Videnssyntese og factsheets om: Genanvendelse af spildevandsslam og anden afaldsbiomasse til jordbrugsformål
Hvidbogsprojekt udført for Brancheforeningen for Genanvendelse af Organiske Restprodukter til Jordbrugsformål
Ingvertsen, Simon Toft; Magid, Jakob; Jensen, Lars Stoumann; Thaysen, Elke Marie

Publication date:
2010

Document version
Også kaldet Forlagets PDF

Citation for published version (APA):
Videnssyntese og factsheets om:
Genanvendelse af spildevandsslam
og anden affaldsbiomasse
til jordbrugsformål

Hvidbogsprojekt udført for
Brancheforeningen for Genanvendelse af Organiske Restprodukter til Jordbrugsformål

af

Simon Toft Ingvertsen, Jakob Magid, Eike Marie Thaysen og Lars Stoumann Jensen
Institut for Jordbrug og Økologi

2. udgave

København, april 2010
Genanvendelse af affaldsbiomasse til jordbrugsformål (2. udgave, 2010)
Indhold

1 Indledning ... 5
 1.1 Baggrund ... 5
 1.2 Hvibogens opbygning og indhold .. 5
 1.3 Hvad er nyt i 2. udgave af hvidbogen? ... 6

2 Kritiske spørgsmål og svar .. 7
 2.1 Sundhed for mennesker og dyr ... 7
 2.1.1 Er der risiko for human- og økotoksikologiske effekter fra miljø-fremmede, organiske stoffer (PAH, DEHP, LAS og NPE) i affaldsbio masse på kort og langt sigt? .. 7
 2.1.2 Er der en risiko for øgning af tilfældet af organisk affald under forbehandling (f.eks. kompostering) eller efter udbringning? .. 12
 2.1.3 Er der en øget risiko for overførsel af smitstoffer (patogener, parasitter etc.) ... 14
 2.2 Vandmiljø, grundvand og andre vandressourcer .. 16
 2.2.1 Påvirkes udvaskningen af N til grundvand og vandmiljø på kort og langt sigt? ... 16
 2.2.2 Påvirkes udvaskningen af P til vandløb og søer på såvel kort som på langt sigt? ... 18
 2.2.3 Det danske P-index – kan vi udpege jordbrugsarealer med risiko for P tab? ... 20
 2.2.4 Potentiel risiko ved tilførsel af spildevandsslam på OSD-områder ... 21
 2.3 Næringsstofudnyttelse og jordens frugtbarhed ... 23
 2.3.1 Hvor god en afgrødeudnyttelse af affaldets næringsstoffer (N,P,K m.fl.) kan opnås? .. 23
 2.3.2 Påvirkes udvaskningen af P til vandløb og søer på såvel kort som på langt sigt? ... 20
 2.3.3 Det danske P-index – kan vi udpege jordbrugsarealer med risiko for P tab? ... 20
 2.3.4 Potentiel risiko ved tilførsel af spildevandsslam på OSD-områder ... 21
 2.4 Drivhusgas emissioner, jordens kulstoflagring og forsuring .. 25
 2.4.1 Hvor stor en andel af affaldets N tabes i form af ammoniak (NH₃) under forbehandling eller efter udbringning ... 25
 2.4.2 Hvordan påvirker udbringning af spildevandsslam drivhusgas emissioner og jordens kulstoflagring? 27

3 Hvad ved vi – baggrundsviden og litteratur .. 29
 3.1 Sundhed for mennesker og dyr ... 29
 3.1.1 Er der risiko for human- og økotoksikologiske effekter fra miljø-fremmede, organiske stoffer (PAH, DEHP, LAS og NPE) i affaldsbio masse på kort og langt sigt? .. 29
 3.1.2 Er der en risiko for øgning af tilfældet af organisk affald under forbehandling (f.eks. kompostering) eller efter udbringning? .. 12
 3.1.3 Er der en øget risiko for overførsel af smitstoffer (patogener, parasitter etc.) ... 14
 3.2 Vandmiljø, grundvand og andre vandressourcer .. 59
 3.2.1 Påvirkes udvaskningen af N til grundvand og vandmiljø på kort og langt sigt? ... 59
 3.2.2 Påvirkes udvaskningen af P til vandløb og søer på såvel kort som på langt sigt? ... 63
 3.2.3 Det nye danske P-index - kan vi udpege jordbrugsarealer med risiko for P tab? ... 69
 3.2.4 Potentiel risiko ved tilførsel af spildevandsslam på OSD-områder ... 76
 3.3 Næringsstofudnyttelse og jordens frugtbarhed ... 85
 3.3.1 Hvor god en afgrødeudnyttelse af affaldets næringsstoffer (N,P,K m.fl.) kan opnås? .. 85
 3.3.2 Påvirkes udvaskningen af P til vandløb og søer på såvel kort som på langt sigt? ... 63
 3.3.3 Det danske P-index – kan vi udpege jordbrugsarealer med risiko for P tab? ... 69
 3.3.4 Potentiel risiko ved tilførsel af spildevandsslam på OSD-områder ... 76
 3.4 Drivhusgas emissioner, jordens kulstoflagring og forsuring .. 91
 3.4.1 Hvor stor en andel af affaldets N tabes i form af ammoniak (NH₃) under forbehandling eller efter udbringning ... 91
 3.4.2 Hvordan påvirker udbringning af spildevandsslam drivhusgas emissioner og jordens kulstoflagring? 94
 3.4.3 Hvordan påvirker udbringning af spildevandsslam drivhusgas emissioner og jordens kulstoflagring? 97
 3.4.4 Hvordan påvirker udbringning af spildevandsslam drivhusgas emissioner og jordens kulstoflagring? 99
 3.4.5 Samlet energi og drivhusgas-emission ved forbrænding versus jordbrugsanvendelse ... 100

Genanvendelse af affaldsbio masse til jordbrugsformål (2. udgave, 2010)
Genanvendelse af affaldsbiomasse til jordbrugsformål (2. udgave, 2010)
1 Indledning

1.1 Baggrund

1.2 Hvidbogens opbygning og indhold

Hvidbogen er opdelt i de 4 hovedområder som genanvendelse af affaldsbiomasse til jordbrugsformål kan tænkes at påvirke:

1. Sundhed for mennesker og dyr
2. Vandmiljø, grundvand og andre vandressourcer
3. Næringsstofudnyttelse og jordens frugtbarehed
4. Drivhusgasemissioner, jordens kulstoflagring og forurening

Der er naturligvis også en række drifts- og samfundsøkonomiske effekter af genanvendelse af affaldsbiomasse, men disse er ikke omfattet af indeværende rapport. Det er endvidere aftalt med BGORJ’s bestyrelse at hovedfokus skulle prioriteres på Sundhed og Vand, mens Jordens frugtbarehed og Drivhusgasemissioner ikke blev prioriteret uddybet indenfor den aftalte ramme af indeværende projekt.

Indenfor hvert af hovedområderne er der udarbejdet flere factsheets. Indholdet i hvert fact-sheet er struktureret ud fra en liste af Ofte-Stillede-Spørgsmål, OSS (Frequently-Asked-Questions, FAQ). Da målgruppen først og fremmest er beslutningstagere og andre ikke-eksperter, er syntesen søgt formidlet i et alment forståeligt sprog og kortfattet (1-4 sider/facsheet) i kapitel 2.

Desuden er der for hvert fact-sheet et baggrundssafsnit, kapitel 3, som går mere i dybden og diskuterer den videnskabelige viden og nyeste litteratur på området; målgruppen for denne del er i højere grad fagpersoner med en vis indsigt i området. Desuden er det vurderet hvor godt det videnskabelige grundlag er for den eksisterende viden der er opsummeret i factsheetet.

Hvidbogen er først og fremmest problem- og ikke produkt-orienteret, men besvarelsen vil for en række af problemstillingerne afhænge af, hvilket affaldsprodukt der er tale om. De enkelte factsheets i
indeværende udgave er udarbejdet med primær fokus på spildevandsslam, og kun i meget begrænset omfang er andre affaldsprodukter inddraget.

Opgaven med 1. udgave er udført af stud. scient. (nu ph.d. stud.) i miljøkemi Simon Toft Ingvertsen, lektor Jakob Magid og lektor Lars Stoumann Jensen, alle Institut for Jordbrugsvidenskab, KVL. Opdatering og revision i denne 2. udgave er gennemført af stud. scient. i miljøkemi Eike Marie Thaysen, i tæt samarbejde med de tre forfattere til 1. udgaven.

1.3 Hvad er nyt i 2. udgave af hvidbogen?

I forhold til 1. udgave af hvidbogen fra december 2006 indeholder 2. udgave af hvidbogen både helt nye afsnit, samt væsentlige revisioner og opdateringer af indhold fra 1. udgave. Herudover er der foretaget en række mindre redaktionelle revisioner. På følgende områder og emner er der væsentlige ændringer i kapitel 3 om baggrundsviden og der er naturligvis tilsvarende ændringer i kapitel 2, kritiske spørgsmål og svar:

<table>
<thead>
<tr>
<th>Afsnit</th>
<th>Område / emne</th>
<th>Nyt indhold / ændring eller opdatering</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Sundhed / tox.</td>
<td>Opdateret ift. nye undersøgelser på kendte stoffer, på nye potentielle problemstoffer, samt på indholdet i slam ift. gylle</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Organiske miljøfremmede stoffer</td>
<td>Opdateret ift. nye undersøgelser og risikovurderinger.</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Tungmetaller</td>
<td>Opdateret ift. nye undersøgelser og risikovurderinger, især ift. triclosan.</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Medicinrester</td>
<td>Opdateret ift. nye undersøgelser og risikovurderinger, især ift. triclosan.</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Smitstoffer</td>
<td>Kun mindre opdateringer, relativ lidt ny viden på området.</td>
</tr>
<tr>
<td>3.2</td>
<td>Vandmiljø</td>
<td>Ingen opdatering, ingen ny viden på området.</td>
</tr>
<tr>
<td>3.2.1</td>
<td>N-udvaskning</td>
<td>Opdateret ift. ny viden om effekter ved langvarig tilførsel af slam.</td>
</tr>
<tr>
<td>3.2.2</td>
<td>P udvaskning</td>
<td>Det nye danske P-index for jorde med risiko for P tab er beskrevet. Hvad betyder det ift. slambekendtgørelsens doseringsregler og udpegning af jordbrugsarealer med risiko for P tab.</td>
</tr>
<tr>
<td>3.2.3</td>
<td>P-index (Nyt)</td>
<td>Ny sammenfattende vurdering af risiko ved tilførsel af slam i OSD-områder.</td>
</tr>
<tr>
<td>3.3</td>
<td>Gødningsværdi</td>
<td>Kun mindre opdateringer, relativ lidt ny viden på området.</td>
</tr>
<tr>
<td>3.4</td>
<td>Drivhusgas mm.</td>
<td>Opdateret ift. nye opgørelser af ammoniak (NH₃) fordampning</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Ammoniak</td>
<td>En vurdering af emissioner af lattergas (N₂O) ifm. forskellige håndteringer af spildevandsslam og andre organiske affaldsfraktioner, ift. anvendelse af handelsgodning</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Lattergas (Nyt)</td>
<td>Samme for emissionen af methan (CH₄)</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Methan (Nyt)</td>
<td>Samme for stabilisering af affaldets C indhold i jorden på kort/langt sigt (CO₂ lagring).</td>
</tr>
<tr>
<td>3.4.4</td>
<td>C-lagring (Nyt)</td>
<td>Kun mindre opdateringer, relativ lidt ny viden på området.</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Energi & GHG (Nyt)</td>
<td>Kun mindre opdateringer, relativ lidt ny viden på området.</td>
</tr>
</tbody>
</table>
2 Kritiske spørgsmål og svar

2.1 Sundhed for mennesker og dyr

2.1.1 Er der risiko for human- og økotoksikologiske effekter fra miljø-fremmede, organiske stoffer (PAH, DEHP, LAS og NPE) i affaldsbiomasse på kort og langt sigt?

Hvorfor er dette problem relevant?

De fire stofgruppens udbredelse i miljøet reguleres gennem grænseværdier i slambekendtgørelsen, fordi de besidder fysiske og kemiske egenskaber, der kan være til skade for både mennesker og dyr. For mennesker er det mest de kræftfremkaldende og hormonforstyrrende egenskaber, som har været i fokus. For organismer i både jord- og vandmiljøet vides det, at forhøjede koncentrationer kan have lignende negative effekter.

Kritiske spørgsmål og svar

1. Er der i miljøet nogen økotoksikologiske virkninger fra hhv PAH, DEHP, LAS og NPE? - hvis ja, ved hvilke koncentrationsniveauer og påvirkningstider, og hvad består virkningerne i?

- Forhøjede koncentrationer i jorden kan i vareste fald dræbe organismer, men ofte er det effekter som nedsat formeringsevne der observeres.
- De koncentrationer i jorden, som kan forårsage negative effekter er langt højere end slambekendtgørelsens grænseværdier tillader. Alt tyder således på at de gældende danske grænseværdier, som generelt er lavere end EU's grænseværdier, er tilstrækkelige til at beskytte jordmiljøet.
- Det bør imidlertid sikres at stofferne ikke akkumulerer i jorden. Ved længere opholdstid i jorden begrænseres den biologiske tilgængelighed af stofferne, hvilket resulterer i lavere giftighed.

2. Er der nogen humantoksikologiske virkninger fra hhv PAH, DEHP, LAS og NPE og hvis ja, ved hvilke koncentrationsniveauer og påvirkningstider, og hvad består virkningerne i?

- Stofferne er under stærk mistanke for at være kræftfremkaldende eller hormonforstyrrende.
- Der er på baggrund af toksicitetsundersøgelser fastsat effektværdier (fx EC$_{50}$) for mus og rotter for nogle af stofferne. Sådanne værdier kan dog ikke overføres direkte til mennesker.

3. Hvor hurtigt og hvor effektivt nedbrydes affaldets/spildevandets indhold af hhv PAH, DEHP, LAS og NPE i behandlings- eller rensningsprocessen, og kan det nedbringes yderligere med en efterbehandling af spildevandsslammet?
Den afgørende faktor for nedbrydningen af stofferne er tilgængeligheden af ilt. Derfor er belufning en effektiv metode til at fjerne de miljøfremmede stoffer fra den vandige fase i slammet. Den resterende del vil være bundet til slammets organiske materiale.

Aerob efterbehandling ved kompostering i op mod 5 måneder har vist sig at bringe koncentrationerne godt under de fastsatte afskæringsværdier.

4. **Er der udsigt til at nedbrydningspotentialet i slambehandlingen kan forbedres i fremtiden?**
 - Forbedrede rensningsmetoder, politiske tiltag samt øget forbrugerbevidsthed forventes at bidrage væsentligt til at nedbringe mængden af farlige stoffer yderligere i fremtidens spildevandsslam.
 - Nyere undersøgelser bekræfter dette og viser i de senere år et fald i de miljøfremmede stoffer i såvel indløbet til danske renseanlæg og samme tendens i det producerede slam.

5. **Hvor hurtigt nedbrydes affaldsproduktets (spildevandsslam, kompost) indhold af henholdsvis PAH, DEHP, LAS og NPE efter udbringning på jord?**
 - Mikroorganismer tilført med slammet fortsætter nedbrydningen af de miljøfremmede stoffer efter udbringning. Nedbrydningen er afhængig af faktorer som iltforhold og stoffernes biologiske tilgængelighed.
 - Slammet fordeles ved nedpløjning i jorden typisk i klumper, hvor tilgængeligheden af ilt ofte er ringe, og nedbrydningen derfor nedsat.
 - Afhængig af de nævnte faktorer for nedbrydning gælder dog for LAS og NP at halveringstiden i jorden kun er et spørgsmål om uger, hvorimod PAH og DEHP kan have betydeligt længere opholdstider i jorden.

6. **Er der faktorer som optimerer nedbrydningsforholdene i jorden? I så fald, hvilke?**
 - Den vigtigste faktor er tilførslen af ilt, hvorfor den klumpvise fordeling nedsætter nedbrydningen af stofferne. Mindre slamklumper vil forøge tilførslen af ilt.
 - Plantevækst og anden aktivitet i jorden kan også fremme tilførslen af ilt.

7. **Hvor højt er indholdet af de miljøfremmede stoffer i spildevandsslam i forhold til gylle?**
 - Nyere undersøgelser for såvel kvæggylle som svinegylle har påvist LAS og PAH i stort set alle prøver, mens NP og DEHP kun findes i et mindre del. Middelkoncentrationen af stofferne i de prøver, hvor stoffet blev fundet, var imidlertid mindst en faktor 10 mindre end koncentrationsniveauerne der typisk observeres i slam, og derfor under grænseværdierne.

7. **Optages stofferne af planter og kan de gennem fødekæden overstøres til dyr og mennesker?**
• Der er ikke forskning, som tyder på at der er risiko for planteoptag, hvis de gældende regler overholdes.

8. Er der andre organiske mikroforureninger vi endnu ikke har hørt om og som kunne tænkes at blive problematiske?

• Tyskland og Sverige har haft en del fokus på forekomsten af bromerede flammehæmmere i landbrugsjord. Konklusionen på diverse undersøgelser og risikovurderinger er, at stofferne med det nuværende indhold i slammef ikke udgør nogen miljømæssig trussel. Man bør dog fortsat være opmærksom på koncentrationerne af disse stoffer i slammef fra renseanlæggene.

• Den hastige udvikling indenfor nanoteknologi kan betyde, at der i fremtiden kan komme fokus på nanopartikler i spildevandsslammef. Emnet er fortsat meget dårligt belyst i litteraturen, men stoffernes egenskaber opfordrer til bevågenhed på området.

• I Danmark har en nyere undersøgelse fundet en række stoffer i spildevand og –slammef som i forhøjede koncentrationer kan forårsage negative effekter i vandmiljøet. Det drejer sig om phenoler og chlorphenoler, oplosningsmidler (aromatiske kulbrinter), alifatiske aminer og fosfor-triestere. Fælles for disse er at de økotoksikologiske effekter i jordmiljøet er dårligt belyst, så det er vanskeligt at bestemme en egentlig afskæringsværdi for indholdet i spildevandsslammef. Det vurderes dog umiddelbart at de fire miljøfremmede stoffer som allerede er omfattet af slambekendtgørelsen repræsenterer mange af de samme egenskaber som de ovennævnte, og det må forventes at de nævnte stoffer også nedbringes til et acceptabelt niveau hvis de gældende kvalitetskriterier for spildevandsslammef overholdes.
2.1.2 Er der en risiko for økotoksikologiske virkninger af tungmetaller i affaldet på såvel kort som langt sigt?

Hvorfor er dette problem relevant?
Forhøjede koncentrationer af tungmetaller i jorden kan nedsætte jordens dyrkningsegenskaber og være toksiske overfor jordens dyr og planter. Eftersom planter kan optage tungmetaller fra jorden er der risiko for at disse metaller kan ophobes i forskellige fødekæder, heriblandt den humane.

Kritiske spørgsmål

1. Er det forsvarligt blot at betragte det totale indhold af tungmetaller i en given slamtype?
 • Kun en brøkdel af den totale mængde tungmetaller, som tilføres jorden er tilgængelige for jordens organismer. Den resterende del bindes hårdt til jordens partikler afhængig af pH i jorden.
 • For landbrugsjord vil pH være i en størrelsesorden som sikrer høj grad af binding til jordpartiklerne.
 • Adskillige forskere peger på at den langsigtede akkumulering af tungmetaller i jorden bør være mere i fokus.

2. Er det totale indhold af tungmetaller et godt udgangspunkt for fastsættelsen af grænseværdier?
 • Den høje grad af binding til jord- og slampartiklerne gør at grænseværdierne umiddelbart sikrer jordens organismer mod forhøjede koncentrationer.
 • Grænseværdierne tager ikke højde for akkumulering i jorden, som på langt sigt kan blive et problem – også for jordens organismer.

3. Hvordan kan det sikres at en akkumulering ikke finder sted i jorde der tilføres slam?
 • Der må i princippet fjernes samme mængde tungmetal som der tilføres med slammel, hvilket kan ske gennem planteoptag, udvaskning og erosion.
 • Fjernelsen er i mange tilfælde minimal, hvorfor tilførslen af tungmetaller må mindskes mest muligt.
 • Mere viden om den enkelte lokalitet kan bidrage til vurderingen af tilførslen af tungmetaller. Denne viden kunne inddrage faktorer som jordtype, pH samt den nuværende og fremtidige afgrøders potentiale for optag.

4. Er det overhovedet nødvendigt at stile efter ’nul-akkumulering’?
 • Det er et omdiskuteret spørgsmål. Beregninger baseret på gennemsnitsindholdet af tungmetaller i dansk spildevands slime tyder dog på, at der er tilførsler af tungmetaller til jorden som vil gå flere hundrede år før end jordens grænseværdier (ifølge slambekendtgørelsen) overskrides.
 • Danmarks Miljøundersøgelser vurderer at de gældende grænseværdier sikrer jorden mod akkumulering af tungmetaller.
Sammenfattende for en række nye undersøgelser kan det konkluderes, at langvarig, moderat tilførsel af spildevandsslam giver positive effekter på jordens biologiske aktivitet og frugtbarhed, på trods af en moderat akkumulering af tungmetaller.

5. Hvor sikre er grænseværdierne mht. optag af tungmetaller i planterne?

- For planteoptag udgør cadmium det største problem. Grænseværdierne for cadmium er imidlertid lavere for slam (100 mg/kg P) end for handelsgodning (110 mg/kg P).
- Hvis man beregner hvor lang tid det vil tage for at nå grænseværdien mht indhold af de forskellige tungmetaller i jord, hvis der hvert år udbringes den maksimalt tilladelige mængde slam (30 kg P/ha/år) vil det tage over 370 år før grønseværdiern for zink nås, 800 år for bly og 1800 år for cadmium.
- Ifølge Danmarks Miljøundersøgelser vurderes det, at de koncentrationer, som findes på markerne i dag ikke udgør nogen risiko for jordbunden og planterne. De gældende grænseværdier menes at opretholde disse forhold, men en fortsat stram politik med hensyn til cadmium er nødvendig.

6. Hvor stor mængde tungmetal tilføres jorden som følge af slamudbringning ift. husdyrgødning og mineralsk handelsgødning?

- Sammenligning mellem det gennemsnitlige indhold af de vigtigste tungmetaller i husdyrgødning, handelsgødning og spildevandsslam:

<table>
<thead>
<tr>
<th>Gødning</th>
<th>Cadmium [mg/kg tørstof]</th>
<th>Kobber [mg/kg tørstof]</th>
<th>Zink [mg/kg tørstof]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slagtesvin¹</td>
<td>0,4</td>
<td>263</td>
<td>1016</td>
</tr>
<tr>
<td>Malkekvæg¹</td>
<td>0,4</td>
<td>64,2</td>
<td>232</td>
</tr>
<tr>
<td>Handelsgødning¹</td>
<td>0,9</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Spildevandsslam²</td>
<td>1,4</td>
<td>236</td>
<td>710</td>
</tr>
<tr>
<td>Grænseværdi (slambekendtg.)</td>
<td>0,8</td>
<td>1000</td>
<td>4000</td>
</tr>
</tbody>
</table>

¹ Schou et al. (2006)
² Miljøstyrelsen (2004)

- Sammenligning mellem den gennemsnitlige tilførsel af de vigtigste tungmetaller fra husdyrgødning, P-holdig handelsgødning og spildevandsslam til jorden baseret på typiske årlige tilførselsrater og indhold af tungmetal som i ovenstående tabel:

<table>
<thead>
<tr>
<th>Gødning</th>
<th>Årlig tilførsel [kg TS/ha]</th>
<th>Cadmium tilført [mg/ha]</th>
<th>Kobber tilført [g/ha]</th>
<th>Zink tilført [g/ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slagtesvin</td>
<td>1200</td>
<td>480</td>
<td>316</td>
<td>1219</td>
</tr>
<tr>
<td>Malkekvæg</td>
<td>2000</td>
<td>800</td>
<td>128</td>
<td>464</td>
</tr>
<tr>
<td>Handelsgødning</td>
<td>500</td>
<td>450</td>
<td>1</td>
<td>2,5</td>
</tr>
<tr>
<td>Spildevandsslam³</td>
<td>1000</td>
<td>1400</td>
<td>236</td>
<td>710</td>
</tr>
</tbody>
</table>

³ Basert på en tilførsel af max. 30 kg P/ha i et år.
2.1.3 Er der en øget risiko for overførsel af medicinrester (antibiotika, smertestillende stoffer, p-piller, osv.)

Hvorfor er dette problem relevant?

Lægemiddelstoffer, både menneskelige og veterinære, er som regel designet til at have en specifik biologisk virkning, som i de fleste tilfælde er ønsket i miljøet. Forbrug af stofferne er stigende og de veterinært anvendte stoffer vil oftest ende i gylle, mens dehumant anvendte ender i renseanlæggene. Fra renseanlæggene kan lægemidlerne i form af slam videreføres til miljøet, hvor de i givet fald kan påføre direkte skade på organismer, eller i andre tilfælde kan bidrage til udviklingen af resitente bakterier.

Kritiske spørgsmål og svar

1. Hvilke stoffer er der tale om, og hvor kommer de fra?

• De største problemer opstår i forbindelse med lægemidler, der forbruges i store mængder eller har lav nødvendig dosis for human effekt (høj potens).

• Humane medicinstoffers vej til miljøet går fortrinsvis gennem den menneskelige organisation og derefter via toiletbesøg og lignende videre til vores renseanlæg.

• Bakteriehæmmende stoffer, heriblandt især triclosan, har været genstand for et stigende antal undersøgelser med udbringning af spildevandsslamm, da flere af dem er langsomt nedbrydelige i jord, men man har ikke kunnet konstatere nævneværdige negative effekter på jordorganismer i en række længerevarende forsøg. Det er imidlertid nødvendigt i de kommende år at fastsætte passende grænseværdier for disse stoffer.

2. Er der nogen økoktsikologiske effekter i jorden eller i vandmiljøet?

• Økokotsikologiske effekter fra de fleste lægemiddelstoffer på det danske marked er generelt dårligt belyst i litteraturen, men det vides at mange af medicinstofferne har meget specifikke biologiske virkninger og besidder egenskaber til at akkumulere i organismer ved kontinuerlig eksponering.

• Effekterne fra østrogener afspjæles i hormonforstyrrelser, mens antibiotika kan skade jordens mikroorganismer eller fremme udviklingen af resistente bakterier.

• Effekter i vandmiljøet som følge af slamudbringning vil afhænge af stoffernes potentielle for at udvaskes fra jorden, hvilket ligeledes er relativt dårligt belyst i litteraturen.
En nylig dansk undersøgelse viser at østrogenaktiviteten i dræn fra slam- og gylletilførte marker er minimal. Visse antibiotikamidler kan dog være ganske mobile i jord.

3. Kan stofferne optages af planter og via fødekæden overføres til mennesker og dyr?
 Den foreliggende viden på dette område er meget begrænset. Mange lægemidler forventes imidlertid at udvide lignende egenskaber som de velundersøgte miljøfremmede organiske forbindelser (henvisning til FAQ for organiske mikroforureninger). For disse stoffer tyder ingen forskning på, at der foregår planteoptag i en grad, som kan være skadelig for mennesker og dyr, hvis blot de gældende grænseværdier overholdes.

4. Hvor hurtigt og hvor effektivt nedbrydes stofferne under slambehandlingsprocesserne?
 For de fleste lægemidler gælder at de enten er svært nedbrydelige eller at ingen præcise oplysninger foreligger. Paracetamol er dog let nedbrydeligt.
 Lægemidlerne er ikke omfattet af restriktioner gennem slambekendtgørelsen, men hvis stofferernes egenskaber ligner de mere velundersøgte miljøfremmede organiske forbindelers egenskaber, må størstedelen af lægemidlerne forventes at blive fjernet under renseprocesserne. Dette er dog ikke dokumenteret.

5. Er der udsigt til at nedbrydningspotentialet i slambehandlingen kan forbedres i fremtiden?
 Et øget potentiale for nedbrydning af de problemstoffer, som er omfattet af slambekendtgørelsen må også forventes at have en positiv effekt på nedbrydningen af lægemidler under slambehandlingen.
 Nyere undersøgelser viser at beluftning af slammet, som det f.eks. sker ved kompostering, resulterer i en betydelig reduktion både for en række lægemidler og bakteriehæmmende stoffer (f.eks. antibiotika, triclosan og antiinflammatoriske stoffer).

6. Hvor hurtigt og hvor effektivt nedbrydes stofferne i jorden efter udbringning?
 De fleste lægemidlers nedbrydelighed er størst, hvis der er ilt til stede. Nedbrydningen i jorden må derfor forventes at være ringe til at begynde med, da slammet i marken er fordelt i klumper hvor ilttilførslen er meget begrænset, men senere må der forventes en væsentlig nedbrydning
 Et emne, som er dårligt belyst i litteraturen. Én undersøgelse tyder dog på at visse lægemidler har potentiale for at ophobes i de øvre jordlag.

7. Tilføres jorden flere lægemidler med slam i forhold til gylle?
 Beregninger tyder på at slam tilfører mindre mængder østrogen til landbrugsjord end både kvæggylle og svinegylle.
 Indholdet af antibiotika er også højere i gylle end for spildevandsslam.
2.1.4 **Er der en øget risiko for overførsel af smitstoffer (patogener, parasitter etc.)**

Hvorfor er dette problem relevant?

Smitstoffer (eller patogener) i spildevandsslam kan i selv små doser forårsage sygdom på både mennesker og dyr. Stofferne kan overføres via optag gennem afgrøder eller via forurening af drikkevandskilder som grundvand eller åer og søer. Slammet kan også indeholde planteskadegørere, som kan drebe eller skade vigtige afgrøder.

1. **Hvilke smitstoffer kan overføres med spildevandsslam?**

 - Ubehandlet spildevandsslam kan indeholde en lang række kendte smitstoffer som virus, bakterier, parasitter, svampe og andre mikroorganismer.
 - Spildevand fra husholdninger og industri kan indeholde planteskadegørere som svampe, bakterier, rundorme og frø fra ukrudtplanter, men der findes ingen lovmæssige krav i forhold til indhold af disse i spildevandsslam.

2. **Hvor effektivt fjernes smitstoffer under behandlingprocesserne i renseanlæggene?**

 - For at udbringelse af spildevandsslam må sket på forterbar afgrøder (til dyr eller mennesker), skal slammet have gennemgået en kontrolleret hygiejniserings og opfylde krav til indholdet af både *Salmonella* ssp., *E. Coli* og enterokokker, enten ved a) minimum 70 grader C i minimum 1 time, b) tilsætning af brændt kalk, pH på 12 i minimum 3 måneder eller c) termofil biogasreaktor (minimum 52 grader C) og separat hygiejniseringsstank.

3. **Hvor længe kan smitstofferne overleve i jorden?**

 - Afhænger af det faktiske indhold af smitstoffer i slammek fra start, samt jordtemperatur og – fugtighed. For *Salmonella*, *E. Coli*, *Campylobacter* og *Enterococcus* er der fundet overlevelsesstider fra få dage til 2-3 måneder. Lav temperatur og høj fugtighed resulterer i den længste overlevelse.

4. **Er der risiko for udvaskning til drikkevandskilder?**

 - Det er i visse studier vist at kunne forekomme via nedadgående vandtransport gennem porer og sprækker i jorden eller via transport over landjorden til åer og søer, især ved meget kraftigt regnfald. Vidensgrundlaget er imidlertid endnu forholdsvis spinkelt til at der med sikkerhed kan konkludere om risiko for udvaskning til drikkevand.
5. **Er risikoen for overførsel af smitstoffer større for spildevandsslam end for gylle?**
 - Der er forholdsvis få konkrete eksempler på overførsel af humane smitstoffer fra såvel gylle som spildevandsslam. For spildevandsslam er de hygiejniske krav imidlertid strammet kraftig i det seneste årti, mens der ikke er indført nogen væsentlige krav til husdyrgødningens indhold af persistente eller potente patogener.
 - I disse år giver det øgede fokus på fødevaresikkerhed (Salmonella handlingsplan etc.) sig også udsig i en øget forskning om overførsel af humane smitstoffer fra husdyrgødning, men indtil videre er der ingen klare resultater eller konklusioner om at denne risiko skulle være meget større end fra andre affaldsprodukter tilført landbrugsjorden. Forbuddet mod bredspredning af gylle har formodentlig også bidraget til at reducere risikoen for luftbåren smitte.

6. **Hvor sikre er de danske krav til smitstoffer i slam?**
 - Spildevandsslam må ikke udbringes uden en behandling (stabilisering, kompostering eller hygiejniserer) og ikke til forærbare afgrøder med mindre det er hygiejniseret (krav til indhold af både Salmonella, E. coli, og Enterokokker). De danske krav er skrappere end i mange andre lande.
2.2 Vandmiljø, grundvand og andre vandressourcer

2.2.1 Påvirkes udvaskningen af N til grundvand og vandmiljø på kort og langt sigt?

Hvorfor er dette problem relevant?

Nitrat er et meget mobilt næringsstof, som derfor har stort potentiale for at udvaskes til grundvandet eller søer og vandløb. For høje koncentrationer af nitrat i drikkevandet er sundhedsskadeligt, da det hæmmer optagelsen af ilt. Grænseværdien for nitrat i drikkevand er derfor fastsat til 50 mg/l (EU’s drikkevandsdirektiv: 98/83/EF). Nitrat kan også direkte fra landbrugsjorden eller via grundvandet sive ud i søer og vandløb, hvor det kan ændre næringsstoffbalancen i en sådan grad, at det kan forårsage algeopblomstringer og efterfølgende iltsvind.

Kritiske spørgsmål og svar

1. Hvor meget nitrat findes der i spildevandsslam?
 • Kvælstof (N) i spildevandsslam forekommer på flere forskellige former, såvel organisk bundet (80-90%) som ammonium (NH₄⁺) og nitrat (NO₃⁻).
 • Nitrat udgør en meget lille del (1-2%) af total N, typisk under 1 kg/ton.

2. Hvor meget af slammets kvælstof omdannes til nitrat og hvordan?
 • Spildevandsslam udbragt på landbrugsjord nedbrydes mikrobielt og der sker en mineralisering af det organiske N til først ammonium og derefter nitrat (nitrifikation)
 • Mineraliseringen og nitrifikationen afhænger af temperatur, fugtighed, ilt koncentration og C/N i slammet.
 • Fra anaerobt udrådnet slam kan der forventes en N mineralisering på omkring 30-40 % efter 3-4 måneder, mens aerobt udrådnet slam i nogle tilfælde giver en lidt højere mineralisering af N.

3. Når grænserne i slambekendtgørelsen for tilførselsrater af slam til landbrugsjord er baseret på P indhold, risikerer man så ikke et voldsomt kvælstof overskud og en stor nitratudvaskning?
 • Slambekendtgørelsen sikrer at der højst udringes 90 kg P/ha i 1 ud af 3 år eller 170 kg N/ha hvert år
 • Dette betyder at der med gennemsnitligt spildevandsslam højst udringes knap 3 ton tørstof/ha i 1 ud af 3 år, dvs. ca. 90 kg P/ha og 125 kg total-N/ha.
 • Kvælstofnormen for de afgrøder man vil tilføre slammet er 110-130 kg N/ha. Slamtilførslen giver derfor ikke kvælstof overskud eller en deraf afledt stor nitratudvaskning ift. handelsgødning.
4. Udledes der mere nitrat fra jorden ved anvendelse af spildevandsslam på landbrugsjord end ved for eksempel handels- eller husdyrgødning? Og er der forskel på den umiddelbare og den langsigte effekt?

- Hverken handels- eller husdyrgødning N udnyttes 100% af afgrøderne. Husdyrgødning N virker generelt ringere end handelsgodnings N, men gødningsreglerne foreskriver en virkningsgrad på 70-75% for gylle ift. handelsgødning.
- Spildevandsslam N skal kun udnyttes ca. 45% så godt som handelsgødning ifølge gødningsreglerne, men akkumuleret over en lang årrække er det ikke urealistisk at 60-70% af N i slammet kan udnyttes, dvs. samlet set på højde med husdyrgodninger.
- Når husdyrgødningens eller slam N ikke udnyttes så godt af afgrøderne, så vil N enten akkumuleres som organisk stof i jorden eller blive tabt til det omgivende miljø i form af nitratudvaskning eller som gasformigt kvælstof (NH₃, N₂O, N₂). I forhold til handelsgødning vil en del af N altså akkumuleres i jorden og hvor stor en del af det resterende N der tabes afhænger helt af hvilket dyrkningssystem det drejer sig om og vil være påvirket af de samme faktorer jordtype, klima, sædskifte etc. og kan variere mellem 7% og 87%, højst på de sandede jorde og lavest på de lerede.

5. Hvordan kontrolleres udledningen af nitrat i forbindelse med spildevandsslam bedst?

- Bedst udnyttoyelse af spildevandets N opnås på kort sigt ved at udbringe om foråret, til forårs såede afgrøder.
- Efterårsudbringning øger risiko for udvaskning på mere sandede jorder med høj vinternedbør.
- På sigt minimeres nitratudvaskning yderligere ved at anvende slammet i et sædskifte med anvendelse af efterafgrøder eller afgrøder med en lang vækstseson og god rodudvikling.
2.2.2 Påvirkes udvaskningen af P til vandløb og søer på såvel kort som på lang sigt?

Hvordan er dette et problem?

Kritiske spørgsmål

1. Er risiko for P tab efter slamtilførsel større end efter handelsgødning eller husdyrgødning?
 - Hvis slammet tilføres indenfor slambekendtgørelsens regler, og i mængder der svarer til afgrødernes behov, så er der ikke større risiko for P tab end ved tilsvarende tilførsler af handels- eller husdyrgødning. Enkelte undersøgelser tyder endda på at tabet kan være mindre, eftersom opløseligheden af P i slam ofte er lav.
 - Der er en betydelig rumlig variation, såvel indenfor som mellem marker og bedrifter, der gør det vanskeligt at forudsige tabsrisiko.

2. Er der nogen rensningsanlægstyper eller slam efterbehandlingsformer, der giver en særligt forøget risiko for P tab?
 - De fleste slamtyper vil have en mindre P opløselighed end husdyr- og handelsgødning, og dermed en mindre umiddelbar risiko for P tab.
 - Især slam med højt indhold af jern, aluminium (fra fældning) eller kalk (stabilisering), som nedsætter opløseligheden af P, har lav risiko for P tab.

3. Er det forsvarligt at tillade en fosfortilførsel på 30 kg P/ha/år, mere end flere afgrøder bortfører?
 - En gennemsnitlig afgrødebortførsel på 15-20 kg P/ha, giver et P overskud på 10-15 kg P/ha.
 - På arealer med tilførsel af husdyrgødning op til harmonikravet (1,4 eller 1,7 DE/ha) vil der også tilføres mere P end afgrøderne har behov for, og dette kan på længere sigt give øget tabsrisiko – det samme gælder sandsynligvis på længere sigt for slam, hvis det tilføres i mængder der giver et betydeligt P overskud.
 - I nogle miljøgodkendelser af udvidelse af husdyrproduktionen på jordbrugsbedrifter tillades dog kun et P overskud på 5 kg P/ha eller i særligt følsomme områder 0 kg P/ha.
 - Man kan derfor stille spørgsmålet ved om slambekendtgørelsen generelle regel kan komme i modstrid med kommunernes forvaltning i forhold til vandramme og habitatsdirektiverne.
4. Er det forsvarligt at der i følge slambekendtgørelsen må tilføres op til 90 kg P/ha i et år, selvom der i gennemsnit over 3 år kun må tilføres 30 kg P/ha/år?

- På kortere sigt giver selv store P overskud ikke forøget tabsrisiko, da stabiliseret spildevandsslam ikke øger jordens P mætningsgrad væsentligt.

- Langvarige (10-30 år) forsøg med meget store slamløft (2-8 gange de danske) viser dog at der på sigt kan opstå risiko for øget P udvaskning. Hvorvidt dette vil være tilfældet ved de lavere danske løft er ukendt, men den generelle risiko anses for begrænset.

- Forståelsen af de komplekse P transportmekanismer og dermed tabsrisikofaktorer er dog endnu noget mangelfuld. Denne forståelse er essentiel, hvis man skal kunne udpege de jordbrugsarealer, hvor løft potentielt kan øge tabsrisiko.
2.2.3 Det danske P-index – kan vi udpege jordbrugsarealer med risiko for P tab?

Hvorfør er dette relevant?

Begrænsning af fosfor tab fra landbrugsarealer til vandmiljøet er af afgørende betydning for vandkvaliteten i vore vandløb og søer, og da Danmark er forpligtet til at leve op til EU’s vandrammedirektiv er det vigtigt at have nogle værktojer som såvel landmænd som myndigheder kan anvende til at udpege særlige risikoarealer, samt de rette virkemidler til at minimere fosfortab.

1. Er der nogen særlige forhold eller jorde hvor risikoen for P tab til vandmiljøet er kraftigt forøget?

• Organiske eller sandede lavbundsjorde i umiddelbar tilknytning til vandområder kan måske udgøre en særlig risiko – disse kan have hurtig nedadgående vandtransport og har generelt dårligere adsorptionsegenskaber end fx lerjorde.

• Arealer udsat for kraftig nedbørsintensitet eller hældende arealer med erosionsrisiko (afhængig af hældningsgrad, hældningslængde, plantedækkede) – på sådanne arealer er P tabsrisiko øget efter slamudbringning, men grundig indarbejdning kan reducere risikoen.

• Arealer hvor jorden har en meget høj fosfor-status pga. mangeårig P overskud fra intensiv husdyrproduktion, samt jorde med ringe evne til at binde fosfor og som er mere eller mindre mættet med fosfor, vil også have forøget risiko.

• Sammenfattende kan man sige at der både skal være høje kildefaktorer (P status), mobiliseringsfaktorer (erosion, P-mætningsgrad) og transportfaktorer (nedbør, afstrømning, makroporer) for at der opstår risiko

2. Hvad er det danske P-index, hvad skal det kunne og hvad er status for dets implementering?

• P-index er et værktøj udviklet med henblik på at hjælpe fagfolk i stat, kommuner og konsulentvirksomheder med implementering af Vandmiljøplan III og Vandramme- og Habitatdirektiverne. Det har til formål at præsentere en fælles beslutningsramme og at give fælles adgang til relevante data.

• Det danske P-indexes sammenfatter en række risikofaktorer i fire del-indeks, der opgøres for hver markblok og udtrykker risikoen for tab ved hhv. 1) erosion, 2) overfladisk afstrømning, 3) udvaskning gennem jordmatricen og 4) udvaskning gennem makroporer. Kortlægningen af P-index skal være landsdækkende, med oplysninger på mark-niveau.

• For de forskellige delindeks og risikoklasser er der tilknyttet forskellige forslag til virkemidler. Flere af dem kan ændre den nuværende praksis for udbringning af slam, f.eks. udlæggning af randzoner uden godskning, forbud mod godskning og jordbearbejdning fra høst til april, reduceret jordbearbejdning, målrettet undergødskning med P. Risikokortene og virkemidlerne er imidlertid kun tænkt at skulle være vejledende.

• Selvom der i i forbindelse med Vandmiljøplan III er satset betydelige ressourcer på udvikling af dette P-index til danske forhold, er det ved red. afslutning (april 2010) endnu ikke implementeret pga. dels manglende bevillinger, dels usikkerhed om gyldighed under alle forhold. Yderligere oplysninger er tilgængelige via www.np-risikokort.dk
2.2.4 Potentiel risiko ved tilførsel af spildevandsslam på OSD-områder

Hvorfor er dette et problem?
I områder med eksisterende drikkevandsindvinding eller potentiale for drikkevandsindvinding (områder med særlige drikkevandsinteresser, OSD) kan der være grundlag for særlig agtpågivenhed i relation til mulige risici for grundvandskvaliteten ved landbrugsmæssig arealanvendelse, herunder gødnings- og pesticidanvendelse.

Kritiske spørgsmål
1. Er der generelt risiko for drikkevandskvaliteten ved slamtilførsel på OSD arealer?
 - Slambekendtgørelsen sikrer normalt at spildevandsslam kan genanvendes på landbrugsjord uden risiko for miljø og sundhed, herunder også i OSD-områder.
 - Der er derfor ikke videnskabeligt belæg for at udbringning af slam truer grundvandskvaliteten i OSD-områder, hvis udbringning sker i overensstemmelse med de danske regler.
 - I det følgende specificeres svaret for de forskellige mulige problemstoffer. Se også de foregående afsnit i kapitel 2.

2. Kan der ske en større belastning af grundvandet med:
 a) Næringsstoffer?
 - Fosfor (P) bindes stærkt til jordpartikler, hvilket forhindrer udvaskning til grundvandet, mindre end 1 % af den samlede mængde P i jorden er opløseligt. Udvaskningsrisikoen fra spildevandsslam vil derfor være meget minimal i jorddybder omkring 2-3 m. Endvidere er der ingen kendte negative effekter af P på grundvandskvaliteten og der er ingen fastsat grænseværdi.
 b) Tungmetaller?
 - Tungmetaller bindes meget hårdt i jorden ved neutral pH, men der er dog en betydelig variation i bindingen og dermed udvaskningsrisikoen for de enkelte metaller.
 - Beregninger viser på baggrund af tungmetalkoncentration i dansk spildevandsslam og danske tilførselsregler, at ingen af de undersøgte tungmetaller vil udvaskes fra rodzonen i koncentrationer der overstiger danske grænseværdier for drikkevand. Koncentrationerne ved grundvandshøjden, vil endvidere reducieres yderligere.
c) Miljøfremmede organiske stoffer?

- Generelt medfører lave grænseværdier for miljøfremmede organiske stoffer i slambekendtgørelsen, at der ikke udbringes slam med høje koncentrationer af disse på landbrugsjord.
- LAS og NP transporteres kun i meget ringe grad til dybereliggende jordlag og max. belastning af grundvandet kan beregnes til at ligge langt under grænseværdierne. Nyere undersøgelser tyder på at DEHP til en vis grad kan transporteres med slampartikler til dybereliggende jordlag, men risiko for transport til grundvand formodes ringe.
- En meget omfattende risikovurdering af spildevandsslam i Norge viser at max. LAS- og DEHP-koncentrationer i grundvand under landbrugsarealer tilført store mængder spildevandsslam ligger langt under grænseværdierne.

d) Medicinrester?

- En meget grundig norsk risikovurdering viser ingen eller meget ringe risiko. Under 1% af de godkendte lægemidler vurderedes potentielt at kunne overskride kendte tærskelværdier for effekt, men for ingen af dem viste en kvantitiv risikovurdering effekter på dyr og mennesker.

e) Smitstoffer?

- Udvaskning af smitstoffer er vist at være påvirket af nedbørsintensiteten. Via sprækker og makroporer i lerjord kan der ske hurtig transport fra overfladen til højtliggende grundvand.
- Udvaskning af smitstoffer ser i en række nyere studier ud til at være en potentielt risiko, på baggrund af fund i lokale vandboringer. Der hersker dog stor usikkerhed om hvorvidt dette skyldes udvaskning af smitstoffer fra gylle, der aldrig tjekkes for indhold af colibakterier og anvendes i langt større mængder end slam.
- Det vides ikke, i hvor høj grad udbringningen af spildevandsslam bidrager til forekomsten af bakterier i vandboringer – men det forventes klart at f.eks. kompostering minimerer risiko.
- Der bør fortsat være fokus på risikoen for udvaskning af smitstoffer.
2.3 Næringsstofudnyttelse og jordens frugtbarhed

2.3.1 Hvor god en afgrødeudnyttelse af affaldets næringsstoffer (N,P,K m.fl.) kan opnås?

Hvorfor er dette problem relevant?

Afgrødernes udnyttelse af næringsstofferne i tilførte affaldsprodukter er vigtig både for at tab til miljøet mindre og for at landmanden kan få et økonomisk udbytte af at spredte disse på marken. Generelt kan spildevandsslam og andre affaldsprodukter tilført indenfor slambekendtgørelsens rammer ikke dække afgrødernes behov for kvælstof og kalium, hvorfor der er behov for tilførsel af supplerende mineralsk gødning. Den specifikke næringsstofudnyttelse er altså også vigtig for at kunne fastsætte den nødvendige tilførsel af supplerende mineralsk gødning, der skal tilføres jorden. Hvis der tilføres flere næringsstoffer end planterne kan udnytte kan stofferne transporteres videre til vandmiljøet, hvor det kan udgøre en miljømæssig risiko.

Kritiske spørgsmål og svar

1. Hvilke næringsstoffer tilføres jorden med spildevandsslam?
 - Der er kvælstof (N), fosfor (P), kalium (K) samt en række mikronæringsstoffer, sporelementer og evt. kalk i spildevandsslam. Dansk spildevandsslam indeholder i gennemsnit ca. 44 kg N, 32 kg P og kun 2 kg K per ton tørstof.
 - Kvelstoffet er overvejende på organisk form (80-90%) og skal derfor efter udbringning først omsættes i jorden til ammonium og nitrat for at blive plantetilgængeligt. Fosforen findes primært som uorganisk fosfat, men pga. processerne i spildevandsrensningen findes det som meget tungtopløselige salte og er derfor langsomt tilgængeligt for planter.
 - Tilførsel af spildevandsslam forbedrer også jordens struktur og indhold af organisk stof (humus) hvilket har positiv virkning på den dyrkningsegenskaber (f.eks. vandholdende evne)

2. Opfyldes planternes næringsstofbehov ved udbringning af spildevandsslam?
 - I forhold til várkorns gødningsbehov på ca. 120 kg N, 20 kg P og 50 kg K/ha er der altså typisk behov for supplerende gødskning med N og K, da, kun en mindre del af slammets N er tilgængelig for planterne i tilførselsåret.
3. Hvor hurtigt frigives næringsstofferne fra spildevandslammet?

- N frigivelsen fra spildevandsslam er relativt hurtig, da slammets typisk har et lavt C:N forhold. Typisk mineraliseres 20-50% af N indenfor nogle få måneder efter forårsudbringning, langsommere ved vintertemperaturer.

- P tilgængeligheden er påvirket af renningsprocessen for spildevandet. Kemisk fældning kan resultere i en lav opløselighed af P i slammet (=langtidseftervirkning). Slam fra biologisk behandling vil have en langt mere variabel opløselighed der dog kun i sjældne tilfælde kommer på højde med handelsgødnings P.

4. Hvor godt kan planterne udnytte næringsstofferne i spildevandsslammet i forhold til husdyr- eller handelsgødning?

- Afgrødernes udnyttelse af N og P i slammet afhænger af faktorer som jordtype, næringsstofstatus, slamtype, udbringningsstidspunkt samt afgrødetyper og klima.

- Ved udbringning til vinterkorn er værditallet* for N lavt (16-23% ift. handelsgødning) mens der ved forårsudbringning til vårkorn er fundet værdital på ca. 26-37%. Slammets kvælstof udyntedes altså bedst ved forårsudbringning før såning af vårafgrøder, og der kan her forventes et 1. års værdital på ca. 30%. Til sammenligning giver staldgødning og dybstrørelse, der endda indeholder lidt større andel af ammonium end slam, kun et værdital for N på henholdsvis 40% og 30% ved forårsudbringning til vårsæd.

- Kvælstof eftervirkningen i de følgende år kan være betydelig, således er der fundet værdital i størrelsesordenen 7-15% og 5-7% i hhv. 2. og 3. år efter tilførslen og der kan også i de efterfølgende år påregnes en eftervirkning. Til sammenligning giver staldgødning og dybstrørelse på 6% og 2% i hhv. 2. og 3. år.

- Dette betyder at der for 1. og 2. årseffekten af spildevandsslam samlet kan regnes med et N værdital på ca. 45% (30%+15%), hvilket svarer til det lovbefalede udnyttelseskrav (=værdital) for spildevandsslam på 45%, som landmanden skal indregne i hans gødningsplaner.

- Lægges 3.-10. års effekten til kommer det samlede N værdital dog formodentlig nærmere op på 60-70%.

- P virkningen af slammet er som regel beskeden, primært fordi danske jorde har en meget høj P-status og afgrøderne derfor er velforsyndes med P. Flerårige forsøg tyder dog på en vis eftervirkningseffekt, men kun hvis der over en årrække ikke tilføres mere P end afgrøderne optager.

- Der observeres ofte ubytteeffekt ud over det der kan tilskrives N i slammet, dvs. slammet påvirker optagelsen af andre næringsstoffer eller jordens generelle frugtbarhed og ubyttepotentiale, f.eks. via øgning af jordens indhold af organisk stof.

- Udover en ubytteeffekt ses der ofte også en effekt på proteinindhold i korn.

* Værditallet for N angiver gødningsværdien i forhold til virkninge af handelsgødnings N
2.4 Drivhusgas emissioner, jordens kulstoflagring og forsuring

2.4.1 Hvor stor en andel af affaldets N tabes i form af ammoniak (NH₃) under forbehandling eller efter udbringning

Hvorfor er dette problem relevant?

Kritiske spørgsmål?
1. Hvorfor og hvornår fordamper ammoniak fra spildevandsslam?
- Ammoniak kan fordampe fordi en mindre del af det uorganiske kvælstof i slammet vil være på ammoniak form.
- Ud over temperatur og pH afhænger det også af C/N forholdet i slammet + de andre organiske materialer det komposteres med, jo lavere C/N forholdet er, jo højere er risikoen for ammoniaktab. Ammoniakemissionen afhænger også af luftgennemstrømningen, dvs. om der er aktiv beluftning eller ej.

2. Hvor meget ammoniak fordampes typisk fra spildevandsslam under kompostering?
- Selvom indholdet af ammonium i spildevandsslam ikke er højt, så mineraliserer komposteringsprocessen hele tiden organisk bundet kvælstof til ammonium der potentielt kan tabes som ammoniak.
- Ammoniaktab kan være på under 5% af total N, men flere undersøgelser indikerer at det f.eks. under milekompostering kan være op til 30-40 % af N-total.

3. Hvor meget ammoniak fordampes typisk efter udbringning af spildevandsslam på landbrugsjord?
- Da udbragt spildevandsslam skal nedplojes inden for 6 timer efter spredning på marken vil risikoen for ammoniakfordampning fra det udbragte slam normalt være forholdsvis lille.
- Ved høj temperatur eller vindhastighed kan en betydelig del af den potentielle fordampning dog ske indenfor den første time efter udbringning, hvorfor nedplojning bør ske hurtigst muligt.
4. Hvor meget af det ammoniak vi har i luften kan forventes at komme fra spildevandsslam?

- De største kilder til atmosfærisk ammoniak er helt overvejende relateret til landbrugsaktiviteter, især husdyrholdet.

- Samfundets affaldshåndtering (herunder spildevandsslam og kompostering af dette) og recirkulering til landbrugsjord bidrager formodentlig tilsammen kun med ganske få % af de nationale ammoniak emissioner, dvs. langt mindre end fra andre dele af landbrugssektoren, især husdyrproduktionen.
2.4.2 **Hvordan påvirker udbringning af spildevandsslam drivhusgas emissioner og jordens kulstoflagring**

Hvorfor er dette problem relevant?

Emissionen af de de mest betydelende drivhusgasser kuldioxid (CO₂), lattergas (N₂O) og metan (CH₄), spiller en vigtig rolle i klimaføringen.

Hovedparten af kulstoffet i spildevandsslam er af biologisk oprindelse (dvs. ikke fossilt, men bundet fra atmosfæren ved fotosyntese) og udledning af CO₂ ved nedbrydning af spildevandsslam under behandling, efter udbringning eller ved forbrænding bidrager dermed ikke netto til øgning af atmosfærens CO₂-koncentration, men binding af spildevandsslammets kulstof i jordens organiske stof kan bidrage til netto at nedsætte atmosfærens CO₂-koncentration. Danmark har forpligtet sig som en del af vores forpligtigelser under Kyoto-protokollens artikel 3.4, og alene denne post er derfor den mest vigtig, men kulstoffet bidrager også positivt til jordens frugtbarhed.

Metan og lattergas har imidlertid en drivhuseffekt der er henholdsvis 25 og 298 gange kraftigere end effekten af CO₂, og derfor er udbredelse af disse fra forskellige håndtering af spildevandsslam og andet organisk meget relevante for den samlede klimaefekt.

1. **Hvor meget lattergas (N₂O) uddes efter udbringning?**
 - Hovedparten af lattergas emissionen kommer efter udbringning på jord, i forbindelse med mineralisering og omdannelse af spildevandsslammets kvælstof til mineralisk form.
 - Der er stor variation i emission efter udbringning af spildevandsslam, fra 0,1 til 4 % af totalt N i slammet, svarende til en udledning på 3,5-142 t N₂O i alt fra dansk spildevandsslam.
 - Den relative N₂O emission er af samme størrelsesorden for handelsgødninger N.
 - Ud af den samlede danske N₂O-emission på ca 21 Kt N₂O udgør bidraget fra udbringning af spildevandsslam således en ubetydelig del i det større regnskab, kun 0,02-0,7%.

2. **Hvor meget metan (CH₄) uddedes under forbehandling (f.eks. kompostering) eller efter udbringning?**
 - Hovedparten af metan emissionen kommer fra lagring og behandling af spildevandsslammet, hvis dette kommer til at foregå under helt eller delvist iltfrie forhold. Metan emission efter udbringning på jord er derimod minimal.
 - Under kompostering af spildevandsslam varierer tab af metan mellem 0,35-1,7% af det totale indhold kulstof i spildevandsslammet, svarende til ca. 3,5 kg metan/t TS komposteret slam
 - Efter udbringning af spildevandsslam er tab af metan meget små, højst 0,1% af C.
 - Samlet set kan der estimere en udledning på 180-220 t metan fra dansk spildevandsslam, svarende til omtrent 0,1% af totalt metan udledt via danske landbrugsoptaktiviteter. Dette er ubetydeligt i forhold til bidraget fra husdyrproduktionen (først og fremmest kvæg)
3. Hvordan påvirker udbringning af organisk affald jordens humusindhold og hvor meget af affaldets kulstof stabiliseres i jorden på langt sigt?

- I forhold til forbrænding af spildevandsslammet, hvor alt dets kulstof omdannes til CO₂ øjeblikkeligt, bindes det tilførte kulstof ved udbringning i jordens organiske stof (humus) og frigives først langsomt over tid, når det organiske materiale omsættes.

- Fra en enkel tilførsel af komposteret organisk husholdnings affald kan det estimeres, at af det tilførte kulstof resterer
 - 63-68% efter 1 år
 - 42-47% efter 10 år
 - 20-27% efter 50 år
 - 14-17% efter 100 år
 - ≈ 0% efter > 1000 år

Slam omsættes langsommere end kompost af husholdningsaffald, så formodentlig lagres en større andel end for komposteret affald

- Hvor meget af slammets kulstof der oplagres i jorden ved udbringning på jord afhænger derfor helt af tidshorisonten; meget på kort sigt, men mindre på længere sigt.

4. Hvad er så den samlede drivhusgas-effekt ved anvendelse af slam på jord?

- Hvis alle emissioner i hele håndterings-kæden medtages: lattergas og methan ved jordbrugsanvendelse, CO₂ fra transport og energiforbrug og emissioner ved prod. af handelsgødning (som slam anvendelse som gødning kan erstatte) og fra afbrænding (udtrykt i CO₂ ækvivalenter), kan et samlet drivhusgas-regnskab ved disponering af f.eks. 1 ton slam tørstof til jordbrugsanvendelse opgøres i forhold til forbrænding:
 - Med en forsigtig tidshorisont (langt sigt, 100 år)
 = ca. 180 kg CO₂ emission undgået (i forhold til forbrænding) per ton slam tørstof
 - Med tidshorisont 20 år (jf. Kyoto.protokollens artikel 3.4)
 = ca. 460 kg CO₂ emission undgået (i forhold til forbrænding) per ton slam tørstof

- Hvis forbrændingen af slam kan ske med mere positivt energiudbytte end i dag forbedrer det CO₂ regnskabet til fordel for forbrænding - afhænger dog meget af bl.a. transportafstand og ny teknologi.

- Udbringning af slam kan derfor bidrage til at nedbringe CO₂ udslippet, omend omfanget af reduktionen er begrænset, men det vil næppe være ringere end forbrænding
3 Hvad ved vi – baggrundsviden og litteratur

3.1 Sundhed for mennesker og dyr

3.1.1 Er der risiko for human- og økotoksikologiske effekter fra miljø-fremmede, organiske stoffer (PAH, DEHP, LAS og NPE) i affaldsbiomasse på kort og langt sigt?

Hvorfør er de organiske mikroforureninger, som kan forekomme i slam, et problem?

PAH (PolyAromatisk Hydrocarbon): PAH er betegnelsen for en lang række stoffer bestående af en mængde ringformede kulbrinter. Mange PAH’er er kendt for at være kræftfremkaldende for mennesker og dyr. Derfor er optag af PAH i afgrøder højest uønskeligt og enhver analytisk målelig koncentration i planter anses for kritisk.

DEHP (Di(2-EthylHexyl)Phtalat): DEHP bruges primært i industrien som plastblødgorer og mistænkes for at være kræftfremkaldende og nedsætte den menneskelige forplantningsevne.

LAS (Lineær AlkylBenzen Sulfonat): LAS er betegnelsen for en række anioniske opløsningsmidler, som bl.a. findes i vaskemidler o.l., og stoffet har derfor forholdsvis høj opløselighed i vand. Der har følgelig været en del fokus på giftigheden overfor de vandlevende organismer, men i jorden er LAS også kendt for at skade de jordlevende organismer, fordi det med sine kemiske egenskaber i stand til at oplose biomembraner, som hovedsageligt består af lipider (fedtsyrer).

NP/NPE (Nonyl Phenol / Nonyl Phenol Ethoxylat): NP er nedbrydningsproduktet af NPE, som er betegnelsen for en række nonioniske opløsningsmidler. Ethoxygruppen (E) er ofte meget let nedbrydelig hvorfør både NPE og NP findes i miljøet. NP er et hormonforstyrrende stof, som kan påvirke forplantningsevnen hos både mennesker og dyr.

For alle fire stofgrupper gælder i øvrigt, at der ved forhøjede koncentrationer i jorden er registreret negative effekter på de jordlevende organismer.

Hvad ved vi?

Er der nogen økotoksikologiske virkninger fra hhv PAH, DEHP, LAS og NPE? Og hvis ja, ved hvilke koncentrationsniveauer og påvirkningstider, og hvad består virkningerne i?

De fire stoffer er alle på miljøstyrelsens liste over uønskede stoffer i miljøet, og der er i slam-bekendtgørelsen fastsat afskæringsværdier på baggrund af jordkvalitetskriterier og økotoksikologiske tests. Sådanne tests bestemmer ved hvilke koncentrationer, der kan registreres en effekt på jordlevende organismer som mikroorganismer, springhaler og regnorme. I tabellen ses hvilke koncentrationer (EC₅₀ eller EC₁₀) der er fundet at forårsage en hæmning af springhalers foreringsevne på 50 eller 10 %.
Tabel 1. PAH, DEHP, LAS og NP koncentrationer i slam der forårsager en hæmning af springhalsers formeringsevne på 50 eller 10 % (EC50 eller EC10):

<table>
<thead>
<tr>
<th>Stof</th>
<th>EC-værdi (mg/kg tørjord)</th>
<th>% hæmning</th>
<th>Grænseværdi i slam3 (mg/kg tørstof)</th>
<th>Gennemsnitlig koncentration i slam4 (mg/kg tørstof)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAH1</td>
<td>16</td>
<td>10 (EC10)</td>
<td>3</td>
<td>3,2</td>
</tr>
<tr>
<td>DEHP2</td>
<td>>5000</td>
<td>50 (EC50)</td>
<td>50</td>
<td>~25</td>
</tr>
<tr>
<td>LAS2</td>
<td>740</td>
<td>50 (EC50)</td>
<td>1300</td>
<td>8505</td>
</tr>
<tr>
<td>NP2</td>
<td>44</td>
<td>50 (EC50)</td>
<td>10</td>
<td>~17</td>
</tr>
</tbody>
</table>

1 Sverdrup et al. (2001)
2 Krogh et al. (1999)
3 Bekendtgørelse (2003)
4 Boutrup et al. (2006)
5 LAS blev fundet i 69% af slamprøverne

For nogle af stofferne er der dog vist lavere EC50 værdier for andre organismer som fx planter eller regnorme. Lavere EC-værdier betyder større giftighed.

DMU (Boutrup et al. 2006) har undersøgt indholdet af miljøfremmede stoffer i spildevandsslam i Danmark i perioden 1998-2003 repræsenteret ved prøvetagning fra 38 renseanlæg fordelt over hele landet. Som det fremgår af tabel 1, var koncentrationerne af PAH og NP i spildevandsslam gennemsnitligt for høje, hvilket betyder, at ca. 40 % af slammet ikke kunne udbringes uden forhengående komposterings. Undersøgelsen skal ses som et udsnit af den i Danmark producerede spildevandsslam, men er ikke nødvendigvis repræsentativ for alle typer spildevandsslam. Derudover refereres der i rapporten til spildevandsslam der udgår fra renseanlægget uden undersøgelse af evt. efterfølgende effekt af komposting. Således er der ikke i alle tilfælde tale om spildevandsslam, der udbringes på landbrugsjord (jf. de høje gennemsnitkoncentrationer i tabel 1).

Vikelsøe et al. (2002) undersøgte ophobningen af NP og DEHP i Roskilde fra jorde langtidstilført (25 år) spildevandsslam uddraget i lave, medium og høje doser (0,7, 4,3 henh. 17 t tørvægt/ha/år) efterfulgt af kunstgødning i 6 år op til de første målninger. Lave mængder NP kunne spores i jord tilført lav og medium mængder spildevandsslam (henholdsvis 0,01 og 0,04 µg/kg), mens koncentrationen ved den høje tilførselrate lå på hele 1450 µg/kg. Samme tendens kunne ses for DEHP, dog med koncentrationer på 12 og 38 µg/kg for den lave og intermediære tilførselrate, respektivt. Koncentrationen af DEHP i det øvre jordlag var lavere i sammenligning med dybere liggende jordlag ved normale slamtilførsel og DEHP koncentrationen i 40-50 cm’s dybde lå da omkring 34 µg/kg, mens NP ikke kunne spores i dybere jordlag for samme behandling. Udbringning af den høje doseringsrate forårsagede signifikante mængder NP og phatalater (DEHP & DBP (Di-(n-butyl)-phathalat)) i jorden, selv 8 år efter slamudbringningen var ophørt. Vikelsøe et al. (2002) konkluderer, at tilførselssrater op til den intermediære dosering ikke forårsagede forøjede koncentrationer af phatalater og nonylphenoler i jorden. Med de danske tilførselsrater på ca. 1 t TS spildevandsslam/ha/år burde der derfor ikke være fare for akkumulering af NP og DEHP.

Ifølge Oleszczuk (2008) kunne toksiciteten af forskellige typer spildevandsslam med variende indhold PAH (3.8 til 36.4 mg/kg) relateres til indholdet af PAH, således at spildevandsslam med den mindste koncentration af PAH var mindst toksisk overfor testorganismen Heterocypris incongruens. Spildevandsslam med et indhold af PAH, der overskred de Europæiske standarder, udviste den højeste toksicitet.
I 1990’erne blev der opstillet jordkvalitetskriterier som varetog de mest følsomme arter i jord (Scott-Fordsmand & Jensen 2002). Efterfølgende risikovurderinger har vist at de gældende regler for udbringning af spildevandsslam opfylder disse kriterier for de fire nævnte stoffer (Henriksen 2001; Petersen et al. 2003; Jensen 2004). Således er de opsatte afskæringsværdier for indholdet af de miljøfremmede organiske forbindelser i spildevandsslam tilstrækkelige til at beskytte jordmiljøet. Miljøfremmede stoffer forventes heller ikke at bioakkumulere i de organismer der lever i jorden, da de bindes meget stærkt til jordpartiklerne (Petersen & Rasmussen 2001). Således er de opsatte afskæringsværdier for indholdet af de miljøfremmede organiske forbindelser i spildevandsslam tilstrækkelige til at beskytte jordmiljøet.

Kvaliteten af dansk slam er generelt af høj kvalitet, hvis man sammenligner med vores nærmeste naboer (Sverige, Norge, Tyskland osv.) (Nedland & Paulsrud 2002).

Afskæringsværdien for NP blev for nogle år siden sænket fra 30 mg/kg tørstof til 10 mg/kg tørstof som led i miljøstyrelsens frivillige aftale med producenterne om at udfase dette stof fra produktionen.

Der har dog været kritik af de danske afskæringsværdier, som ligger under EU’s grænseværdier, for at være baseret på et urimeligt forsigtighedsprincip om at giftigheden forbliver konstant efter udbringning. Det er velkendt i den internationale litteratur, at den del af de miljøfremmede organiske stoffer som ikke bliver nedbrudt i jorden bliver mindre og mindre giftige med tiden (Alexander 2000). Det skyldes at de indarbejdes i jordpartiklerne så tilgængeligheden overfor de jordlevende organismer sænkes væsentligt.

Er der nogen humantoksikologiske virkninger fra hhv PAH, DEHP, LAS og NPE og hvis ja, ved hvilke koncentrationsniveauer og påvirkningstider, og hvad består virkningerne i?

Mennesker kloden over udsættes primært for PAH’er gennem inhalering af luften, hvor stofferne primært kommer fra forbrænding i forbindelse med motoriserede køretøjer eller industri (Chen & Liao 2005). Rygere er ligeledes stærkt udsatte for PAH. Derfor er bekymringen omkring PAH i spildevandsslam hovedsageligt møntet på giftigheden overfor økosystemet (dyr og planter).

Mennesket er udsat for DEHP primært via indtagelse af føde (Kavlock et al. 2002). De humantoksikologiske effekter viser sig som nedsættelse af den menneskelige reproduktion og kraftfremkaldelse. For at estimere giftigheden af DEHP er der foretaget en mængde forskøg med rotter och mus. Der er tydeligvis en sammenhæng mellem eksponeringen for DEHP og de nævnte negative effekter blandt disse dyr, men et direkte link mellem sådanne resultater og den menneskelige organismen kan endnu ikke etableres (Koch et al. 2006). Man kan altså endnu ikke sige, hvor høje koncentrationer der skal til i den menneskelige organismen før stoffet er decideret giftig, men DEHP og nogle af stoffets nedbrydningsprodukter mistænkes for at kunne akkumulere i kroppen (Koch et al. 2006).

LAS og NPE er begge opløsningsmidler brugt i husholdning og industri, men de har forskellige kemiske egenskaber og når det kommer til humantoksikologiske effekter er fokus i litteraturen rettet mod NPE (Ying 2006). NPE og NP er hormonforstyrrende stoffer som kan efterligne det kvindelige
kønshormon, østrogen, og derfor nedsætte den menneskelige reproduktion (Vasquez-Duhalt et al. 2005).

Fælles for den humantoksikologiske litteratur om disse fire stoffer er, at ingen koncentrationer, som angiver den præcise grænse for de kritiske værdier i den menneskelige organisation, er givet.

Er der andre organiske mikroforureninger vi endnu ikke har hørt om som er problematiske for affald/slam, men som man enten har fokus på i andre sammenhænge eller som man forst for nylig har fået øje på i forskningslitteraturen

Der har blandt andet i Tyskland og Sverige været en del fokus på forekomsten af bromerede flammehæmmere i på landbrugsjord (Samsoe-Petersen 2003; de Wit et al., 2002). Den vigtigste gruppe af disse stoffer er PBDE (Polybrominated Diphenyl Ethers) som er karakteriseret ved ikke at være let nedbrydelig og have højt potentiale for opkoncentrering i organiser.

Der har i Sverige været undersøgt jorde, som gennem flere år har været gødsket med spildevandsslam, og der er fundet forhøjede koncentrationer af PBDE både i jorden og i regnorme som følge deraf. Men konklusionen på disse undersøgelser og risikovurderinger blev alligevel at stofferne med det nuværende gennemsnitlige indhold i slammel ikke udgør nogen miljømæssig trussel (Hellstrom 2000). Man bør imidlertid være opmærksom på koncentrationerne af de bromerede flammehæmmere i slammel fra renseanlæggen, da de kemiske rammer for en miljømæssig trussel fra disse stoffer åbenlyst er tilstede (de Wit et al., 2002).

Den hastige udvikling indenfor nanoteknologien kunne rejse spørgsmålet om nanopartikler i fremtiden vil kunne findes i vores spildevandsslam. Der er endnu kun publiceret begrænset videnskabelig litteratur på dette emne (Gottschalk et al., 2009; Brar et al., 2010). De organiske/kulstofbaserede nanopartikler er hyppigst beskrevet i litteraturen, og deres fysiske og kemiske egenskaber indikerer, at de vil bindes til slampartiklerne under spildevandsrensningen. De er også svært nedbrydelig, potentielt bioakkumulerende, og der er påvist en vis giftighed af fx C60. Der mangler fortsat væsentlig viden om, hvor tilgængelige stofferne vil være for livet i jordbunden eller i vandmiljøet, men hvis de er stærkt bundet til slamp- og jordpartiklerne vil biotilgængeligheden sandsynligvis være meget ringe (Baun 2006). Man bør eventuelt i fremtiden være opmærksom på om nanopartikler ophobes i jorden som følge af deres sorberende egenskaber og ringe nedbrydelighed.

Udover de allerede nævnte stoffer, er der i en rapport fra DMU om indholdet af miljøfremmede stoffer i spildevand og slam i Danmark i perioden 1998-2003 (Boutrup et al. (2006)) blevet fundet en række stoffer som i forhøjede koncentrationer kan forårsage negative effekter i vandmiljøet. Disse stoffer gennemgåes overfladisk i det efterfølgende afsnit. Fælles for de fleste af disse stoffer er at de økotoksikologiske effekter i jordmiljøet er dårligt belyst, så det er vanskeligt at bestemme en egentlig afskærningsværdi for indholdet i spildevandsslam. Det vurderes dog umiddelbart at de fire miljøfremmede stoffer som allerede er omfattet af slambekendtgørelsen repræsenterer mange af de egenskaber som de i rapporten fra DMU anførte stoffer besidder. Således må det formodes at hvis de gældende kvalitetskriterer for spildevandsslam overholdes vil de nævnte stoffer også nedbringes til et acceptabelt niveau.
Phenoler og chlorphenoler
Phenoler og chlorphenoler er stoffer, som dannes ved nedbrydning af naturligt organisk stof, ved nedbrydning af pesticider eller som er syntetisk fremstillede. Gruppen af stoffer omfatter bl.a. bisphenol A, som har fået en del mediebevågenhed de senere år i forbindelse med dets anvendelse i legetøj og andre plastmaterialer til børn. I slam var middelkoncentrationen af phenol på 29 mg/kg TS, men medianværdien 10 gange mindre. Forskellen mellem middelkoncentrationen og medianværdien skyldes, at der er fundet enkelte meget høje koncentrationer, 95%-fraktilen er således 126 mg/kg TS. Det blev ikke oplyst, fra hvilken type spildevandsslam de høje koncentrationer kom fra. Indholdet af chlorphenoler i slam var betydeligt lavere med middelkoncentrationer i intervallet 0,004-0,064 mg/kg TS (Boutrup et al. 2006).

Opløsningsmidler
En række aromatiske kulbrinter (benzen, ethylbenzen, isopropylbenzen, toluen og xylen) samt nogle halogenerede aromatiske kulbrinter (1,4-dichlorbenzen, 2,5-dichloranilin og hexachlorbenzen) er fundet med forskellig hyppighed og på forskellige koncentrationsniveauer (Boutrup et al. 2006).

Alifatiske aminer
Dimethylamin og diethylamin anvendes bl.a. som pH-regulerende midler og bekæmpelsesmidler. Dimethylamin blev på trods af stoffets vandopløselighed og ringe tendens til at blive partikulært bundet fundet i stort set alt det undersøgte slam. Diethylamin er ligeledes fundet hyppigt i slam (Boutrup et al. 2006). Mens viden om stoffernes miljømæssige effekt er så godt som manglende, findes information om relaterede stoffer såsom ethyldimethylamin. Sidstnævnte er toksisk for alger (Scenedesmus subspicatus) med en EC50 på 7,6 mg/l (96 timers test) og fisk med en LC50 på 31,6 mg/l (Leuciscus idus) (96 timers test). Økotoksikologiske effekter på terrestriske organismer er ikke blevet målt (European Commission 2000).

Fosfor-triestere (P-triestere)
Fosfor-triestere er en gruppe af fosforholdige organiske stoffer, som især bruges i bygningsmaterialer og elektriske artikler som overfladeaktivt stof, blødgører, brandhæmmer og udfyldningsmiddel. Det mest anvendte af stofferne er TCPP, trichlorpropylphosphat. Viden om stoffernes miljømæssige effekt er begrænset. Tributylphosphater som den eneste i gruppen af P-triestere vurderet til at være moderat toksisk overfor vandlende organismer. TCPP er fundet i næsten alle prøver i udløb fra renseanlæg og i slam mens de øvrige P-triestere er fundet med forskellig hyppighed (Boutrup et al. 2006).

Hvor hurtigt og hvor effektivt nedbrydes affaldets/spildevandets indhold af hhv PAH, DEHP, LAS og NPE i behandlings- eller rensningsprocessen, og kan det nedbringes yderligere med en efterbehandling?
I renseanlæggene er fjernelsen af de miljøfremmede organiske stoffer meget afhængig af tilgængeligheden af stofferne for mikroorganismer og ilt. I tankene fordeler stofferne sig mellem luft, vand og organisk materiale afhængig af de enkelte stoffers fysiske og kemiske egenskaber. Beluftning er en effektiv metode til at fjerne op mod 100% af de fire miljøfremmede stoffer i den vandige fase. Når der fortsat efter denne behandling kan findes betydelige mængder stoffer i slammet skyldes det, at varierende mængder findes bundet til det organiske materiale.
Ved anaerob slambehandling sker bl.a. nedbrydning af de let omsættelige organiske forbindelser af mikroorganismer uden forbrug af ilt. Denne proces som foregår i såkaldte rådnetanke har dog vist sig mindre effektiv i forbindelse med fjernelsen af de miljøfremmede organiske stoffer (Mai et al. 1999) og benyttes således til andre formål i slambehandlingen.

Forsøg og storksakadrift i Odense kommune har også vist at mængden af miljøfremmede stoffer i spildevandsslam kan nedbringes væsentligt ved efterbehandling med kompostering (Petersen & Clowes 2000). Nedbrydningen efter 22 uger viste at LAS var totalt fjernet, mens NPE, DEHP og PAH var reduceret med henholdsvis 81%, 75% og 35%. Alle værdier var således godt under de fastsatte afskæringsværdier efter 22 ugers kompostering. På baggrund af et andet forsøg med kompostering antages det, at der ved forlængelse af komposteringsperioden vil ske en fortsat reduktion i slammets indhold af miljøfremmede stoffer (Mogensen et al. 2001).

Er der udsigt til at nedbrydningspotentialet i slambehandlingen kan forbedres i fremtiden?

Der forskes fortsat inden for de processer, som er afgørende for at stimulere den biologiske nedbrydning af de miljøfremmede organiske stoffer i renseanlæggene (Press-Kristensen & Thirsing 2005). Derudover arbejdes der aktivt på fremtidens regulering og øget forbrugerbevidsthed. Så forbedrede rensningsmetoder og yderligere politiske tiltag forventes at bidrage væsentligt til at nedbringe mængden af farlige stoffer i fremtidens spildevandsslam.

Hvor hurtigt nedbrydes affaldsproduktets (spildevandsslam, kompost) indhold af henholdsvis PAH, DEHP, LAS og NPE efter udbringning på jord?

Når spildevandsslam (med eller uden efterbehandling) udbringes på landbrugsjorden vil langt størstedelen af de ev. tilbageværende miljøfremmede organiske stoffer være bundet til det organiske materiale i slammet. Efter udbringning fortsætter mikroorganismerne med at nedbryde de miljøfremmede stoffer og adskillige forsøg viser at der ikke er jordens, men slammets mikroorganismer, som udfører nedbrydningen. Slammet skal efter gældende regler nedpløjøes i de øverste jordlag hurtigst muligt efter udbringning og det fordeles derved typisk i klumer af variierende størrelse (ofte 2-4 cm). Stofferne nedbrydes hurtigt, hvis ilt er tilgængeligt i systemet, men ilt kan have svært ved at trænge ind i disse klumer, og nedbrydningen forsinkes derved. Nedbrydningshastigheden afhænger af faktorer som stoffernes biotilgængelighed, koncentrationen af mikroorganismer, koncentrationen af de miljøfremmede stoffer og tilstedeværelsen af ilt. Ofte betegnes hastigheden af nedbrydningen som "halveringstiden", dvs. den tid det tager før halvdelen af stoffet er nedbrudt. Der er fundet halveringstider for LAS i jord på cirka 1 - 3 uger (Jensen 1999). For NP er halveringstider fundet at være omkring 10 dage under iltede forhold (Henriksen et al. 2001). Det anføres dog at under realistiske markforhold vil hastigheden være nedsat i forhold til
laboratorieforsøg, og der er således bestemt halveringstider for LAS og NP i markforsøg på henholdsvis 16-25 dage og 31-46 dage (Jacobsen et al. 2004). For PAH og DEHP gælder at biotilgængeligheden er nedsat i forhold til de mere opløselige sæbestoffer LAS og NP og derfor er halveringstiderne for disse stoffer betydeligt længere (Klinge et al. 1999; Roslev et al. 1999; Henriksen et al. 2001).

Er der faktorer som optimerer nedbrydningsforholdene i jorden? I så fald, hvilke?

Den vigtigste faktor for nedbrydningen af de miljøfremmede organiske stoffer er mængden af tilstedeværende ilt (Hesseløe et al. 2001). Derfor er tilførslen af ilt til det øverste jordlag vigtig. I den forbindelse spiller også størrelsen af slamlamperne i jorden en vigtig rolle fordi mindre klumper resulterer i et større overfladeareal, og dermed forøges eksponeringen af de farlige stoffer for ilt. Derfor udgør slambehandlingen og måden, hvorpå slammet udbrydes, vigtige processer, hvor påpasselighed eller forbedring kan optimere nedbrydningsforholdene i jorden. For ilttilførslen må det forventes at rødder fra plantevækst eller aktivitet af jordlevende organismer vil fremme iltforholdene.

Optages stofferne af planter og kan de gennem fødekæden overføres til dyr og mennesker?

En undersøgelse af Miljøstyrelsen fra 1999 viste at hverken LAS eller DEHP optages i planter, selv ved slamudbringning på 15 gange det tilladte niveau (Grøn et al. 1999). Lignende konklusion blev draget i Det Strategiske Miljøforskningsprogram ved Centret for Bæredygtig Arealanvendelse (Miljøforskning 2001; Petersen et al. 2003).

Hvor højt er indholdet af de miljøfremmede stoffer i spildevandsslam i forhold til gylle?

Rapporten fra DMU (Boutrup et al. 2006) omhandlende indholdet af miljøfremmede stoffer i spildevandsslam i Danmark i perioden 1998-2003 repræsenteret ved prøvetagning fra 38 renseanlæg fordelt over hele landet. Der blev imidlertid også medtaget gylleprøver i analyserne og for at vise forholdet mellem indhold af de miljøfremmede stoffer i slam og i gylle. I såvel kvæggylle som svinegylle blev LAS fundet i 65-100% af prøverne, NP og DEHP i ca. 20% og PAH i 100% af de undersøgte gylle-prøver, men middelkonsentrationen af stofferne i de prøver, hvor stoffet blev fundet, var mindst en faktor 10 mindre end koncentrationsniveaunet i slam.

Hvor god er den nuværende/foreliggende viden?

Den foreliggende videnskabelige viden på området er generelt på et meget højt niveau, dvs. overvejende publiceret i internationale videnskabelige tidsskrifter med peer-review, og emnet har været behandlet i mange lande, dvs. under meget varierende klima og jordbundsforhold. Der mangler imidlertid velfunderet viden om de økotoksikologiske virkninger af flere af de nye problemstoffer der er fundet i spildevandsslam. Oplysning om disse virkninger er afgørende for en mulig fastsættelse af grænseværdier.

I Danmark har der været et betydeligt forskningsmæssige fokus bl.a. gennem Center for Bæredygtig Arealanvendelse og Forvaltning af Miljøfremmede Stoffer. Denne viden er ligeledes generelt på et højt videnskabeligt niveau, men også formidlet i såvel nationale rapporter som populærvidenskabeligt.
Referencer

3.1.2 Er der en risiko for økotoksikologiske virkninger af tungmetaller i affaldet på såvel kort som langt sigt?

Hvad ved vi?

Tungmetaller som kobber (Cu), zink (Zn), mangan (Mn) og jern (Fe) er essentielle næringsstoffer for planter i små mængder og kaldes derfor mikronæringsstoffer. Bliver koncentrationerne for høje bliver effekten i stedet giftig. Andre tungmetaller som cadmium (Cd), bly (Pb), nikkel (Ni), kviksølv (Hg) og krom (Cr) er giftige for levende organismer i selv meget små koncentrationer og bliver generelt betragtet som forureningstoffer. Fælles for alle disse er, at de optræder i meget små mængder i jorden og kaldes derfor også spormetaller.

Der er både naturlige og menneskelige input af tungmetaller til jorden. Forvitring af metalholdige mineraler er den primære kilde til den naturlige baggrundskoncentration, men til landbrugsjord kommer de største mængder af tungmetaller fra menneskelig tilførsel i form af handelsgødning, husdyrgødning eller spildevandsslam.

I alle former for dansk spildevandsslam findes der tungmetaller i varierende mængder afhængig af områdets industri og renseanlæggenes behandlingsformer. I Danmark benævnes cadmium, kobber og nikkel ofte som de vigtigste problemstoffer (Krogh et al. 2005). Tal fra miljøstyrelsens opgørelse anno 2002 for private og kommunale renseanlæg viser, at over 95% af den til landbruget disponerede mængde spildvandsslam ikke overskrider grænseværdierne for de vigtigste tungmetaller (Miljøstyrelsen 2004). Den gennemsnitlige koncentration af udvalgte tungmetaller i slam disponeret til landbruget i 2002 kan ses i tabel 1 og 2 sammenlignet med de i gældende slambekendtgørelse (Bekendtgørelse 2003) fastsatte grænseværdier.

<table>
<thead>
<tr>
<th>Grænseværdi (mg/kg total fosfor)</th>
<th>Slam disponeret til landbrug (mg/kg total fosfor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium 100</td>
<td>47,5</td>
</tr>
<tr>
<td>Bly 10.000</td>
<td>1.585</td>
</tr>
<tr>
<td>Nikkel 2.500</td>
<td>783</td>
</tr>
<tr>
<td>Kviksølv 200</td>
<td>38,2</td>
</tr>
</tbody>
</table>

Tabel 2. Grænseværdier (Bekendtgørelse 2003) og den vægtede gennemsnitlige koncentration for 2002 i det undersøgte slam disponeret til landbrug (Miljøstyrelsen 2004).

<table>
<thead>
<tr>
<th>Grænseværdi (mg/kg tørstof)</th>
<th>Slam disponeret til landbrug (mg/kg tørstof)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kobber 1.000</td>
<td>236</td>
</tr>
<tr>
<td>Zink 4.000</td>
<td>710</td>
</tr>
<tr>
<td>Krom 100</td>
<td>29,0</td>
</tr>
</tbody>
</table>

Hvad er de toksiske virkninger?

Når tungmetaller bindes så hårdt i jorden, at kun en brøkdel er biologisk tilgængeligt, kunne der tænkes at forekomme en akkumulering af tungmetaller i landbrugsjorde, som tilføres spildevandsslam. For at undgå akkumulering på lang sigt må der naturligvis fjernes lige så store mængder tungmetal, som der tilføres. Det sker udelukkende gennem planteejektion, udvaskning og erosion, men flere studier viser at fjernelse sjældent forekommer i tilstrækkelig grad til at en gradvis akkumulering kan undgås (Baveye et al. 1999; Nyamangara et al. 2005). Det er derfor relevant at stille spørgsmålet om tungmetallernes egentlige toksiske effekter.

Feltundersøgelser kan på den anden side være vanskelige at fortolke, eftersom de observerede effekter kan være resultatet af lokalitetsbestemte fysiske og kemiske variationer eller ganske enkelt andre toksiske komponenter. I mange tilfælde kan de observerede effekter i feltstuderierne således ikke tilskrives tungmetallernes tilstedevarelse alene (Horswell et al. 2003).

Optag af tungmetaller i afgrøder på landbrugsjord har været genstand for en del forskning. Her spiller variationen i biologisk tilgængelighed imellem forskellige metaller og jordtyper samt afgrødernes potentielle for optagelse væsentlige roller. Undersøgelser tyder dog på at slam med højt indhold af tungmetaller kan fremme optagelsen af tungmetaller eller nedsætte høstudbyttet (Ramachandran & D’Souza 2002; Bhogal et al. 2003), men problemerne er størst i forbindelse med afgrøder, hvor den forældelige del i direkte kontakt med jorden. Derfor gør problemet sig navnlig gældende for rodfrugter (Samsoe-Petersen et al. 2000). Ifølge den generelle videnskabelige litteratur udgør cadmium den største risiko i forbindelse med planteoptag, hvilket også har gjort sig gældende i den danske forskning (Krogh et al. 2005). Afskæringsværdien for cadmium i slam på 100 mg/kg P (Bekendtgørelse 2003) er således lavere end det tilladte indhold i fosforgødning som er på 110 mg/kg P (Krogh et al. 2005). Danmarks Miljøundersøgelser vurderer at de koncentrationer, som findes på danske marker i dag, ikke udgør nogen risiko for jordbundslejet eller planterne, men at det fortsat er nødvendigt med en stram politik med hensyn til cadmium (Krogh et al. 2005).

Danmarks Miljøundersøgelser anfører ligeledes, at såfremt de gældende grænseværdier overholdes udgør kobber ikke nogen fare for jordbundslevet, og der synes heller ikke at være problemer med akkumulering af kobber i dansk landbrugsjord (Krogh et al. 2005).

I et meget omfattende review konluderer Smith (2009), at der bortset fra ét enkelt studie udelukkende kunne påvises positive effekter af intermediær til langvarig udringning af komposteret spildevandsslam på den mikrobielle aktivitet, jordens frugtbarhed og biologiske omsætningsprocesser.

Sker der en akkumulering i jorden?

Et italiensk studie af effekten af langvarig udringning af forskellige typer spildevandsslam med tilførselsrater på 5 og 10 Mg slam tørstof/ha/år (5-10 gange den danske tilførselsrate), viste, at der ved begge tilførselsrater sker en signifikant ophobning af zink og kobber i plejelaget i forhold til kunstgødning og at ophobningen sker uafhængigt af den forudgående behandling af spildevandsslammet (flydende, afvandet eller komposteret spildevandsslam) (Mantovi et al. 2004). Medens koncentrationerne af alle tungmetaller forblev under EU grænseværdierne selv for den højeste tilførsel i løbet af de tolv år forsøget varede, kan ophobningen af zink vedvære kritisk. Zink påvirker tilgængeligheden af andre metaller, og påvirker mikrobiel kvælstof fixering, nitrifikation og nedbrydningsprocesser (Mantovi et al. 2004). Forhøjede værdier af zink og kobber kunne også registreres i en 3-årig amerikansk undersøgelse (Sigua et al. 2005).
Et anden amerikansk studie viste, at der efter 10 år efter udbringning af anaerobisk udrådet spildevandsslam med en tilførselsrate på gennemsnittligt 15 t slamstof/ha/år med variere P indhold på 9 til 23 g/kg torvægt spildevandsslam (omtrent 5 til 11 gange så høj en tilførselsrate som i DK) kunne konstateres forøgede koncentrationer af tungmetallerne i overjorden i forhold til kontroljorden, dog var forskellen ikke stor for alle tungemetaller. Kobber og bly havde signifikant højere værdier end baggrundskoncentrationen. Alle tungemetaller lå dog under grænseværdierne af USEPA og det kan derfor antages, at negative effekter af disse forurenende stoffer ikke forekommer (Surampalli et al. 2008).

I tabel 3 er der beregnet hvor lang tid det vil tage for jorde at nå grænseværdien mht indhold af tungmetal, hvis der udbinges årligt maksimale mængder slam (7 tons per år), medtungmetalindhold svarende til grænseværdien.

<table>
<thead>
<tr>
<th>Tungmetal</th>
<th>Baggrunds-koncentration [mg/kg]</th>
<th>Grænseværdi i slam [mg/kg]</th>
<th>Grænseværdi i jord [mg/kg]</th>
<th>Tilførsel til jorden [mg/kg/år]</th>
<th>Tid før grænseværdi er overskredet [år]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bly</td>
<td>11,3</td>
<td>120</td>
<td>40</td>
<td>0,21</td>
<td>137</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0,16</td>
<td>0,8</td>
<td>0,5</td>
<td>0,0014</td>
<td>243</td>
</tr>
<tr>
<td>Kobber</td>
<td>7,0</td>
<td>1000</td>
<td>40</td>
<td>1,75</td>
<td>19</td>
</tr>
<tr>
<td>Krom</td>
<td>9,9</td>
<td>100</td>
<td>30</td>
<td>0,175</td>
<td>115</td>
</tr>
<tr>
<td>Kviksølv</td>
<td>0,04</td>
<td>0,8</td>
<td>0,5</td>
<td>0,0014</td>
<td>329</td>
</tr>
<tr>
<td>Nikkel</td>
<td>5,0</td>
<td>30</td>
<td>15</td>
<td>0,0525</td>
<td>190</td>
</tr>
<tr>
<td>Zink</td>
<td>26,8</td>
<td>4000</td>
<td>100</td>
<td>70</td>
<td>10</td>
</tr>
</tbody>
</table>

1 Hinge et al. (2005)

Eksempel på beregning for kobber:

Årlig tilførsel beregnes som total mængde tilført kobber per hektar divideret med antal kg per hektar:

\[
\frac{1000 \text{ [ton]}}{7000 \text{ [kg]}} \times \frac{100 \text{ [m]}}{100 \text{ [m]}} \times 0.25 \text{ [m]} \times \frac{1000 \text{ [m³]}}{1.6 \text{ [kg/m³]}} = 1.75 \text{ [mg/kg/år]}\
\]

42
Tiden før grænseværdien er nået beregnes som grænseværdien for jorden fratrukket baggrundsveokdien og divideret med den årlige tilførsel:

\[
\frac{40 \text{ [mg/kg]} - 7.0 \text{ [mg/kg]}}{1.75 \text{ [mg/kg/y]}} = 19 \text{ [år]}
\]

Disse beregninger afspejler imidlertid den værst tænkelige situation, som må forventes at være urealistisk. Den seneste opgørelse fra Miljøstyrelsen viser at det gennemsnitlige fosforindhold i det danske spildevandsalam fra 2002 var 31.8 kg/ton tørstof. For ikke at overgødske med hensyn til fosfor må der således kun udbringes ca. 1 ton slam per hektar per år. Det gennemsnitlige indhold af cadmium, kobber og zink var henholdsvis 1.4, 236 og 710 mg/kg tørstof. Med disse gennemsnitsværdier ændres resultatet af beregningerne for de tre metaler sig:

Tabel 4a. Som tabel 3, men under antagelse af P grænse på slammengde (1 tons slam per ha per år) og at slammets indhold af det givne tungmetal svarer til aktuelt målte koncentrationer i slam (Miljøstyrelsen, 2004).

<table>
<thead>
<tr>
<th>Tungmetal</th>
<th>Baggrunds-koncentration [mg/kg]</th>
<th>Gennemsnitligt indhold i slam [mg/kg]</th>
<th>Grænseværdi i jord [mg/kg]</th>
<th>Tilførsel til jorden [mg/kg/år]</th>
<th>Tid før grænseværdi er overskredet [år]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.16</td>
<td>1.4</td>
<td>0.5</td>
<td>0.00035</td>
<td>971</td>
</tr>
<tr>
<td>Kobber</td>
<td>7.0</td>
<td>236</td>
<td>40</td>
<td>0.059</td>
<td>559</td>
</tr>
<tr>
<td>Zink</td>
<td>26.8</td>
<td>710</td>
<td>0.5</td>
<td>0.1775</td>
<td>412</td>
</tr>
</tbody>
</table>

Det gennemsnitlige indhold af cadmium i spildevandsalam overskrider således grænseværdien for slam baseret på tørstof. Det overholder imidlertid grænseværdien, som er baseret på fosforindholdet (100 mg/kg P), hvorfor udbringning fortsat er tilladt. Det gennemsnitlige indhold af cadmium i spildevandslammet i 2002 var ifølge Miljøstyrelsen (2004) 47.5 mg/kg P.

Tabel 4b Som tabel 4a, men under antagelse af P grænse på slammengde (1 tons slam per ha per år) og at slammets indhold af det givne tungmetal svarer til aktuelt målte koncentrationer i slam (Boutrup et al., 2006).

<table>
<thead>
<tr>
<th>Tungmetal</th>
<th>Baggrunds-koncentration [mg/kg]</th>
<th>Gennemsnitligt indhold i slam [mg/kg]</th>
<th>Grænseværdi i jord [mg/kg]</th>
<th>Tilførsel til jorden [mg/kg/år]</th>
<th>Tid før grænseværdi er overskredet [år]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bly</td>
<td>11.3</td>
<td>64</td>
<td>40</td>
<td>0.016</td>
<td>1794</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.16</td>
<td>1.7</td>
<td>0.5</td>
<td>0.00043</td>
<td>800</td>
</tr>
<tr>
<td>Kobber</td>
<td>7.0</td>
<td>580</td>
<td>40</td>
<td>0.072</td>
<td>460</td>
</tr>
<tr>
<td>Krom</td>
<td>9.9</td>
<td>57</td>
<td>30</td>
<td>0.0073</td>
<td>2772</td>
</tr>
<tr>
<td>Kviksølv</td>
<td>0.04</td>
<td>1.3</td>
<td>0.5</td>
<td>0.00033</td>
<td>1415</td>
</tr>
<tr>
<td>Nikkel</td>
<td>5.0</td>
<td>26</td>
<td>15</td>
<td>0.0065</td>
<td>1538</td>
</tr>
<tr>
<td>Zink</td>
<td>26.8</td>
<td>789</td>
<td>100</td>
<td>0.20</td>
<td>371</td>
</tr>
</tbody>
</table>
Tabel 5. Sammenligning mellem det gennemsnitlige indhold af de vigtigste tungmetaller i husdyrgødning, handelsgødning og spildevandsslam:

<table>
<thead>
<tr>
<th>Gødning</th>
<th>Cadmium [mg/kg tørstof]</th>
<th>Kobber [mg/kg tørstof]</th>
<th>Zink [mg/kg tørstof]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slagtesvinegylle¹</td>
<td>0,4</td>
<td>263</td>
<td>1016</td>
</tr>
<tr>
<td>Malkekvægsgylle²</td>
<td>0,4</td>
<td>64,2</td>
<td>232</td>
</tr>
<tr>
<td>Handelsgødning⁴</td>
<td>0,9</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Spildevandsslam²</td>
<td>1,4</td>
<td>236</td>
<td>710</td>
</tr>
<tr>
<td>Grænseværdi (slambekendtg.)</td>
<td>0,8</td>
<td>1000</td>
<td>4000</td>
</tr>
</tbody>
</table>

¹ Schou et al. (2006)
² Miljøstyrelsen (2004)

Tabel 6. Sammenligning mellem den gennemsnitlige tilførsel af de vigtigste tungmetaller fra husdyrgødning, P-holdig handelsgødning og spildevandsslam til jorden. Baseret på typiske årlige tilførselsrater af 20 tons gylle/ha fra slagtesvin og malkekvæg med tørostofindhold på hhv. 6 og 10 %, TS, 500 kg handelsgødning med 24 % N/kg TS, svarende til 120 kg N/ha og spildevandsslam (1 ton tørostof/ha) med 30 kg P/ton TS (max. tilførsel per år jf. slambekendtgørelsen). Indholdet af tungmetal antages at svare til værdierne i tabel 5.

<table>
<thead>
<tr>
<th>Gødning</th>
<th>Årlig tilførsel [kg TS/ha]</th>
<th>Cadmium tilført [mg/ha]</th>
<th>Kobber tilført [g/ha]</th>
<th>Zink tilført [g/ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slagtesvinegylle</td>
<td>1200</td>
<td>480</td>
<td>316</td>
<td>1219</td>
</tr>
<tr>
<td>Malkekvægsgylle</td>
<td>2000</td>
<td>800</td>
<td>128</td>
<td>464</td>
</tr>
<tr>
<td>Handelsgødning</td>
<td>500</td>
<td>450</td>
<td>1</td>
<td>2,5</td>
</tr>
<tr>
<td>Spildevandsslam</td>
<td>1000</td>
<td>1400</td>
<td>236</td>
<td>710</td>
</tr>
</tbody>
</table>

Sammenlignes den årlige tilførsel af de 3 metaller til arealer der gødes med typiske tilførselsrater af husdyrgødning, handelsgødning eller spildevandsslam (Tabel 5 og 6) ses det at spildevandsslam ikke tilfører væsentligt mere kobber eller zink end husdyrgødning og for cadmium er mængden kun ca. 2-3 gange tilførslen med handels- eller husdyrgødning.

Hvis det i stedet pålagdes at cadmium i alle tilfælde skulle overholde den tørostofbaserede grænseværdi (0,8 mg/kg TS) ville jorden højest kunne tilføres 800 mg/ha/år, svarende til den mængde der tilføres med kvæggylle. Der skal imidlertid henvises til tabel 4, som viser en realistisk beregning for hvor lang tid det vil tage at nå grænseværdien for cadmium i jorden ved normale udbringningsrater og med det nuværende gennemsnitlige cadmiumindhold i spildevandsslam; heraf ses det, at selv med en tilførselsrate på 1400 mg/ha/år som anført i Tabel 6, vil det vare næsten 1000 år før grænseværdien for cadmium i jord er nået.

Hvor god er den nuværende/foreliggende viden?

Den foreliggende videnskabelige viden på området er generelt på et meget højt niveau, dvs. overvejende publiceret i internationale videnskabelige tidsskrifter med peer-review, og emnet har været behandlet i mange lande, dvs. under meget varierende klima og jordbundsforhold.
Referencer

3.1.3 **Er der en øget risiko for overførsel af medicinrester (antibiotika, etc.)**

Hvad ved vi?

Hvilke stoffer er der tale om, og hvor kommer de fra?

Generelt anses lægemidler med højt forbrug og/eller lav nødvendig dosis for human effekt (høj potens) for de vigtigste stoffer med hensyn til miljøeffekter. Men også stoffer med lav oploslighed er relevante, da oplosligheden kan spille en vigtig rolle i slambehandlingsprocesserne.

På baggrund af et litteraturstudie blev der af Miljøstyrelsen i 2002 udpeget lægemidler inden for 5 anvendelsesområder, som potentielt kan udgøre en fare for miljøet ved udbringning af spildevandsslam. De vigtigste af disse stoffer er vist i tabel 1.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Anvendelse</th>
<th>Mængder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibuprofen</td>
<td>Gigt og smert</td>
<td>store mængder</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>Smerter</td>
<td>store mængder</td>
</tr>
<tr>
<td>Furosemid</td>
<td>Hjerte og kredsløb</td>
<td>~ 5 ton/år</td>
</tr>
<tr>
<td>Østrogener</td>
<td>Kønshormoner</td>
<td>< 250 kg/år</td>
</tr>
<tr>
<td>Antibiotika</td>
<td>Infektionssygdomme</td>
<td>--</td>
</tr>
</tbody>
</table>

Medicinstoffernes vej til miljøet går gennem den menneskelige organisme og derefter via toiletbesøg og lignende videre til renseanlæg. Efter indtagelse i kroppen omdannes de fleste af stofferne til andre udskillelsesprodukter, men det er yderst sjældent at 100% af stoffet optages i organismen, hvorfor en varierende fraktion altid vil findes på den originale form. Stofferne kommer dog ikke udelukkende fra den menneskelige indtagelse, da også medicinalindustrien har lægemidler og restprodukter deraf i deres spildevand.

Er der nogen okotoksikologiske effekter i jorden eller i vandmiljøet?

Økotoksikologiske effekter fra de fleste lægemiddelstoffer på det danske marked er generelt dårligt belyst i litteraturen, men det vides at mange af medicinstofferne har meget specifikke biologiske
virkninger og besidder egenskaber til at akkumulere i organismer ved kontinuerlig eksponering. Derfor ved man, at der for visse stoffer som fx østrogener kun kræves meget små koncentrationer før der kan registreres negative effekter i miljøet. Effekterne fra østrogener afspejles i hormonforstyrrelser, mens antibiotika kan skade jordens mikroorganismers eller fremme udviklingen af resistent bakterier. Østrogener og antibiotika er de stofgrupper, som har været emne for mest forskning.

Effekter i vandmiljøet, som følge af slamudbringning til jordbrugsformål, vil afhænge af stoffernes potentiale for at udvaskes fra jorden. Den eksisterende viden på dette område er meget begrænset, men langt de fleste medicinstoffer har dog så lav opløselighed, at de vil være bundet til slammet i jorden, og udvaskningen må følgelig forventes at være minimal. En nylig dansk undersøgelse har vist at østrogenaktiviteten i dræn fra slam- og gylletilførte marker ikke var målelig i stort set alle de undersøgte tilfælde (Stuer-Lauridsen et al. 2006). Visse aktivstoffer i antibiotikamidler er dog vist at have høj mobilitet i jord og kan derfor have negative effekter i vandmiljøet (Halling-Sørensen 1999).

For effekter i jordmiljøet gælder også at den eksisterende viden er meget begrænset, men giftigheden vil afhænge af biotilgængeligheden af stofferne. Der er blandt andet observeret negative effekter på mikroorganismer fra antibiotika (Halling-Sørensen 1999).

Kan stofferne optages af planter og via fødekæden overføres til mennesker og dyr?

Hvor hurtigt og hvor effektivt nedbrydes stofferne under behandlingsprocesserne?

Når lægemidlerne med kloakvandet ledes ind i renseanlæggen, bestemmer de enkelte stoffers fysiske og kemiske egenskaber, hvorvidt de vil fordele sig i vanfase eller i slammet. Det er navnlig stofferne fedtopløselighed eller tendens til at binde sig til organisk materiale, som er de styrende egenskaber.

Miljøstyrelsen har i en arbejdsrapport (Stuer-Lauridsen et al. 2002) samlet den eksisterende viden om bionedbrydeligheden af lægemiddelstofferne. For alle stofferne nævnt i dette dokument, bortset fra Ibuprofen, gælder at nedbrydeligheden er meget ringe eller, at der ingen data findes. For Paracetamol vides dog at stoffet er let nedbrydeligt.
Der findes nogle undersøgelser, som har forsøgt at kvantificere fjernelsen af lægemidlerne i spildevandet gennem renseprocessen (Kjølholt et al. 2003; Carballé et al. 2004), men der er ikke fundet tilsvarende undersøgelser for lægemidlerne i slammet. I arbejdsrapporten fra Miljøstyrelsen (Stuer-Lauridsen 2002) har man opstillet beregninger, som ud fra meget konservative kriterier estimerer den årlige middelkonzentration i slam. Resultaterne viser at Paracetamol og Acetylsalicylsyre kan findes i koncentrationer op mod 1 g/kg, mens Ibuprofen og Furosemid ligger på henholdsvis 200 og 20 mg/kg. De resterende stoffer på listen over de mest anvendte produkter i Danmark vil ifølge beregningerne ligge under 1 mg/kg. Værdierne er som nævnt middelværdier, og der må følgelig forventes tids- og lokalitetsbestemte variationer i den virkelige verden.

Er der udsigt til at nedbrydningspotentialet i slambehandlingen kan forbedres i fremtiden?

Der arbejdes generelt for at forbedre rensnings- og behandlingsprocesserne på de danske renseanlæg. Det er imidlertid ikke lægemidler, men derimod andre stoffer, som tungmetaller og de miljøfremmede organiske stoffer LAS, NP, DEHP og PAH, der har været i fokus med hensyn til genanvendelsen af spildevandsslamm, og således er dette udviklingsarbejde sjældent rettet mod nedbringelse af slamets indhold af lægemidler. Det må dog forventes at et øget potentiale for nedbrydning af de miljøfremmede organiske stoffer i fremtiden også vil have en positiv effekt på nedbrydningen af lægemidlerne i spildevandsslammet.

Hvor hurtigt og hvor effektivt nedbrydes stofferne i jorden efter udbringning?

Lægemidlerne er som nævnt designet til at udføre en bestemt funktion i den menneskelige organismer, og derfor er stofferne gennemtestet for deres mobilitet og nedbrydelighed i kroppen. Imidlertid er der kun lidt viden om, hvad der sker med stofferne når de optræder i miljøet. En nylig undersøgelse af 81 lægemidler viste, at der var ringe sammenhæng mellem nedbrydeligheden af stofferne i miljøet og nedbrydeligheden i organismen, som anvender lægemidlet (Jjemba 2006). Én litteraturudredning fra 2004 tyder på at visse lægemidler har potentiale for at ophobes i de øvre jordlag efter slamudbringning (Beausse 2004). Undersøgelserne har primært taget udgangspunkt i lægemidler indenfor antibiotika og hormoner.

For mange af lægemidlerne vides det at nedbrydeligheden er storst, hvis ilt er til stede, og det må derfor forventes at nedbrydeligheden er ringe i jorden umiddelbart efter slamudbringning, da slammet findes i klumper på ca. 2 - 4 cm, hvor ilttilførslen initielt er forholdsvis ringe, men må forventes at øges i tiden efter udbringningen.

Er der nogen nye lægemidler der kan forventes at udgøre en risiko?

Det bakteriehæmmende stof, triclosan, som bl.a. findes i mange typer af tandpasta, har været genstand for et stigende antal undersøgelser i den internationale litteratur i forbindelse med udbringning af spildevandsslam. Af eksempler kan nævnes Lapen et al. (2008) og Topp et al. (2008), som i et worst-case scenario kunne vise, at det bakteriehæmmende stof triclosan kunne spores med en drænstands koncentration på 3676 ng/l kort tid efter tilførsel af spildevandsslammen. Da haletudser (Rana catesbeiana) udsat for 150 ng/l triclosan i fire dage udviser forandring i transcriptionen af thyroid hormon receptoren samt vægttab (Veldhoen et al. 2006), blev de observerede koncentrationer af Lapen et al. (2008) vurderet til at være høje nok til potentielt at yde biologisk indflydelse.

I dansk regí har en rapport fra DMU (Mogensen et al. 2008) vist, at der i dansk spildevandsslam kunne findes otte ud af de i alt 25 almindeligt anvendte lægestoffer, herunder triclosan, som blev fundet i alle undersøgte slamprøver i koncentrationer mellem 0,7 -11 mg/kg TS (tabel 1). Foreløbige beregninger udført i rapporten tyder på at triclosan kan udgøre en potentiell risiko for visse organismer som lever i landbrugsjord, men vores viden om stoffets toksicitet i jorden ringe, hvorfra estimater er konservativt. Resultaterne for triclosan i rapporten vakte stor opsigts, men det bør nævnes at det undersøgte slam omfattede prøver fra kun 11 forskellige renseanlæg som bestod af såvel primær som afvandet slam, og dermed ikke inkluderer effekterne af eventuelle efterbehandlingsmetoder, som fx kompostering, mineralisering, mv. Desuden skal det pointeres at rapporten i forhold til triclosan alene anbefaler at stoffet og dets nedbrydningsprodukter i slam overvåges nærmere i fremtiden. Miljøstyrelsen arbejder endvidere med planer om udfasing af triclosan, og derfor vil dette potentielle problem på sigt være løst (DAKOFAs 2008).

Udover triclosan blev sulfamethizol, furosemid og cimetidin fundet i alle ti slamprøver. Da der ikke foreligger økotoksikologiske data for stofferne i jord kan den miljømæssige betydning af stoffernes forkomst i slam ved eventuel anvendelse af slammet ikke vurderes pånuværende tidspunkt (Mogensen et al. 2008).

Redshaw et al. (2008) undersøgte nedbrydeligheden af lægemidlerne flouxetine HCl, norflouxetine HCl, diazepam, temazepam and oxazepam i en engelsk jord tilført spildevandsslam med en bakterieiekultur, som er typisk for jord, på hvilken der bliver udbagt spildevandsslam. Lægemidlerne var resistente imod nedbrydning i væskekulturstudier testet over en periode på 60 dage. I en studie på nedbrydningen af flouxetine HCl i en forlænget periode på 200 dage kunne der heller ikke påvises nogen nedbrydning. Lægemidlerne resistentes imod nedbrydning betyder, at der er sandsynlighed for akkumulering af disse stoffer i jorde tilført spildevandsslam, hvormed risikoen for transport til andre komponenter i miljøet såsom eksponering af flora og fauna bliver øget (Redshaw et al. 2008).
På trods af at toksiciteten er dårligt belyst, så er negative effekter på organismer blevet konstateret for nogen af stofferne. Den stærke binding af lægemidlerne kan betyde, at der med udbringning af spildevandsslam over en årrække kan akkumuleres lægemidler, som vil potentielt vil kunne skade det omgivne miljø. For at undgå dette, er det derfor nødvendigt, at fastsætte passende grænseværdier for disse stoffer.

Tilføres jorden flere lægemidler med slam i forhold til gylle?

For østrogen er der på KVL foretaget forsimplede beregninger for at afdække tilførslen som funktion af ulige gødningstyper. Beregningerne, som er baseret på at kvælstofnormen skal opfyldes for vinterhvede, tyder på at slam (0.4 g/ha) tillør mindre mængder af østrogen til landbrugsjorden end både kvæggylle (3.7 g/ha) og svinegylle (1.1 g/ha) (Lindedam et al. 2006).

I lyset af de store mængder antibiotika, der anvendes til veterinære formål må udbringning af spildevandsslam ikke forventes at forøge tilførslen af disse stoffer til jorden.

Hvor god er den nuværende/foreliggende viden?

Den videnskabelige viden på området er begrænset af omfang, især hvad angår økotoksikologiske effekter. Der er behov for at øge denne viden og for at fastlægge grænseværdier for stoffer, som udviser toksicitet. Den foreliggende forskningsviden er dog generelt af god kvalitet, og en del er publiceret i anerkendte videnskabelige tidsskrifter.

I Danmark har der været et stærkt forskningsmæssigt fokus på emnet med videnskabeligt niveau på højde med de bedste miljøer i udlandet.

Referencer

Tilgængelighed:
http://www.dakofa.dk/index.php?option=com_content&task=view&id=945&Itemid=119

3.1.4 Er der øget risiko for overførsel af smitstoffer (patogener, parasitter etc.)

Hvornår er dette problem relevant?

Hvad ved vi?

Spildevand fra husholdninger og industri kan indeholde planteskadegørere som svampe, bakterier, rundorme og frø fra ukrudtplanter. Typisk kan skadegørerne inficere grønsager som kartofler, salat og kål (Carrington 2001). Der findes ingen lovmæssige krav i forhold til slammets indhold af planteskadegørere.

Hvor effektivt fjernes smitstoffer under behandlingprocesserne i renseanlæggene?
Kompostering af slamm fed kan fjerne store dele af de tilstedevarerende patogener idet temperaturen hæves og patogenerne udkonkurreres af de nedbrydende mikroorganismer som opformeres under processen (Dumontet et al. 1999; Briancesco et al. 2008). Men spildevandsslam, som godkendes til deponering på landbrugsjord med fortærbare afgrøder, skal udover kompostering have gennemgået en kontrolleret hygiejinisering, som ifølge slambekendtgørelsen skal bestå af mindst én af følgende behandlinger (Bekendtgørelse 2003):

a) Behandling i reaktor, hvor temperaturen har været minimum 70 grader C i minimum 1 time.
b) Behandling ved tilsætning af brændt kalk, som sikrer at alt materiale opnår pH på 12 i minimum 3 måneder.
c) Behandling i biogasreaktor ved termofil udrådningstemperatur (minimum 52 grader C) og efterfølgende behandling i separat hygiejiniseringstank. Der forefindes i bekendtgørelsen minimums holdtider (tid som alt materiale som minimum opholder sig i tanken), som afhænger af den anvendte temperatur. Alle behandlinger skal kunne dokumenteres i henhold til bekendtgørelsens anvisninger.
Overlevelsen af de patogene mikroorganismer i slammet er en funktion af en række faktorer som temperatur, pH og opholdstid. For sammenhængen mellem temperaturen, tiden og overlevelsen af en række patogene mikroorganismer er lavet en graf (Figur 1), som indikerer en sikkerhedszone (safety zone), hvor slammet bør være sikkert at anvende.

![Figure 1. Tids- og temperatursammenhæng som bør resultere i et sikkert slamprodukt med hensyn til de i grafen angivne smitstoffer (Strauch 1998)](image)

Ifølge Figur 1 bør slammet for at være indenfor sikkerhedszonen udsættes for én af følgende kombinationer af tid og temperatur.

<table>
<thead>
<tr>
<th>Temperatur (grader C)</th>
<th>Periode</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>> 7 min.</td>
</tr>
<tr>
<td>65</td>
<td>>30 min.</td>
</tr>
<tr>
<td>60</td>
<td>> 2 timer</td>
</tr>
<tr>
<td>55</td>
<td>> 3 dage</td>
</tr>
</tbody>
</table>

Således må slam, der har været udsat for 70 grader C i mere end 60 min. placere sig godt oppe i sikkerhedszonen.

Termofil udrådning, hvor slammet befinder sig i en biogasreaktor ved 55 grader C i minimum 4 timer er også en effektiv process til fjernelsen af patogener (Carrington 2001). Den danske bekendtgørelse kræver for en behandlingstemperatur på 55 grader C, at slammet udsættes for udrådning i 6 timer (Bekendtgørelse 2003).
Genanvendelse af affaldsbiomasse til jordbrugsformål (2. udgave, 2010)

56

Der er eksempler på undersøgelser, som påpeger risikoen for at patogene kan genindfinde/retablere sig i det behandlede slam (Bagge et al. 2005). For at undgå dette foreslås det, at slammet tørres ved opvarmning efter endt behandling, hvilket også vil gøre den videre skæbne (transport o.l.) af slammet lettere (Carrington 2001).

Hvor længe kan smitstofferne overleve i jorden?

Er der risiko for udvaskning til drikkevandskilder?

Udvaskning til drikkevandskilder kan ske via nedadgående transport gennem porer og sprækker i jorden til grundvand eller via transport over landjorden til åer og søer. Betydningen af sådanne transportveje er ofte meget nært korreleret med kraftigt regnfald (Tyrrel and Quinton, 2003)

Er risikoen for overførsel af smitstoffer større for spildevandsslam end for gylle?

Der har i det seneste årti været fokus på om gylle og spildevandsslam kan være betydelige kilder til transmission af humane smitstoffer via miljøet. Som resultat af en dansk workshop fandt Landbrugets Rårdgivningscenter (1994) at man skulle stramme på hygiejnekravene til slamspredning (dette er siden sket) men at der kun var få tilfælde af aktuel smittetransmission fra såvel spildevandsslam som husdyrgødning, hvilket skyldes at de fleste patogener inaktiveres en vis tid efter udspredning i marken, men at der var meget begrænset viden om dette. I de seneste år er der kommet fornyet fokus på husdyrgødning som smittekilde i lande med meget intensiv husdyrproduktion, som færere. Canada (Guan and Holley 2003a) og Skandinavien (Guan and Holley 2003b; Alibhn & Vinnerås 2006). I lande som Danmark og Holland er der observeret korrelation mellem svineproduktionens størrelse og infektion af såvel dyr som mennesker med Salmonella, Campylobacter og Yersinia (Guan and Holley 2003b), men husdyrgodningen er fortsat ikke påvist som smittevej. Der er dog vist stor forskel på hvor godt de patogene mikroorganister overlever i såvel gødningsslager, vand og jord, og at især ved lave temperaturer kan persistente patogene arter som E. Coli O157:H7 overleve længe i miljøet (Cools et al. 2001; Avery et al. 2005; Arrus et al. 2006), mens arter som Campylobacter og Giardia har en ringe overlevelsesvæsen. Det er også vist at opbevaring som gylle favoriserer overlevelse mere end i fast gødning (Nicholson et al. 2005), samt at lagring i 1-3 måneder for de fleste arter reducerer indholdet med mere end 90% (Cote et al. 2006). Ottoson et al. (2006) har endvidere vist at behandling af gyllen med urea kan reducere indholdet yderligere.
Hvor sikre er de danske krav til smitstoffer i slam?

Hvor god er den nuværende/foreliggende viden?

Der har ikke tidligere været så meget fokus på disse aspekter, men den videnskabelige viden på området er generelt på et stigende niveau, og der er en del publiceret i internationale videnskabelige tidsskrifter med peer-review, ligesom emnet har været behandlet i mange lande, dvs. under meget varierende klima, jordbunds og driftsforhold.

I Danmark har der været et betydeligt forskningsmæssige fokus bl.a. gennem Center for Bæredygtig Arealanvendelse og Forvaltning af Miljøfremmede Stoffer. Denne viden er ligeledes generelt på et højt videnskabeligt niveau, men også formidlet i såvel nationale rapporter som populærvidenskabeligt.

Referencer

3.2 Vandmiljø, grundvand og andre vandressourcer

3.2.1 Påvirket udvaskningen af N til grundvand og vandmiljø på kort og langt sigt?

Hvorfor er dette problem relevant?
Nitrat er et meget mobilt næringsstof, som derfor har stort potentiale for at udvaskes til grundvandet eller søer og vandløb. For høje koncentrationer af nitrat i drikkevandet er sundhedsskadeligt, da det hæmmer optagelsen af ilt. Grænseværdien for nitrat i drikkevand er derfor fastsat til 50 mg/l (EU’s drikkevandsdirektiv: 98/83/EF). Nitrat kan også direkte fra landbrugsjorden eller via grundvandet sive ud i søer, vandløb og havmiljø, hvor det kan ændre næringsstofbalancen i en sådan grad, at det kan forårsage algeobloemstrings og efterfølgende iltsvind.

Hvad ved vi - baggrundsviden

Hvor meget nitrat findes der i spildevandsslam?

Kvælstof (N) i spildevandsslam forekommer på flere forskellige former, bl.a. indbygget i organiske molekyler, som ammonium (NH4⁺) samt som nitrit (NO₂⁻) og nitrat (NO₃⁻). En tidlig amerikansk opgørelse over næringsstofindholdet i 250 slamprodukter fra 150 renseanlæg viste følgende fordeling for kvælstof (Sommers 1977):

<table>
<thead>
<tr>
<th>N-fraktion</th>
<th>Middelværdi (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total N</td>
<td>39</td>
</tr>
<tr>
<td>NH4⁺-N</td>
<td>6.54</td>
</tr>
<tr>
<td>NO3⁻-N</td>
<td>0.49</td>
</tr>
</tbody>
</table>

På baggrund af disse data ses det, at det relative indhold af kvælstof i form af nitrat i spildevandsslam udgør en meget lille del (1-2%) af det samlede kvælstofindhold og altså blot 490 mg/kg tørstof slam. En senere undersøgelse (Parker & Sommers 1983) viste, at den organiske fraktion af N i slam udgør ca. 15-20 mg/kg tørstof. Selvom disse undersøgelser er ældre og ikke nødvendigvis er repræsentative for dansk spildevandsslam, så vil langt den største del af det kvælstof, der tilføres jorden med spildevandsslam, findes i de organiske forbindelser.

Ifølge Miljøstyrelsens opgørelse over dansk spildevandsslam fra kommunale og private reneanlæg anno 2002 var gennemsnitsindholdet af N i dansk slam 44.4 kg/ton tørstof, hvilket svarer til 44.4 g/kg (Miljøstyrelsen 2004). I en dansk undersøgelse af kvælstofs dynamik i forbindelse med slamløbning benyttedes to slamtyper med kvælstofindhold på henholdsvis 30 og 59 g/kg tørstof. Den uorganiske N-fraktion (NH4⁺, NO₂⁻ og NO₃⁻) af slamprodukterne fandtes at udgøre henholdsvis 14 og 9 % af det samlede kvælstofindhold (Petersen et al. 2003).

Konklusjonen er at det faktiske indhold af nitrat i spildevandsslam er meget lavt i forhold til den samlede mængde kvælstof. Størstedelen findes i den organiske fraktion.

Hvor meget af slammets kvælstof omdannes til nitrat og hvordan?

Når spildevandsslam udbringes på landbrugsjord begynder den mikrobielle nedbrydning af de organiske komponenter. Mikroorganismen er udykker kulstoffet (C) i de organiske forbindelser som energikilde, men en vis mængde N er også nødvendig for mikroorganismen til cellevækst. Hvis
der er mere N i det organiske stof end mikroorganismerne behøver til cellevækst omdannes det overskydende organiske N til organisk N (fx ammonium og nitrat), hvilket betegnes som mineralisering af N. Mineraliseringen afhænger af en mængde faktorer i jorden, hvor de vigtigste er temperatur, fugtighed og mængden af ilt tilstede. De to førstnævnte er afgørende for den mikrobielle aktivitet i jorden, mens mængden af ilt er en funktion af jordens type (tekstur dvs. ler eller sand) og vandindhold. Derudover er forholdet mellem C og N i den slambehandlede jord også af væsentlig betydning.

Når grænserne i slambekendtgørelsen for tilførselsrater af slam til landbrugsjord er baseret på P indhold, risikerer man så ikke et kvælstof overskud og en stor nitratudvaskning?

Der må i henhold til slambekendtgørelsen ikke udbringes slam i mængder som overskrider hverken den fosforrelaterede grænseværdi på 30 kg P/ha/år (gns. over 3 år) eller den kvælstofrelaterede grænseværdi på 170 kg N/ha/år. Ifølge miljøstyrelsens opgørelse over dansk spildevandsslam fra kommunale og private renseanlæg anno 2002 var det gennemsnitlige indhold af kvælstof og fosfor henholdsvis 44.4 og 31.9 kg/ton tørstof (Miljøstyrelsen 2004). Dette forhold mellem kvælstof og fosfor sikrer, at der i gennemsnit højst må udbringes ca. 1 ton tørtstof per ha per år, dvs. godt 40 kg total N/ha. Selv hvis der tilføres op til 90 kg P/ha i et ud af 3 år, dvs. ca. 125 kg total-N/ha, vil kvælstofnormen altså ikke umiddelbart blive overskredet.

Da de fleste afgrøder, hvor man vil tilføre slammet, har et kvælstofbehov på 110-130 kg N/ha og slammets total-N kun har et værdital på ca. 45% (se factsheet om udnyttelse af næringsstoffer), så er der heller ingen risiko for at slamtilførslen giver et voldsomt kvælstof overskud eller en deraf afledt stor nitratudvaskning.

Udledes der mere nitrat fra jorden ved anvendelse af spildevandsslam på landbrugsjord end ved for eksempel handels- eller husdyrgødning? Og er der forskel på den umiddelbare og den langsigte effekt?

Handelsgødning N udnyttes ikke 100% af afgrøderne. Typisk vil 50-80% af det tilførte N optages i kornafgrøder, mens resten tabes eller akkumuleres i jorden (afhængig af om jordens indhold af humus stiger eller falder).

Husdyrgødning N virker generelt ringere end handelsgodnings N, men den danske lovgivning om gødninganvendelse foreskrivener f.eks. at landmanden for svinegylden mindst skal regne med en virkningsgrad på 75% ift. handelsgødning.
I forhold til handelsgødning, så udnyttes spildevandsslammetes kvælstof kun ca. 45% så godt som handelsgødning i det første og andet år efter udbringning (se factsheet om udnytelse af næringsstofferne). I de efterfølgende år kan af spildevandsslammetes N måske udnyttes med yderligere 15-20% iht. handelsgødning, men akkumuleret over en lang årrække vil næppe mere end 60-70% af N i slammet kunne udnyttes ligeså godt som handelsgødning. Samlet set vil dette være på højde med husdyrgødninger, f.eks. fast staldgødning, mens husdyrgødninger med et forholdsvis høj tørstofindhold vil have en ringere afgødevirkning per N end spildevandsslam.

Dette betyder at den resterende tredjedel af slammet ikke vil kunne udnyttes af afgrøderne, men enten vil akkumuleres som organisk stof i jorden eller vil blive tabt til det omgivende miljø i form af nitratudvaskning eller som gasformigt kvælstof (NH₃, N₂O, N₂). Der findes ingen langvarige forsøg med spildevandsslam hvor man har forsøgt at kvantificere dette, men simuleringstidder viser at i forhold til anvendelse af handelsgødning alene, så vil tilførsel af spildevandsslam medføre et større indhold af organisk bundet N og humus i jorden. En vis del af det kvælstof der ikke udnyttes af afgrøderne vil imidlertid også udvaskes, men hvor stor en andel det vil være afhænger helt af hvilket dyrkningssystem det drejer sig (dvs. jordtype, klima, sædskifte etc.). Bruun et al. (2006) fandt f.eks. for komposteret husholdningsaffald tilført forskellige sædskifter (plante-, kvæg- eller svinebrug) at den andel af det tilførte affalds N der over en meget lang tidshorisont (100 år) blev udvasket som nitrat (via dræn til vandløb eller til grundvand via jorden) varierede mellem 7% og 87%, højst på de sandede jorde og lavest på de lerede.

Hvordan kontrolleres udledningen af nitrat i forbindelse med spildevandsslam bedst?

Som det fremgår af ovenstående og af factsheet om udnytelse af næringsstofferne, så, så kan der opnås den bedste udnytelse af spildevandets kvælstof ved at udbringte det om foråret, til forårs såade afgrøder. Hvis det udbringes om efteråret er der en risiko for at der sker en væsentlig mineralisering gennem efterår og vinter, som vil kunne tabes ved udvaskning på mere sandede jorde med høj vintermedbør i vest Danmark. Endvidere vil nitrat udvaskningstab kunne modvirkes på jorde der modtager spildevandsslam og andre organiske gødninger, ved at sikre et sædskifte med anvendelse af efterafgrøder eller afgrøder med en lang vækstsæson og god rodudvikling.

Hvor god er den nuværende viden?

Den foreliggende viden på området er generelt fokuseret på andre organiske gødninger, især husdyrgødning, mens der er færre studier der specifikt fokuserer på spildevandsslam eller andre organiske affaldsprodukter og især mangler der forskningsmæssig viden om de langsigtede effekter. Det der findes er dog på et acceptabelt niveau, dvs. overvejende publiceret i internationale videnskabelige tidsskrifter med peer-review, men emnet har ikke været behandlet i mange lande, dvs. under meget varierende klima og jordbundsforhold.
Referencer

3.2.2 Påvirkes udvaskningen af P til vandløb og søer på såvel kort som på lang sigt?

Hvad ved vi – Baggrundsviden

For at vurdere eventuelle risici for øgede fosforudledninger i forbindelse med benyttelsen af affaldsbiomasse til landbruksformål, er det nødvendigt at forstå fosfors dynamik i jorden, overgangen fra jord til vand samt transporten fra mark til vandmiljø - et komplekst samspil, som afhænger af en mængde faktorer. Nogle af de mest afgørende faktorer er typen af jord (Djodjic et al. 2004), de hydrologiske forhold (Jensen et al. 1999; Magid et al. 1999) og typen af affald (Medeiros et al. 2005; Quilbé et al. 2005).

Grundstoffet fosfor (P) er et essentielt plantenæringsstof, som optages af planter som opløst fosfat (PO₄³⁻). Fosfor forekommer dog også på mange andre former i miljøet, bl.a. i mineraler og organiske forbindelser, og det vil derfor være forkert kun at betragte den plantetilgængelige fraktion. På trods af at en stor del af jordens fosfor findes som uorganisk fosfat, er kun en lille del af denne pulje tilgængelig for planterne. Dette skyldes at fosfat adsorberes (bindes) meget hårdt til jordens partikler, primært lerpartikler og jern- og aluminiumoxider. Indholdet af fosfor i jorden styres i høj grad af balancen mellem input i form af gødskning og output i form af planteoptag eller udledning til vandmiljøet. På trods af europæisk strategi om at sænke fosfortilførslen oplever de fleste nordvestlige og sydlige europæiske lande fortsat at input overstiger output (Leinweber et al. 2002), hvilket uundgåeligt leder til en akkumulation af fosfor i jorden og dermed forøget risiko for udledninger til vandmiljøet (Sharpley & Rekolainen 1997). Udledning kan i denne sammenhæng inddeles i 2 fænomener: (1) udvaskning gennem underjorden, særligt gennem porer og sprækker til dræn (Geohring et al. 2001), og (2) afstrømning ved jordoverfladen. Begge fænomener omfatter hovedsagligt opløst fosfat, men også opløst organisk fosfor og partikulært bundet fosfor kan have betydning - navnlig for afstrømningen. I tidens løb er udledningen via afstrømning blevet betragtet som det største problem, men i de senere år er der kommet mere fokus på udvaskningen gennem underjorden (McDowell et al. 2001). Forsøg viser at transportmekanismerne tilknyttet en bestemt jordtype samt jordens egenskaber for adsorption spiller en vigtig rolle for udledningen af fosfor (Djodjic et al. 2004). Sandede jorde har i tillæg til hurtig nedadgående vandtransport generelt dårligere adsorptionsegenskaber end fx lersediment, og kunne derfor tænkes at være forbundet med den største risiko for udvaskning. Dette er sandsynligvis mest gældende for organiske eller sandede lavbundsjorde i umiddelbar tilknytning til vådområder.

Spørgsmålet er nu, hvilken form for gødskning, der giver anledning til den største risiko for fosforudledning til vandmiljøet. Vandoploseligt fosfor er den mest tilgængelige og antages også at være den mest transportable og risikobetonede fraktion af fosfor i spildevandsslam (Elliot et al. 2002), og det er vist for spildevandsslam at tilførsel til landbrugsjord øger risikoen for udledning i forhold til ubehandlede jorde (Quilbé et al. 2005). Men forøger det risikoen mere end andre gødningstyper? En britisk undersøgelse blev i 2001 foretaget netop med henblik på at sammenligne forskellige gødningstypers potentielle for fosforudledning, og den generelle konklusion var, at risikoen for transport af fosfor via afstrømning var mindre for spildevandsslam end for handels- og husdyrødning (Withers et al. 2001). Årsagen til dette forventedes at være den ringere oploselighed af fosfor i slamprodukterne, men inkorporering (nedpløjning) af jordbehandlingsmidlet i de øvrige jordlag viste sig ligeledes at have stor betydning for fosforindholdet i afstrømningsvandet. Et laboratorieforsøg understøttede senere denne hypotese, da det blev vist at mængden af oploseligt
fosfor var mindst for spildevandsslam (Siddique & Robinson 2003). Denne gang blev fænomenet tilskrevet slammets højere indhold af calcium og dermed udfældning af calciumfosfater (Ca-P). I begge de nævnte undersøgelser blev behandlingsmidlerne tilført i ækvivalente fosformængder. I andre udenlandske forsøg med fokus på udvaskning konkluderedes det, at selv kvælstofbaseret tilførsel til sandede jorde ikke udviste nogen betydelig risiko for tab af fosfor (Shepherd & Withers 2001; Elliot et al. 2002). Det tyder altså ikke på at der på kort sigt er forøget risiko for tab af fosfor ved brug af spildevandsslam i forhold til handelsgødning eller gylle.

Langvarig tilførsel af spildevandslam

Det bør understreges at ingen undersøgelser er foretaget endnu, som udtrykkeligt bekræfter, at risikoen for udvaskning ikke vil stige ved langvarige tilførsler af affaldsbiomasse til landbrugsjord. Under genindvinding af jord til landbrugsformål efter overflademinebrug i Illinois, USA tilførtes spildevandsslam i høje rater gennem 31 år fra 1972 – 2002, og effekterne på det nærliggende vandmiljø blev moniteret. En mindre stigning i totalindhold af fosfor blev registreret i vandet, men stigningen var ikke højere end målinger, som var registreret i forbindelse med traditionelt landbrug andre steder i USA (Tian et al. 2006). Denne undersøgelse indikerer altså, at der heller ikke på lang sigt er øget risiko for tab af fosfor til vandmiljøet i forhold til handelsgødning eller gylle, men én undersøgelse bør næppe danne grundlag for en entydig konklusion.

Som nævnt tidligere, kan indholdet af vandoploseligt P anvendes som en indikator for risikoen for P tab. Kritiske værdier af vandoploseligt fosfor ligger mellem 2.5 og 7.5 mg P/kg jord hvilket svarer til en jordvæskekonzentration på 0.1-0.15 mg P/l (Andersen et al. 2006). Angående effekterne af langvarig tilførsel af spildevandsslam, har internationale studier vist, at koncentrationen af vandoploseligt fosfor (og dermed risikoen for udvaskning) kan forøges betydeligt- også på jorde med høj retentionskapacitet og ved tilføjelse af spildevandsslam behandlet med Ca(OH)₂ og FeCl₃ (Kidd et al. 2006; Schroder et al. 2008). Disse studier er dog som regel blevet udført med højere tilfølselsrater, end der er lovlige at tilføre i Danmark og som længst overstiger den nødvendige mængde tilgængelig plantenæringssstof. En græsk undersøgelse af effekten udbringning af spildevandsslam over fire år kunne således demonstrere, at koncentrationen af Olsen P (plantetilgængeligt P) ved tilførsel af 10 Mg slam tørstof/ha/år med en gennemsnitlig fosformængde
på 251 kg P/ha/år (8.4 så høj som de i Danmark tilladte 30 kg P/ha/år) var 1.5-2 gange højere end de værdier, der normalt anses for høje for anvendelse af P gødning, og at der dermed var signifikant større risiko for overfladeafstrømning og udvaskning af P end for kontroljorden (Samaras et al. 2008). På trods af den forøgede risiko i forhold til kontroljorden var den gødede jords fosfortal omkring 3, hvilket ligger indenfor den ønskede ramme af et fosfortal på 2-4 og dermed ikke overstiger den kritiske værdi på 4.

Ifølge et amerikansk studie med langvarig tilførsel af spildevandsslam med en gennemsnitlig tilførselsrate på godt 2 Mg tørstof/ha/år (svarende til 73 kg P/ha/år, dvs. ca. 2.4 gange den tilladte dosis i Danmark) oversteg koncentrationen af plantetilgængeligt P de 33 mg/kg, som på den pågældende jord anses for at være tilstrækkeligt for produktionen af vinterhvede, og øgede dermed risikoen for udvaskning. Koncentrationen af vandoploseligt P lå dog stadig indenfor den kritiske ramme på 2.5-7.5 mg vandoploseligt P/kg jord (Schroder et al. 2008). Lignende resultater blev fundet i New Zealand, hvor man tilførte 117 kg P/ha via anaerobisk udrådnet spildevandsslam hvert tredje år til en sandet skovjord. Her kunne der efter den 9-årige testperiode ikke påvises signifikant ophobning af fosfor (forøgelse af totalt indhold af P) i hverken over eller underjord (Su et al. 2007). Efter 9 år med høj tilførsel af fosfor ville man nok forvente en vis stigning i jordens P-indhold. På trods af at obhobningen ikke var signifikant, måltes svagt forøgede koncentrationer af P efter testperioden, hvilke kunne blive signifikante efter yderligere år med tilførsel.

Ovenstående undersøgelser viser at der ved langvarig udbringning af spildevandsslam i væsentligt højere doseringsrater end dem, der er tilladte i Danmark, kan opstå øget risiko for P tab til vandmiljøet. Sådanne høje doseringsrater kan kun retfærdiggøres hvis det ønskes at spildevandsslammet skal opfyde afgrødens N-behov; herved tilføres der langt mere P end afgrøden kan optage. I Danmark er maksimale udbringningsmængder af spildevandsslam i slambekendtgørelsen sat ud fra en betragtning om, at der ikke må tilføres mere fosfor end planterne har behov for (Miljøministeriet 2007). Dog ligger doseringsmængden af de 30 kg P/ha/år i øvre grænse af, hvad de fleste afgrøder har brug for. De få studier, der omhandler effekten af tilførslen af spildevandsslam i doseringsrater, der er sammenlignelige med de danske, tyder på, at der ikke er nogen risiko for obhobning af fosfor og deraf resulterende udvaskning og at registrerede forøgede indhold af oploseligt P stadig ligger indefor de fastlagte rammer for kritiske værdier.

Hvordan gøres det bedre?

Tab af P fra landbrugssystemer i høj grad vil være forbundet med helt lokale jordbundsforhold, udspringnitspunkt og metode. Dersom slam udbringes efter gældende regler med tilførselsmængde baseret på fosforindhold og nedmuldning kort efter udbringning, er risikoen for udvaskning hhv. overfladeafstrømning af fosfor meget ringe. På organiske eller sandede lavbundsjorde i umiddelbar tilknytning til vådområder, eller på hældende arealer bør der tages særlige hensyn ved udbringning af en hvilken som helst P-holdig gødning.

Der er i de seneste år arbejdet med udvikling af et dansk P-index (Nielsen et al., 2006), der på baggrund af en række kilde- og transportfaktorer kan indikere om en given mark vil have en forhøjet risiko for P-tab. Dette er beskrevet nærmere i afsnit 3.2.3, herunder om det i fremtiden kunne inddrages i vurderingen af, om arealer kan modtage spildevandsslam.
Hvor god er den nuværende viden?

Den foreliggende videnskabelige viden på området er overvejende publiceret i internationale videnskabelige tidsskrifter med peer-review, og emnet har været behandlet i mange lande, dvs. under meget varierende klima og jordbundsforhold. Der er imidlertid en overvægt af laboratoriestudier, hvor de anvendte forsøgsbetingelser afviger ganske betydeligt fra naturlige forhold i marken, ikke mindst ift. jordstruktur og transportveje. Mange af de udenlandske felt- og markstudier er endvidere udført på jordbundstyper og med et klima, der gør det vanskeligt at overføre resultaterne til Danmark. Endvidere er der ofte anvendt tilførselsmængder der ligger langt over de i Danmark maksimalt tilladelige jf. slambekendtgørelsen, og pga. den non-lineære sammenhæng mellem tilførsel og potentielle tab, kan konklusionerne derfor i de fleste tilfælde ikke overføres til danske forhold.

I Danmark har det forskningsmæssige fokus været rettet mod fosfor i landbruget i sin helhed og ikke specifikt mod fosfor i spildevandsslam. Denne viden er generelt publiceret i internationale videnskabelige tidsskrifter, men også formidlet i såvel nationale rapporter som populærvidenuskabeligt. For en mere detaljeret oversigt over nogle danske erfaringer med fosforudledninger fra landbruget samt tiltag i forbindelse med EU's vandrammedirektiv henvises i øvrigt til Kronvang et al. (2005).

Spørgsmålet om visse sandede eller organiske jordes følsomhed i Danmark synes underbelyst, men i forbindelse med gennemførelsen af forskningsprogrammer under VandMiljøhandlingsPlan III er denne viden suppleret med henblik på særligt følsomme områder. Disse undersøgelser har imidlertid understreget, at der endnu mangler meget procesforståelse af transport- og tabsmekanismer for P fra dyrket jord. Der er derfor klart et behov for flere danske undersøgelser på området, ikke mindst på fastliggende forsøgsarealer med flerårig tilførsel af organiske gødninger og restprodukter.

Referencer

3.2.3 Det nye danske P-index - kan vi udpege jordbrugsarealer med risiko for P tab

Baggrundsviden

Stater i det nordøstlige USA har udarbejdet et Phosphorus Site Index (PSI), som klassificerer risikoen forbundet med udbringning af spildevandsslam. Her tages bl.a. udgangspunkt i faktorer som lokalitetens afstand til vandmiljø og hældningen på den aktuelle lokalitet (Sharpley et al. 2001).

Et lignende værktøj til at udpege marker, der udgør en særlig risiko for fosfortab til vandmiljøet, har været under udvikling ved DJF og DMU (Nielsen et al. 2006; Andersen et al. 2006), og dette beskrives i det efterfølgende, da det inddragelse i risikovurderingen for fosfortab muligvis vil kunne få indflydelse på mulighederne for slamudbringning.

- Kildefaktorer karakteriserer, hvor meget fosfor der potentielt kan mobiliseres på marken og omfatter jordens fosforstatus, gødningstabs (tildelt fosfor i handels- og/eller husdyrgødning) samt udbringningsteknologien (Hørfater 2008).
- Mobiliseringsfaktorer omfatter erosionspotentiale, afstrømningsområde, vinternedbør,kontaktvolumen overjord og fosforbindings- eller retentionkapacitet i underjord (Heckrath, 2008).
- Transportfaktorer beskriver hvor effektiv en transportvej, der er mellem marken og vandløbet/recipienten. De vigtigste transportfaktorer er overfladeafstrømning og erosion, udvaskning gennem dræn samt markens afstand og forbindelse til recipienten. De to sidstnævnte faktorer har kun en betydning for overfladeafstrømning. Vægtningen af enkelte faktorer er generelt baseret på hvilke faktorer, der har størst betydning for P tab (Hørfater 2008).

For at nå frem til et enkelt fosforindekstabs værdi pr. mark beregnes først et delindeks for hver tabsproces ved at beskrive fosforkilde, mobiliserer og transport. Alle faktorværdier multipliceres for hver tabsproces, og resultatet standardiseres ved division med antagne maksimalværdier til en værdi mellem 0 og 100 (Andersen et al. 2007).
Delindekserne, som er blevet redegjort for i det ovenstående, sammenfattes således at man får en samlet P-indeksværdi pr. mark (Heckrath 2008). En høj P-indeks værdi på et areal forudsætter, at der både er et højt indhold af mobiliserbart fosfor i jorden og et højt transportpotentiale. Kun områder med et højt transportpotentiale kan få en høj indeksværdi svarende til en stor tabsrisiko (Hørfater 2008).

Fosforbindings- eller retentionskapacitet

Da jordens retentionskapacitet for fosfor direkte er knyttet til dens sårbare for tab af fosfor, har man i sammenhæng med udarbejdelsen af fosforindekset kortlagt bindingskapaciteten for fosfor i underjorden. Resultatet kan ses i figur 1. Da fosfor bindingskapaciteten i jorden er proportional med jordens indhold af jern- og aluminiumoxider (målt som oxalat-extraherbart aluminium og jern) vil et højt indhold af jern- og aluminiumoxider derfor være indicator for høj retentionskapacitet af P i jorden (Greve et al. 2007).

Figur 1: Indhold af aluminium- og jernoxider i form af oxalat-extraherbart aluminium, Al (venstre) og jern, Fe (højre) in den lavere del af B-horisonten (0.5-0.75 m) af mineralske jorde i Danmark. Lavbunds jorde er udelukket i denne analyse og er markeret med hvidt (Greve et al. 2007).
Antager man, at aluminium og jern binder fosfor lige stærkt, så kan indholdene af oxiderne lægges sammen og danne et udtryk for fosfor-retentionskapaciteten i jorden. Et inholds på <60 mmol (Al+Fe)ox/kg anses som et udtryk for lav retentionskapacitet, mens et indhold >100 mmol (Al+Fe)ox/kg kendtegner høj retentionskapacitet. Som det kan af figur 1 har mange underjorde intermediær retentionskapacitet (Greve et al. 2007).

Fosforstatus

Retentionsskapaciteten er direkte knyttet til jordens fosforstatus, som er et udtryk for udvaskningspotential og kvantificeres via fosfortallet. Selv arealer med høj retentionskapacitet for P kan opnå en mætningsgrad, dvs. høj fosforstatus, med tiden og dermed forøge koncentrationen af P i jordvæsken. Det er derfor relevant at inddrage jordens fosforstatus i beregninger for P indekset (Kjærgaard 2007).

![Procentvis fordeling af fosfortal i markerne for forskellige landsdele i Danmark i 2009 (Pedersen, 2010).](image-url)
På trods af en betydelig forskel i den geografiske fordeling af fosforstatussen, har man ved udarbejdelse af P-indekset valgt at tildele et fosfortal på 5 som default-værdi til hver mark (Heckrath 2009). Dette er gjort for at sikre at det kræver dokumentation (jordbundsanalyser) for at kunne inddrage lav P status som faktor i minimal P tabs risiko, og dermed giver landmændene et med lav P status

Makroporestrømning

Makroporer er større porer, der opstår gennem jordfaunauens aktivitet, vækst eller hendøen af planterødder samt når jorden sprækker pga. eksempelvis lille nedbør. Makroporer forekommer i jorde med et lerindhold på over 10% (Andersen et al. 2007). Vandtransport gennem makroporer er meget hurtigere end transport gennem mindre porer.

Makroporestrømning sker når vandets infiltrationsrate overstiger jordens retentionskapacitet for vand. Derfor er risikoen for makroporestrømning høj på arealer hvor jorden er ofte ved er vandmættet. Figur 3 viser, at disse arealer hovedsageligt er beliggende på Øerne, men en større frekvens findes ligeledes i Øst- og Nordjylland samt omkring Mors (Iversen et al. 2007). Det bemærkes at mange af lavbundsjordene, der var undladt fra bestemmelsen af jern- og aluminiumsoxider (figur 1), udviser et stort risiko for tab af P gennem makroporer.

Figur 3: Danmarks kort, der viser arealer med variende risiko for vandmættning og dermed makroporestrømning (Iversen et al. 2007).
Det samlede P-indeks

P-indeksset sammenfatter som sagt en række risikofaktorer i de fire del-indeks, der opgøres for hver markblok og udtrykker risikoen for tab ved hhv. erosion, overfladisk afstrømning, udvaskning gennem jordmatricen og udvaskning gennem makroporer.

Vægtningen af forskellige delindekser (erosion, overfladeafstrømning, udvaskning, makroporetab) i det samlede P-indeks bør bero på de enkelte faktorers betydning for tab af P (Wiggers & Nehmdahl 2006). Det er imidlertid på nuværende tidspunkt ikke helt fastlagt, hvordan de enkelte delindekser skal vægtes, men det står klart, at jordens fosforstatus (udtrykt ved fosfortallet) vægtes større end godningstilførselen i kildefaktorerne.

P-risikokortlægningen er indlejret i et web-værktøj, der har tre komponenter: (1) en GIS-komponent, hvor der vises risikokort og en række kort med baggrundsinformationer, (2) en virkemiddelplanlægningskomponent, hvor man kan få vejledning til valg af virkemiddel til et givet risikoområde og gennemregne effekten af selvalgte scenarier over forskellige sammensætninger af virkemidler indenfor f.eks. et søoplant, og (3) en download-komponent, hvor man kan trække GIS-informationer og scenarier over i egne, lokale applikationer.

Status på P-indeksset (feb. 2010) og vurdering af mulig indflydelse på regulering af slamanvendelse

Ved redaktions afslutning er status imidlertid at værktøjet ikke er i drift pga. manglende økonomiske midler til validering og videreudvikling. Derfor er der ikke generel adgang til prototypen. (www.np-risikokort.dk)

Det er vigtigt at nævne, at det ikke har været et erklæret mål at det danske P-indeks skulle anvendes til at sætte overgrænser for P tilførsel som sådan. P-indeksset er tænkt til at skulle have en vejledende funktion i planlægning af virkemidler mod fosfortab på konkrete risikoarealer. Har et område en imidlertid en høj P status og er forbundet med overfladevandet igennem en effektiv tabsvej, anbefales der virkemidler, der bl.a. reducerer P tilførsel til området (Heckrath 2008, 2009).

Vægtningen af de enkelte delindekser er naturligvis af betydning for P-indekssets samlede værdi, men da vi ved så lidt om dette udvalg, er det ikke muligt, at komme med nogen vurdering om hvilke indekser, der er mest betydningsfulde for den samlede værdi af P-indeksset- fosforstatussen undtaget. Nuværende tilgængelige information tyder ikke på at der er nogen geografiske trends mht. høje P-indeks-værdier, men at der er stor variation i værdierne på lokal plan (Heckrath 2009). Noget der
dog kan siges med rimelig sikkerhed er at lavbundsjordene (markeret med hvidt i figur 1) med stor sandsynlighed bliver tildelt et højt P-indeks.

Virkemidler, der har betydning for tilførslen af spildevandsslam til en mark med højt P-indeks, er bl.a. nedfældning af slammel, forbud mod gødskning og jordbearbejdning i perioden fra høst til 1. april samt målretted undergødskning med P (negativ P balance).

P-indeksret er indtil videre ikke omfattet af nogen lovgivning, hvilket betyder at slambekendtgørelsen også efter indføring af P-indeksret vil danne lovgivningsgrundlaget for den maksimale tilførsel af P med slam. Derimod kan kommunerne bruge lovgivningen omkring VMP III til at pålægge landmanden at anvende virkemidler til reduktion af P tabet på risikoarealer (Heckrath 2009).

Referencer:

Pedersen, J. B. (2009) Oversigt over Landsforsøgene 2009 - Forsøg og undersøgelser i Dansk Landbrugsrådgivning. Dansk Landbrugsrådgivning, Landscentret,
http://www.landbrugsinfo.dk/Plantavl/Landsforsog-og-resultater/Sider/Startside.aspx

3.2.4 Potentiel risiko ved tilførsel af spildevandsslam på OSD-områder

Hvad ved vi – Baggrundsviden

I områder med eksisterende drikkevandsindvinding eller potentiale for drikkevandsindvinding kan der være grundlag for særlig agtpågivenhed i relation til mulige risici for grundvandskvaliteten ved landbrugsmæssig arealanvendelse, herunder gødnings- og pesticidanvendelse. Særligt tilførsel af husdyrgødning og organiske affaldsprodukter som gødning har været i fokus, og krav om forbud mod udbringning af spildevandsslam på områder med særlige drikkevandsinteresser (OSD-områder) har været foreslået af forskellige interesseorganisationer, kommuner og debatteret i pressen.

Næringsstoffer

Fosfor

Det antages generelt, at fosfor er overvejende uopløseligt og derfor binder til jordpartikler, hvilket forhinder udvaskning til grundvandet (Vogeler et al. 2006). På grund af fosfors stærke binding til jorden, udgør de opløselige former for P typisk ikke mere end 1 % af den samlede møngde fosfor i jorden. Opløseligt P omfatter forskellige former uorganisk P, der samles under betegnelsen orthofosfat (Brenton et al. 2007).

Generelt er de fleste internationale studier gennemført med meget høje anvendte rater og kvantificeret ved relativt begrænsede jorddybder. Det er derfor vanskeligt at bruge disse i en risikovurdering under danske forhold. Det kan dog forventes, at udvaksningsrisikoen vil være mindre ved de danske tilførselsrater samt at udvaskningen vil være betydelig reduceret i jorddybder omkring 2-3 m. Dog skal man jf. afsnit 3.2.2 og 3.2.3 om P-udvaskning og P-indekset være opmærksom på hvis marker der tilføres spildevandsslam har en høj P møtningsgrad og ligger på lokaliteter med stor risiko for makroporeflow – i så fald vil der være øget risiko for P tab, men den konkrete risiko for tab til grundvandet kan ikke vurderes generelt.
Kvælstof

Brenton et al. (2007) kunne i et laboratoriestudie vise at nitratudvaskning fra en sandjord var uafhængig af tilførselsrater af spildevandsslam og ved alle tilførselsrater oversteg 10 mg nitrat-N/l (amerikanske grænseværdi, DK 13,3 mg nitrat-N/l eller 50 mg nitrat/l), også i kontrol jorden uden slam tilførsel. I en lerjord var det kun den højeste doseringsrate på 90 ton slam tørstof/ha (ca. 63 gange den danske P-baserede maksimaldosing), der kom tæt på de 10 mg nitrat-N/l, altså stadig under den danske grænseværdi på 13,3 mg nitrat-N/l (Miljøstyrelsen 2007). Da nitrat er meget vandopløseligt og da den sandede jord besidder en højere ledningsevne end lerjorden, var den højere udvaskning i sandjorden forventet.

En amerikansk feltundersøgelse af grundvands påvirkningerne ved 10-årig udbringning af anaerobt udrådnet spildevandsslam (Surampalli et al. 2008) i doseringsrater, der var ca. 5-11 gange så høje, som de dansk tilladte (baseret på spildevandsslammets middel P indhold), viste kritisk høje nitratmængder (over 10 mg nitrat-N/l) i grundvandet i 2 ud af de 10 år. Forekomsten af disse var en følge af udbringning af for høje tilførselsrater af spildevandsslam 5 til 6 år tidligere, der forårsagede et overskud af plantetilgængeligt N. Udover de to nævnte år, lå nitratkonzcentrationen mellem 1.9-5.2 mg nitrat-N/l. I alle tilfælde lå nitratkonzcentrationen under de i Danmark krævede 13,3 mg nitrat-N/l, selv ved disse høje tilførselsrater.

Som det er beskrevet i afsnit 3.3.1. om gødningsværdi af spildevandsslam, så tilføres der ved lovpligtig tilførsel af slam maksimalt ca. 126 kg N-tot hvert 3. år, med en lovpligtig indregning af 45 % af total-N i slammet (værditallet) i gødningsplanen. Med et gennemsnitlig årligt kvælstofbehov på 110-130 kg N/ha for flertallet af afgrøder, ses det, at den danske dosering af spildevandsslam ikke giver N overskud. Sammenholdt med ovennævnte forsøgsresultater, synes risikoen for øget nitratudvaskning til grundvandet derfor at være at være lille og som hovedregel i hvert fald ikke større end fra andre gødningsstyper. Den relative risiko forøges på sandede jorde og ved tilførsel af spildevandsslam i de nedbørsintensive efterårsmåneder.

* Antagelser: Alt tabes som nitrat, perkolationen er gennemsnitligt 368 mm/år (modelberegnet), koncentrationen af jordvandet i udvaskningsdybden er den samme som koncentrationen i grundvandet- dvs. ingen fortynding af jordvandet eller nitrat-re duktion ned gennem profilen.
Tungmetaller

Efter 10 år med spildevandsslamstilførelse med doseringsrater, der er ca. 5-11 gange så høje, som de dansk tilladte (baseret på det i spildevandssammen over årene varierende P indhold), blev der i en amerikansk feltundersøgelse udelukkende fundet sporbare værdier af tungmetallerne bly, nikkel og/eller zink. Alle værdier lå under de af USEPA fastsatte grænseværdier (Surampalli *et al.* 2008), som dog er en del højere end kravene i drikkevandsbekendtgørelsen (Miljøstyrelsen 2007). Det skal huskes, at tilførselsraterne i dette forsøg er langt højere end den danske lov tillader. Yang *et al.* (2008) simulerede udvaskning af tungmetaller til 30 cm’s dybde fra to sandjorde i Florida (podsol og alfisol) ved forskellige tilførselsrater af pelletteret spildevandsslam. Faktorer som jordens egenskaber (humus, pH), tilførselsrater af spildevandsslam samt de kemiske egenskaber af elementerne havde indflydelse på størrelsen af udvaskningen af tungmetallerne. Ved den højeste tilførsel svarende til ca. 3 t slam tørstof/ha/år (ca. som 3 års dosering under danske forhold) udvaskedes 2,7 % af den tilførte mængde chrom via udvaskning fra jorden, mens der tabtes 5,7 % nikkel, 13,0 % cadmium, 0,6 % zink og 1,2 % bly tilført med slammet. Resultaterne fra Yang *et al.* (2008) er i overensstemmelse med, hvad Krogh *et al.* (2005) (jf. tidligere udgave) fandt.

Sammenholder man disse tabstal med de nyeste værdier for tilførsel af tungmetaller i spildevandsslam i Danmark (tabel 4b, afsnit 3.1.2), kan worst-case risiko for udvaskning af tungmetallerne fra rodzonen beregnes efter samme principper som under nitrat. Dette giver et udvaskningstab af chrom på ca. 700 mg/ha (0,2 µg Cr/l i afstrømmende vand), for nikkel på ca. 1300 mg/ha (0,4 µg Ni/l i afstrømmende vand), for cadmium ca 200 mg/ha (0,06 µg Cd/l), ca. 4400 mg zink/ha (1,2 mg Zn/l) og 700 mg bly/ha (0,2 µg Pb/l). Ovenstående tabstal er lavere end de danske grænseværdier for drikkevand. Koncentrationerne af tungmetallerne ved grundvandshøjden, kan endvidere forventes at være meget lavere.

En meget omfattende risikovurdering af spildevandsslam anvendelse i Norge (Eriksen *et al.* 2009) fandt også lignende størrelsesorden af tungmetalkoncentrationer i afstrømmende jordvand fra landbrugsareaaler tilført 40 ton tørstof/ha spildevandsslam over 10 år, dvs. 3-4 gange de danske. Denne risikovurdering anvendte en mekanistisk simuleringsmodel (MACRO) til at estimere koncentrationer af tungmetaller, og repræsenterer dermed et langt mere sikkert estimat af de konkrete koncentrationer. Et nyligt review om risikoen ved udbringning af spildevandsslam bekræfter at lave tilførselsrater, som de danske, ikke øger biotilgængeligheden og dermed udvaskningen af tungmetaller til grundvandet (Singh & Agrawal, 2008).

Ovenstående redegørelse tydeligør, at der er stor forskel mellem udvaskningen af de enkelte tungmetaller og at jordtypen har signifikant indflydelse på udvaskningen. Da de danske tilførselsrater er relativt lave, kan det forventes, at risikoen for udvaskning af tungmetaller i Danmark er af et omfang, der er ikke giver problemer ifølge drikkevandsbekendtgørelsen.
Genanvendelse af affaldsbiomasse til jordbruksformål (2. udgave, 2010)

Miljøfremmede organiske stoffer

Som omtalt i afsnit 3, findes nonylphenoler gennemsnitligt i for høje koncentrationer i dansk spildevandsslam i forhold til den fastsatte grænseværdi. Slam med højere koncentrationer af miljøfremmede stoffer end de tilladte bliver dog ikke udbragt på marker, før den er blevet komposteret, hvormed risikoen for udvaskning til grundvandet minimeres.

Et dansk lysimeterforsøg ved Jacobsen et al. (2004) viste, at hverken nonylphenol eller LAS kunne spores i koncentrationer over detekteringgrænserne på henholdsvis 0.5 og 4.0 µg/l fra en jord tilført anaerobt udrådet spildevandsslam umiddelbart før vækstsesonen (byg). Startkoncentration af nonylphenol var på 0.42 mg/kg tørvægt og koncentrationen af LAS på 32 mg/kg tørvægt jord-slamblanding efter inkorporering af slammen i jorden. Ydermere fandtes hverken LAS eller NP i koncentrationer over detektinggrænserne i jordlagene under 15 cm’s dybde. Disse resultater tyder på ubetydelig transport af LAS og NP til dybere liggende jordlag og grundvandet. Jacobsen et al. (2004) påpeger dog, at makroporetransport af disse stoffer er en potentiel transportvej i feltet, idet de bindes stærkt til slamkolloider, som kan transporteres igennem makroporer når vandmætningen overstiger jordens hydrauliske ledningsevne.

Schowanek et al. (2007) anfører i et review omhandlende risikovurdering af LAS i spildevandsslam, at forurening af grundvand ikke er betænkelig, idet den hidtil højeste målte koncentration af LAS i grundvand (amerikansk værdi) er 3 µg/l (HERA 2004). Ifølge bekendtgørelsen om drikkevand (Miljøstyrelsen 2007) er den tilladte koncentration af anioniske detergenter 100 µg/l. Graden af udvaskning af LAS op til en dybde af 1 m blev i en dansk studie vurderet til at være mindre end 1.3 % af det med spildevandsslammen tilførte LAS (Madsen & Winther-Nielsen (1999) i Schowanek et al. (2007)). Sammenholdes dette med den aktuelle gennemsnitlige værdi for LAS i dansk spildevandsslam (850 mg/kg TS spildevandsslam, Tabel 1, afsnit 3.1) betyder det at 11 mg LAS/kg TS spildevandsslam kan tabes. Anvendes et forsimplet worst-case scenarie til beregning af koncentrationen af LAS i grundvandet (samme principper som under nitrat), fås en værdi på 2.7 µg/l og den beregnede koncentration er dermed langt mindre end den fastsatte grænseværdi på 100 µg/l.

Ifølge Vikelsøe et al. (2002) (se afsnit 3) kunne DEHP spores i 40-50 cm’s dybde med en koncentration på omkring 34 µg/kg ved den ”normale” slamtilførsel på 4.3 tørvægt/ha/år og koncentrationen af DEHP i det øvre jordlag var lavere i sammenligning med dybere liggende jordlag. Dette tyder på, at DEHP kan transporteres med slampartikler til dybereliggende jordlag. Hvorvidt der kan ske en yderligere transport ned gennem jorden, og dermed potentielt belaste grundvandet kan ikke vurderes.

Den tidligere omtalte, meget omfattende risikovurdering af spildevandsslam anvendelse i Norge (Eriksen et al. 2009) estimerede betydeligt lavere koncentrationer af LAS i afstrømmende jordvand (0,00014 µg/l) og DEHP (0,038 µg/l) fra landbrugsarealer tilført 40 ton tørstof/hjælperslag over 10 år, dvs. 3-4 gange de danske. Denne risikovurdering anvendte som sagt en mekanistisk simuleringssidan (MACRO) til at estimere koncentrationer af forurende stoffer, og repræsenterer dermed et langt mere sikkert estimat af de konkrete koncentrationer.

Medicinrester

Der mangler stadig viden om mange lægemidlers skæbne i miljøet, i særdeleshed under udbringning af spildevandsslam (Redshaw et al. 2008). Lapen et al. (2008b) påpeger, at der er potentielle for transport af plejeprodukter og medicinalvarer til dræn. Forfat terne kunne således vise, at det

Smittstoffer

Et kanadisk feltstudie sammenligne udvaskning af E.coli og Clostridium perfringens til grundvandet på en drænet lermuldsjord med et grundvandspekil i 1.2 meters dybe ved tilførsel af flydende anaerobt udrådnet spildevandsslam. Der blev tilført 93,5 t slam/ha, svarende til en tilførselsrate på 33 kg P/ha (dvs. omtrent til den danske standard) hvor slammet enten blev direkte nedfældet og indarbejdet eller overladespredt og først efterfølgende indarbejdet. Det blev her tydeligt, at sidstående udbringelsesmetode medførte højere forurening med en maksimal koncentration af E.coli på 25.000 CFU/ml i drenvand og en koncentration af Clostridium perfringens på 10.000 CFU/ml. Mens udvaskning af E.coli aftog eksponentielt p.g.a. bakteriedød, udviste Clostridium perfringens ikke samme mønster (Lapen et al. 2008a).

En amerikansk undersøgelse vedrørende udvaskning af tarmvirus fra spildevandsslam tilført sandet jord kunne vise, at flertallet af de introdicerede colifager, der var værtspezifikke til E. Coli ATTC 15597, var bundet til slammet. Forfatterne konkluderede, at der på trods af konstant mættet
hydraulisk flow igennem den 10 cm lange jordkolonne med en maksimal koncentration af 100 PFU/ml var lille udvaskning fra kolonnen (Chetochine et al. 2006).

Et amerikansk feltstudie undersøgte påvirkningerne af grundvandet ved 10-årig udbringning med klasse B- spildevandsslam (spildevandsslam, der kan indeholde pathogener i mønster, der forbyder offentlig adgang og kræver, at eksponerede arbejdere benytter forholdsregler). Slammets tilført i doseringsrater, der er ca. 5-11 gange så høje, som de dansk tilladte (basert på det i spildevandsslammen over årene variende P indhold). Undersøgelsen viste, at grundvandet indeholdt mindre end 20 feacal coliform og fecal strotococci per 100 ml (MPN technique) (Surampalli et al. 2008).

En undersøgelse på tilstedeværselen af coliforme bakterier i dansk drikkevand eksemplificeret ved måling på 38 vandforsyningsanlæg i Storstrøms Amt i 2001/2002 viste, at der i 18 ud af 38 vandforsyningsanlæg kunne spores både E. coli og andre coliforme bakterier (Brüsch & Rosenberg 2008). Tilstedeværelsen af bakterierne synes altså at være ret almindelig. Fundene viser, at der kan ske en hurtig transport fra terræn ned til højtliggende grundvand via sprække- og bioporesystemer (makroporer) i lerjord samt at coliforme bakterier under nogle forhold kan overleve i længere perioder i koldt grundvand, og særligt under anaerobe forhold, som opstår i sprækker ved vandmætning i lerjord (Brüsch & Rosenberg 2008).

Det skal dog igen nævnes at dansk spildevandsslam skal have gennemgået en kontrolleret hygiejniserings inden det udbringes på landbrugsjord, og at husdyrgødning eller forskellig mikrobielle punktforureninger er en langt mere hyppig årsag til detektion af smitstoffer i drikkevandsboringer.

Hvor god er den nuværende viden

På trods af at en del ny information er blevet tilgængelig, mangler der stadig viden omkring flere miljøfremmede stoffers og lægemidlers økotoxicitet og skæbne i miljøet. Viden om udvaskning af næringsstoffer og tungmetaller i udlandet er generelt omfattende og publiceret i internationale videnskabelige tidsskrifter af god kvalitet. Der er dog mangel på relevante feltstudier under danske forhold, både med henblik på doseringsrater af spildevandsslam og på klimaet.

Ligesom for P (afsnit 3.2.2) er det imidlertid klart at der mangler meget procesforståelse af transport- og tabsmekanismer for partikulært bundne fremmedstoffer og sygdomsfremkaldende organismer. Flere danske undersøgelser på området, ikke mindst på fastliggende forsøgsarealer med flerårig tilførsel af organiske gødninger og restprodukter er derfor nødvendige.
Referencer:

Bruun, S., Jensen, L.S. (2005): Simulations of the effects of application of composted and anaerobically digested municipal waste on leaching of nitrogen, denitrification and soil C storage with the agroecosystem model Dasy. Report, Department of Agricultural Sciences, Royal Veterinary and Agricultural University (KVL).

3.3 Næringsstofudnyttelse og jordens frugtbarhed

3.3.1 Hvor god en afgrødeudnyttelse af affaldets næringsstoffer (N,P,K m.fl.) kan opnås?

Hvorfor er dette problem relevant?

Afgrodernes udnymtelse af næringsstofferne i tilførte affaldsprodukter er vigtig både for at tab til miljøet minimeres og for at landmanden kan få et økonomisk udbytte af at spredte disse på marken. Generelt kan spildevandsslam og andre affaldsprodukter tilført indenfor slambekendtgørelsens rammer ikke dække afgrødernes behov, hvorfor der er behov for tilførsel af supplerende mineralsk gødning. Den specifikke næringsstofudnyttelse er altså også vigtig for at kunne fastsætte den mængde supplerende handelsgødning, der skal tilføres jorden. Hvis der tilføres flere næringsstoffer end planterne kan udnytte kan stofferne transporteres videre til vandmiljøet, hvor det kan udgøre en miljømæssig risiko.

Hvad ved vi?

Hvilke næringsstoffer tilføres jorden med spildevandsslam?

Kvælstof: Spildevandsslam indeholder forholdsvis store mængder af kvælstof (nitrogen, N), men størstedelen findes bundet i organiske forbindelser. Derfor er omdannelsen/mineraliseringen af slammets organiske del et vigtigt led for at der kan frigives plantetilgængeligt kvælstof i form af ammonium eller nitrat (se i øvrigt fact sheet for nitratudvaskning).

Ifølge Epstein (2003) kan anaerobt behandlet spildevandsslam indeholde mellem 5 og 176 kg total N/ton tørstof. I 2002 indeholdt det danske spildevandsslam mellem 30 og 60, i gennemsnit 44,4 kg total-N/ton tørstof, (Miljøstyrelsen 2004). Andelen af dette der er på uorganisk form (NH₄⁺ og NO₃⁻) varierer, men vil typisk for anaerob behandling udgøre mellem 10-20 % af det samlede kvælstofindhold (Epstein 2003; Petersen 2003; Petersen et al. 2003;). Med spildevandsslam og husdyrgødning tilsammen må der kun tilføres jorden 170 kg total-N per ha per år.

Kalium: Kalium (K) optages af planterne som K⁺. Der er generelt lavt indhold af kalium i spildevandsslam og i 2002 var det gennemsnitlige indhold i det slam der blev disponeret på landbrugsjord mellem 1 og 7, i gennemsnit 2,1 kg K/ton tørstof (Miljøstyrelsen 2004). Grunden til det lave indhold er at kaliumforbindelserne i spildevandet er opløselige, og kun en ringe mængde vil derfor være at finde i slammet efter separeringsprocesserne.
Calcium: Calcium (Ca) er også et essentielt makronæringsstof for planter, men findes normalt i tilstrækkelig mængder i danske dyrkningsjorde, der regelmæssigt kalkes eller indeholder naturligt forekommende kalk. Spildevandsslam indeholder kun betydelige mængder calcium såfremt spildevandsslammet stabiliseres i efterbehandlingen ved tilsætning af jordbrugskalk. Denne praksis er ikke så almindelig i Danmark, kun 4% af alt slam behandles med kalk (Miljøstyrelsen, 2004), men er mere udbredt i andre lande, f.eks. Norge.

Mikronæringsstoffer: Udover de tre ovennævnte makronæringsstoffer (N, P og K) har planterne også brug for en række mikronæringsstoffer. I forbindelse med spildevandsslam er der som oftest syv mikronæringsstoffer der omtales. De er bor (B), kobber (Cu), jern (Fe), mangan (Mn), molybden (Mo), nikkel (Ni) og zink (Zn) (Epstein 2003). De er næringsstoffer som kun findes i meget små mængder i jorden (sporelementer). Planterne har således også kun brug for disse stoffer i små mængder, og for de fleste af stofferne gælder, at forhøjede koncentrationer i jorden er giftigt for planterne. Nogle af stofferne er ligefrem underlagt lovmæssig regulering som tungmetaller (Cu, Ni, Cr og Zn).

Opfyldes planternes næringsstofbehov ved udbringning af spildevandsslam?

Ifølge slambekendtgørelsen må der udbringes 30 kg P/ha per år som gennemsnit over en 3-årig periode (Bekendtgørelse 2003). Med det gennemsnitlige indhold i dansk spildevandsslam på ca. 32 kg P/ton tørstof (Miljøstyrelsen 2004) betyder det at hvis der tilføres slam hvert år er den tilladte mængde 0,94 ton tørstof/ha, men pga. af såvel spredetekniske som omkostningsmæssige årsager vil man som regel vælge hvert 3. år at tilføre den tredobbelte dosis, dvs. knapt 3 tons tørstof/ha. Den gennemsnitlige tilførsel af næringsstoffer under disse betingelser kan ses i tabel 1:

<table>
<thead>
<tr>
<th>Godningstype</th>
<th>Tilførsel (ton tørstof/ha/år)</th>
<th>Total N (kg/ha)</th>
<th>Total P (kg/ha)</th>
<th>Total K (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spildevandsslam (hvert 3. år)</td>
<td>2,82</td>
<td>125</td>
<td>90</td>
<td>6</td>
</tr>
<tr>
<td>Spildevandsslam (hvert år)</td>
<td>0,94</td>
<td>42</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Næringsstofbehov for vårbeg per år¹</td>
<td></td>
<td>110-130²</td>
<td>20</td>
<td>50</td>
</tr>
</tbody>
</table>

¹ Baseret på Petersen (1999)
² Handelsgodnings N (NO₃⁻, NH₄⁺)

Som det ses af tabellen er det kun planternes behov for fosfor som opfyldes ved spredning af spildevandsslam inden for bekendtgørelsens rammer. I øvrigt bør det nævnes at for fosfor og kalium er gødningsvirkningen vanskelig at kvantificere i den enkelte vækst sæson, da mange landbrugsjorde i forvejen har et betydeligt indhold af disse næringsstoffer, såvel totalt som på plantetilgængelig form. Kvälstof i spildevandsslammet findes som tidligere nævnt primært i svært omsættelige
organiske forbindelser, hvor mindre end halvdelen mineraliseres og kan optages af planterne i det første år efter tilførslen (Epstein 2003), se også nedenfor.

Der er således i langt de fleste tilfælde behov for ekstra gødskning med handelsgødning for at opfylde planternes behov for mineralsk N samt kalium.

_Hvor hurtigt frigives næringsstofferne fra spildevandsslammet?

_Hvor godt kan planterne udnytte næringsstofferne i spildevandsslammet i forhold til husdyr- eller handelsgødning?

I forbindelse med næringsstofudnyttelsen fra spildevandsslam har litteraturen primært fokuseret på de to makronæringsstoffer N og P. En generel konklusion som kan drages på baggrund af den eksisterende litteratur er, at udnyttelsen af næringsstofferne afhænger af faktorer som jordtype, næringsstofstatus, slamtype, udringningstidspunkt samt afgrødetype og klima. I tillæg er de enkelte næringsstoffers dynamik i jorden ganske forskellige fra hinanden.

I Danmark er der gennemført en lang række dyrkningsforsøg med spildevandsslam i 1990’erne, hvor såvel 1. års- som eftervirkningen af slam i forskellige afgrøder og ved forskellige udringningstider er undersøgt (Pedersen 1994-1999). Forsøgene er udført i regi af de såkaldte Landsforsøg, der udføres på landmænds marker og dermed formodt at repræsentere praksis end forsøgsmarker på forskningsinstitutioner. Udringning af slammet om efteråret har i
disse forsøg samstemmende resulteret i lavere N værdital* (16-23%) end forårsudbringning (26-37%), selv i de tilfælde, hvor efterårsudbringning er sket forud for såning af vinterkorn. Lignende resultater er fundet i amerikanske undersøgelser (Gilmour et al. 2004; Cogger et al. 2004) Selvom slammet kun indeholder relativt lidt mineralsk N, som umiddelbart kan tabes ved udvaskning, så mineraliseres der gennem vinteren hurtigt N, som i de mere nedbørsvirksomme egne let kan udvaskes (Cogger et al. 2004). Ved sammenligninger mellem kalkstabiliseret og udrådnet slam er der fundet lavere N værdital for det kalkstabiliserede slam end for det anærobthandlede slam (Pedersen, 1991). Forårsudbringning i en etableret vinterafgrøde er dog fundet også at resultere i en lavere udnyttelse, og denne praksis er heller ikke længere tilladt, da der er krav om nedpløjning. Generelt anvendes slammets kvælstof altså bedst ved forårsudbringning før såning af vårafgrøder, og der kan her forventes et 1. års N værdital på ca. 30%.

Til sammenligning giver forårsudbragt gylle til vintersæd en højere 1. års virkning på 50-70% (Dansk Landbrugsrådgivning, 2005a), men her vil mellem over halvdelen af gyllens N også være på NH₄⁺ form (ammonium). For fast staldgødning og dybstrøling, hvor mellem ¼ og ½ af N indholdet er ammonium, kan der forventes et N værdital på hen. 40% og 30% ved forårsudbringning til vårsæd, idet spildevandsslammets N virkning svarer altså nogenlunde til fast husdyrgødning, endda selvom en mindre andel af slammets N er på mineralsk form.

Landsforsøgs resultaterne understøttedes også af Petersen (2003) der på Askov forsøgsstation fandt et 1.års værdital af N for to typer spildevandsslam (aerobt og anærobt efterbehandlet) på henholdsvis 32% og 53%, når de blev tilført før forårsudbringning af vårkorn. Spildevandsslammets indeholdt forholdsvis lidt mineralsk N (17-19% af total N) og mineraliseringshastigheden af det organisk bundne N efter tilførsel må altså have været betydelig. Til sammenligning blev der i samme forsøg fundet et N værdital for fast staldgødning på fastsættet 29%, selvom det mineralske N i staldgødning udgjorde mere end 34% af total N.

Eftervirkningen af spildevandsslam er i Landsforsøgere generelt fundet til at være betydelig, således er der fundet N værdital i størrelsesordenen 7-15% og 5-7% i hhv. 2. og 3. år efter tilførslen og der kan også i de efterfølgende år påregnes en eftervirkning, som er mindre markant (Pedersen, 1995; 1997). Lignende resultater er fundet i en amerikansk undersøgelse (Cogger et al. 2004), der også fandt at mineraliseringen var stor ved vintertemperaturer og pointerede anvendelsen af efterafgrøder for at undgå udvaskning. Til sammenligning er N eftervirkningen for fast staldgødning kun i størrelsesordenen 6% og 2% i hhv. 2. og 3. år.

* Værditallet for en organisk gødning angiver dens gødningseffekt i forhold til mineralsk handelsgodning; et N værdital på 50 % betyder altså at 100 kg total-N/ha i den organiske gødning virker lige så godt som 50 kg N/ha i handelsgødning.
Dette betyder at der for 1. og 2. årseffekten af spildevandsslam samlet kan regnes med et N værdital på ca. 45% (30%+15%), hvilket svarer til det lovbefalede udnyttelseskrav (=værdital) for spildevandsslam på 45% (Plantedirektoratet, 2006). Lægges 3.-10. års effekten til kommer det samlede N værdital dog formodentlig nærmere op på 60-70%.

Udover en udbytteeffekt er der også i en række af forsøgene vist en effekt på proteinindholdet (Pedersen, 1999). I flere af forsøgene observeres der en også udbytteeffekt ud over det der kan tilskrives N i slamm, hvilket tyder på at slamm påvirker optagelsen af andre næringsstoffer eller jordens generelle frugtbarhed og udbyttepotentiale, f.eks. via øgning af jordens indhold af organisk stof.

I de af forsøgene der har været designet til også at bestemme et værdital for slammets indhold af fosfor, har resultaterne kun sjældent vist nogen signifikant effekt, først og fremmest fordi kun meget få af forsøgsarealerne har haft så lav en jord P-status at der er fundet signifikante merudbytter for tilførsel af handelsgødnings P (Pedersen, 1994; Petersen et al. 2003). I de flerårige eftervirkningsforsøg er der dog vist en eftervirkningseffekt af slammets P i de behandlinger, hvor der ikke tilføres supplerende P (Pedersen, 1999). Enkelte udenlandske forsøg (Christie et al. 2001) har også vist en forholdsvis god P og K effekt af afvandet og stabiliseret spildevandsslam. En god udnyttelse af spildevandsslammets P indhold kan altså kun forventes, hvis der over en årrække ikke tilføres mere P end afgrøderne optager, og jordens P status ikke er over middel. Se også afsnittet om udvaskning af P.

Hvor god er den nuværende viden?

Referencer

References

3.4 Drivhusgas emissioner, jordens kulstoflagring og forsuring

3.4.1 Hvor stor en andel af affaldets N tabes i form af ammoniak (NH₃) under forbehandling eller efter udbringning

Hvorfor er dette problem relevant?

Hvad ved vi – baggrundsviden?

Hvorfor og hvornår fordamper ammoniak fra spildevandsslam?
De største kilder til atmosfærisk ammoniak er helt overvejende relateret til landbrugsaktiviteter. For spildevandsslams vedkommende forekommer de væsentligste kilder til fordampning under kompostering eller efter udbringning på landbrugsjord. Fordampningen af ammoniak afhænger naturligvis af temperaturen, men pH spiller en afgørende rolle for, hvor meget af det uorganiske kvælstof i slammet der er til stede som ammoniak. Følgende reaktion bestemmer forholdet mellem ammonium (NH₄⁺) og ammoniak (NH₃):

\[
\text{NH}_4^+ + \text{OH}^- \leftrightarrow \text{NH}_3 + \text{H}_2\text{O} \quad \text{pK}_a = 9.2 \quad (20^\circ \text{C})
\]

Hvor meget ammoniak fordampes typisk fra spildevandsslam under kompostering?
Frigivelsen af ammoniak under komposteringen styres som sagt af temperatur og pH, mens også C/N forholdet i slammet + de andre organiske materialer det komposteres med vil have en indflydelse på risikoen for ammoniaktab under komposteringen; jo højere C/N forholdet er (og dermed jo mindre N indholdet er), jo lavere er risikoen for ammoniaktab. Pagans et al. (2006) fandt således ammoniaktab på under 5% af total N ved C/N > 11, men tab på 14% henholdsvis 34% for materialer med C/N forhold på henholdsvis 8 og 5. Beck-Friis et al. (2001) fandt derimod noget højere ammoniak emissioner fra kompostering af husholdningsaffald, mellem 24% og 33% af total N, for blandinger af husholdningsaffald og halm med C/N forhold 21-23.
Ammoniakemissionen afhænger dog også meget af luftgennemstrømmingen. Kvälstoftab under milekompostering af spildevandsslam hos Kom Tek Miljø’s (aktiv beluftning ved vending) indikerer
5. Genanvendelse af affaldsbiofiske til jordbrugsformål (2. udgave, 2010)

at ca. 30 % af N-total i slammet tabes (Kirkeby og Gabriel, 2005), hvor (Vogt m.fl., 2002) har fundet kvælstoftab til ca. 40 % af N-tot. Af den tabte kvælstof antager (Vogt et al., 2002) at ca. 96 % omdannes til NH3 (resten til til N2O og N2). Dette kan dog være lidt overestimeret for NH3, da ammoniumindholdet i slam er lavere end i organisk dagrenovation, men da der foregår en mineralisering af organisk bundet kvælstof ved komposteringsprocessen er det forventeligt, at størstedelen af kvælstoftabet er som ammoniak fordampning. Boucher et al. (1999), har fundet at ca. 20 % af N-tot fordamper som ammoniak ved slamkompostering, mens Winter et al. (2004), har fundet at ca. 31 % af N-total fordamper ved slamkompostering og sandsynligvis som ammoniak.

Hvor meget ammoniak fordampes typisk efter udbringning af spildevandsslam på landbrugsjord?

Slam som udbringes på marken skal nedpløjes inden for 6 timer efter spredning (Bekendtgørelse 2003), og det antages generelt at nedpløjning af organisk affald halverer eller helt fjerner risikoen for ammoniakfordampning (Mikkelsen et al. 2005; Bruun et al. 2006). Nå der samtidig tages højde for at under 20% af slammets N er på ammonium form, og næppe væsentligt mere i det komposterede slam, så vil risikoen for ammoniakfordampning fra det udbragte slam være forholdsvis lille.

Hvor meget af det ammoniak vi har i luften kan forventes at komme fra spildevandsslam?

Der findes ikke nogen præcise danske opgørelser, men Anderson et al. (2003) har i et amerikansk studie opgjort at mens husdyrhold var kilde til 55% af USA’s ammoniak emissioner i 1990, så var affaldshåndtering (herunder komposterings, som i mange år har været mere udbredt i USA end i Europa) og recirkulering til landbrugsjord tilsammen kun skylde i 3% af ammoniak emissionerne. Under danske forhold må vi derfor antage at det vil være en meget lille andel af luftens ammoniak der kommer fra spildevandsslam, langt hovedparten kommer fra husdyrproduktionen.

Tallene fra Anderson et al. (2003) underbygges og præciseres af en rapport fra DMU, som kvantificerer drivhusgasemissionen fra dansk landbrug. Ifølge rapporten, kommer størstedelen af emissionen fra husdyrgødning, hvor svin og kvæg i 2002 bidrager med henholdsvis 53% og 33%. Den samlede emission er opgjort til 80.800 tons kvælstof (NH3-N) i 2002, hvilket svarer til 98.300 tons ren ammoniak (NH3). Ammoniak emission fra spildevandsslam estimeres til 3 % af N-tot i slammen, som typisk ligger på 4-5% (Mikkelsen et al. 2006).

I Danmark udbringes ca. 80.000 ton spildevandsslam til landbrugsjord (Ambus et al. 2001). Regnes der med et gennemsnitligt indhold af 44.4 kg N/t torrfrost spildevandsslam, kan en udledning på 106.6 t NH3 estimeres, som udgør ca. 0.1% af den samlede emission. På trods af, at denne beregning ikke inkluderer emission ved komposterings, er tallet højere end modelberegninger ved Mikkelsen et al. (2006), som estimerer en ammoniak emmission på 66 t for året 2002, hvilket svarer til 0.07% af den samlede udledning.

Under alle omstændigheder, kan procentdelen af den samlede udledning af ammoniak fra udbringning af spildevandsslam dog siges at være meget lille i forhold til kilder fra andre dele af landbrugssektoren.
Referencer

Boucher, V. Darees; J.C. Revel; M. Guresse; M. Kæmmerer og J.R. Bailly, (1999): Reducing ammonia losses by adding FeCl3 during composting of sewage sludge. Water, air, and soil pollution 112: 229-239.

Vogt, Regine; Florian Knappe, Jürgen Giegrich og Andreas Detzel, (2002): Ökobilanz

3.4.2 Hvor meget lattergas (N₂O) udledes efter udbringning?

Hvorfor er dette problem relevant?

Hvad ved vi – baggrundsviden?
Hvorfor og hvornår frigives lattergas fra jorden?
Lattergas i jord dannes primært som mellemprodukt i det bakterielle kredsløb. Ammonium frigives når organisk nitrogen bliver nedbrudt (Barton & Atwater 2002). Dannelsen kan ske ved nitrifikation af ammoniak til nitrat eller ved denitrifikation af nitrat til frit kvælstof (N₂) (Olesen 2005). De to processer ses nedenstående:

\[
\begin{align*}
\text{NH}_3 & \rightarrow \text{NO}_2^- \rightarrow \text{NO}_3^- \\
\text{nitrifikation} \\
2 & \rightarrow 2\text{NO}_2^- \rightarrow 2\text{NO} \rightarrow \text{N}_2\text{O} \rightarrow \text{N}_2 \\
\text{denitrifikation}
\end{align*}
\]

Hvor meget lattergas frigives typisk fra spildevandsslam under kompostering?

Hvor meget lattergas fordampes typisk efter udbringning af spildevandsslam på landbrugsjord?

Ifølge Hellmann (1995, cf. Hellebrand & Kalk, 2001) variede lattergas udledningen fra komposteret grønt affald (blade, græs, buskdele) i en periode af 89 dage mellem 12 og 114 g/t oprindelig TS spildevandsslam, hvilket svarer til 0,1 – 0,8% af det totale kvælstof indhold af det komposterede materiale. Et dansk feltstudie ved Ambus et al. (2001) kunne for en kornmark tilført 2,8 ton (tørstof) spildevandsslam / ha kun finde svagt forhøjet (ikke signifikant) lattergas emission i forhold til kontroljorden over en periode på 11 måneder. Den samlede N₂O-N udledning lå på 3,12 kg N/ha hvor der var tilført slam, mod 3,04 i kontrolen, hvilket svarer til under 0,1 % af N indholdet i slammet. Forfatterne sammenlignede hesledningen af lattergas fra en tætbeliggende skov med den fra marken og fandt, at emissioner fra skovjorden var omtrent 6-7 gange mindre (0,45 kg N₂O-N/ha). Ambus et al. (2001) påpeger endvidere, at selvom tidligere undersøgelser har kunnet påvise forøgelse af lattergasemissionen ved tilsætning af spildevandsslam, så har foresøgene været udført med tilførselsrater, der var 3 til 17 gange højere end den her anvendte. Tilførslen af spildevandsslam i studiet ved Ambus et al. (2001) svarede ca. til den tilførsel der kan foretages hvert 3.år efter slambekendtgørelsen.

Et skotsk laboratoriestudie ved Akiyama et al. (2004), der fandt, at 0.03 til 1.65 % af det totale tilsatte N blev frigivet som lattergas over 38 dage fra en sandblandet lerjord tilsat pellettere spildevandsslam. Fra en mere finkornet drænet lerjord frigaves 0.18% af det totale tilsatte N målt ved et feltstudie. Parnaudau et al. (2009) fandt en emissionsrate på 2.1 kg N₂O-N/t spildevandsslam efter 22 måneder fra en fransk lerjord. Emissionen, der svarer til et tab på 0,1% af det totale N tilført, kunne karakteriseres som forholdsvis lav pga. det lave vandindhold i jorden, men slammets N-indhold på 21.5 kg/t tørstof var ligeledes forholdsvis lav.

Det skal nævnes, at der i de ovennævnte forsøg er tale om effekten af engangsapplikationer, hvilket kan tænkes at have en indflydelse på udslippet. Langtidsstudier på drivhusgasudslip mangler.

Bruun & Jensen (2005) modellerede N omsætning i forskellige danske jordtyper med forskelligt klima og tilført komposteret eller afgasset og kildeseparerer husholdningsaffald ved hjælp af Daisy-modellen, og fandt at modellen prædikerede at 1,3 til 2,2 % af total N tilført med affaldet blev frigivet som N₂O. Dette er altså højere end i de ovennævnte studier, men i overensstemmelse med Der ses en forholdsvis stor variation i målingerne af lattergasemissionen ved udbringning af spildevandsslam, men generelt er der tendens til lavere emissioner end fra andre gødningsmidler.

Danske jorde er i en international sammenhæng generelt relativt lette eller sandede jorde, som begunstiger en lavere dannelse af N₂O end den udtrykt ved IPCC standard værdierne (Mikkelsen et al. 2006).

Hvor meget af den lattergas vi har i luften kan forventes at komme fra spildevandsslam?

Antages det, at der udbringes ca. 80.000 ton spildevandsslam til dansk landbrugsjord hvert år, at lattergasemissioner fra markjord tilført slam udgør ca. 0,1 - 2 % af totalt tilført N i slam, at komposteringstabet er af samme størrelsesorden og at dansk spildevandsslam har et gennemsnitligt indhold af 44,4 kg N/t tørstof, kan en udledning på 7 - 140 t N₂O-N estimeres. Heri er der ikke medtaget hvor stor en andel af slammet der aktivt komposteres, men tab fra lagring og stabilisering antages at være nogenlunde de samme.

3.4.3 Hvor meget metan (CH₄) udledes under forbehandling (f.eks. kompostering) eller efter udbringning

Hvorfor er dette problem relevant?

Hvad ved vi – baggrundsviden?
Hvorfør og hvornår frigives der metan fra spildevandsslam?

\[C_6H_{12}O_6 \rightarrow 3 \text{ CH}_4 + 3 \text{ CO}_2 \]

Metan dannes dog kun, når der ikke er andre elektronacceptorer, der kan give et høje energiudbytte end C, såsom oxygen, nitrat, jern, mangan eller sulfat, tilgængelige (Brown et al. 2008). Det betyder at methan emission kun forekommer når spildevandsslammet undergår strikt anaerob nedbrydning, enten under lagring uden lufttilgang, ufuldstændig kompostering (fx i iltfrie zoner i kompostmilen) eller efter udbringning på jord der opnår helt eller delvist vandmættet tilstand. Derfor er metanemmissionen fra aerobe behandlingsformer, som f.eks. beluftede komposteringsanlæg mindre end fra anaerobe behandlingssystemer, som fx slamudrådningsanlæg forudsat methanen ikke opsamles som i et biogasanlæg (Brown et al. 2008).

Hvor meget metan frigives typisk fra spildevandsslam under kompostering?
En del faktorer har indflydelse på metan dannelsen såsom iltfri tilstand, koncentration og kvalitet af det organiske materiale, vandindhold, tilstanden og population af de methanogener bakterier, tilgængelige næringsstoffer/toksiner samt temperatur og pH. En af de mest betydelige variabler er vandindholdet af affaldet/det organiske materiale (Onargan 1999 i Ornargan et al. 2003).

Ifølge Kirkeby et al. (2005) er metanemmissioner fra kompostering af spildevandsslam svært kvantificerbare og metanemmissionen afhænger stærkt af hvorledes komposteringsprocessen drives. Den svenske affaldsmodel ORWARE benytter en procentsats på 0.35% af det totale indhold C i spildevandsslammen, mens andre vurderer, at 1.7 % af det totale indhold C bliver tabt i form af metandannelse ved kompostering af bioaffald. Antages en værdi på 0.75%, resulterer dette i ca. 3.5 kg metan/t tørstof spildevandsslam (Kirkeby et al. 2005).
Boldrin et al (2009) har reviewet en række emissions-studier på kompostering af have-parkaffald og husholdningsaffald og finder at mellem 0,8-3% af det kulstof der omsættes i affaldet tabes som CH₄ under komposteringen, hvilket svarer til 0,1-7 kg metan/t tørstof spildevandsslam.

Hvor meget metan frigives typisk efter udbringning af spildevandsslam på landbrugsjord?

Jord kan fungere både som en kilde til methan (under anaerob omsætning af organisk stof) og som en omsætter af methan, i det naturligt forekommende bakterier i jord er i stand til at oxidere methan til kuldioxid. Denne proces beherskes imidlertid af relativt få bakterie-slægter (methanotropher). Jordens kapacitet for methan-oxidation er derfor relativt ”sart” og er vist at være højere i naturlige / uforstyrrede økosystemer end i dyrkede / forstyrrede jorde, ligesom der er indiker for at gødningstilførsel kan reducere jordens methanoxidation.

Ambus et al. (2001, se beskrivelse af studiet se afsnit 3.4.2) fandt at metanemissioner fra markjord tilført slam 11 måneder efter tilførslen lå på 0,01 % af totalt tilført C (76 g C/ha). 56 dage efter tilførsel af slammet var emissionen ophørt og blev afløst af netto metanoxidation. Udledning af methan fra skovjorden var negativ gennem hele testperioden, dvs. metan blev oxidert. Studiet fandt at arealanvendelse var mere afgørende for metanudledningen end tilførsel af spildevandsslam.

Hvor meget af det metan vi har i luften kan forventes at komme fra spildevandsslam?

Regnes der med en tilførsel af ca. 80.000 t spildevandsslam til landbrugsjord og antages det, at metanemissioner fra markjord tilført slam udgør 0,01 % af totalt C, kan en udledning på 220 t metan estimeres. Dette varer til omtrent 0,1% af totalt metan udledd via danske landbrugsaktiviteter (Ambus et al. 2001). Sammenholdes de beregnede 220 t metan med modelberegninger i en rapport fra DMU, som opgør den samlede emission af metan til 180.300 Kt i 2002, fås ligeledes en procentdel på 0,12%. Rapporten fastslår yderligere, at emissionen af metan primært stammer fra kvæg (70%) og svin (26%) (Mikkelsen et. al 2006). Relativt set forøger behandling og tilførsel af spildevandsslam derfor ikke Danmarks metanemission væsentligt.

Andre drivhusgasser

Det skal nævnes, at der er blevet målt forøgede koncentrationer af NO ved udbringning af spildevandsslam (Akiyama et al. 2004; Ambus et al. 2001). NO kan bidrage indirekte til opvarmning af atmosfæren idet stoffet er involveret i produktionen af troposfærisk ozon, som også er en drivhusgas.
3.4.4 Hvordan påvirker udbringning af organisk affald jordens humusindhold og hvor meget af affaldets kulstof stabiliseres i jorden på langt sigt

Den Europæiske Union har forpilgtgit sig til at reducere kuldioxid udledningen med 8% (98.9 Tg C/år) i forhold til nivauet i 1990 i løbet af perioden 2008-2012. En måde til at opnå dette mål ligger i at stabilisere kulstof i jorden ved direkte fjernelse af stoffet fra atmosfæren (Smith et al. 2001).

Beregninger på hvor meget kulstof der via udbringning af spildevandsslam kunne stabiliseres i den Europæiske Union (dvs. hele det Europæiske kontinent frem til de baltiske stater Belarus og Ukraine men ikke inkluderende resten af den tidligere Sovjet Union) giver et estimat på 2,7 Tg C/år. Fratrækkes 0,34 Tg C/år som er ækvivalent med en medfølgende øget lattergasemission fra udbringning af spildevandsslam til landbrugsjord og adderes 0,055 Tg C/år resulterende fra udbringning af spildevandsslam til græsmarker, fås en samlet stabilisering på 2,42 Tg C/år i Europa (ca. 2,4% af den ønskede reduktion). Der var for få data på metanudløbset at inddrage denne i beregningerne (Smith et al. 2001).

Et amerikansk studie (Tian et al. 2009) har undersøgt effekten af spildevandsslamlagring til forskellige marker i op til 30 år. Der blev tilført tre forskellige typer anaerobt udrådnet slam til jordene: lagret og flydende (4% tørstof), lagret og afvandet (47% tørstof), og lagret og lufttørret (60-70% tørstof). Slammet blev tilført i doseringer på 57-72 t tørstof/år, dvs. langt højere doseringer, end dem vi tillader i Danmark. Studiet viste, at der på de forskellige typer siltet lerjord blev stabiliseret mellem 18.2 -83.5 Mg C/ha over den 30 årig periode og at sammenhængen imellem tilført slam kulstof ton/ha (x) og årlig netto kulstof lagring ton/ha (y) kunne beskrives ved regressionsligningen svarende til y = 0,256x – 0,11. Dette betyder at af den årlige tilførsel af kulstof i slam lagres 25% over en 30 årig periode, og at der skal en tilførsel på 0,42 ton C i slam til at opretholde jordens C indhold.

Selvom ovenstående tal tyder på en del variation i estimaterne af størrelsen af kulstofoplægningen ved udbringning af spildevandsslam, så er der ikke tvivl om, at denne form for anvendelse af slammen kan bidrage til at nedbringe kuldioxid udslippet.
3.4.5 Samlet energi og drivhusgas-emission ved forbrænding versus jordbrugsanvendelse

I debatten har det gentagne gange været fremført at slam skal betragtes som et biobrændsel og at man bør fjerne de afgifter der modvirker afbrænding af spildevandsslam. Afbrænding af slam og andre genanvendelige organiske ressourcer som biobrændsel kan virke som et meget nærliggende alternativ i dag, hvor der er meget fokus på CO₂ emission og klimaforandringer, samt store udfordringer med håndtering af affald.

Når energi og CO₂ regnskaberne skal gøres op for afbrænding versus jordbrugsanvendelse, bør det imidlertid baseres på en livscyklus betragtning, hvor alle direkte eller indirekte processer medregnes, dvs. både transport, tørring, forbrænding, substitution af fossile brændsler, substitution af handelsgodning, lagring af kulstof i jord etc.

Energiregnskabet

Slamforbrænding kan kun give CO₂ neutral energi hvis der er et nettoenergioverskud. I tabel 1 er vist energibalancen for forbrænding af spildevandsslam på Lynetten, og energiregnskaber fra forskellige slamforbrændingsanlæg viser at der ikke er energioverskud, hvis tørringen af spildevandsslam, som har et relativt højt vandindhold, medregnes, tværtimod ligger nettoenergiforbruget mellem 1.9 og 5.6 GJ/ton slamtørstof (Kirkeby og Gabriel, 2005). Slamforbrænding er altså ikke CO₂ neutral energi, tværtimod forbruges der netto energi. Disse data er med eksisterende teknologier, men muligvis vil man med ny og mere effektiv teknologi til f.eks. tørring kunne opnå energioverskud.

Tabel 1 Energibalance for forbrænding af 4 ton afvandet slam (med 75 % vandindhold svarer det til 1 ton slamtørstof) (Kirkeby og Gabriel, 2005). Data er fra Lynetten, og opgørelsen er inkl. energiforbruget til fortørring, der enten kan komme fra bioforsøgning af slammet (som i tabellen) eller fra selve slamforbrændingen (men så er der ikke noget varmeudbytte i regnskabet).

<table>
<thead>
<tr>
<th></th>
<th>Ind</th>
<th>Ud</th>
</tr>
</thead>
<tbody>
<tr>
<td>El</td>
<td>kwh</td>
<td>395</td>
</tr>
<tr>
<td>Olie</td>
<td>Liter</td>
<td>29.2</td>
</tr>
<tr>
<td>Biogas (fra afgasning af slam)</td>
<td>Nm³</td>
<td>303</td>
</tr>
<tr>
<td>Varme (fra forbrænding)</td>
<td>kWh</td>
<td>1505</td>
</tr>
<tr>
<td>Energi (el+olie+gas+varme)</td>
<td>GJ</td>
<td>9.14 5.42</td>
</tr>
<tr>
<td>Netto energi forbrug</td>
<td>GJ/t TS</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Hvis man sammenligner det samlede energiforbrug (altså ikke kun til forbrænding, men hele kæden) til disponering af 1 ton TS spildevandsslam ved enten forbrænding eller jordbrugsanvendelse, så ses det af nedenstående figur at direkte jordbrugsanvendelse faktisk netto sparer energi pga. substitution af handelsgodning (svarende til 54 kg NPK gødning / ton slamtørstof), der er energikrævende at fremstille, mens forbrænding er energiforbrugende pga. det høje vandindhold i afvandet spildevandsslam (Kirkeby og Gabriel, 2005).

Drivhusgas-regnskabet

Sammenligner man CO₂ emissioner for hele kæden til disponering af spildevandsslam ved enten forbrænding (med kendt teknologi) eller jordbrugsanvendelse, skal emissioner af andre drivhusgasser (lattergas og methan ved jordbrugsanvendelse) og energi/CO₂ fra handelsgødning (der skal tilføres hvis slammet afbrændes) fra den samlede kæde også indregnes (udtrykt i CO₂ ækvivalenter), se figur 2.

Desuden bør det indregnes at der ved slam udbragt på landbrugsjord oplagres en del af slammets kulstof i jorden i en periode efter udbringning, selv på meget langt sigt (efter 100 år ca. 14 %). Dette svarer alene til en undgået CO₂ emission på ca. 180 kg CO₂/ton TS slam udbragt på jord. Vælges der imidlertid en tidshorisont på kun 20 år er det en større andel af slammets kulstof der fortsat er bundet i jorden, 36 %, svarende til ca. 460 kg CO₂ undgået / t TS slam, og dermed bliver det samlede CO₂ regnskab negativt, altså bidrager jordbrugsanvendelse til en netto CO₂ lagring (Figur 2). Danmark har forpligtiget sig at holde regnskab med udvikling jordens kulstofindhold som en del af vores forpligtigelser under Kyoto-protokollens artikel 3.4, og alene derfor er denne post vigtig, og da tidshorisonten for evaluering af kulstoflagring under Kyoto-protokollen strækker sig fra 1990-2012, er en 20-årig tidshorison relevant i relation til denne.

Det samlede CO₂ regnskab viser, at forbrænding pga. det negative energiregnskab giver en væsentligt større CO₂ emission end jordbrugsanvendelse. Disse data er baseret på eksisterende teknologier, men man vil muligvis med ny og mere effektiv teknologi til såvel tørring som forbrænding kunne opnå et bedre eller måske endda negativt CO₂ regnskab, som illustreret i figur 2. Dette ændrer imidlertid ikke ved at CO₂ regnskabet næppe vil blive meget bedre end for jordbrugsanvendelse.

Samtidig bidrager denne kulstoflagring til at øge Jordens frugtbarehed og dyrkningsegenskaber, hvilket har en betydelig økonomisk værdi, som det dog er svært at værdisætte præcis. Spildevandsslam indeholder endvidere betydelige mængder næringsstoffer, især fosfor, der er en begrænset naturressource. Verdens fosfor reserver skønnes kun at holde i ca. 100 år med det nuværende forbrug, og i modsætning til f.eks. fossile brændstoffer kan fosfor ikke erstattes af noget andet. Derfor giver recirkulering til jordbruget god mening og erstatning af handelsgødningen ved jordbrugsanvendelse af spildevandsslam er betydelig. I Danmark udbringes ca 50 % af de totale ca. 140.000 tons TS slam om året, og disse 70.000 tons TS slam substituerer ca. 3780 tons standard NPK gødning.
Referencer:

Bruun, S., Jensen, L.S. (2005): Simulations of the effects of application of composted and anaerobically digested municipal waste on leaching of nitrogen, denitrification and soil C storage with the agroecosystem model Dasiy .Report, Department of Agricultural Sciences, Royal Veterinary and Agricultural University (KVL).

Stikordsregister

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>aerob</td>
<td>3;6;25;26;91;92;93;94;104</td>
</tr>
<tr>
<td>ammoniak</td>
<td>16;23;24;25;59;60;85;88;91;92;94;95</td>
</tr>
<tr>
<td>ammonium</td>
<td>16;34;42;60;65;77;79;80;85;88;97;98;99</td>
</tr>
<tr>
<td>anaerob</td>
<td>3;12;13;47;48;49;50;51</td>
</tr>
<tr>
<td>抗体</td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>bakterier</td>
<td>12;14;22;47;48;54;57;80;81;97;98</td>
</tr>
<tr>
<td>belufning</td>
<td>8;13;25;91</td>
</tr>
<tr>
<td>biogas</td>
<td>14;37;54;55;57;58</td>
</tr>
<tr>
<td>bly</td>
<td>11;39;42;78</td>
</tr>
<tr>
<td>bromerede</td>
<td>9;32</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/N</td>
<td>16;25;91;94</td>
</tr>
<tr>
<td>cadmium</td>
<td>11;39;40;41;43;44;46;78</td>
</tr>
<tr>
<td>CO2 regnskab</td>
<td>28;100;102</td>
</tr>
<tr>
<td>coli</td>
<td>15;57;58;80;81</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP</td>
<td>3;7;8;22;29;30;31;33;34;35;37;38;49;79</td>
</tr>
<tr>
<td>drikkevand</td>
<td>14;16;21;59;76;78;79;80;81;82</td>
</tr>
<tr>
<td>drikkevandsinteresser</td>
<td>21;76</td>
</tr>
<tr>
<td>drivhusgas</td>
<td>3;6;27;28;94;97;98;100</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>efterbehandling</td>
<td>7;8;33;34</td>
</tr>
<tr>
<td>efterårsudbringning</td>
<td>88</td>
</tr>
<tr>
<td>enterokokker</td>
<td>14;54;57</td>
</tr>
<tr>
<td>erosion</td>
<td>10;20;40;69;73</td>
</tr>
<tr>
<td>eutrofiering</td>
<td>18</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>forsuring</td>
<td>3;5;25;91</td>
</tr>
<tr>
<td>forårsudbringning</td>
<td>24;88</td>
</tr>
<tr>
<td>fosfor</td>
<td>9;18;20;23;39;43;60;63;64;65;66;69;70;71;72;76;85;86;87;89;90;102</td>
</tr>
<tr>
<td>fosfor-triestere</td>
<td>9</td>
</tr>
<tr>
<td>fødekaede</td>
<td>8;13;35;48</td>
</tr>
</tbody>
</table>
G

| Grundvand | 3;5;14;16;22;54;56;59;61;62;76;79;80;81 |
| Grenseværdi | 7;10;11;12;13;21;22;35;39;40;41;42;43;44;51;60;76;77;78;79 |

H

Handelsgodning 6;11;16;17;18;23;24;28;39;44;60;61;64;71;85;87;88;100;101
Hormoner 49
Husdyrgødning 11;15;17;18;21;39;44;46;56;58;60;61;63;69;71;75;76;81;85;87;88;90;92;96;97
Hygiejnisering 14;15;54;81

I

| Itsvind | 16;18;59 |

J

| Jordbund | 94 |

K

Kalium 23;85;86;87
Kalk 14;18;23;54;64;76;86
Kildefaktorer 20
Kobber 39;40;41;42;43;44;86
Kompostering 3;8;13;15;22;25;26;27;28;30;34;38;41;50;54;61;77;79;91;92;94;95;97;98;99
Krom 39
Kullioxid 27;97;98;99
Kulstoflagring 3;5;25;27;91;102
Kviksølv 39
Kvelstof 16;17;23;24;25;27;41;59;60;61;85;87;88;90;91;92;94;95

L

Langsigtede effekter 10;40;61
LAS 3;7;8;22;29;30;31;33;34;35;37;49;79;83
Lattergas 3;6;25;27;28;91;94;95;96;101;104
Lavbundsjorde 20;63;65;70;74
Legemidler 12;13;22;47;48;49;50;51;52;80

M

Mangan 39;86;97
Medicinrester 3;12;47
Metan 3;27;97;98
Mikronæringsstoffer 23;39;86;89
Mineralisering 16;27;50;60;61;87;89;92
Genanvendelse af affaldsbiomasse til jordbrugsformål (2. udgave, 2010)

\[N\]
naonopartikler ... 9,32
nedbrydning .. 8,13;27;33;34;36;38;49;50;51;59;97
nedbør .. 20,72
nikkel .. 39;78;86
nitrat .. 16;17;21;23;59;60;61;77;78;79;85;94;95;97
nitratudvaskning ... 16;17;21;60;61;77;85
NPE ... 3,7;8;29;31;33;34;35
næringsstofudnyttelse ... 23,85

\[O\]
OSD .. 3;6;21;76
overlevelse .. 14;56

\[P\]
PAH ... 3;7;8;29;30;31;33;34;35;46;49
parasitter .. 3,14;54
patogener .. 3;14;15;54;55;56
pH .. 10;14;21;25;33;40;42;54;55;78;87;91;94;97
phenoler ... 9
P-index .. 3;6;20;55;66;69
planteoptag .. 9;10;11;13;40;41;48;63
planteskadegørere ... 14;54
plantetilgengeligt ... 23;64;65;77;85;86;87

\[R\]
regnorme ... 29;30;32;41
risikoklasser ... 20

\[S\]
salmonella .. 54;57
slambekendtgørelsen ... 7;9;10;13;16;18;19;22;23;29;32;44;54;60;66;74;76;85;86;95
smitstoffer .. 3;14;15;22;54;55;56;57;58;80;81
sporeelementer ... 23;86;89

\[T\]
termofil .. 14;54;91
topografi .. 72
transportfaktorer .. 20;65;69
triclosan .. 6;12;13;49;50;53;80;83
tungmetal ... 10;11;40;42;43;44

\[U\]
udvaskning .. 6;10;14;17;19;20;21;22;40;42;50;56;60;61;63;64;65;69;73;76;77;78;79;80;81;88;89

108