Hole spin coherence in a Ge/Si heterostructure nanowire

Higginbotham, Andrew P; Larsen, Thorvald Wadum; Yao, Jun; Yan, Hao; Lieber, Charles M; Marcus, Charles M.; Kuemmeth, Ferdinand

Published in:
Nano Letters

DOI:
10.1021/nl501242b

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Hole Spin Coherence in a Ge/Si Heterostructure Nanowire

A. P. Higginbotham, T. W. Larsen, J. Yao, H. Yan, C. M. Lieber, C. M. Marcus, and F. Kuemmeth

Abstract: Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T_2^* of 0.18 μs exceeds corresponding measurements in III–V semiconductors by more than an order of magnitude, as expected for predominantly nuclear-spin-free materials. Dephasing is observed to be exponential in time, indicating the presence of a broadband noise source, rather than Gaussian, previously seen in systems with nuclear-spin-dominated dephasing.

Keywords: Nanowire, spin qubit, dephasing, spin relaxation, dispersive readout
Combined with a total parasitic capacitance of 0.2 pF, this forms an LC resonance at 830 MHz with bandwidth 15 MHz. Tunneling of holes between dots or between the right dot and lead results in a capacitive load on the readout circuit, shifting its resonant frequency.36,37 The circuit response is monitored by applying near-resonant excitation to the readout circuit and recording changes in the reflected voltage, V_{RF}, after amplification at $T = 4$ K and demodulation using a 90° power splitter and two mixers at room temperature.

The charge stability diagram of the double dot is measured by monitoring V_{RF} at fixed frequency while slowly sweeping V_L and V_R (Figure 1d). Lines are observed whenever single holes are transferred to or from the right dot. Transitions between the left dot and left lead are below the noise floor (not visible) because the LC circuit is attached to the right lead. Enhanced signal is observed at the triple points, where tunneling is energetically allowed across the entire device. The observed “honeycomb” pattern is consistent with that of a capacitively coupled double quantum dot.39 The charging energies for the left and right dots are estimated 1.7 and 2.7 meV from Figure 1d, using a plunger lever arm of 0.3 eV/V_{L}, determined from finite bias measurements on similar devices.34 The few-hole regime was accessible only in the right dot, identified by an increase in charging energy. On the basis of the location of the few-hole regime in the right dot, we estimate the left and right hole occupations to be 70 and 10 at the studied tuning. We found that operating in the many-hole regime improved device stability, facilitating gate tuning and readout. We do not know if this affects the quality of the qubit, as recently found for electron spins in GaAs.40

The spin state of the double dot is in the $(m + 2, n + 1)$ charge state, assuming that (m) paired holes occupy lower orbitals in the left (right) dot. Pulsing to P (“prepare”) in $(m + 1, n + 1)$ discards one hole from the left dot, leaving the spin state of the double dot in a random mixture of singlet and triplet states. Moving to M (“measure”) adjusts the energy detuning between the dots, making interdot tunneling favorable. When M is located at zero detuning, $\epsilon = 0$, tunneling is allowed for singlet but Pauli-blocked for triplet states. When M is at the singlet–triplet splitting, $\epsilon = \Delta_{ST}$, triplet states can tunnel. The location of the interdot charge transition therefore reads out the spin state of the double dot. We expect this picture to be valid for multihole dots with an effective spin-(1/2) ground state.35,40–42 We use singlet–triplet terminology for clarity but note that strong spin–orbit coupling changes the spin makeup of the blocked states without destroying Pauli blockade.43

The fast pulse sequence $E_1 \rightarrow E_2 \rightarrow P \rightarrow M \rightarrow E_1$ is repeated continuously while rastering the position of $M = (V_L, V_R)$ near the $(m + 1, n + 1) \rightarrow (m + 2, n)$ charge transition (Figure 2). The RF carrier is applied only at the measurement point, M. As shown in Figure 1d, features with negative slope are observed corresponding to transitions across the right barrier. We interpret the weak interdot transition at zero detuning accompanied by a relatively strong interdot feature at large detuning as Pauli blockade of the ground-state interdot transition ($\epsilon = 0$), and lifting of blockade at the singlet–triplet splitting ($\epsilon = \Delta_{ST}$). The strength of the $\epsilon = 0$ interdot transition thus measures the probability of loading a singlet at point P, while the strength at $\epsilon = \Delta_{ST}$ measures the probability of loading a triplet. As a control, the Pauli blockade pulse sequence was run in the opposite direction, and no blockade was observed (see Supporting Information).

Spin relaxation is measured by varying the dwell time τ_M at the measurement point for the counterclockwise Pauli-blockade sequence. As τ_M increases the triplet transition weakens and the singlet transition strengthens [Figure 3(a,b)] due to triplet-to-singlet spin relaxation. Note that these relaxation processes have different charge characters at different measurement points. For example, at $\epsilon = 0$ the initial charge state is $(m+n, n)$. The spin state of the double dot is read out by mapping it onto a charge state using the Pauli blockade pulse sequence diagrammed in Figure 2. At the points E1 and E2 (“empty”) the
Figure 3. Spin relaxation. (a) V_{RF} at the measurement point $M = (V_L, V_V)$ of T_1 pulse sequence (arrows). The dwell time at M is $\tau_M = 0.4 \mu$s. (b) Same as (a) but with $\tau_M = 4 \mu$s. (c) Cuts along the V_e region indicated in (b) for $\tau_M = 0.4 \mu$s (□) and $\tau_M = 4 \mu$s (△). Each cut is fit with the sum of two Lorentzians, the left of height μeV and right of height ΔeV. The center of the left Lorentzian defines zero detuning, $V_c = 0$. (d) Readout visibility $I^{(ST)} = I^{(ST)}/I^{(ST)*}$ as a function of τ_M. Fits are to eqs 1 and 2 and have characteristic decay times $T_1^{S} = 200$ ns and $T_1^{T} = 800$ ns for singlet and triplet states. Normalization factors are $V_0^{(S)} = 25 \mu eV$ and $V_0^{(T)} = 200 \mu eV$.

Figure 4. Spin dephasing. (a) V_{RF} at the measurement point $M = (V_L, V_V)$ of T_2^* pulse sequence (arrows). The dwell time at S is $\tau_s = 10$ ns. (b) Same as (a) but with $\tau_s = 1 \mu$s. (c) Normalized differential voltage at the triplet line $\Delta V \equiv [V(V_T) - V_m]/[V(0) - V_m]$ as a function of T_s. The $B = 0$ data are measured at (V_L, V_V) indicated in (b), yielding a T_2^* dephasing time of 0.18 μs. The $B = 1$ T data are obtained at a different dot occupancy and tuning using the same method, yielding $T_2^* = 0.15 \mu$s. The normalization factor is $V_{RF}(0) - V_m = 35 \mu V$. Solid and dashed lines are fits to exponentials. (d) Probability $P^{(ST)} = V^{(ST)}/V^{(ST)*}$ obtained from data as in (a,b), analyzed as in Figure 3c. Fits are to eqs 3 and 4 with $T_2^*=0.18 \mu$s fixed from (c). Normalization factors are $V_0^{(S)} = 60 \mu eV$ and $V_0^{(T)} = 130 \mu eV$.

+1), whereas at $\epsilon = \Delta_{ST}$ the initial charge state is hybridized with (m+2, n).

The T_1 spin relaxation time is measured by analyzing a cut along the V_V axis (shown in Figure 3b) and varying τ_M. For each τ_M, the cut is fit to the sum of two Lorentzians with equal widths and constant spacing. The heights are $V_0^{(S)}$ for the triplet peak and $V_0^{(S)}$ for the singlet peak. Two example cuts are shown in Figure 3c, along with fits to exponential forms

$$V_P^{(S)}(\tau_M) = \frac{1}{4} V_0^{(S)} [4 - 3p(\tau_M/T_1^{(S)})]$$

$$V_P^{(T)}(\tau_M) = \frac{3}{4} V_0^{(T)} p(\tau_M/T_1^{(T)})$$

where $p(\tau_M/T_1) = (1/\tau_M)^{\alpha} e^{-\tau_M/T_1}$ is the exponential decay averaged over the measurement time. Figure 3d plots the readout visibility, $I^{(ST)} = I^{(ST)}/I^{(ST)*}$. The extracted relaxation time is $T_1^{(T)} = 800$ ns at the triplet position (blue line in Figure 3a,b), and $T_1^{(S)} = 200$ ns at the singlet position (red line in Figure 3a,b). We note that these spin relaxation times are 3 orders of magnitude shorter than those previously measured in a similar device in a more isolated gate configuration and away from interdot transitions.65 Detuning dependence of spin relaxation has been observed previously and attributed to detuning-dependent coupling to the leads as well as hyperfine effects (presumably the former dominate here).44,45 Relaxation due to the spin–orbit interaction is expected to take microseconds or longer.46 The difference between $V_0^{(S)}$ and $V_0^{(T)}$ can possibly be attributed to differences in singlet–singlet and triplet–triplet tunnel couplings or enhanced coupling near the edges of the pulse triangle. The separation between Lorentzian peaks by 0.38 mV can be interpreted as $\Delta_{ST} = 160 \mu eV$, using a plunger lever arm of 0.3 eV/V.

To investigate spin dephasing, an alternate pulse sequence is used that first initializes the system into a singlet state in (m+2, n) at point P, then separates to point S (“separate”) in (m+1, n+1) for a time τ_s (Figure 4a). The spin state of the double dot is measured at M by pulsing back toward (m+2, n). For short τ_s (Figure 4a), a strong singlet return feature is observed, consistent with negligible spin dephasing. For long τ_s (Figure 4b), a strong triplet return feature is observed, consistent with complete spin dephasing.

The T_2^* dephasing time is found by measuring $V_{RF}(\tau_s)$ at the triplet transition, and plotting the normalized differential voltage $\Delta V \equiv [V(V_T) - V_m]/[V(0) - V_m]$ as a function of separation time (Figure 4c). Here, $V_m \equiv V_{RF}(500 \text{ ns})$ is the demodulated voltage for a pulse sequence with long dephasing time. The quantity $[V_{RF}(\tau_s) - V_m]$ is directly measured by alternating between the T_2 sequence and a reference sequence with long dephasing time and feeding the demodulated voltage into a lock-in amplifier. Fitting the $B = 0$ data to $\exp[-(\tau_s/\tau_2^*)^\alpha]$ yields $\alpha = 1.1 \pm 0.1$. Figure 4c shows exponential fits ($\alpha = 1$) for both data sets. The $B = 0$ data decays exponentially on a time scale $\tau_2^* = 0.18 \mu$s. Data acquired at $B = 1$ T at a different double-dot occupation give a similar time scale and functional form.

Although this time scale is approaching the limit expected for dephasing due to random Zeeman gradients from sparse 75Ge nuclear spins (see Supporting Information), the observed exponential loss of coherence is by and large unexpected for nuclei. A low-frequency-dominated nuclear bath is expected to yield a Gaussian fall off of coherence with time,37 which is in contrast to the observed exponential dependence, which instead indicates a rapidly varying bath.38 Nuclei can produce
high-bandwidth noise in the presence of spatially varying effective magnetic fields, for example, due to inhomogeneous strain-induced quadrupolar interactions.49 The similarity of data at $B = 0$ and $B = 1$ T in Figure 4c, however, would indicate an unusually large energy-scale for nuclear effects. Electrical noise, most likely from the sample itself, combined with spin–orbit coupling is a plausible alternative. For electrons, the ubiquitous $1/f$ electrical noise alone does not result in pure dephasing,50 but can add high-frequency noise to the low-frequency contribution from the nuclear bath. It is conceivable that the behavior is different for holes, but this has not been studied to our knowledge. The relative importance of nuclei versus electrical noise could be quantified in future experiments by studying spin coherence in isotopically pure Ge/Si nanowires.

Cuts along the V_c axis in Figure 4b as a function of t_r provide a second method for obtaining T_2^\parallel, following analysis along the lines of Figure 3c. The resulting probability $P(S,T) = V_p^{(S,T)}/V_0^{(S,T)}$ versus t_r is shown in Figure 4d, along with exponential curves

\begin{align}
V_p^{(S)}(t_r) &= \frac{P_\infty}{V_0} V_0^{(S)} \left[1 - \frac{1}{P_\infty} e^{-t_r/T_2^\parallel} \right] \\
V_p^{(T)}(t_r) &= \left(1 - \frac{P_\infty}{V_0} \right) V_0^{(T)} \left[1 - e^{-t_r/T_2^\parallel} \right]
\end{align}

using $T_2^\parallel = 0.18$ μs, with P_∞ and $V_0^{(S,T)}$ as fit parameters. Depending on the nature of the dephasing, the singlet probability settling value, P_∞, is expected to range from 1/3 for quasi-static Zeeman gradients to 1/4 for rapidly varying baths.51–53 We find $P_\infty = 0.25 \pm 0.08$. Equations 3 and 4 do not take into account spin relaxation at the measurement point, meaning that the fitted P_∞ systematically overestimates the true settling value.54 Therefore, we conclude that the data weakly support $P_\infty = 1/4$ rather than $P_\infty = 1/3$, consistent with our inference of a rapidly varying bath.

Unexplained high-frequency noise has recently been observed in other strong spin–orbit systems, such as InAs nanowires,28 InSb nanowires,50 and carbon nanotubes.10 In these systems, slowly varying nuclear effects were removed using dynamical decoupling, revealing the presence of unexplained high-frequency noise. In our system, the effect of nuclei is reduced by the choice of material, and an unexplained high-frequency noise source appears directly in the T_2^\parallel. These similarities suggest the existence of a shared dephasing mechanism that involves spin–orbit coupling.

Future qubits based on Ge/Si wires could be coupled capacitively33,56 or through a cavity using circuit quantum electrodynamics.33,45 In the latter case, the long dephasing times measured here suggest that the strong coupling regime may be accessible.

\section*{ASSOCIATED CONTENT}

\subsection*{Supporting Information}

Acquisition method for Figure 1d, image analysis methods, clockwise T_1 pulse sequence (control experiment), and theoretical estimate of T_2^\parallel time scale for Ge/Si nanowire. This material is available free of charge via the Internet at http://pubs.acs.org.

\section*{AUTHOR INFORMATION}

\subsection*{Corresponding Author}

*E-mail: kuemmeth@nbi.dk.

\subsection*{Notes}

The authors declare no competing financial interest.

\section*{ACKNOWLEDGMENTS}

We acknowledge helpful discussions with Félix Beaudoin, William Coish, Jeroen Danon, Xuedong Hu, Christoph Kleeffel, Daniel Loss, Franziska Maier, and Mark Rudner and experimental assistance from Patrick Herring. Funding from the Department of Energy, Office of Science & SGF, the EC FP7-ICT project SISPIN no. 323841, and the Danish National Research Foundation is acknowledged.

\section*{REFERENCES}

(38) Weinreb, S. LNA SN68. Minicircuits ZP-2MH mixers; Tektronix AWG5014 waveform generator used on V1 and V2. Coilcraft 0603CS chip inductor.
(54) We do not correct for T1 effects in eqs 3 and 4, as V eff differed significantly from those observed in Figure 3.

3586 dx.doi.org/10.1021/nl501242b | Nano Lett. 2014, 14, 3582–3586