Occurrence of Hypertrophic Cardiomyopathy in a Large Cohort of British Shorthair Cats
Granström, Sara Magdalena Rebecca; Godiksen, Mia Titine Nyberg; Christiansen, M.; Willesen, Jakob; Koch, Jørgen

Publication date: 2010

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Research Abstract Program of the 2010 ACVIM Forum

Anaheim, California,
June 9 – 12, 2010
Index of Abstracts

ORAL PRESENTATIONS – Thursday, June 10

<table>
<thead>
<tr>
<th>Time</th>
<th>#</th>
<th>Presenting Author</th>
<th>Abstract Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 am</td>
<td>1</td>
<td>Sonja Fonfara</td>
<td>Cytokine and Matrix Metalloproteinase Expression in Blood Samples of Dogs With Congestive Heart Failure</td>
</tr>
<tr>
<td>9:15 am</td>
<td>2</td>
<td>Dennis Trafny</td>
<td>Cardiac Troponin-I Concentration is Elevated Pre and Post-Pacing in Dogs With Bradyarrhythmias: Is Myocarditis a Potential Etiology?</td>
</tr>
<tr>
<td>9:30 am</td>
<td>3</td>
<td>Kristine Yee</td>
<td>Diagnostic Test Parameters in Cats With Heart Disease and their Correlation With NT-proANP, NT-proBNP and Troponin I Measurements</td>
</tr>
<tr>
<td>9:45 am</td>
<td>4</td>
<td>Gemma Fraga Veloso</td>
<td>Expression of Urocortins in Canine Myocardium and Plasma Levels in Dogs With Cardiac Disease</td>
</tr>
<tr>
<td>BREAK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 am</td>
<td>5</td>
<td>Dan Ohad</td>
<td>Is the Cardio-Renal-Anemia Syndrome Prevalent in Dogs?</td>
</tr>
<tr>
<td>10:45 am</td>
<td>6</td>
<td>Andrea Lantis</td>
<td>Aldosterone Escape in Furosemide-Activated Circulating Renin-Angiotensin-Aldosterone System (RAAS) in Normal Dogs</td>
</tr>
<tr>
<td>11:00 am</td>
<td>7</td>
<td>Melanie Herzell</td>
<td>Relationships Between Serum and Urine Aldosterone, Ventricular Remodelling and Outcome in Dogs With Mitral Valve Disease</td>
</tr>
<tr>
<td>11:15 am</td>
<td>8</td>
<td>Ian Jones</td>
<td>Flow Mediated Vasodilation in Canine Chronic Mitral Valve Disease</td>
</tr>
<tr>
<td>11:30 am</td>
<td>9</td>
<td>Inge Tarnow</td>
<td>Congestive Heart Failure in Dogs Is Associated With Enhanced Platelet-Leukocyte Aggregates - A Marker for Platelet Activation</td>
</tr>
<tr>
<td>11:45 am</td>
<td>10</td>
<td>Inge Tarnow</td>
<td>Thromboelastography in Dogs With Asymptomatic Myxomatous Mitral Valve Disease</td>
</tr>
<tr>
<td>12:00 pm</td>
<td>11</td>
<td>Caroline Rasmussen</td>
<td>24-hour Electrocardiography in Clinical Healthy Cavalier King Charles Spaniels, Wire-Haired Dachshunds and Cairn Terriers</td>
</tr>
<tr>
<td>12:15 pm</td>
<td>12</td>
<td>Lisa Freeman</td>
<td>Development and Evaluation of a Quality of Life Questionnaire for Cats With Cardiac Disease</td>
</tr>
</tbody>
</table>

Also see Cardiology abstracts 68 - 81 (Thursday, June 10, 2:15 pm – 6:00 pm)

SMALL ANIMAL – ONCOLOGY

<table>
<thead>
<tr>
<th>Time</th>
<th>#</th>
<th>Presenting Author</th>
<th>Abstract Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 am</td>
<td>13</td>
<td>Luis Lembcke</td>
<td>Evaluation of Tyrosinase Expression in Canine and Equine Melanocytic Tumors</td>
</tr>
<tr>
<td>9:15 am</td>
<td>14</td>
<td>Rebecca Brown</td>
<td>Expression of KIT in Canine Anal Sac Adenocarcinoma Using Tissue Immunohistochemistry</td>
</tr>
<tr>
<td>9:30 am</td>
<td>15</td>
<td>Courtney Mallett</td>
<td>Immunohistochemical Characterization of Feline Mast Cell Tumors</td>
</tr>
<tr>
<td>9:45 am</td>
<td>16</td>
<td>Shannon Parlitt</td>
<td>Radiosensitivity and Capacity for Radiation-Induced Sublethal Damage Repair of Canine Transitional Cell Carcinoma Cell Lines</td>
</tr>
<tr>
<td>BREAK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 am</td>
<td>17</td>
<td>Jeffrey Phillips</td>
<td>Genetics of Osteosarcoma in the Scottish Deerhound</td>
</tr>
<tr>
<td>10:45 am</td>
<td>18</td>
<td>Masahiko Sato</td>
<td>Perfusion Method for Bone Marrow Cell Harvesting in Dogs</td>
</tr>
<tr>
<td>11:00 am</td>
<td>19</td>
<td>Sandra Axiak</td>
<td>Immunodysfunction in Dogs With Lymphoma</td>
</tr>
</tbody>
</table>

Boldface type indicates ACVIM Resident Research Award eligibility. Presentation times are subject to change.
3:00 pm 170 Alexandra Rose
Causes, Usefulness of Clinical Investigations and Success of Antiemetic Therapy in Dogs Referred for Vomiting

3:15 pm 171 Fiona Tam
Safety and Palatability of Polyethylene Glycol 3350 as an Oral Laxative in Cats

3:30 pm 172 Lucie Goodwin
Evaluation of Hyposugulability Using Thromboelastography (TEG) in Dogs With Protein Losing Enteropathy

3:45 pm 173 Dottie Laflamme
Comparison of Two Canned Diets Designed for the Management of Feline Diarrhea

BREAK

4:30 pm 174 Susanne Kilpinen
Determination of the Dosage Regimen of Tylosin in the Treatment of Canine Tylosin-Responsive Diarrhea

4:45 pm 175 Aarti Kathrani
CD11c Positive Dendritic Cells are Significantly Decreased in the Duodenum of Dogs With Inflammatory Bowel Disease

5:00 pm 176 Aarti Kathrani
Overdominant Single Nucleotide Polymorphisms in the Nucleotide Oligomerisation Domain Two (NOD2) Gene are Significantly Associated With Canine Inflammatory Bowel Disease

5:15 pm 177 Jan Suchodolski
Relationship of Mucosal Gene Expression to Microbiota Composition in Dogs With Inflammatory Bowel Disease

5:30 pm 178 Nashwa Waly
Measurement of IL-12 (p40, p35), IL-23p19 and IFN-gamma; mRNA in Duodenal Biopsies of Cats With Inflammatory Bowel Disease and Healthy Controls using Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR)

5:45 pm 179 Melanie Craven
Mucosal Cytokine Profiling Reveals IL-6 Up-Regulation in Feline IBD and Alimentary Lymphoma

6:00 pm 180 Jevan Christie
Fecal Sensitivity as a Tool to Differentiate Between Non-Neoplastic and Neoplastic Spirocerca Lupi Nodules Using a Modified Centrifugal Flotation Method

POSTER PRESENTATIONS

SMALL ANIMAL – CARDIOLOGY

181 Maria Helena Larsson
Time-Domain Signal-Averaged Electrocardiogram in Healthy German Shepherd and Boxer Dogs

182 Maria Helena Larsson
Time Domain High-Resolution Electrocardiography in Boxer Dogs With Arrhythmogenic Right Ventricular Cardiomyopathy and Dilated Cardiomyopathy

183 Aparecido Camacho
Heart Rate Variability in Boxer Dogs With Arrhythmogenic Right Ventricular Cardiomyopathy

184 Denise Schwartz
Six Minute Walk Test Standardization for Dachshund, Poodle and Labrador Retriever Dogs

185 Aparecido Camacho
Effects of Treadmill Training Over Autonomic and Hemodynamic Functions in Healthy Dogs

186 Masashi Mizuno
Effects of Running on the Renin-Angiotensin-Aldosterone System in Dog

187 Sara Granström
Occurrence of Hypertrophic Cardiomyopathy in a Large Cohort of British Shorthair Cats

188 Aparecido Camacho
Clinical Characterization of Hypertensive Hypertrophic Cardiomyopathy in Dogs With Chronic Kidney Disease (CKD)

189 Aparecido Camacho
Heart Rate Variability in Dogs With Mitral Endocardiosis or Natural Morbid Obesity

190 Carley Saelinger
Comet-Tail Artifacts in Normal Dogs and Dogs With Cardiogenic Pulmonary Edema

191 Takashi Ebisawa
Clinical Usefulness of Measuring Plasma Atrial Natriuretic Peptide Concentrations for Assessing the Severity in Dogs With Degenerative Mitral Valve Disease

192 Pierre Menaut
Circulating Natriuretic Peptides Concentrations in Hyperthyroid Cats

193 Caryn Reynolds
Weekly Variability of Plasma NT-proBNP Measurements in Cats With and Without Heart Disease

194 Aliya Magee
Use of Abciximab to Determine Platelet Reactivity in Healthy Cats

195 Carolina Carlos Sampedrano
Effects of High Versus Normal Salt Diets on Cardiovascular Variables in Healthy Aged Cats: A 6-Month Study

196 Takeshi Mizuno
Relationship Between Prognosis and Immune Response in Dogs After Mitral Annuloplasty

197 Shigeki Yamano
Endogenous Erythropoietin Levels and Iron Utilization in Dogs With Degenerative Mitral Disease

198 Yoko Fuji
Prevalence of Right to Left Shunt Due to Patent Foramen Ovale Concurrent with Pulmonary Stenosis in Dogs

199 Meg Sleeper
Dobutamine Stress Testing in Portuguese Water Dogs with Juvenile Dilated Cardiomyopathy

200 Sabine Riesen
Pharmacokinetics of Oral Ivalibrate in Healthy Cats

201 Michael Katz
Thiamylal Anesthesia Reveals Predominant Role for the Central Mechanism of Respiratory Sinus Arrhythmia in the Dog

202 Lauren Calland
In-Hospital Electrocardiograph Versus 24-Hour Holter Monitor for Assessing Heart Rate in Dogs With Atrial Fibrillation

203 Ashley Saunders
Bradydysrhythmias Requiring Pacemaker Implantation in Chagas Positive Dogs

SMALL ANIMAL – ONCOLOGY

204 Kensuke Nakamura
Contrast-Enhanced Ultrasonography With Sonazoid® for Characterization of Focal Splenic Lesions

205 Silvia Lucas
Evaluation of Oxidant/Antioxidant Total Status and Erythrocyte Antioxidant Defense in Cats With Lymphoma

206 Elizabeth Lechner
Oxidative Stress in Dogs With Lymphoma Before and After Administration of Doxorubicin: A Pilot Study
hounds (47 ± 42 m; min = 400 m; max = 556 m; 95%CI 459–498). In conclusion, regardless of anatomical differences between Poodles and Dachshunds, they walk similar distances. Based on a previously obtained equation (Distance = 55.3 ± 8.3 TC + 0.9 L + 2.1 RH), predicted distances were overestimated for Labradors and Dachshunds, demonstrating that standardization is required for different breeds.

Regular physical activity has been widely used in human cardiovascular therapy, promoting better autonomic control, heart function, life quality and decreasing sudden death risks. In dogs, however, there is not a standardized guideline to be used. This research has the goals of evaluating the effects of standardized treadmill training over the autonomic and hemodynamic functions of healthy dogs.

Six dogs (4 Beagles; 2 mixed breed), with mean weight of 13.1 Kg, were enrolled in this study. Twenty-four hour time domain heart rate variability (HRV), and echocardiography were analyzed before and after four weeks, five days a week, 40 minutes a day training. The intensity of training was individually determined by a maximal heart rate (MHR), observed in a maximal progressive effort test. Gradually, the intensity of training was increased in 50% of MHR, in the first week, to 60%, 70% and 80% of MHR in the second, third and fourth weeks, respectively. The paired t test was used to compare data before and after training. The improvement in functional capacity of the dogs was attested by a better performance on the physical test after training, achieving higher levels of intensity (9.0 km/h to 11.1 km/h; p < 0.0155) and decreasing the area under the curve of lactate (31.2 to 26.0; p < 0.0001). Increase in parasympathetic tone on HRV was verified by SDANN (155.5 ± 11.5 ms; p = 0.0059), rMSSD (115.3 ± 50.4 ms to 181 ± 51.9 ms; p = 0.0118), amplitude of heart rate (188.5 ± 21.9 bpm to 200.3 ± 17.5 bpm; p = 0.0033), and by a higher percentage of respiratory sinus arrhythmia on a maximal progressive effort test (> 50% until 2 km/h before training and 8 km/h after training). On the hemodynamic aspect, training lead to increase diastolic interventricular septum thickness (0.78 ± 0.12 cm to 0.91 ± 0.16 cm; p = 0.0294), decrease left atrial diameter (2.37 ± 0.22 cm to 2.15 ± 0.19 cm; p = 0.0349), left ventricular end-diastolic (4.47 ± 0.80 to 3.82 ± 0.62; p = 0.0068), and end-systolic (2.27 ± 0.39 to 1.88 ± 0.50; p = 0.0104) wall stress indexes, suggesting preload and afterload reduction. Improvement of diastolic function was confirmed by mitral E/A waves (1.42 ± 0.19 to 1.83 ± 0.46; p = 0.0467). No differences (p > 0.05) were detected on systolic function (EF%), SF%, left and right ejection time, left pre-ejection time, ejection in- dex, and mean velocity of circumferential fibers shortening, left ventricular end-systolic and end-diastolic volume indexes, and on Tei index of myocardial performance. As observed in a human being, training results in better autonomic and hemodynamic control in healthy dogs. In a near future we expect that this therapeutic modality could be helpful for cardiovascular improvement in the canine species.

ABSTRACT #185

EFFECTS OF TREADMILL TRAINING OVER AUTONOMIC AND HEMODYNAMIC FUNCTIONS IN HEALTHY DOGS.

JPF Pascon, D Paulino-Junior, E Zacchê, FN Gava, EMG Ortiz, AA Camacho. College of Agricultural and Veterinary Sciences, São Paulo State University, Campus of Jaboticabal, Brazil.

ABSTRACT #187

OCCURRENCE OF HYPTERTOPHIC CARDIOMYOPATHY IN A LARGE COHORT OF BRITISH SHORTHAIR CATS.

Granström1, M Nyberg Godiksen2, M Christiansen3, JL Willesen3, J Koch1. 1Department of Small Animal Clinical Sciences, University of Copenhagen, Denmark. 2Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark.

Familial hypertrophic cardiomyopathy (HCM) has previously been described in British Shorthair cats (BSH), but until now, no reports have been published on how prevalent the disease is within this breed. The aim of this study was to assess the occurrence of HCM in a large cohort of BSH and to evaluate the effect of gender, weight and age as potential risk factors to presence of the disease.

The study was conducted as a prospective study including all BSH presented at the Small Animal Hospital for HCM screening in the period of April 2006–August 2009. All cats were examined by the same two trained ultrasonographers using a Vivid 7 ultrasono- graphic system (GE Medical) with a 10 S phased array transducer (8–10 MHz). Measurements of the left ventricle were obtained by conventional 2D- and M-mode imaging of right parasternal long and short axis views. Diagnosis of HCM was based on an overall assessment of echocardiographic findings, but cats were classified as to have a concentric hypertrophy if the interventricular septum (IVS) and/or left ventricular free wall (LVFW) measured > 5.5 mm in diastole. To rule out other causes of left ventricular concentric hypertrophy, a complete blood count, biochemical profile, thyroid level and blood pressure were measured in affected cats. In the statistical analyses occurrence of HCM was expressed as a percentage and age, weight and echocardiographic variables were presented as mean (standard deviation). A logistic regression analysis was used to test the effect of gender, weight and age on HCM as outcome and a p-value of < 0.05 was considered significant.

A total of 282 cats were examined, 189 (67.0%) females and 93 (33.0%) males. The average age of the cohort was 40 (± 29) months and the average weight was 4.5 (± 1.1) kg. Twenty-three cats (8.2%) were classified as HCM positive, 14 (4.9%) as equivocal and 242 (85.8%) as HCM negative. Three cats (1.1%) were diagnosed with other heart disease and excluded from further analysis. The average diastolic wall thickness of the IVS and LVFW in the HCM affected cats were 7.0 (± 1.2) mm and 7.1 (± 2.4) mm, respectively. In the HCM negative group the corresponding measurements were 3.9 (± 0.5) mm and 3.8 (± 0.5) mm. Male cats had a significantly higher occurrence of HCM (20.4%) compared with the females (2.1%) (p < 0.001). No effect of weight and age on presence of HCM could be identified. Eighteen of the HCM positive cats had diffuse, symmetric hypertrophic changes of the entire left ventricle, whereas 5 had an asymmetric or regional hypertrophy of the left ventricle myocardium.

The conclusion of this study is that the BSH in our cohort had a high occurrence of HCM. Most affected cats presented with pronounced, diffuse hypertrophic changes affecting the IVS, LVFW and papillary muscles. As in many other breeds, male gender predisposed to development of the disease.

ABSTRACT #186

EFFECTS OF RUNNING ON THE RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM IN DOGS.

M Mizuno, M Uechi, Y Izoue, S Kurilaha, Y Kamiyama. Nihoin University, Kanagawa, Japan.

Exercise and stress are important factors in the development of congestive heart failure. The present study evaluates the influence of exercise upon circulatory function and the renin-angiotensin-aldosterone system (RAAS) in healthy dogs. A placebo or benazepril hydrochloride was administered to four dogs and then heart rate and blood pressure were measured every 5 minutes for 30 minutes. Plasma renin activity, angiotensin-converting enzyme (ACE), angiotensin II (Ang II), aldosterone, adrenaline, noradrenaline and urinary aldosterone were measured in the dogs before and after running on a treadmill at 7 km/h for 10 minutes. Benazepril hydrochloride significantly (P < 0.05) decreased ACE (0.9 ± 1.0 U/l) and aldosterone (21.1 ± 16.1 pg/ml) compared with the placebo (Ang II: 1.5 ± 1.5 U/l, 42.9 ± 29.8 pg/ml). Plasma renin activity, Ang II, aldosterone and adrenaline levels increased during exercise. Heart rate and blood pressure significantly (P < 0.05) increased with both placebo and benazepril hydrochloride during exercise and heart rate and blood pressure did not significantly differ between the two groups. These results suggest that the increase in heart rate and blood pressure during exercise is related to activation of the RAAS and other heart disease.