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Abstract
Objective. External control of spike times in single neurons can reveal important information
about a neuron’s sub-threshold dynamics that lead to spiking, and has the potential to improve
brain–machine interfaces and neural prostheses. The goal of this paper is the design of optimal
electrical stimulation of a neuron to achieve a target spike train under the physiological
constraint to not damage tissue. Approach. We pose a stochastic optimal control problem to
precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with
noise assumed to be of intrinsic or synaptic origin. In particular, we allow for the noise to be of
arbitrary intensity. The optimal control problem is solved using dynamic programming when
the controller has access to the voltage (closed-loop control), and using a maximum principle
for the transition density when the controller only has access to the spike times (open-loop
control). Main results. We have developed a stochastic optimal control algorithm to obtain
precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes,
under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy
of control degrades with increasing intensity of the noise. Simulations show that our
algorithms produce the desired results for the LIF model, but also for the case where the
neuron dynamics are given by more complex models than the LIF model. This is illustrated
explicitly using the Morris–Lecar spiking neuron model, for which an LIF approximation is
first obtained from a spike sequence using a previously published method. We further show
that a related control strategy based on the assumption that there is no noise performs poorly in
comparison to our noise-based strategies. The algorithms are numerically intensive and may
require efficiency refinements to achieve real-time control; in particular, the open-loop context
is more numerically demanding than the closed-loop one. Significance. Our main contribution
is the online feedback control of a noisy neuron through modulation of the input, taking into
account physiological constraints on the control. A precise and robust targeting of neural
activity based on stochastic optimal control has great potential for regulating neural activity in
e.g. prosthetic applications and to improve our understanding of the basic mechanisms by
which neuronal firing patterns can be controlled in vivo.

Keywords: noisy, leaky integrate-and-fire model, spike-time controller,
Hamilton–Jacobi–Bellman PDE, maximum principle for PDEs

(Some figures may appear in colour only in the online journal)
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1. Introduction

Manipulation of individual neurons through electrical
stimulation provides a mean of controlling their spiking
activity. In applications such as brain–machine interfaces and
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neuroprosthetics, a common goal is to record from a neuron
and interpret the firing activity. Conversely, one may wish
to stimulate a cell in order that it produce a desired firing
rate, either fixed or varying in time. It is known that many
cells fire sequences of spikes where the spike times—rather
than just the rate—matter to post-synaptic neurons. In this
paper, we explore the possibility of controlling a neuron in
a way that it generates a sequence of spike times close to a
desired sequence. We consider this problem in the framework
of stochastic optimal control and give both a feedback solution
(closed-loop), when the cell voltage is explicitly observable,
as well as an open-loop solution when only the occurrence
of spikes is observable. Importantly, we allow for an arbitrary
noise intensity.

Both theoretically and in practice, related problems have
been addressed in the literature. One objective has been
to obtain either minimum or maximum interspike intervals
lengths, when the input is constrained to be between some
prespecified upper and lower bounds, see e.g. [19, 20] for a
mathematical treatment, or [6, 25, 32] in a neuronal context.
Another objective is to break a pathological synchronous firing
pattern in clusters of neurons, highly relevant for neurological
disorders such as epilepsy and Parkinson’s disease, [23, 24],
see also [13].

Our objective, namely targeting exact spike times in single
neurons, has been considered mainly in the open-loop context,
and in either absence of or for small noise. In [1] they use
the spike response model, [15], to control output target spike
trains and implement their scheme on pyramidal cells in mouse
cortical slices. Their method is numerically efficient and allows
for the simultaneous control of many neurons. However, it
strongly relies on the assumption that the noise (the value of
� in equation (1) below) is small. They only work with open-
loop control. The difference between the objective in [1] and
what we consider below is that they maximize the probability
of spiking at some given time t∗, whereas we minimize the
mean squared difference between the realized spike time, Tsp

and the desired, t∗. Moehlis et al [21] work with a phase
response model to obtain spikes at exact times, while keeping
the root mean square of the input to a minimum. A similar
approach is taken in [8]. They do not consider noise, though,
and only work with open-loop control. In [26], their methods
are implemented on brain slices of pyramidal neurons of a
rat’s hippocampus. While the phase response curve model
is a parsimonious and effective way to describe a neuron’s
response to a stimulus, it is only valid in the supra-threshold
regime, where the unstimulated neuron is periodically spiking.
Feng and Tuckwell [12] investigate the control of the firing
times of a leaky integrate-and-fire (LIF) neuron by varying the
intensity of a noise process that drives the voltage (there is
no other intrinsic noise in the model). To obtain a given spike
time, they choose the objective of minimizing the variance
of the membrane potential at the desired spike time, while
forcing the mean of the membrane potential at this time point
to equal the threshold. This provides exact solutions since it
does not involve first-passage times, but has the drawback that
there is a non-negligible probability that the obtained spike
time will be far from the desired spike time.

Our objective of imposing a certain timing sequence for
the spike train using an externally applied control is obtained
in both the closed- and open-loop settings, and we specifically
include the noise in the calculations of the controls. We restrict
the controlled input to stay within pre-specified bounds, and
also include a cost function to minimize intervention. Our main
contributions are that we specifically allow for a non-negligible
noise component in the neural activity when calculating the
control, and consider both open- and closed-loop controls.
The noise component is given by a Wiener process with a
noise intensity larger than zero. In particular, we do not restrict
our attention to the autonomously-spiking, supra-threshold
regime.

The paper is structured as follows: first, we describe the
neuron model and formalize the control objective. Then, we
describe a feedback-based solution, which assumes that the
controller has detailed access to the voltage trajectory. Then,
we relax the observation assumption so that the controller only
has access to the spike times. Finally, we compare the two
methods through simulations against a simple-minded control
technique which ignores the stochastic input to the neuron.

2. Problem formulation

A basic but useful model for the neural membrane potential
evolution is the noisy LIF model:

dX (t ) =
�

Iext(t ) − X (t )
� c

�
dt + � dW,

X (0) = 0,

X (Tsp) = xth ⇒ {X (Tsp
+) = 0.

(1)

Here, X (t ) represents the membrane electric potential at time
t, which in absence of input decays to 0 with a time constant
of � c, dW is a Brownian motion increment scaled by � and
Iext(t ) is the deterministic external input to the cell. Having
last spiked at time 0, the potential hits xth at some random
time Tsp, the potential resets to 0 and the process starts all
over again. We write Tsp

+ for the limit from the right at Tsp.
Throughout the paper, the threshold is set to one, xth = 1.

Suppose that we have some control over the external
current such that it can be decomposed as

Iext(t ) = µ + �( t ), (2)

where µ is an uncontrollable, but constant, part of the external
current and �( t ) is controllable, i.e., it can be chosen to achieve
some goal. A natural goal is to attempt to control the spike time,
Tsp. That is, how do we choose �( t ) such that Tsp ≈ t∗, where
t∗ is the desired spike time. A natural optimal control objective
to achieve this is the least squares solution

�( ·) = arg min
�( ·)

{ E[(Tsp − t∗)2] }, (3)

where expectation is taken with respect to the distribution of
the trajectories of X .

Often, the control has certain constraints. The most
common are simple box constraints:

�( t ) ∈ [� min, � max] ∀t. (4)
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In addition to equation (3), we will also add to our
objective a running energy cost based on the control. This
regularizes the problem eliminating the subtleties of singular-
control situations and it serves to avoid excessive control as
well as to avoid excessive charge building up on the cell, see
[1].

So, we seek an optimal control, � ∗, that solves

J[�( ·)] = E
�
�

� Tsp

0
� 2(s) ds + (Tsp − t∗)2

�

� ∗(·) = arg min
�( ·)

J[�( ·)],
(5)

where � measures how much weight we put on minimizing
the energy cost. If � = 0, then we do not care at all about the
expended energy cost.

It will often be the case that � is either a function or a
value of that function at a particular time. This function could
be random, i.e., a stochastic process, which is naturally the
case when it is a function of the random realizations of X . We
will try to make clear below when we are referring to � as
a function and when we are merely referring to its particular
value at some particular time. For example, in equation (5),
�( ·) refers to the function, while �( s) refers to that function’s
value, possibly random, at time s.

We will consider two control contexts—closed-loop and
open-loop control. In closed-loop control, the value of X at
time t is observable and can be used in determining the control.
In open-loop control, only the spike times are observable. In
the closed-loop context, we write the control as

� = �( x, t )

to indicate its dependence on X (t ) and to express that it will
be updated based on the time-course of X . In the open-loop
context, we write

� = �( t )

to indicate that �( ·) is decided for all times at time 0. The
techniques used to obtain the optimal controls in the two
scenarios will be different. For the closed-loop scenario, we
use dynamic programming, see [14], while for the open-loop
scenario, we use a form of the maximum principle applied to
the transition density of the controlled process, see [5]. The
transition density is the probability density function of the
process being at a state y at time t, given it was at some state
x at some earlier time s.

Crucially, we assume that the model parameters, µ, � c, �
in equations (1) and (2) are known. This is a strong assumption
and will be discussed later.

2.1. Parameter regimes

Different parameter regimes can be envisioned given equation
(1), depending on whether the noise intensity, � , is relatively
high or low, and whether the external, uncontrollable bias
current, µ , induces spikes in the absence of noise or not. Spikes
will occur in the absence of noise, if and only if µ > 1/� c,
which is called the supra-threshold regime. When µ � 1/� c,

Table 1. Regime labels and example values. Note that for the
numerical experiments below, we use � c = 0.5.

�

µ 1.5 0.3

1.5/� c Supra-threshold-high-noise Supra-threshold-low-noise
0.1/� c Sub-threshold-high-noise Sub-threshold-low-noise

the regime is called the sub-threshold regime. In addition, we
will investigate two values of � , which we will call high-
noise and low-noise, respectively. Example values for each
parameter regime are given in table 1, and we visualize a
single path for each regime in figure 1.

3. Closed-loop solution—dynamic programming

We now detail the dynamic programming approach to
obtaining optimal feedback control. In closed-loop, the
controller can be continuously updated depending on the
realization of the stochastic process, X .

Given a time t and a value X (t ) = x of the voltage,
let (Tsp − t ) be the unknown and remaining time to spike.
Note that Tsp is a random variable. Given arbitrary t, x, our
remaining-cost objective, J[�( ·); x, t], will be

J[�( ·); x, t] = E
�

((Tsp − t ) − (t∗ − t ))2

+ �
� Tsp

t
� 2(s) ds

�
� X (t ) = x

�
. (6)

That is, if time t has elapsed without a spike, we now want
to minimize the difference between (Tsp − t ) and (t∗ − t ),
given the current state x. The mean in equation (6) is taken
over the distribution of hitting times, Tsp, conditional on X (t )
or equivalently over the distribution of forward trajectories
of X starting at x and ending at the threshold. Recall that in
the closed-loop scenario, we assume that the value of X (t )
is known to the controller. A similar problem is discussed
analytically at length in the book on optimal control by Whittle
[31], although there is no discussion there of the numerics
required to solve it.

3.1. Hamilton–Jacobi–Bellman equation

The Hamilton–Jacobi–Bellman (HJB) equation, see [14, 31]
or the articles [6, 23] in a neuroscience context, associated with
the optimal control for equation (6) is obtained as follows. We
introduce the value function, w(x, t ), as the minimum of the
remaining-cost objective, i.e., of the cost function between the
current time t and the desired spike time t∗:

w(x, t ) = min
�( ·)s� t

� min � �( ·) � � max

{J[�( ·); x, t]}

= min
�( ·)s� t

� min � �( ·) � � max

E
�

((Tsp − t ) − (t∗ − t ))2

+ �
� Tsp

t
� 2(s) ds

�
� X (t ) = x

�
. (7)
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(A) (B)

(C) (D)

Figure 1. Example trajectories from equation (1) using the parameter values from table 1. (A) Supra-threshold-low-noise. (B) Supra-
threshold-high-noise. (C) Sub-threshold-low-noise. (D) Sub-threshold-high-noise. Note the multiple crossings very close together in the
high-noise regimes in B and D.

Then, w satisfies the following HJB partial differential
equation (PDE):

� tw(x, t ) + � 2

2
� 2

x w(x, t ) + min
�( x,t )∈[� min,� max]

�
�� 2(x, t )

+
�

µ + �( x, t ) − x

� c

�
� xw(x, t )

	
= 0. (8)

The special feature of equation (8) in contrast to a generic
parabolic PDE is that it contains an embedded optimization
that depends on the solution, w. For each x, t in the
computational domain, � is chosen such as to minimize
{�� 2 + (µ + � − x

� c
)� xw}. Here, we can solve for the optimal

control, � ∗(x, t ), analytically as

� ∗(x, t ) = argmin
� ∈[� min,� max]

�
�� 2 +

�
µ + � − x

� c

�
� xw

	

= min

�
� max, max

�
� min, − � xw(x, t )

2�

��
. (9)

We need to consider boundary conditions (BCs) for w. If
X (t ) = xth, then we have a spike now and Tsp = t. Thus,

w(xth, t ) = (t − t∗)2.

At the threshold, the value function equals the squared
difference between the desired spike time and the realized
one.

For large, negative values of x, we assume that w is not
significantly affected by the change in x, i.e., that

� xw(x−, t ) = 0

for some lower boundary x−. Such a BC will be justified if
we choose x− such that the probability for the process to
take values smaller than x− is small. For example, we can
take x− to be two standard deviations below the mean of
the stationary distribution of the maximally inhibited process,
i.e., setting � = � min in equation (2). That is, we set
x− = � c(µ + � min) − 2�/

√
� c/ 2. We further enforce that

x− � −0.5.
Note that dynamic programming and the HJB equation

work backwards. Thus, the evolution of the value function
proceeds from the future to the past and we need some terminal
condition (TC) at some point in the future, possibly infinity,
from which to start incrementing w using the dynamics and
the BCs. To determine TCs for w, our idea is simple: if we

4
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reach t∗ without having spiked we apply maximum control in
the positive direction, i.e.,

t > t∗ ⇒ �( t ) = � max.

Thus,

w(x, t∗) = E[(Tsp − t∗)2|X (t∗) = x, �( t ) = � max]. (10)

Note that we are making an approximation here—we are
ignoring the energy term, � u2, in the objective for t > t∗.
Naturally, this approximation is ever more accurate for � � 1.
We discuss in more detail the validity of the approximation in
section 6. Alternatively, we could impose this approximate TC
at some t+ > t∗.

We will see the quantity on the right hand side of
equation (10) repeatedly so we will give it a special name.

T(2) (x) := E[(Tsp − t∗)2 | X (t∗) = x, �( t ) = � max]. (11)

T(2) is the second moment of the remaining time to reach the
threshold starting at X (t∗) = x and applying � max throughout.
This quantity can be found easily for all x in the domain by
solving a stationary backward Kolmogorov equation. This is
an extension to the calculation of the first moment of an exit-
time as seen in textbooks such as [17] and we give the details
in appendix A.

Thus, we restate the HJB equation in its fully specified
form:

� tw(x, t ) + � 2

2
� 2

x w(x, t ) + �� 2(x, t )

+
�

µ + �( x, t ) − x

� c

�
� xw(x, t ) = 0,

�( x, t ) = min

�
� max, max

�
� min, − � xw(x, t )

2�

��
.



�

�

w(xth, t ) = (t − t∗)2 upper BC
� xw(x−, t ) = 0 lower BC
w(x, t∗) = T(2) (x) TC.

(12)

We are solving w(x, t ) over the domain [x−, xth] × [0, t∗].

3.2. The numerical method for the HJB equation

We now have a PDE for w and an algorithm for computing all
the BCs and TCs of this PDE. It is time to discuss the numerical
method for solving equation (12). Since it is one-dimensional
in space, it is straightforward to apply the standard centred
finite difference using the Crank–Nicholson scheme to step
in time, see chapter 19.2 in [28]. To resolve the nonlinearity,
(� xw)2, in the PDE, we treat it as a mixed implicit–explicit
term

(� xw(x, tk ))2 = � xw(x, tk ) · � xw(x, tk )

≈ � xw(x, tk ) �� �
implicit

· � xw(x, tk+1)
 �� �

explicit

.

Note that the implicit term is in the previous time tk instead of,
as is conventional, the next tk+1, because we are solving for w
backwards in time from tk+1 to tk down to t0 = 0.

The numerical scheme is implemented in Python, using
the Scipy/Numpy library, [18]. For the discretization in time
and space, we choose � x and � t in relation to the parameter

regimes. In particular, we take � x to be less than � divided
by the largest possible absolute value of (µ + � − x/� c) for
� ∈ [� min, � max], x ∈ [x−, xth]; in our examples, this always
equals µ + � max − x−/� c. This is an attempt to ensure that
numerically we are in the diffusion-dominated regime. We
set � t to be twice the value of � x divided by the largest
possible absolute value of (µ + � − x/� c). For example, in
the supra-threshold low-noise regime, we have � x = 0.0043
and � t = 0.0013. In all regimes, our discretization results in
point-wise convergence of up to at least three significant digits
for the value function. We consider this to be a sufficiently fine
discretization.

We next demonstrate solutions for the value function and
the associated control law for a parameter set from each regime
in table 1.

3.3. Solutions of the HJB equation

We set t∗ = 1.5 and � = 0.001, so that the primary focus is
the accurate spiking and energy minimization considerations
are secondary.

In figure 2, we show the computed value function, w(x, t ),
the solution to equation (12), for each of the parameter regimes;
while in figure 3, we show the corresponding surface plots of
�( x, t ).

Let us discuss the most salient features in figures 2 and
3. Recall that lower values for the value function, w(x, t ),
are preferred, since we are minimizing. We see the same
general shape in all four space-time surface plots of the value
function in figure 2. At the end of the interval, w(x, t∗) is
monotonically decreasing in x, which is to be expected given
its TC in equation (10). That is, the lower the value of X (t∗) the
longer on average will we have to wait for the spike to occur.
As we go back in time, w inverts, with a clear peak near the
upper threshold boundary. That is, for intermediate values of
t, we have to consider the risk of spiking too early, represented
by the high value of w near the upper boundary and the risk
of spiking too late, represented by the high value of w at the
lower boundary. As we progress even further back in time to
the beginning of the interval, the peak near the threshold rises
further, since we are spiking earlier, while the peak at the
lower end flattens, since now there is enough time to reach
threshold despite starting far from it. The full surface plots
for w(x, t ) in figure 2 can be thought of as the interpolation
between these three basic phases.

Now focus on the controls in figure 3. Naturally, at the end
of the interval, the control takes its maximum value, �( x, t∗) =
� max for all x, i.e., it gives the maximum available push for the
neuron to spike. This is consistent with equation (10). As we
go back in time, however, the control � decreases for x � xth,
and it becomes negative, i.e., inhibitory for x � xth. That is
intuitively consistent with the problem objective. For t < t∗,
we want to bring X (t ) closer to the threshold, but not too close,
to avoid early spiking.

Now consider the differences between the individual
regimes, i.e., the effect of changing the bias and the noise
intensity, µ, � . All things being equal, the effect of increasing
the noise intensity, � , is to lift the value function, i.e., to make

5
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(A) (B)

(C) (D)

Figure 2. The numerical solution for the value function w(x, t ) HJB PDE, equation (12), for the four different parameter regimes. The
desired spike time is set to t∗ = 1.5. The control bounds are � ∈ [−2, 2]. The coloured contours for fixed t plotted as thick lines correspond
to the beginning, middle and end times of the interval (blue: t = 0, green: t = t∗/ 2, red: t = t∗). The energy penalty is � = 0.001. Note that
all red curves for the value function go to zero at the threshold to satisfy the upper BC in equation (12). (A) Supra-threshold-low-noise.
(B) Supra-threshold-high-noise. (C) Sub-threshold-low-noise. (D) Sub-threshold-high-noise.

our objective worse, at the beginning of the interval and to
decrease it at the end. This is to be expected since we are
attempting to minimize the variance in the spike time and
without noise there would be no variance at all. However, at
the end of the interval, noise only helps, since now we are
only interested in spiking as soon as possible, and a higher
noise intensity will tend to decrease the spike time on average.
Increasing � also has the effect of increasing the size of the
boundary layer near xth, where the value function rises steeply.
That is, for small � , that layer is small since the risk of spiking
early is significant only close to the threshold. For larger � ,
this layer increases, see panels A, C, with a thin layer, versus
B, D, with a thicker layer, in figure 2. Similarly, increasing
the bias, µ , tends to decrease the value function, especially at
the end since that has the unequivocal effect of preventing late
spikes.

4. Open-loop stochastic control

When the value of X (t ) is unobservable, the transition density
can be used to perform the optimization. Since the transition

density follows a deterministic PDE, we apply a maximum
principle for PDEs as a method of obtaining the optimal
control, see [5] for details on optimization with PDEs, or
the article [2], for optimization with a Fokker–Planck-type
of system.

4.1. Fokker–Planck equation for the state density evolution

We write the transition density of X , conditional on no spikes
having occurred since t = 0, as

f (x, t ) dx = P[X (t ) ∈ dx|X (0) = 0, X (s) < xth ∀s < t].

Then, f satisfies a Fokker–Planck equation, see chapter 7 in
[17],

� t f (x, t ) = � 2

2
· � 2

x f − � x

��
µ + �( t ) − x

� c

�
· f

�

×



����

����

f (x, 0) = �( x) delta function
�
µ +�( t )− x

� c

�
f −� x

� 2

2
f

�
�
�
�
x=x−

≡ 0 lower BCs at some x−

f (x, t )|x=xth ≡ 0 upper BCs at xth.
(13)

6
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(A) (B)

(C) (D)

Figure 3. Surface plots for �( x, t ) analogous to the surface plots for v(x, t ) in figure 2. Note that the aspect of this figure is rotated relative to
the surface plots of w(x, t ) in figure 2, because the different surfaces are best seen from different angles.

In theory, x− = −∞, but in the numerics below, we will
need to truncate it to some finite value, exactly as in the HJB
equation, equation (12). Note that we write �( t ) here instead
of �( x, t ), since we cannot use the value of X (t ).

The f dynamics can also be written as

� t f (x, t ) = −� x	( x, t )

for the probability flux

	( x, t ) =
�

µ + �( t ) − x

� c

�
f − � x

�
� 2

2
f

�
.

Then, the lower BC is

	( x, t )|x=x− ≡ 0.

We will also need a short hand notation for the differential
operator on the right side of equation (13). Let

L � [·] := � 2
x

�
� 2

2
·
�

− � x

��
µ + �( t ) − x

� c

�
·
�
,

where [·] indicates the argument of the operator L � . We
will usually omit the subscript � , but have written it now
to emphasize that the differential operator is parametrized by
the control, � .

4.2. Restating the objective in terms of the transition density

We now derive the optimality conditions for the optimal control
� ∗ for the open-loop context. Recall our objective, equation
(3). We can write this in terms of the transition density, f , as

J[�( ·)] =
� xth

x−
T(2) (x) · f (x, t∗) dx

+
� t∗

0
	( xth, t )(t − t∗)2 dt (14)

+ �
� Tsp

0
� 2(t ) ·

� � xth

x−
f (x, t ) dx

�
dt.

Let us explain in more detail each term on the right-hand side
in equation (14).

The first term,
� xth

x−
T(2) (x) · f (x, t∗) dx,

counts the cost of trajectories that spike too late. This cost is
the expected squared time-to-hit starting at x, with � = � max,
weighted by the probability of X (t∗) = x, which is just
f (x, t∗). Recall that T(2) is defined in equation (11).

7



J. Neural Eng. 11 (2014) 046004 A Iolov et al

The second term,
� t∗

0
	( xth, t )(t − t∗)2 dt,

counts the cost of trajectories that spike too early, that is the
squared difference between some realized spike time, Tsp = t,
and desired spike time t∗, weighted by the probability of a spike
at t, which is just the outward probability flux at the threshold,
	( xth, t ). Recall that we assume that xth = 1 throughout.
Note further that due to the homogeneous Dirichlet BC at
xth, f (xth) = 0, the outward flux is simply

	( xth, t ) = − � 2

2
� x f (xth, t ).

Finally, the third term,

�
� Tsp

0
� 2(t ) ·

� � xth

x−
f (x, t ) dx

�
dt,

is the energy cost; the inner integral,
� xth

x−
f (x, t ) dx, takes into

account that we incur an energy cost only for those trajectories
that have not yet spiked.

With that our optimal control � ∗(·) will naturally be found
via:

� ∗(·) = arg min
�( ·)

J[�( ·)].

4.3. Optimizing using a maximum principle

By now, our problem of controlling the stochastic process in
(1) has become a deterministic optimal control problem over
its associated Fokker–Planck PDE. Our control � influences
the evolution density f and, via f , the integrals in the
objective, J.

The maximum principle for PDEs, which is an extension
to the famous Pontryagin maximum principle from finite
dimensional systems, introduces an adjoint variable, p, which
solves a PDE related to the PDE satisfied by the density f and
then calculates the optimal control, �( ·), as a functional of f
and p.

In short, the equation for the adjoint function, p, is

� t p = − L ∗[p]

= −
�

� 2

2
· � 2

x p +
�

µ + �( t ) − x

� c

�
· � x p

�

×


�

�

p|x=xth = (t − t∗)2

� x p|x=x− = 0
p(x, t∗) = T(2) (x)

(15)

and then � can be found via�
� 2�( t ) + p f

�
�
�
�
x−

−
� xth

x−
p · � x f dx

	
= 0 ∀t ∈ [0, T ]. (16)

Roughly speaking, equation (16) corresponds to setting the
derivative of the objective J with respect to � to zero, in
equation (14) and the adjoint state, p acts as a Lagrange
multiplier corresponding to the constraints of the transition
density dynamics.

Figure 4. The deterministic optimal controls for each parameter
regime as functions of time, t ∈ [0, t∗]. The desired spike time is set
to t∗ = 1.5, the energy penalty � = 0.001 and the bounds are
� ∈ [−2, 2]. The initial value of the process is always the reset, i.e.,
Xt = 0 at time t = 0, see equation (1). From left-to-right, the control
curves correspond to the sub-threshold-low-noise, sub-threshold-
high-noise, supra-threshold-high-noise, supra-threshold-low-noise
regimes.

More practically, the quantity

� � J(t ) =
�

−
� xth

x−
p(x, t ) · � x f (x, t ) dx

+ p(x, t ) f (x, t )

�
�
�
�
x−

+ � 2�( t )
	

(17)

gives the direction of increase of J at �( t ) and we can use it
as a gradient in a descent algorithm, given some initial guess,
� 0(t ), for the control.

Finally, we are ready to calculate the open-loop stochastic
optimal control for the four parameter regimes. We use the
same numerical method for solving the PDEs as described
in section 3.2, since the PDEs for f , p are very similar in
structure to the PDE for w except they do not contain a
nonlinear term. The details of the simple gradient descent
algorithm for obtaining the optimal open-loop control are
given in algorithm B1. See [3] for a more sophisticated descent
method based on the conjugate-gradient method. For our
applications, the algorithm in B1 typically converges in less
than 10 iterations, although sometimes it can take longer.

The optimal controls obtained using algorithm B1 for each
regime are in figure 4. Recall that the optimal control, � ∗(t ),
is open-loop, and thus, it is only a function of time.

Let us discuss the most salient features of the controls
calculated in figure 4. In general, the strategy is to inhibit
the neuron at the beginning of the interval, �( t ) = � min for
t � t∗ and to excite it near the end, �( t ) = � max for t ≈ t∗.
The smooth portion that connects these two segments in the
middle of the interval is due to the energy penalty, �

�
� 2(s) ds.

The behaviour of the control in different regimes is relatively
simple to explain and we see what we would expect. In a
sense, the bias current µ can be absorbed by the control, and so,
increasing µ amounts to decreasing � modulo its bounds. That
is exactly the difference between the supra-threshold versus
sub-threshold plots in figure 4 when holding the noise intensity
fixed, either � = 0.3 or � = 1.5. Both for low and high noise
intensity, a reduction of µ results in an increase in �( t ). The
effect of varying the noise intensity, � , is more subtle and it is
not the same in the supra versus the sub-threshold regimes. In
the supra-threshold regime, reducing � reduces the need for
excitatory control towards the end, since the bias alone should

8
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put the neuron over the threshold. Thus, the main part of the
control with low noise in the supra-threshold regime is to stop
the neuron from spiking too early. In the sub-threshold regime,
the situation is somewhat reversed—reducing � obviates the
need to apply an inhibitory control in the early part of the
interval and also prompts the controller to apply excitatory
input earlier, since it is the controller which is now the main
drive for a spike.

We should mention that as � goes to zero, the optimal
control should become bang–bang, meaning that at any time,
it should assume either its minimum or maximum value. This is
natural, since we have a classic situation where the dynamics
are linear in the control and the cost is control independent
(if � = 0). This is also intuitive, since if there is no cost to the
control, the controller would prevent early spiking by applying
� min and then close to the desired spike time, apply � max.
Theoretically, this could help in expediting the calculation
of the open-loop control by reducing the problem to finding
the optimal switch-point from � min to � max, but we have not
pursued this further.

Finally, we would like to briefly compare conceptually the
two optimal control approaches that we have used—dynamic
programing and the maximum principle. The maximum
principle essentially finds a critical point for the objective, akin
to the first derivative test in calculus. Dynamic programing
recursively builds up the optimal control from the end-time
backwards, using a value function to represent the entire future
cost associated with an incremental decision. The conceptual
differences result in different numerical techniques. Most
pertinently, when we apply dynamic programing, we can
infer the optimal control right away, while for the maximum
principle, we are forced to use an iterative, gradient-descent
procedure.

5. Simulations

5.1. Single-spike control

Having obtained the optimal controllers, both closed- and
open-loop, we evaluate their performance with simulated
realizations of the voltage process, equation (1). In particular,
while they both minimize the expected squared deviation of
the spike time from some desired spike time, we analyse the
distribution of the squared deviation and the behaviour of the
controls for different parameter regimes.

In addition to the optimal controllers, we also show the
behaviour of another control law—perhaps the most naive
one—which is obtained by ignoring the noise and the energy
penalty. That is, we find a constant value of � that satisfies
the desired BCs, x(0) = 0, x(t∗) = xth. This naive controller
will be called ‘deterministic’, since it assumes deterministic
dynamics in X , i.e., � = 0.

For the comparison, we sample N realizations of the
controlled system and apply in turn each of the three controls.
Naturally, we reuse the same realization of the underlying
stochastic process, Wt , for each of the three different controls.

We set � = 0.001 and � max = 2.0. As such, the energy
cost is of secondary importance and the paramount effect on
the objective is the squared difference, (Tsp − t∗)2, which we
are trying to minimize.

The performance of the three controllers for each
parameter regime is given in table 2 and figure 5. Naturally, the
closed-loop achieves a lower error than the open-loop, and the
naive controller fares worst. The difference in performance
mostly depends on the strength of the noise. Thus, for low
noise, the performance of the stochastic controllers, be they
open- or closed-loop, is not much superior to the naive
deterministic controller. In contrast—in the high-noise regime,
using a stochastic controller gives a much lower error on
average between the desired t∗ and the realized Tsp.

To give a better view of the performance of the controllers
as a function of the noise intensity, we plot the ‘percentage of
correct spikes’ and the ‘average squared spike-time deviation’
in figure 6. In figure 6, we also illustrate the effect of two values
of the control bounds, � max = 2 or 4. Naturally, with a higher
� max, the error is reduced and the percentage of correct spikes
is increased. As expected, the performance gets worse with
increasing noise intensity. When the noise is small, the supra-
threshold regime behaves best, but when the noise increases
the sub-threshold regime provides more flexibility to correct
for large perturbations caused by the noise.

For illustration sake, we also visualize some trajectories
from the sub-threshold-high-noise regime in figure 7, see
panels A, C, E. The most notable feature of the �( ·) plots in
figure 7 is that, especially for � = 0.001, there is a high level of
fluctuations in the closed-loop � . That is to be expected from
the optimality condition in equation (9). Since the control is
proportional to the derivative of the value function and we are
minimizing, roughly speaking, the control attempts to push the
process, X , to the bottom of the valley that is formed by the
value function, w. However, the stochastic fluctuations of X (t )
push it randomly to either side of that ‘valley’ and in turn force
the control to change signs to counter-act. These fluctuations
are then amplified by the division by the small parameter � ,
so that the control mostly bangs up or down to its extremes
� min, � max.

5.2. Multi-spike control

We now turn to the ultimate goal of our analysis, the control
of spike trains. The major challenge when working with
spike trains, that is not present when considering intervals
in isolation, is that the target spike train might contain several
closely clustered spike times, such that if the first controlled
spike time occurs with delay, there will be too little time to
hit the next target spike times and they will all be delayed.
However, we adapt the controller to the actual controlled spike
occurrences and compensate so that it is still targeting the
originally posited train. Thus, there should be no accumulation
of errors unless the controller is unable to catch up to an
unusually high firing rate.

We proceed by generating M = 50 realizations of N = 16
spikes each in an attempt to meet a prescribed spike train. We
focus on two regimes, the supra-threshold regime with either
low or high noise. The results for parameters from the low-
noise regime are shown in figures 8(a) and (b) and results for
the high-noise regime are shown in figures 9(a) and (b). In
all cases, the target train is obtained by a simulation of the
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Table 2. Realized and theoretical performance of the different control laws. The empirical performance is obtained using N = 10 000 sample
paths. The theoretical performance is found using the optimal value for J for the open-loop stochastic control and the value function
w(x = 0, t = 0) for the closed-loop stochastic control.

Average squared spike- Expected squared spike-
Control law time deviation (N = 10 000) time deviation (theory)

Deterministic 0.287 –
Open-loop 0.003 0.008
Closed-loop 0.001 0.003

(a) Supra-threshold low-noise

Average squared spike- Expected squared spike-
Control law time deviation (N = 10 000) time deviation (theory)

Deterministic 1.095 –
Open-loop 0.796 0.852
Closed-loop 0.795 0.843

(b) Supra-threshold high-noise

Average squared spike- Expected squared spike-
Control law time deviation (N = 10 000) time deviation (theory)

Deterministic 0.327 –
Open-loop 0.142 0.150
Closed-loop 0.095 0.098

(c) Sub-threshold low-noise

Average squared spike- Expected squared spike-
Control law time deviation (N = 10 000) time deviation (theory)

Deterministic 1.131 –
Open-loop 0.394 0.404
Closed-loop 0.360 0.365

(d) Sub-threshold high-noise

supra-threshold high noise regime with no additional control,
i.e., with �( ·) = 0.

In each figure, figures 8(a), (b), 9(a) and (b), in the top
panel, we show a smoothed version of the target train versus
an empirical firing rate from the simulations. The red curve is a
smoothed Gaussian kernel applied at the target times where the
standard deviation of the kernel is 
 = 0.1. The blue curve is
the empirical firing rate equal to the number of spikes in a small
window divided by the number of realizations and divided by
the width of the window wb. We have used wb = 0.1. In the
bottom panels of figures 8(a), (b), 9(a) and (b), we show in
detail 10 out of the M = 50 realizations.

It is immediately clear that while the evoked trains closely
follow the target train in the low-noise case, figures 8(a) and
(b), this is a lot more difficult in the high-noise case, figures 9(a)
and (b), and the restricted control is not able to produce
reliable results. A stronger control is needed to obtain the
same level of accuracy in the target. In figure 10, we relax the
bound constraints on the control [� min, � max] from [−2; 2] to
[−4; 4]. Then, significantly better tracking of the target train is
achieved. Thus, to control a system under higher noise comes
at the price of allowing a more powerful control signal.

The main question in this section is whether the separate
optimization of each interval independently of the others is
a suitable approach when targeting a whole spike train. In
particular, we do not account for the possibility that two target
spikes occur close together. Then, it might make sense to

attempt generating the first one a little earlier, on average,
to give more time to generate the second. For example, in
figures 8(a) and (b), the 13th target spike is successfully
produced, but the 14th target spike occurs so soon after that
in all trials it is delayed. However, if the target interspike
intervals are within reasonable reach of the neuron, this is not
a problem. Here, ‘reasonable reach’ is to be understood as
any period longer than the time it takes to reach the threshold
in the case of no noise and under maximum excitation, i.e.,
�( t ) = � max.

5.3. Controlling a biophysical model

To verify our method in a more biophysically realistic model,
we use the established Morris–Lecar model [22], a Hodgkin–
Huxley type of conductance-based model. To mimic an
experimental situation, we will not assume that we know the
model nor the parameters, and simply use the LIF model
(1)–(2), where parameters are estimated from data sampled
before the control is initiated. First, we estimate parameters
for the LIF model from observations of the Morris–Lecar
model. Then, we control the Morris–Lecar model using the
scheme derived for the estimated LIF model. Thus, the control
strategies will be conducted in a realistic experimental setting
with no specific knowledge of the underlying mechanisms,
considering data as if coming from a black-box.
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(a) Supra-Threshold Low-Noise

(b) Supra-Threshold High-Noise

(c) Sub-Threshold Low-Noise

(d) Sub-Threshold High-Noise

Figure 5. Histogram of the spike timing error for the deterministic (left) versus open-loop stochastic (centre) versus closed-loop stochastic
(right) control laws. Recall that Tsp is the random realized spike time and t∗ is the target spike time. This is for the same problem as in
figure 7. We have used N = 10 000 sample paths to form the statistics. (a) Supra-threshold low-noise. (b) Supra-threshold high-noise.
(c) Sub-threshold low-noise. (d) Sub-threshold high-noise.

5.3.1. The stochastic Morris–Lecar model. The stochastic
Morris–Lecar model including both current and channel noise
is defined as the solution to

���

���

dVs = 1

C
(−gCam∞(Vs)(Vs − VCa ) − gKWs(Vs − VK )

− gL(Vs − VL) + I + A(s)) dt + � dB̃s,

dWs = (�( Vs)(1 − Ws) − � ( Vs)Ws) dt + 
 ( Vs, Ws) dBs,
(18)

where

m∞(v) = 1

2

�
1 + tanh

�
v − V1

V2

��
,

�(v) = 1

2
	 cosh

�
v − V3

2V4

� �
1 + tanh

�
v − V3

V4

��
,

� (v) = 1

2
	 cosh

�
v − V3

2V4

� �
1 − tanh

�
v − V3

V4

��
.

The processes B̃s and Bs are independent Brownian motions.
The variable Vs represents the membrane potential of the
neuron at time s and Ws represents the normalized conductance
of the K+ current. It varies between 0 and 1, and can be
interpreted as the probability that a K+ ion channel is open
at time s. The equation for the dynamics of Vs contains four
terms, corresponding to Ca2+ current, K+ current, a general
leak current and the input current I. In addition, it contains the
externally applied control current A(s).

The functions �( ·) and � ( ·) model the rates of opening and
closing of the K+ ion channels. The function m∞(·) represents
the equilibrium value of the normalized Ca2+ conductance
for a given value of the membrane potential. The parameters
V1, V2, V3 and V4 are scaling parameters; gCa, gK and gL are
conductances associated with Ca2+, K+ and leak currents;
VCa, VK and VL are reversal potentials for Ca2+, K+ and leak
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(A) (B)

(C) (D)

Figure 6. The performance of the controllers (open-loop and closed-loop) as a function of the noise intensity � . The target spike time is again
t∗ = 1.5. On the left, panels (A), (C), we show the percentage of correct spikes, which is defined as the number of controlled spikes that
occur within 10% of t∗, the target spike time. On the right, panels (B), (D), we show the average squared difference between the controlled
spike and the target spike. Above, in (A), (B), we show the supra-threshold regime. Below, in (C), (D), we show the sub-threshold regime.

currents; C is the membrane capacitance; and 	 is a rate
scaling parameter for the opening and closing of the K+ ion
channels.

The parameter � scales the additive current noise.
Conductance fluctuations caused by random opening and
closing of ion channels leads to multiplicative noise on the
conductance equation. Function 
 ( Vs, Ws) models this channel
or conductance noise. We consider the following function that
ensures that Ws stays bounded in the unit interval if 
 � 1 [9]:


 ( Vs, Ws) = 


�

2
�( Vs)� ( Vs)

�( Vs) + � ( Vs)
Ws(1 − Ws).

Parameter values used in the simulations are the same as
those of [29, 30] for a class I membrane: VK = −84 mV, VL =
−60 mV, VCa = 120 mV, C = 20 µF cm−2, gL = 2 µS cm−2,
gCa = 4 µS cm−2, gK = 8 µS cm−2, V1 = −1.2 mV,
V2 = 18 mV, V3 = 12 mV, V4 = 17.4 mV, 	 = 0.07, I = 40
nA. The noise intensity values are taken from [11]: � = 1
mV s−1/ 2, 
 = 0.2 mV s−1/ 2. Trajectories are simulated with
an Euler–Maruyama scheme with a time step of 0.01 ms,
which is then sub-sampled every ten points to compensate
for approximation errors of the simulation scheme. Finally,
we obtain a data set with observations every � = 0.1 ms. An
example of a simulated trajectory is given in the top and bottom
panels (V, W , respectively) of figure 11. The peaks correspond
to spikes of the neuron.

5.3.2. Relating recorded voltage to a LIF model. Assume
discrete observations of the membrane potential, here

generated by the Morris–Lecar model as described above.
These have to be related to the LIF model (1)–(2), which
assumes that spikes are point events. Thus, the first problem
is to partition the data into sub-threshold fluctuations and
spikes. To make the method more robust, we operate with
two thresholds. A lower threshold, where fluctuations below
can be well approximated by the LIF model, is employed to
identify the data used for estimation of LIF parameters. We set
this to vth = −22 mV, see figure 11, upper and middle panels.
A higher threshold is set to determine the start of the spike, a
point of no return, from which the potential can only relax by
going through a spike. We set this to −14 mV, see figure 11,
upper panel. When implementing the control assuming a LIF
model, we attenuate the nonlinear effects of being close to
spiking in the biophysical model (or real data) by treating the
interval between −22 and −14 mV as a grey zone, artificially
setting the data to a constant value just below the threshold.
Finally, we need to fix the resetting of the voltage, which we
set to vr = −44.53 mV.

In the Morris–Lecar, model the spike is not a point event,
and in order to compare it to a LIF model with instantaneous
reset, we ignore the voltage trajectory during spikes, where
we will make no control and just wait for the reset. The effect
of a spike for this set of parameters is around tref = 40 ms,
see lower panel of figure 11, at which point we restart. The
time tref between the start of the spike and the reset is then
entered in the LIF model as a refractory period. The value
40 ms is obtained from studying the voltage traces and is
specific to the spike dynamics of the Morris–Lecar model. In a
real experimental setting, it will probably be shorter, being the
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(A) (B)

(C) (D)

(E) (F)

Figure 7. Three examples for the controlled trajectories using the deterministic, open-loop stochastic and closed-loop stochastic control
approaches. The plots on the left, (A), (C), (E), are obtained using a value of � = 0.001, while the plots on the right, (B), (D), (F), use
� = 0.1 (for a discussion on the effect of � , see section 6). The black vertical line in the plots indicates the desired spike time, t∗. The
parameter values are µ, � c, � = [0.2, 0.5, 1.5] (sub-threshold high-noise regime), with t∗ = 1.5. The upper plots show the voltage evolution,
X (t ), while the lower plots show the applied control, �( t ). Note that the optimal control, �( t ), obtained from the deterministic and from the
open-loop controls, is the same across all three samples.

sum of the spike duration and the refractory period, the exact
duration will depend on the system.

The LIF model (1)–(2) is non-dimensional and
normalized, resetting at 0 and spiking at a threshold of 1.
Therefore, the data have to be transformed. First, we non-
dimensionalize time by the transformation t = s/ T̄ , where s
is the time-scale of the measurements, and T̄ is some mean
interspike interval; here, we use the average of the target spike
trains, T̄ = 177.48 ms. Then, we transform an observation
Vs to Xt = (Vs − vr )/(v th − vr ). On the transformed data,
we estimate the parameters µ, � c and � . Then, we are ready
to start the control. The control �( t ) is calculated on the
transformed data, transformed back to a control on the original
scale, A(s) = (vth − vr )� c�( t ), and fed into the Morris–Lecar
model (or the cell in an experiment).

5.3.3. Estimating LIF parameters from Morris–Lecar data.
Assume �( ·) = 0 and discrete observations of model (1)–
(2), X (k)

n , for k = 1, . . . , K, where K is the number of
interspike intervals, and n = 0, 1, . . . , Nk, where Nk + 1 is

the number of observations in the kth interspike interval. The
maximum likelihood estimators for the parameters µ, � c and
� 2 in absence of a threshold are given by, [4],

µ̂ =
� K

k=1

� Nk
n=1

�
X (k)

n − e− �
ˆ� c X (k)

n−1

�

N(1 − e− �
ˆ� c ) ˆ� c

e− �
ˆ� c =

� K
k=1

� Nk
n=1

�
X (k)

n − ˆ� cµ̂
��

X (k)
n−1 − ˆ� cµ̂

�

� K
k=1

� Nk
n=1

�
X (k)

n−1 − ˆ� cµ̂
� 2

ˆ� 2 = 2
� K

k=1

� Nk
n=1

�
X (k)

n − µ̂ − (X (k)
n−1 − µ̂) e− �

ˆ� c

� 2

N(1 − e−2 �
ˆ� c ) ˆ� c

where N = � K
k=1 Nk.

Given Morris–Lecar data points over the time interval
from 0 to 2 s, we get the following estimates: µ̂ = 3.57, ˆ� c =
0.20 and ˆ� = 0.59. For the bounds on our control, we set
A(s) ∈ [±10], which corresponds to �( t ) ∈ [±2.27].

Now, we consider the more difficult case when only spike
times are available, see [10] for a discussion. Estimating
� c from spikes is not accurate, it is (almost) unidentifiable.
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(a) Closed-Loop Controller

(b) Open-Loop Controller

(A)

(B)

(A)

(B)

Figure 8. Controller performance in the supra-threshold low-noise regime, given � ∈ [−2, 2]. In (a) is depicted the closed-loop controller, in
(b) the open-loop controller. In panels (A), the blue curve is the empirical firing rate of M = 50 controlled trains, while the red curve is a
smoothed version of the target train. (See text for details of how they are calculated.) In panels (B), the dashed, red lines indicate the target
times, � n, while the blue dots are the realizations of the controlled trains. The upper spike train above the solid line is the target spike train.
The parameters from the supra-threshold low-noise regime are used, see table 1. The target spike train was generated using the model itself,
with parameters from the supra-threshold high-noise regime, without an applied control, � = 0.

Therefore, we assume a fixed value of � c = 0.11. This is
quite different from the value of � c estimated from intra-
cellular recordings, so that we investigate robustness to
misspecification of this value. Thus, we only estimate µ and � ,
using the Fortet equation, for details see [10]. The estimates are
µ̂ = 6.17 and ˆ� = 0.78. This corresponds to �( t ) ∈ [±3.94]
if A(s) ∈ [±10].

5.3.4. Controlling the Morris–Lecar model. We now have all
the pieces to control the Morris–Lecar model. In the closed-
loop control strategy, we use the voltage-based estimates for
the LIF model parameters, while for the open-loop strategy,
we use the interval-based estimates. This is a disadvantage for
the open-loop strategy, since on average, it will have poorer
estimates of the real system, but provides a realistic picture of
an experimental situation. The closed-loop results are shown in
figure 12, and the open-loop results are shown in figure 13. In
particular, the root mean-square error is 8.0 ms for the closed-
loop controller and 23.2 ms for the open-loop controller, this
corresponds to, respectively, 4.5% and 13.1% in relation to the
mean target interval, which is 177.48 ms (This discards the tref

portion of the interval).
The results and accuracy are comparable to those in

figure 8, and show that for the purpose of stochastic control,

it is not crucial to use a biophysical realistic model nor to
know the parameters exactly. This is partly due to a lower
value of � c in the Morris–Lecar model, compared to what was
used in the earlier simulations, and to slightly higher values
of the bounds of the control. The variance is proportional to
� c� 2, which in the simulations is 1.125 (high noise) or 0.045
(low noise), and in the estimated Morris–Lecar is 0.07. There
might also be some error cancelling, in the sense that the data
provide estimated parameters that are the best choice for the
misspecified model at hand, where errors are averaged out,
thus providing more robust control.

A similar result was obtained in [4], where the inhibitory
and excitatory conductances were estimated from sub-
threshold fluctuations using the basic LIF model, both on
experimental and simulated data. Data were simulated from
either a conductance-based model with Poisson synaptic input,
or the more detailed two-compartment Booth–Rinzel–Kiehn
model. In both cases, the LIF model, even if misspecified,
resulted in sensible estimates of the conductances and
their confidence intervals. It appears that the parsimony
of the simple model provides robustness against nonlinear
effects, space inhomogeneities and dynamics on various time
scales.
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(a) Closed-Loop Controller

(b) Open-Loop controller

(A)

(B)

(A)

(B)

Figure 9. Controller performance in the supra-threshold high-noise regime given � ∈ [−2, 2]. In (a) is depicted the closed-loop controller, in
(b) the open-loop controller. In panels (A), the blue curve is the empirical firing rate of M = 50 controlled trains, while the red curve is a
smoothed version of the target train. (See text for details of how they are calculated). In panels (B), the dashed, red lines indicate the target
times, � n, while the blue dots are the realizations of the controlled trains. The upper spike train above the solid line is the target spike train.
The parameters from the supra-threshold low-noise regime are used, see table 1. The target spike train was generated using the model itself,
with parameters from the supra-threshold high-noise regime, without an applied control, � = 0.

(A)

(B)

(A)

(B)

(a) Closed-Loop Controller

(b) Open-Loop Controller

Figure 10. Same as figure 9, but with the control constraints [� min, � max] increased to [−4, 4] instead of [−2, 2].
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Figure 11. Annotating (spike-segmenting) the raw Morris–Lecar data. The top panel shows a trajectory of Vs from the Morris–Lecar model.
The middle plot shows the data segments that are used to estimate the LIF parameters from Morris–Lecar data. The bottom plot shows the
stereotypical spike shape and justifies why 40 ms is a reasonable recovery time for this model with these parameters.

6. Effect of energy penalty

So far, we have assumed a low value for the energy penalty
parameter, � , in the objective defined in equation (5). Our
approach has been to be primarily concerned with the accurate
spiking and that penalizing energy is rather intended to
regularize the control and avoid excessive chattering of
the control between its extreme values, than as a goal in
minimizing energy in its own right. Now, we take some time
to explore the effect of a higher � on the optimal controls.
Intuitively, a higher value of � will tend to bring the optimal
control, � ∗, closer to zero. We show the effect of setting
� = 0.1 in each of the four regimes for both the closed-
loop control and the open-loop control in figures 14 and 15,
respectively. These should be compared to figures 3 and 4,
respectively. Also, in figure 7 on the right, we show example
trajectories for the higher energy parameter value, � = 0.1, in
the sub-threshold high-noise regime.

For both the closed-loop and open-loop optimal controls,
increasing � tends to reduce the absolute value of � ∗(t ). In
particular, for the closed-loop control, it tends to broaden the
area of transition for decreasing x when the control swings
from its minimal, i.e., inhibitory value, to its maximal, i.e.,
excitatory value. Similarly for the open-loop control, instead
of banging from its minimal bound at the beginning of the
interval to its maximal bound at the end, the optimal control

for � = 0.1 tends to have a milder transition from a slightly
inhibitory to slightly excitatory values.

Note however that increasing � has an important effect on
the validity of the approximation used to form the TCs for the
value function, w, and the adjoint variable, p. We assumed that
applying � max is optimal for t > t∗. This is indeed true in the
limit � →0. However, even for a finite value of � , this may still
be the optimal thing to do. Indeed, in the original calculations,
where � = 0.001, see the panels on the left in figures 14 and 15,
the so-obtained value function implied that �( x, t∗) = � max.
In other words, our guess that �( x, t ) = � max for t > t∗,
is self-consistent with the so-obtained value function. This is
akin to confirming an ansatz. For a higher value of � , like
� = 0.1, this is no longer the case. The red curves on the
right of figure 14 are no longer pushed up at � = � max, and as
such it is no longer valid, strictly speaking, to assume that the
value function can be obtained by assuming �( t )|t> t∗ = � max

and then calculating the expected remaining time-to-spike.
The exact same conclusion can be drawn from the open-loop
control. There, the optimal control always (almost) reaches its
maximum, � max, while choosing � = 0.001, this is no longer
so for the higher � = 0.1. In fact, as we mentioned after
equation (10), the correct thing to do for higher values of �
is to push the calculation interval to some t+ > t∗, apply the
same TC at t+ instead of t∗ and then solve backwards (either
for the closed- or open-loop control). One will be guaranteed
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(a) Example controlled trajectory

(b) Raster plot for controlled simulations

Figure 12. Closed-loop control of the Morris–Lecar dynamics. In (a) are plots of the trajectory and the control, in (b) is a raster plot of
realized spikes. The upper spike train above the solid line is the target spike train.

to find some t+ > t∗ that works since eventually the quadratic
term (t − t∗)2 will dominate the energy term in the objective,
which is linear in t. We do not explore this further here.

7. Discussion

We have analysed and computed the optimal control of spikes
in two scenarios—one where the underlying voltage of the
neuron is observable to the controller (closed-loop control)
and one where only the spikes are observable (open-loop
control). The optimal control problem is solved using dynamic
programming if the controller has access to the voltage (closed-
loop control) and using a maximum principle for the transition
density if the controller only has access to the spike times
(open-loop control). We have further shown how one can
implement both techniques for an arbitrary spiking neuron.

Our calculations in section 5.3 show that our choice of
a simple model, the LIF, is quite robust, it can be correctly
and quickly estimated from data and it allows for accurate
control of realistic neurons with a significant noise intensity.
This, together with our demonstration in section 5.1 that the

LIF control can accommodate a significant amount of noise,
demonstrate the generality of our open-loop and closed-loop
control methods to produce desired spike trains.

Naturally, the ability to control the system is most clearly
affected by the level of the noise. In a sense, the noise acts
like an adversary—in our context, it has no beneficial role,
except to obstruct precise spiking. When the level of the noise
is high, stronger control is needed, and the trade-off between
accuracy (hitting the target spikes), possible damage to the
system (the limits of the control) and energy expenditure has
to be considered.

The bias current has a more helpful role, at least in our
examples, where a high value of the bias tends to help precise
spiking. Of course, where it helps or hinders depends on the
value of the desired spike time—a combination of a high
positive bias and a ‘distant’ spike time will tend to be difficult
to control, as the system will naturally tend to spike earlier
than desired. In summary, we have found that systems in the
supra-threshold low-noise regime tend to be most accurately
controlled, while the supra-threshold high-noise regime are
the least accurate.
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(a) Example controlled trajectory

(b) Raster plot for controlled simulations

(A)

(B)

Figure 13. Open-loop control of the Morris–Lecar dynamics. In (a) are plots of the trajectory and the control, in (b) is a raster plot of
realized spikes. The upper spike train above the solid line is the target spike train.

It should be noted that we do not require that the controlled
cell is already in the supra-threshold regime—the control
scheme applies in the same manner in the sub-threshold regime
as well. It is only required that the maximum value of the
control puts the model in the supra-threshold regime, implying
that the control can always achieve supra-threshold behaviour.
The supra- and sub-threshold distinction only applies to the
intrinsic dynamics in the absence of control, and ignoring the
noise.

In both contexts, open-loop and closed-loop, finding the
optimal control is computationally intensive as we numerically
solve PDEs. If these algorithms were to be practical in an
online setting, some more work would have to be done
in order to ensure they can be computed very quickly (in
the millisecond range) or that they can be pre-computed.
In that regards, the dynamic programming approach is
significantly more computationally efficient, at least in the
current formulation.

Our work has stayed close to the paradigm of [1] in trying
to make the neuron spike at a particular time. Similar to them,
we have also incorporated into our objective the minimization

of total energy used to achieve our goal, which as discussed
in [1] is sensible given the potential damage to the cell of
accumulating charge. Furthermore, we have assumed that our
control is constrained in magnitude, which is natural given
physical limitations on equipment and safety considerations.
Another possible constraint on the control is that it is charge-
balanced, meaning that its time integral is zero,

�
u dt = 0.

Such constraints are most easily posed in the context of
deterministic spiking models like the phase-response curve,
see, e.g., Danzl et al [7]. It is possible to add them to the
open-loop control, since the control is still deterministic,
but it is non-trivial. It is even less trivial when one uses
dynamic programming. In particular, insisting on charge-
balance in our schemes will make it much more difficult to
apply the TCs used in deriving both the closed- and open-loop
controls.

Our computational scheme has made some assumptions
about the physics of the controller. Most pertinently, we must
be able to either measure the detailed voltage or at least the
spikes of the controlled neuron and be able to react to them
in real-time. This is needed both for system identification,
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