fluctuations, the first term vanished due to mean zero of dwAðRÞ. The fluctua-
tion term then becomes

dwAðRÞ … �
1

kBT

Z
hdwAðRÞdwAðR þ rÞiuAðR þ rÞdrþ

�

R
hdwAðRÞdwBðR þ rÞiuBðR þ rÞdr

� ð7:54Þ
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The result Eq. (7.54), originally derived by de Gennes [4], is most important. It
expresses the linear response theory that the thermal averaged local concentration
fluctuations depends linearly on the fields acting on any other sites, with propor-
tionality constants equal the spatial correlation functions cAAðrÞ and cABðrÞ, as
defined in Eq. (7.46). Using further that dwBðRÞ … �dwAðRÞ, Eq. (7.54) may be
rewritten into

dwAðRÞ … �
1

kBT

Z
hdwAðRÞdwAðR þ rÞi‰uAðR þ rÞ � uBðR þ rÞ�dr

… �
1

kBT

Z
cðrÞ‰uAðR þ rÞ � uBðR þ rÞ�dr

ð7:55Þ

where the definition Eq. (7.48), c � cAA, is used.
The correlation function c is expected to be of relative short range, that is, c is

likely non-zero only for r-values up to some coil-diameters in the mixed phase. We
will therefore, as above, assume that the spatial variation of uAðRÞ, uBðRÞ is grad-
ual, so that these potentials can be considered constant over the range where cðrÞ
has a nonzero value. In this case, Eq. (7.55) can be approximated as follows

dwAðRÞ � �
1

kBT
uAðRÞ � uBðRÞ‰ �

Z
cðrÞdr ð7:56Þ

The Fourier transform of cðrÞ is the structure factor IðqÞ (Eq. (7.12)) given by

IðqÞ …
Z

cðrÞexp‰�iq � r�dr: ð7:57Þ

The integral in Eq. (7.56) can thereby be expressed in terms of the structure factor
at zero q-value, that is,

dwAðRÞ … �
1

kBT
Ið0Þ uAðRÞ � uBðRÞ‰ � ð7:58Þ

With uAðRÞ and uBðRÞ assumed to be almost constant, the deviation dwAðRÞ is
determined from the condition of thermodynamic equilibrium as expressed by
the chemical potentials mA and mB. In the absence of external fields, we have,
according to thermodynamics:

@Fm

@w

� �����
r
þ mAðrÞ � mBðrÞ‰ � … C ð7:59Þ

where C is a constant independent of concentration. With perturbations with the
small external potentials, uAðRÞ and uBðRÞ, the local chemical potentials mAðRÞ
and mBðRÞ will change by these respective values. The changes in the free-energy
derivative is expressed in terms of the associated change in concentration

D
@Fm

@w

� �����
R

�
@2Fm

@w2

� �����
R
dwðRÞ ð7:60Þ

assuming that the fluctuation-term dwðRÞ is small. From these perturbations in
respectively free energy and chemical potential, Eq. (7.59) thereby gives the
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condition for thermodynamic equilibrium
@2Fm

@w2

� �
dwðRÞ þ uAðRÞ � uBðRÞ‰ � … 0 ð7:61Þ

and thereby

dwðRÞ … �
@2Fm

@w2

� ��1

uAðRÞ � uBðRÞ‰ � ð7:62Þ

Combining Eq. (7.62) with Eq. (7.58) describes thereby the fluctuation correlation
function in terms of thermodynamics

Ið0Þ …
Z

cðrÞdr … kBT
@2Fm

@w2

� ��1

; ð7:63Þ

that is, the structure factor, Ið0Þ, is directly related to the thermodynamics of the
polymer blend. The spinodal point of polymer blends, @2Fm=@w2 … 0, can thus be
obtained experimentally by measuring the structure factor at q … 0, and extract the
temperature where the I�1ð0Þ approach zero (see Figure 7.7).

Figure 7.7 shows an experimental example of such studies, showing the forward
scattering Ið0Þ of a polymer blend of polystyrene (PS) and poly(vinylmethylether)
(PVME) with a given concentration (wPS … 0:32) [6]. The forward scattering is
obtained from experimental IðqÞ data extrapolating q ! 0. A number of equivalent
data, obtained for various concentrations, may give the whole spinodal curve.

The coexistence curve, or the binodal, can also be obtained from the same scat-
tering experiments, identifying the abrupt and (usually, due to the relative slow

Figure 7.7 Small-angle neutron scattering data
I�1ð0Þ versus T�1 identifying the spinodal and
the binodal temperatures. (a) I�1ð0Þ versus
T�1 schematically; (b) An experimental exam-
ple of a polymer blend of polystyrene (PS) and

poly(vinyl methylether) (PVME) giving the
experimental spinodal and binodal values. The
linear I�1ð0Þ versus T�1 is in accordance with
the RPA result (Eq. (7.82)), with x / T�1.
Experimental data reproduced from Ref. [6].
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nucleation and growth mechanism) time-dependent deviation in the I�1 versus
T�1 plot (TB in the Figure 7.7).

By measuring the temperature dependence of Ið0Þ for a variety of concentra-
tions, as sketched in Figure 7.8, the spinodal phase boundary can be mapped out
for polymer blends.

7.4.2
Random Phase Approximation (RPA)

In the next section, an attempt will be made to evaluate further details on the
composition fluctuations as related to the experimental scattering function, IðqÞ.

The calculations will be based on the result (see Eq. (7.55)) that the pair correla-
tion function is expressed in terms of linear response theory. The calculations will
further be made using a mean-field approximation principally where the excluded
volume effects, the density constrain and the interactions between chains are
taken into account as perturbations, expressed in terms of potential energies. This
calculation is called the random phase approximation (RPA).

Initially, consider the case where polymers A and B are placed on the lattice at
random, without any excluded volume effects or interaction energies. In this case,
there is by definition no correlation in the positioning of polymers segments A and
B, and the correlation term hdwAðRÞdwBðR þ rÞi obviously equals zero. The correla-
tions hdwAðRÞdwAðR þ rÞi and hdwBðRÞdwBðR þ rÞi between A � A and B � B

Figure 7.8 By measuring the forward scattering Iðq … 0Þ it is possible experimentally to deter-
mine the spinodal curve (second derivative of free energy, @2Fm=@f2, is zero) of the binary
phase diagram, since @2Fm=@f2 … I�1ð0Þ.
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segments, on the other hand, are both finite since the segments of the polymers are
linked together making up A and B polymer chains, respectively. If external fields
uAðRÞ and uBðRÞ are applied to this system, the resulting change in the concentra-
tion dwAðRÞ is then responding with the change in fluctuations (Eq. (7.54))

dwAðRÞ … �
1

kBT

Z
c�

AAðrÞuAðR þ rÞdr ð7:64Þ

where the response function is identical to the pair correlation function, as dis-
cussed above in Eq. (7.55). Now, in reality there are of course both enthalpic inter-
actions between the chains and volume constraint. These terms will be taken into
account as perturbations using a mean field approximation.

If the concentrations of A and B segments in position R are respectively
wAðRÞ … wA þ dwAðRÞ and wBðRÞ … wB þ dwBðRÞ, the enthalpic fields acting on
the segments A and B are given by respectively,

wAðRÞ … �z‰eAAwAðRÞ þ eABwBðRÞ� and
wBðRÞ … �z‰eBAwAðRÞ þ eBBwBðRÞ�

ð7:65Þ

The conservation of volume condition: wAðRÞ þ wBðRÞ … 1, will thermo-
dynamically correspond to a force acting on each site, expressed as a potential,
VðRÞ. The total energy Uexcl representing the excluded volume effect is then calcu-
lated by integrating VðRÞ over volume:

Uexcl �
Z

VðRÞdR …
Z

VðRÞ‰wAðRÞ þ wBðRÞ�dR ð7:66Þ

where in the last equality we have replaced a factor 1 with the identical ‰wAðRÞ þ
wBðRÞ� sum. The internal fields acting on segments A and B are the sums, respec-
tively wA þ V and wB þ V . In the linear response theory dwA and dwB can thus be
expressed as

dwAðRÞ …
1

kBT

Z
c�

AAðRÞ‰uAðR þ rÞ þ wAðR þ rÞ þ VðR þ rÞ�dr ð7:67Þ

dwBðRÞ …
1

kBT

Z
c�

BBðRÞ‰uBðR þ rÞ þ wBðR þ rÞ þ VðR þ rÞ�dr ð7:68Þ

The constraint wAðRÞ þ wBðRÞ … 1 gives, as discussed already above,

dwAðRÞ þ dwBðRÞ … 0 ð7:69Þ

Equations (7.67)–(7.69) form a set of simultaneous equations for the unknowns
dwAðRÞ, dwBðRÞ, and VðRÞ. To solve these equations, we will use the Fourier
transform of dwðRÞ and VðRÞ. In setting the formula Eq. (7.67) for the concentra-
tion fluctuation expressed in terms of the spatial correlation function, the Fourier
transformed dwðRÞ acquires the form

dyA ðqÞ …
1
V

Z
dwA ðrÞexp‰iq � r�dr

� �
1
V

1
kBT

uA � uB‰ �
Z Z

cðrÞexp‰iq � r�dR dr

… �
1

kBT
IðqÞ uA � uB‰ �;

ð7:70Þ

where we used the formula for the structure factor, IðqÞ (Eq. (7.12)).
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After some mathematical rewritings, using the expression for the unperturbed
structure factor of noninteracting polymer chains

I�
AAðqÞ …

Z
c�

AAðrÞe�iq�rdr; ð7:71Þ

that wAðRÞ … �z‰eAAwAðRÞ þ eABwBðRÞ�, and that qðqÞ is the Fourier transform of
the potential VðRÞ, we find

dyAðqÞ … �
1

kBT
I�

AAðqÞ uA � z eAAdyAðqÞ þ eABdyBðqÞ
	 �

þ qðqÞ
	 �

ð7:72Þ

The corresponding expression for the Fourier transform dyBðqÞ of dwBðrÞ is

dyBðqÞ … �
1

kBT
I�

BBðqÞ uB � z eBAdyAðqÞ þ eBBdyBðqÞ
	 �

þ qðqÞ
	 �

ð7:73Þ

The sum, dyAðqÞ þ dyBðqÞ, of these two Fourier transforms is zero, according to

dyAðqÞ þ dyBðqÞ …
Z

‰dwAðrÞ þ dwBðrÞ�eiq�r dr … 0 ð7:74Þ

Solving the three Eqs (7.72)–(7.74) with the three unknowns dyA , dyB and q give

dyAðqÞ … �
1

kBT
1

I�
AAðqÞ

þ
1

I�
BBðqÞ

� 2x
� ��1

ðuA � uBÞ ð7:75Þ

Here, x … z=ð2kBTÞ‰eAA þ eBB � 2eAB� is the Flory–Huggins interaction parameter
defined above (Eq. (7.30)). From Eq. (7.70) the structure factor IðqÞ is thereby
given by the rather simple expression

1
IðqÞ

…
1

I�
AAðqÞ

þ
1

I�
BBðqÞ

� 2x ð7:76Þ

Equation (7.76) may be rewritten into the more general RPA form,

IðqÞ …
N

FblendðqÞ � 2xN
ð7:77Þ

where the function FðqÞ for blends is given by

FblendðqÞ …
1
N

1
I�

AAðqÞ
þ

1
I�

BBðqÞ

� �
…

1
N

I�
AAðqÞ þ I�

BBðqÞ
I�

AAðqÞI�
BBðqÞ

ð7:78Þ

with the “average” degree of polymerization, N, defined as

N …
NANB

NA þ NB
ð7:79Þ

The individual polymer coils obey Gaussian statistics with the associated Debye-
function (Eq. (7.22)) giving the bare structure factors, that is,

I�ðqÞ … wNgDðq; NÞ; ð7:80Þ

Using further the approximation

gDðxÞ … 2=ðx4Þ � expð�x2Þ � 1 þ x2
	 �

� 1 �
1
3

x2 �
1

1 þ 1
3 x2

ð7:81Þ

the RPA expression, Eq. (7.76) becomes

1
IðqÞ

…
1 þ q2R2

A=3
wANA

þ
1 þ q2R2

B=3
wBNB

� 2x ð7:82Þ

256 7 Characterization of Polymer Blends and Block Copolymers by Neutron Scattering



which we rewrite into

I�1ðqÞ …
1

wANA
þ

1
wBNB

� 2x
� �

þ
R2

A

3wANA
þ

R2
B

3wBNB

� �
q2 ð7:83Þ

that is, the scattering function has the simple Lorentzian (Ornstein–Zernike) form:

I�1ðqÞ … I�1ð0Þ‰1 þ j2q2� ð7:84Þ

where
I�1ð0Þ …

1
wANA

þ
1

wBNB
� 2x ð7:85Þ

is the forward scattering already discussed above, relating directly to the thermo-
dynamics of the system. The correlation length j

j …
R2

A

3wANA
þ

R2
B

3wBNB

� �1=2 ���������
Ið0Þ

p
ð7:86Þ

describes the spatial extend of the fluctuations. We see that the RPA theory expresses
thermodynamic properties of polymer blends, as described within the Flory–Hug-
gins model, in terms of experimental accessible parameters. Measurements of the
scattering function as a function of composition and temperatures provide both the
spinodal phase boundary, and the temperature and concentration dependent Flory–

Huggins interaction parameter (x). The Flory–Huggins model describes the
enthalpic interactions in terms of temperature independent neighboring interac-
tions eij, giving a T�1-dependent x-parameter. The mean field treatment thus predict
the following scaling for forward scattering and correlation length:

Ið0Þ / T�1 and j / T�1=2 ð7:87Þ

as already used in Figures 7.7 and 7.8. Figures 7.9 and 7.10 shows experimental
scattering functions for two polymer systems: a polystyrene/poly(vinyl

Figure 7.9 Small-angle neutron scattering
experiments of polymer blends of polystyrene
(PS) and poly(methylstyrene) (PMS) showing
the agreement with the RPA-result: I�1ðqÞ lin-
ear in q2. The inset shows schematically the
phase diagram, which for the PS/PMS system

is of the UCST-type. The PS polymers are deu-
terated (PSd) in order to obtain contrast
between the two polymers in the neutron scat-
tering experiment. Experimental data repro-
duced from Ref. [7].
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methylether) blend and a polystyrene/poly(methylstyrene) blend, plotted as I�1

versus q2. The results are in agreement with the RPA result Eq. (7.82) and exhibit
the expected linear relationships based on Flory–Huggins thermodynamics and
mean-field random phase approximation. It may be noted that for the PS/PMS
system, the I�1ð0Þ-parameter decreases upon lowering the temperature (i.e., Ið0Þ
increases) implying that the system is mixed at high temperature and demixed at
low temperature, an upper critical solution temperature (UCST) system. The
PVME/PS system is opposite, having a lower critical solution temperature (LCST).

The x-parameter is, according to the definition (Eq. (7.30)), assumed to be
purely enthalpic and short-ranged. It reflects segmental nearest neighbor interac-
tions, which are likely to be dominated by dipole–dipole interactions. Experimen-
tally determined x-values appear to be more complex; only high-molar-mass
polymers have effectively a segmental x-parameter where end-effects are negligi-
ble, and the temperature-dependence is seldom pure T�1. In spite of such difficul-
ties, the mean-field random phase approximation and Flory–Huggins theory
provide an excellent basis for analyzing polymer thermodynamics.

7.4.3
Beyond Mean Field

The RPA method is based on a completely random organization of the polymer
chains where the effects of interactions are estimated using a perturbation calcula-
tion. Such mean field calculations are only valid as long as the length scale of the
fluctuations are small compared to characteristic lengths of the system (the

Figure 7.10 Small-angle neutron scattering
experiments of polymer blends of polystyrene
(PS) and poly(vinylmethylether) (PVME) show-
ing the agreement with the RPA-result: I�1ðqÞ
linear in q2. The insert shows schematically the
phase diagram, which for the PS/PVME system

is of the LCST-type. The PS polymers are deu-
terated (PSd) in order to obtain contrast
between the two polymers in the neutron scat-
tering experiment. Experimental data repro-
duced from Ref. [7].
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Ginzburg criteria). In a region close to the critical point, Tc , thermal composition
fluctuations may significantly renormalize the thermodynamics. In polymers, rele-
vant length scales separating valid mean-field from non-mean-field characteristics
may be the correlation length of fluctuations j as compared to the polymer segmen-
tal length b (the lattice site). For correlation lengths j larger than the lattice sites,
random positioning is no longer consistent, and more advanced theories that self-
consistently include the effect of thermal composition fluctuations are needed.

The thermal composition fluctuations tend to stabilize the “disordered” phase,
giving rise to a renormalized critical temperature. The relation between the mean-
field value TMF

c and the real Tc is expressed by the Ginzburg relation [8]:

Tmf
c … Tc=ð1 � GÞ; ð7:88Þ

where G is the Ginzburg number. In a plot showing the inverse forward scattering
I�1ð0Þ versus reciprocal reduced temperature, t�1, the Ginzburg number clearly
appear as the crossover temperature from linear (mean field) to nonlinear charac-
teristics. Here, the reduced temperature is defined as t … j1 � Tc=T j. For critical
composition w … wc, analogous to those of Figures 7.7 and 7.8, one will find devia-
tion from linear relationship. Polymer blends behave like classical fluids showing a
three-dimensional Ising-type of scaling behavior [9,10], that is,

Ið0Þ /
jTc � T j

T

� ��c

with c … 1:24 ð7:89Þ

as T approaches Tc . An experimental example is provided in Figure 7.11, showing criti-
cal scattering of the polymer blend of polystyrene and polybutadiene (dPB/PS) [11,12].
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Figure 7.11 Inverse forward scattering I�1ð0Þ
versus inverse temperature for a mixture of
dPB and PB of near critical composition. The
solid line represents the best fit using the

crossover function while the dotted lines shows
the asymptotic mean-field and 3d-Ising laws,
respectively. Adapted from Ref. [12].
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Experimentally determined susceptibility, Ið0Þ versus T , like that shown in Fig-
ure 7.11, can effectively be analyzed by applying a single function describing Ið0Þ
within the whole one-phase regime. Based on an e-expansion model, one may
develop a function that describes the experimental data very well [13], as seen in
Figure 7.11. The parameters of the crossover function are the Ginzburg number, the
critical temperature, and the critical exponents.

The experimental example shown in Figure 7.11 indicates clearly that the valid-
ity of the mean-field Flory–Huggins model for binary polymer blends is somewhat
limited. The relevant temperature regime of most miscible polymer blends are in
fact in the crossover range rather than in the mean-field, as originally anticipated.
Experiments have shown that the deviation from mean-field characteristics, as
expressed by the Ginzburg number, is markedly dependent on the degree of
polymerization. The temperature range of non-meanfield characteristics scale as

jTmf � Tcj / N�a; ð7:90Þ

with the exponent a of the order of 1 to 2 [14], but approaching a low-N value that
is up to two orders of magnitude larger than that of classical liquids. The latter is
the reason that most polymers in reality obey non-meanfield characteristics. Only
for polymer blends with N-values larger than approximately 1000 can one find
mean-field characteristics even very close to the critical point.

7.5
Block Copolymers

Polymers are, by definition, molecules composed by a large number of small
chemical units, the monomers. Above, we have discussed A- and B-homopolymers,
assuming that all A-polymers are composed of the same single A-monomer, and
B-polymers by another specific B-monomer. Such chemical equality is often the
situation in synthetic polymers, as for example polyethylene purely composed of
–CH2– ethylene monomers. Many natural polymers, on the other hand, are com-
posed of several different monomers; example of these include proteins, which
are polymeric chains composed of different amino acids; such polymers are
termed copolymers.

One important class of synthetic copolymers is composed of two different
monomers which, in the general discussion, will be abbreviated A and B. The A
and B segments may be positioned randomly within the chain, or in “blocks” of
respectively A and B. Diblock copolymers composed of two linear polymer blocks
linked covalently together are the most simple of this class. Diblock copolymers
are closely related to blends of homopolymers; both systems are composed of two
linear polymer chains, but the covalent bond between the A- and the B-blocks has
of course significant implications on the physical properties.

Polymers of different chemistry are generally not miscible, as discussed above.
The A- and B-molecules of an AB-diblock copolymer melt will therefore tend to
cluster into domains rich in respectively A and B units. In opposition to polymer
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blends, the bond between the A and B blocks prevents macroscopic phase separa-
tion. The clustering of block copolymers is therefore restricted to the nanometer
length scale of the polymer blocks: they form a micro phase-separated state.

In diblock copolymer melts, the free energy of a micro-phase-separated state can
be shown to favor ordered domain structures where the mutual organization of A-
and B-domains form regular lattices. The equilibrium structure depends on the
relative size of the respective polymer blocks, the overall polymer size and the
temperature (or rather the product xN of the Flory–Huggins interaction parame-
ter and the degree of polymerization).

The phenomenological theory of block copolymers is quite analogous to that of
polymer blends, discussed above. The thermodynamic properties are also here
determined as an interplay between configurational entropy and enthalpic contri-
butions according to the Flory–Huggins model of the Gibbs free energy (see Sec-
tion 7.3; see also Ref. [15]). It should be emphasized however that,
thermodynamically, block copolymer melts are single-component system, inde-
pendent of any local structural features.

Let us consider an AB-diblock copolymer with volume fraction f of A-segments
and (1 � f ) of B-segments. With the total diblock degree of polymerization (or
rather number of Kuhn segments) N, each chain will have

NA … f N A-segments
NB … ð1 � f ÞN B-segments

ð7:91Þ

As in the development of the RPA equations for polymer blends, we will
assume a uniform mixing of the A- and B-blocks, and consider the response on
the spatial distribution function of A- and B-segments as a response when external
fields uAðRÞ and uBðRÞ are applied to the system.

In the blend of homopolymers A and B, the random positioning implied that
the correlation functions cAB … cBA … 0. In block copolymers, two A and B blocks
are covalently bound, and the cAB-correlation term in Eq. (7.64) will accordingly
not vanish. Following the arguments relating to Eqs (7.67) and (7.68) we will,
when including the AB-cross terms, obtain

dyA ðqÞ … �
1

kBT
I�

AAðqÞueff
A þ I�

ABðqÞueff
B

	 �

dyBðqÞ … �
1

kBT
I�

ABðqÞueff
A þ I�

BBðqÞueff
B

	 � ð7:92Þ

where we have defined

ueff
A … uA � z‰eAAdyAðqÞ þ eABdyBðqÞ� þ V

ueff
B … uB � z‰eABdyAðqÞ þ eBBdyBðqÞ� þ V

ð7:93Þ

Combining this with the dyA þ dyB … 0 restriction, we can in analogy with deri-
vation for blends in Section 7.4.2, solve the equations for diblock copolymers and
get the result:

dyAðqÞ …
1

kBT
I�

AAðqÞ þ I�
BBðqÞ þ 2I�

ABðqÞ
I�

AAðqÞI�
BBðqÞ � ðI�

ABðqÞÞ2 � 2x

" #�1

ðuA � uBÞ ð7:94Þ
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which, in analogy with Eq. (7.77), may be rewritten into the form

dyAðqÞ …
1

kBT
N

FdiblockðqÞ � 2xN
ðuA � uBÞ ð7:95Þ

with

FdiblockðqÞ …
1
N

I�
AAðqÞ þ I�

BBðqÞ þ 2I�
ABðqÞ

I�
AAðqÞI�

BBðqÞ � ðI�
ABðqÞÞ2 ð7:96Þ

which is similar to the corresponding F-function for polymer blends (Eq. (7.78)),
except for the AB-cross-terms. We will assume that the diblock copolymer in the
homogeneous state obeys Gaussian statistics similar to the linear homopolymers
discussed above (Eq. (7.22)). The partial structure factor I�

AA of the individual block
copolymer can then be expressed as

I�
AAðqÞ …

1
N

Z NA

0

Z NA

0
exp �

b2

6
jn � mj

� �
dn dm … Nhðf ; N; qÞ ð7:97Þ

where hðf ; N; qÞ is a generalized Debye-function given by

hðf ; N; qÞ …
2
x2

f x þ e�f x � 1
	 �

with x … q2R2
g ð7:98Þ

A corresponding calculation gives the partial structure factor IBB

I�
BBðqÞ … Nhð1 � f ; N; qÞ ð7:99Þ

The partial structure factor IAB for the diblock copolymer is correspondingly

I�
ABðqÞ …

1
N

Z NA

0

Z N

NA

exp �
b2

6
jn � mj

� �
dn dm

giving

I�
ABðqÞ …

N
2

hð1; N; qÞ � hðf ; N; qÞ � hð1 � f ; N; qÞ‰ � ð7:100Þ

Substituting these results into Eq. (7.94) gives the RPA-structure factor for a
diblock copolymer melt

IðqÞ …
N

Fdiblockðf ; N; qÞ � 2xN
ð7:101Þ

which has the same form as that of the blend given in Eq. (7.77), but with another
F-function:

Fdiblockðf ; N; qÞ …
hð1; N; qÞ

hðf ; N; qÞhð1 � f ; N; qÞ �
1
4

hð1; N; qÞ � hðf ; N; qÞ � hð1 � f ; N; qÞ‰ �

ð7:102Þ

The structure factor Eq. (7.101) with F given by Eq. (7.102) was originally
derived by Leibler [15]. The structure factor approaches zero for both q ! 0 and
q ! 1, and has a distinct maximum at a q	-value reflecting the overall size of the
copolymer, and which can be calculated from the derivative: dIðqÞ=dq … 0. For
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symmetric block copolymers, f … 0:5, this gives

q	 � 1:945=Rg ð7:103Þ

The scattering function at q … q	, Iðq	Þ, markedly depends on the interaction
parameter x, and diverges according to Eq. (7.101) at the critical value xc:

xc �
Fðf ; N; q�Þ

2N
; ð7:104Þ

which with x � 1=T corresponds to a critical temperature T c. Beyond Tc the
block-copolymer system is unstable and will phase-separate on the length scale of
the polymer coils: so-called micro-phase separation. The critical temperature
T ccorresponds to the spinodal point for polymer blends.

Figure 7.12 shows examples of experimental IðqÞ as measured at different tem-
perature and fits using the analytical Leibler function. The experimental data are
indeed fitted very well by the structure factor of the RPA theory. The solid curves
shown in the figure represents best fits convoluted by the experimental resolution
function. In the insert is shown the effect of instrumental smearing. In typical
data analysis, both the polymer radius of gyration Rg and the Flory–Huggins inter-
action parameter x are used as adjustable parameters.

Plotting the inverse of the peak-value, I�1ðq	Þ, as a function of reciprocal tem-
perature, T�1 (or interaction parameter x) one should, according to the mean-field
treatment, obtain a straight line in analogy with the I�1ð0Þ-susceptibility of blends,
Eq. (7.87), which approaches zero at the critical point, here the spinodal tempera-
ture. For symmetric block copolymers, f … 0:5, Eqs (7.101) and (7.102) lead to the
critical value, xcN:

xcN … 10:495; ð7:105Þ

Figure 7.12 Example of experimental scatter-
ing function of a diblock copolymer, and fits
using the meanfield RPA theory (solid line).
The fits represent the model function including

instrumental smearing. The effect of smearing
is shown in the insert, giving the resulting Lei-
bler function at 160 �C, with and without
smearing.
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