Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner?

In vitro, in vivo and clinical studies

Mortensen, Alan; Lykkesfeldt, Jens

Published in:
Nitric Oxide: Biology and Chemistry

DOI:
10.1016/j.niox.2013.12.001

Publication date:
2014

Document version
Early version, also known as pre-print

Citation for published version (APA):
Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner? *In vitro, in vivo* and clinical studies

Alan Mortensen, Jens Lykkesfeldt

Faculty of Health and Medical Sciences, University of Copenhagen, Denmark

Abstract

Ascorbate (Asc) has been shown to increase nitric oxide (NO) bioavailability and thereby improve endothelial function in patients showing signs of endothelial dysfunction. Tetrahydrobiopterin (BH4) is a co-factor of endothelial nitric oxide synthase (eNOS) which may easily become oxidized to the inactive form dihydrobiopterin (BH2). Asc may increase NO bioavailability by a number of mechanisms involving BH4 and eNOS. Asc increases BH4 bioavailability by either reducing oxidized BH4 or preventing BH4 from becoming oxidized in the first place. Asc could also increase NO bioavailability in a BH4-independent manner by increasing eNOS activity by changing its phosphorylation and S-nitrosylation status or by upregulating eNOS expression. In this review, we discuss the putative mechanisms by which Asc may increase NO bioavailability through its interactions with BH4 and eNOS.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Tetrahydrobiopterin (Fig. 1) is an endogenous co-factor of eight human enzymes: four aromatic amino acid hydroxylases, three nitric oxide synthases and alkylglycerol monooxygenase [1]. Three nitric oxide synthases (NOS) are neuronal NOS (nNOS or NOS1), inducible NOS (iNOS or NOS2) and endothelial NOS (eNOS or NOS3). NOS produces the vaso-relaxing factor nitric oxide (NO) in a process involving conversion of L-arginine to L-citrulline, and tetrahydrobiopterin is thus important for regulating blood pressure. The active form of NOS producing NO is dimeric and one of the roles of tetrahydrobiopterin is to stabilize this dimer [2].

Biotin is in three stable oxidation states: tetrahydrobiopterin (BH4), dihydrobiopterin (BH2) and biopterin. Besides these,
unstable short-lived intermediates such as the trihydrobiopterin radical and quinoid dihydrobiopterin exist. The most reduced form, BH₄, is easily oxidized to a quinoid form of BH₂, qBH₂, which rapidly rearranges to BH₂. BH₂ may then be further oxidized to biop-terin. However, in contrast to BH₄, BH₂ is relatively stable and is only slowly oxidized [3].

BH₄ and BH₂ have been shown to bind to eNOS with similar affinity (Kₐ = 80 nM) [4]. However, while binding of BH₄ to NOS leads to formation of NO, binding of BH₂ completely inhibits the formation of NO [5] and instead leads to formation of superoxide [6]; a NOS state referred to as uncoupled. Because of this competition for binding to NOS, it could be expected that it is the ratio of BH₄-to-BH₂ that is important in determining superoxide and NO production, and hence endothelial dysfunction, rather than the absolute amount of BH₄. Indeed, in a number of studies this association has been observed.

Ascorbate (Asc), the reduced form of vitamin C, is an important intracellular and circulatory antioxidant and has been suggested to play an important role in maintaining BH₄ in its reduced state. Thus, in vitro studies have shown that ascorbate selectively reduces the BH₃ radical to BH₄, i.e., the one-electron oxidation product [7,8]. Also, Asc have been suggested to non-selectively spare BH₄ from oxidation through its generic antioxidant function [8]. In this way, Asc may indirectly improve vascular function by increasing the bioavailability of NO in vivo. In these processes, Asc itself is oxidized to the ascorbyl free radical, two molecules of which dismutate into one molecule of Asc and one of dehydroascorbic acid (DHA), the fully oxidized form of vitamin C (Fig. 2). In order to prevent loss of vitamin C through oxidation, dehydroascorbic acid is rapidly reduced to Asc intracellularly by e.g., glutathione or thioredoxin reductase in a number of cell types – so called ascorbate recycling [9]. An intimate relationship between Asc, BH₄ and NO production would provide a rationale partly explaining the significant relationship between poor vitamin C status and cardiovascular disease risk that has consistently been reported from large epidemiological studies [10]. However, until now in vivo and clinical studies investigating this role of Asc have been quite few.

This review discusses the available experimental literature on the putative role of Asc in NO bioavailability through interactions with BH₄ and NOS.

Fig. 1. Structures of tetrahydrobiopterin, dihydrobiopterin, ascorbic acid and dehydroascorbic acid.

Biopterin oxidation status as biomarker of endothelial function

A number of studies have pointed out that the ratio of BH₄-to-BH₂ may be a better biomarker of superoxide and nitric oxide production, and hence endothelial function, than absolute levels of BH₄. Crabtree and co-workers found that NO bioactivity correlated with intracellular BH₄-to-BH₂ ratio and not absolute levels of BH₄, and that superoxide production was negatively correlated with BH₄-to-BH₂ ratio [4]. Flow-mediated vasodilation was found to be positively correlated with BH₄ plasma levels and negatively correlated with BH₂ plasma levels in patients with cardiovascular disorders; hence, a very strong positive correlation between flow-

Fig. 2. Oxidation of tetrahydrobiopterin to the trihydrobiopterin radical followed by reduction by ascorbate with concomitant formation of the ascorbyl radical, two of which can dismutate yielding ascorbate and dehydroascorbic acid.
mediated vasodilation and BH₄-to-BH₂ ratio was observed [11]. Likewise, in rats treated to increase the amount of BH₂ and hence lower the BH₄-to-BH₂ ratio, evidence of uncoupling of NOS leading to increased superoxide production was found [12]. Also, acetylcholine-induced vasorelaxation was reduced in the aorta of rats with lower BH₄-to-BH₂ ratio and mean blood pressure was found to be negatively correlated with aortic BH₄-to-BH₂ ratio [12]. In another study, it was found that both BH₄ and BH₂ increased in rats that had undergone arteriovenous fistula (AVF) surgery compared to sham operated rats [13]. Despite the higher BH₄ levels in AVF rats, superoxide production was increased in AVF rats and this was attributed to a lower BH₄-to-BH₂ ratio in these rats [13]. In ApoE-deficient mice, Asc in the feed decreased the aortic level of BH₂ without influencing the level of BH₄ resulting in an increased BH₄-to-BH₂ level which correlated with an increase in NOS activity [14]. Finally, computational studies confirmed that the ratio of BH₄-to-BH₂ is important for the formation of NO and superoxide from NOS [15].

In vitro studies

As BH₄ is easily oxidized, it may easily be envisaged that an antioxidant—such as vitamin C—may enhance the stability of BH₄ and maintain a high ratio of BH₄-to-BH₂. As expected, Asc has been shown in several in vitro studies to be able to stabilize BH₄. First of all, the rate of autoxidation of BH₄ is dependent on the concentration of BH₄, at least at low pH, which is important to bear in mind when comparing stability studies performed at different concentrations. Thus, 41 nM BH₄ was completely converted to BH₂ in 15 min at 4 °C in 0.1 M HCl, whereas BH₄ in a 415 nM solution under the same conditions was only 1% degraded and at higher concentrations of BH₄ an even smaller percentage was oxidized [16]. Secondly, the stability of BH₄ in aqueous solution is dependent on pH showing increased stability at low pH [3]. In Table 1 is summarized the observed effects of Asc on the stability of BH₄ in vitro. From these studies it seems that the protective effect of Asc is modest at pH 7.4.

<table>
<thead>
<tr>
<th>BH₄ concentration (μM)</th>
<th>Asc concentration (μM)</th>
<th>Observation</th>
<th>Conditions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.13</td>
<td>0</td>
<td>88% Breakdown</td>
<td>20 h, 4 °C, 0.1 M HCl</td>
<td>[16]</td>
</tr>
<tr>
<td>32.13</td>
<td>5700</td>
<td>0% Breakdown</td>
<td>20 h, 4 °C, 0.1 M HCl, Ar</td>
<td></td>
</tr>
<tr>
<td>0.0415</td>
<td>5700</td>
<td>0% Breakdown</td>
<td>4 h, 4 °C, 0.1 M HCl, Ar</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
<td>100% Breakdown</td>
<td>20 min, RT, pH 7.4</td>
<td>[20]</td>
</tr>
<tr>
<td>0.1</td>
<td>100</td>
<td>Half-life around 70 min</td>
<td>RT, pH 7.4</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>53% Breakdown</td>
<td>1 h, 22 °C, pH 7.4</td>
<td>[18]</td>
</tr>
<tr>
<td>25</td>
<td>500</td>
<td>46% Breakdown</td>
<td>1 h, 22 °C, pH 7.4</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1500</td>
<td>55% Breakdown</td>
<td>31 h, 22 °C, pH 7.4</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3000</td>
<td>7% Breakdown</td>
<td>1 h, 22 °C, pH 7.4</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>100% Breakdown</td>
<td>0 h, 37 °C, pH 7.4</td>
<td>[38]</td>
</tr>
<tr>
<td>20</td>
<td>500</td>
<td>60% Breakdown</td>
<td>21 h, 37 °C, pH 7.4</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>Half-life 17.5 min</td>
<td>0.5 mM EDTA, 26 °C, pH 7.4</td>
<td>[19]</td>
</tr>
<tr>
<td>36</td>
<td>100</td>
<td>Half-life around 25 min</td>
<td>0.5 mM EDTA, 26 °C, pH 7.4</td>
<td></td>
</tr>
</tbody>
</table>

RT: room temperature.

Whereas an antioxidant activity may easily be demonstrated in vitro, it is much more difficult to prove that the reaction is also relevant in vivo. BH₄ bound to NOS does become oxidized to BH₂ during the catalytic cycle of NOS [22]. However, reduction of BH₂ to BH₄ by NOS and does not involve Asc [22]. Whether freely circulating BH₄ once oxidized is actually reduced by Asc in vivo remains to be established.

The second possibility that Asc protects BH₄ from oxidation by scavenging ROS has also been explored. The ROS of particular relevance are superoxide, as it is formed by NOS when uncoupled, and peroxynitrite as it is formed by reaction between NO, the product of NOS, and superoxide. Superoxide reacts rather slowly with both ascorbate and BH₄ with a rate constant of 3–4 × 10⁵ M⁻¹ s⁻¹ [17,23]. Superoxide, on the other hand, reacts rapidly with NO with a rate constant of the order of 10¹⁰–10¹¹ M⁻¹ s⁻¹ [24–26] to produce peroxynitrite. Peroxynitrite has been shown to react 6–10 times faster with BH₄ than with Asc [7]. Thus, in order for Asc to protect BH₄ from oxidation by peroxynitrite in vivo, Asc must be present at a much higher concentration than BH₄. The micromolar concentration of Asc in plasma should be able to protect the nanomolar concentration of BH₄ from oxidation by these two ROS. Inside endothelial cells the concentration of BH₄ has been determined to be a few pmol/mg protein [20,27,28]. Again, the much higher intracellular concentration of Asc compared to BH₄—about three orders of magnitude [29–31]—means that Asc could kinetically protect BH₄, but other systems such as superoxide dismutase may play a more prominent role in vivo.

Ex vivo studies

Concerning the interaction between Asc and BH₄, three types of ex vivo studies have been performed: (1) studies involving NOS isolated from tissue, (2) studies involving cell cultures and (3) studies involving isolated tissues or organs. The primary focus of these studies has been to elucidate the mechanisms by which Asc may increase the bioavailability of NO.

NOS

Asc was found to increase the activity of iNOS as measured by the formation of L-citrulline, whereas dehydroascorbic acid at concentrations higher than 1 mM decreased the activity of iNOS [32]. It was suggested that this was due to an antioxidant effect of Asc, in line with the finding that Asc also decreased the apparent S₀.₅ value (the concentration at which the enzyme has half its maximal activity) of BH₄ [32], i.e., less BH₄ is needed if it’s not becoming oxidized. Similarly, another study found that Asc increased the activity of eNOS in a concentration-dependent manner, as measured by

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH₄ concentration (μM)</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>32.13</td>
</tr>
<tr>
<td>32.13</td>
</tr>
<tr>
<td>0.0415</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>36</td>
</tr>
</tbody>
</table>
the formation of \(\text{l-citrulline} \) [28]. BH\(_4\) was also found to increase the activity of eNOS, as measured by the formation of \(\text{l-citrulline} \), in microsomes prepared from human placental tissue: here, Asc enhanced the effect of BH\(_4\) on eNOS by an additional 40% [18].

Cells

The cell types that have been studied are primarily endothelial cells but other cell types have been studied as well. Several studies have found that Asc enhanced the activity of NO in intact cells. Increased formation of \(\text{l-citrulline} \) in the presence of Asc is often used as a biomarker of enhanced NO activity [20,28,33–37]. Other ways of assessing the activity of NO in the presence of Asc are formation of nitrite and nitrate, oxidation products of NO [28,34,38,39], direct detection of NO [37] or cGMP, the latter formed by action of NO on soluble guanylate cyclase [33].

Several studies have found that Asc dose-dependently increased NO bioavailability and BH\(_4\) levels in endothelial cells (Table 2). It was found that Asc did not induce NO expression in endothelial cells [28,33,35,39] or in macrophages [38]. Likewise, it was found that Asc did not induce increased biosynthesis of BH\(_4\) [20,38] nor did Asc change the affinity of NOS towards BH\(_4\) [20]. The increase in BH\(_4\) was hence ascribed ‘a stabilizing effect’ of Asc on BH\(_4\) [20]. Also, Asc did not enhance the cellular uptake of \(\text{l-arginine} \) [33], the substrate of NOS, nor did it change the Keq of \(\text{l-arginine} \) [28].

An increase in intracellular BH\(_4\) levels increased NO bioavailability [20,28,35]. The observed increase in BH\(_4\) levels induced by Asc may hence explain the increased NO bioavailability caused by Asc (Table 2). In addition to this effect of Asc, another mechanism has been suggested that enhances NO production without increasing BH\(_4\) levels. It was found that Asc increased phosphorylation of eNOS-Ser\(^{1177} \) and decreased phosphorylation of eNOS-Thr\(^{495} \) and this correlated with an increased eNOS activity [36]. Intracellular BH\(_4\) levels did not increase until after four hours, but the increase in eNOS activity was seen already after 2–4 h incubation with Asc, and it was concluded that Asc may rapidly increase eNOS activity by phosphorylation/dephosphorylation and long-term by increasing BH\(_4\) levels [36].

Another potential mechanism involving eNOS activity has been proposed. Just like phosphorylation controls eNOS activity, so does S-nitrosylation. In a study, it was shown that S-nitrosylation inhibits eNOS activity in endothelial cells, and that eNOS S-nitrosylation correlated inversely with eNOS-Ser\(^{1177} \) phosphorylation [40]. Incubation of purified eNOS with Asc enhanced eNOS activity by 20% which correlated with a lower degree of eNOS S-nitrosylation [40] — the effect could not have been due to changes in phosphorylation status, as this requires the presence of phosphorylating enzymes [36]. Unfortunately, the effect of Asc on BH\(_4\) levels was not examined in this study.

Besides endothelial cells, the effect of Asc on NOS activity has been studied in cells of the immune system. In contrast to endothelial cells, which contain eNOS, cells of the immune system contain iNOS and nNOS [37]. Neutrophils from guinea pigs on an ascorbic acid-deficient diet for two weeks were found to contain less Asc and BH\(_4\) and have lower eNOS activity compared to neutrophils from control animals [37]. The expression of iNOS and nNOS was lower in neutrophils from Asc-deficient guinea pigs [37], whereas in endothelial cells, Asc did not influence eNOS expression (see above). Another study did not observe any changes in iNOS expression in mouse macrophage RAW 264.7 cells incubated with Asc, in contrast to a previous study that found a 2-fold increase in iNOS levels in mouse macrophage J774.1 cells [41], but did find an increase in BH\(_4\) level and NOS activity [38]. Likewise, Asc in aqueous humor was found to increase nitrite formation in mice macrophages, an effect that was ascribed to a stabilizing effect on BH\(_4\) observed in the growth medium [42]. In polymorphonuclear leukocytes, both Asc and DHA were found to increase NOS activity [34].

Tissues and organs

A couple of studies have looked at the effect of Asc and BH\(_4\) on isolated tissues and organs. In excised aortas from rats, in which NO had been inhibited in vivo by \(\text{N}^\text{\textit{G}}\)\text{-nitro-\text{l-arginine}, sepiapterin, a precursor of BH\(_4\), was found to reduce vasodilation in contrast to what might be expected. The reduced vasodilation was believed to be due to autoxidation of BH\(_4\) caused by increased oxidative stress [43]. Incubation of the aortic rings with Asc (1 \(\mu \)M) for 10 min restored vasodilation and this was suggested to be due to Asc stabilizing BH\(_4\) [43]. In another study, ascorbic acid (10 g/kg chow) was given to wild-type and ApoE-deficient mice for 26–28 weeks. Whereas Asc increased acetylcholine-induced vasorelaxation in ApoE-deficient mice, it reduced vasorelaxation in wild-type mice [14]. In aortic homogenate, Asc in the diet increased \text{l-citrulline} formation in both wild-type and ApoE-deficient mice without affecting NO expression, in line with the findings in endothelial cells (see above). Again, protection of BH\(_4\) by Asc was suggested to explain the findings [14]. The activity of eNOS and nNOS increased while iNOS activity decreased in ischemic rat muscle homogenate from rats fed BH\(_4\) \(\text{l-arginine and Asc (alone or in combination) with the largest change seen in the BH\(_4\) + \text{l-arginine + Asc group [44]. This correlated with an increased eNOS expression and NO production found in vivo (see below). Okazaki et al. induced diabetes in rats and their hearts were isolated and perfused. BH\(_4\) and the BH\(_4\)-to-BH\(_2\) ratio were decreased in the diabetic hearts whereas superoxide increased. Treatment with Asc increased the BH\(_4\)-to-BH\(_2\) ratio, decreased superoxide production and increased nitrite and nitrate [45].

Table 2

<table>
<thead>
<tr>
<th>Cells</th>
<th>Extracellular Asc (µM)</th>
<th>Intracellular Asc pmol/mg protein</th>
<th>Effect on BH(_4)</th>
<th>Effect on NO bioavailability</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUVEC</td>
<td>0.1–100</td>
<td></td>
<td>n.d.</td>
<td>Increased 126% increase</td>
<td>[33]</td>
</tr>
<tr>
<td>PAEC</td>
<td>75</td>
<td></td>
<td></td>
<td>Decreased 73%</td>
<td>[28]</td>
</tr>
<tr>
<td>HUVEC</td>
<td>1–1000</td>
<td></td>
<td></td>
<td></td>
<td>[20]</td>
</tr>
<tr>
<td>HUVEC</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>[35]</td>
</tr>
<tr>
<td>HUVEC</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>[54]</td>
</tr>
<tr>
<td>BAEC</td>
<td>n.d.</td>
<td>20–430</td>
<td>20% increase</td>
<td></td>
<td>[39]</td>
</tr>
<tr>
<td>HUVEC</td>
<td>100</td>
<td>4000</td>
<td>56% increase</td>
<td></td>
<td>[36]</td>
</tr>
<tr>
<td>EA.hy926</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HUVEC: human umbilical vein endothelial cell; n.d.: not determined; PAEC: porcine aortic endothelial cell; BAEC: bovine aorta endothelial cells.

A. Mortensen, J. Lykkesfeldt / Nitric Oxide 36 (2014) 51–57

54
Asc enhancement of eNOS activity

Based on the \textit{in vitro} and \textit{ex vivo} findings, the effect of Asc on eNOS activity may be summarized as in Fig. 3. Besides the reactions depicted in Fig. 3, Asc might also increase NO bioavailability in an eNOS-independent reaction by reducing nitrate, a degradation product of NO, to NO, a process utilized in the curing of meat. However, this reaction requires a low pH, such as that found in the stomach, to proceed at an appreciable rate \cite{46}. Hence, in the vasculature, enzymatic reduction of nitrite to NO is more likely than Asc-mediated reduction \cite{47}.

\textbf{In vivo studies}

Many studies have looked at the effect of either BH\textsubscript{4} or Asc on endothelial function \cite{148}. These studies have collectively shown that Asc and BH\textsubscript{4} may individually increase the bioavailability of NO \textit{in vivo} and improve clinical endpoints such as blood pressure and blood flow. However, this review will focus on studies in which BH\textsubscript{4} and Asc have been administered and/or assayed together. Such combined experiments have been performed in both humans and animals. Whereas experiments in humans have mainly looked at clinical endpoints, animal experiments have mostly been concerned with measurements of NO activity.

\textit{Animals}

Guinea pigs, like humans, lack the ability to synthesize Asc and therefore completely rely on its presence in their diet \cite{49}. Consequently, the guinea pig is a particularly well-suited animal model to study the possible interaction between vitamin C and BH\textsubscript{4}. Chattarjee and coworkers placed guinea pigs on a vitamin C deficient diet for two weeks and found that, Asc in plasma and in neutrophils decreased by 80\% and 78\%, respectively, compared to guinea pigs supplemented with 30 mg/day \cite{37}. As a result of the ascorbic acid-deficient diet, BH\textsubscript{4} levels in neutrophils decreased by 60\% \cite{37}. The neutrophils were isolated and used for \textit{ex vivo} studies (see above). Recently, we have demonstrated that plasma biopterin oxidation status is closely linked to the amount of Asc in plasma and hence in the diet \textit{in vivo} \cite{50}. In another study, guinea pigs were fed a diet containing either 100, 250, 500, 750, 1000 or 1500 ppm ascorbic acid. Those receiving 500–1500 ppm Asc had significantly higher plasma levels of BH\textsubscript{4} than those receiving 100 ppm and the group fed 100 ppm Asc also had a higher BH\textsubscript{2}-to-BH\textsubscript{4} ratio than all the other groups \cite{50}. A positive linear correlation between plasma BH\textsubscript{4} and plasma Asc was observed, whereas a negative correlation was observed between plasma BH\textsubscript{4} and plasma BH\textsubscript{2}.

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
BH\textsubscript{4} & BH\textsubscript{2} & BH\textsubscript{1} \\
\hline
+ L-arginine & + Asc & + L-arginine + Asc \\
\hline
\end{tabular}
\end{center}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{Mechanisms by which Asc may improve vasorelaxation by increasing NO bioavailability through increased eNOS activity. See text for details.}
\end{figure}

ma BH\textsubscript{2}. BH\textsubscript{4} plasma levels were not correlated with either Asc or DHA, whereas the BH\textsubscript{4}-to-BH\textsubscript{2} ratio showed the same correlations as did BH\textsubscript{4} \cite{50}.

Commonly used rodents such as mice and rats produce their own vitamin C thereby potentially making supplementation studies difficult to interpret. Regardless, studies have also investigated the relationship between Asc and BH\textsubscript{4} in these species. Similarly to the guinea pigs studies mentioned above, wild-type mice receiving feed containing 1\% Asc more than tripled their BH\textsubscript{4} in aorta with no effect on BH\textsubscript{2} levels compared to controls \cite{14}. In ApoE-deficient mice, on the other hand, BH\textsubscript{4} levels in aorta were unaffected by supplementation with Asc, while BH\textsubscript{2} levels decreased; however, neither BH\textsubscript{4} nor BH\textsubscript{2} levels in liver were affected by vitamin C supplementation \cite{14}. In both cases, this resulted in an increased BH\textsubscript{4}-to-BH\textsubscript{2} ratio which correlated with increased NOS activity as measured by the formation of the l-citrulline \cite{14}.

Other studies have looked at the effect of increased bioavailability of Asc and BH\textsubscript{4}. Rats received BH\textsubscript{4} + t-arginine, BH\textsubscript{4} + a-arginine or BH\textsubscript{4} + t-arginine + Asc. BH\textsubscript{4} and Asc in plasma were not correlated with either Asc or BH\textsubscript{4} ratio which correlated with increased NOS activity as measured by the formation of the l-citrulline \cite{14}.

Animals

BH\textsubscript{4} and Asc have been administered to BH\textsubscript{4}-deficient diet, BH\textsubscript{4} and plasma levels decreased; however, neither BH\textsubscript{4} nor BH\textsubscript{2} levels in liver were affected by vitamin C supplementation \cite{14}. In both cases, this resulted in an increased BH\textsubscript{4}-to-BH\textsubscript{2} ratio which correlated with increased NOS activity as measured by the formation of the l-citrulline \cite{14}.

Clinical studies

For years, epidemiological studies have repeatedly shown that a poor vitamin C status is associated with increased risk of developing cardiovascular disease \cite{52}. Fueled by the expanding in \textit{vitro} literature supporting a role of Asc in maintaining BH\textsubscript{4} reduced, we and others have speculated that increased NO availability mediated by reducing equivalents from Asc may be the missing link explaining the clinical observations \cite{52}. However, so far only a very limited number of clinical studies have investigated the relationship between Asc and BH\textsubscript{4}.

In one study, people suffering from hypertension (systolic blood pressure >135 mmHg) were given an oral combination of BH\textsubscript{4} and Asc (200 mg of each twice daily or 100 mg of each twice daily for four weeks). A significant decrease in systolic and mean blood pressure and an increase in flow-mediated vasodilation were ob-
erved [53]. The effect on blood pressure was ascribed to BH4 as a two week run-in period with Asc alone did not alter blood pressure. However, a combination effect of BH4 and Asc could not be ruled out [53].

Mittermayer and co-workers studied the effect of BH4 and Asc on forearm blood flow (FFB) responses to acetylcholine. Infusion of lipopolysaccharide caused a decrease in FFB response to acetylcholine of 23%, but subsequent infusions of BH4 (500 µg/min) or Asc (24 µg/min) restored FFB response to baseline values [54]. Asc did not increase systemic levels of BH4 but did cause a local BH4 increase in the forearm [54]. In a similar study, the effect of BH4 and Asc on FFB in chronic smokers was examined. BH4 infusion (500 µg/min) increased FFB response to acetylcholine and serotonin in smokers but not in non-smokers; Asc infusion (6 or 18 µg/min) also improved FFB response to acetylcholine (the response to serotonin was not examined) [55]. Co-infusion of BH4 and Asc did not improve FFB compared to either agent alone and infusion of Asc prior to infusion of BH4 abolished the effect of BH4 [55].

As reviewed in detail elsewhere [48], vitamin C pharmacokinetics are highly dose dependent and ingestion of about 400 mg/day result in a situation of near-saturation of plasma and tissues [10]. Thus, if adequately supplied through the diet, excess amounts achieved, e.g., by supplementation, are rapidly and effectively excreted. As described below, this issue is often overlooked in the clinical literature on vitamin C supplementation [56], and notably, none of the studies mentioned above enrolled subjects that were vitamin C deficient at study start. Consequently, they give no information on whether poor vitamin C status—a situation affecting substantial proportions of the World’s population including the industrialized parts [56]—negatively affects the bioavailability of BH4 or if poor BH4 status can be ameliorated by vitamin C supplementation.

Looking more generally at cardiovascular health, almost all of the large phase III randomized controlled trials using vitamin C as intervention have not been able to demonstrate effect of vitamin C supplementation on cardiovascular morbidity or mortality [57–61]. This constitutes a considerable discrepancy to the experimental and epidemiological literature. However, while experimental and epidemiological literature is generally weakened by their insufficient predictive validity, lack of ability to demonstrate causality in humans, and risk of unidentified confounders and co-deficiencies, the majority of the large clinical intervention studies suffers from several serious design issues including e.g., absence of vitamin C deficiency as inclusion criterion, no record of vitamin C status before or after intervention, and unrecorded concurrent supplementation with vitamin C – also among placebo allocated individuals [52]. Thus, based on the information provided, the major vitamin C intervention studies with cardiovascular endpoints have the serious weakness of studying populations with adequate to high vitamin C levels at baseline. This renders them only able to confirm that supplementation to already well-nourished individuals is very likely to be without effect. Unfortunately, no trials have so far systematically studied the effect of vitamin C deficiency on cardiovascular risk or the effect of supplementation in this particularly relevant subpopulation. Consequently, it is not presently possible to evaluate to what extend the potential effects of vitamin C on BH4 status found studied experimentally are clinically relevant.

Conclusion

Asc has been shown to improve vasorelaxation in humans and animals. A number of studies have indicated that rather than a single mechanism, several different mechanisms appear to be involved in Asc-mediated vasorelaxation. Mainly, Asc may improve endothelial function by increasing NO bioavailability through BH4 and eNOS. Asc may increase BH4 bioavailability by protecting BH4 from being oxidized by scavenging ROS and/or by reducing oxidized BH4. Asc may also increase eNOS activity by changing its phosphorylation and S-nitrosylation status. However, although shown to occur ex vivo, it remains to be established to which extent these mechanisms are important in vivo.

Conflicts of interest

The authors declare no conflict of interest that could influence the present work.

Acknowledgment

This work was supported by the LIFE-PHARM Centre for in vivo pharmacology.

References

