Københavns Universitet

Civile droner i Danmark

Smith Lygum, Anne Kirstine; Skjødt Nielsen, Jacob; Bang Bådum, Nicklas; La Cour-Harbo, Anders; Paulin Hansen, John; Pedersen, Kim Steenstrup; Larsen, Lars Michael; Kessing, Peter Vedel; Madsen Almdal, Thomas; Ploug, Thomas; Grønbæk, David

Publication date:
2014

Document Version
Tidlig version også kaldet pre-print

Citation for published version (APA):
Civile droner i Danmark
- potentialer, udfordringer og anbefalinger

Udarbejdet for Uddannelses- og Forskningsministeriet
Juni 2014
Titel:

Civile droner i Danmark - potentialer, udfordringer og anbefalinger

Udarbejdet af:
Anne Kirstine Smith Lygum, projektleder, Fonden Teknologirådet
Jacob Skjødt Nielsen, senior projektleder, Fonden Teknologirådet
Nicklas Bang Bådum, projektmedarbejder, Fonden Teknologirådet

I samarbejde med ekstern arbejdskruse bestående af:
Anders la Cour-Harbo, lektor, Institut for Elektroniske Systemer, AAU
John Paulin Hansen, lektor, Software and Systems, IT-Universitetet
Kim Steenstrup Pedersen, lektor, Datalogisk Institut, Københavns Universitet
Lars Michael Larsen, projektchef, UAS Denmark
Peter Vedel Kessing, seniorforsker, Institut for Menneskerettigheder
Thomas Madsen Almdal, konsulent, Robotteknologi, Teknologisk Institut
Thomas Ploug, prof., Inst. for Kommunikation, AAU, medlem af Etisk Råd
David Grønbæk, fuldmægtig, Styrelsen for Forskning og Innovation (observatør)

Fonden Teknologirådet
Toldbodgade 12
1253 København K
www.tekno.dk
KAPITEL 1: INDLEDNING ... 6

INDLEDNING ... 6

Rapportens formål ... 7

Rapportens metode ... 8
 Desk research ... 9
 Arbejdsguppe ... 9
 Interviews .. 10
 Innovationskonference ... 10

Rapportens afgrænsning .. 10

KAPITEL 2: RESUMÉ .. 12

KAPITEL 3: DRONER – BEGREBER OG DEFINITION .. 13

Involverede teknologier .. 14

KAPITEL 4: LOVGIVNING OG IMPLEMENTERINGSSTRATEGIER 16

Dansk Lovgivning .. 16

Øvrige nationale regler ... 18

Implementeringsstrategier: .. 21

ICAO, International Civil Aviation Organizations ... 22

Europa Kommissionen .. 23

FAA, Federal Aviation Administration .. 24

UAS Denmark .. 25

KAPITEL 5: DRONER I DANMARK ... 26

Arbejdsmarked ... 26
Anvendelsesområder .. 29
 Beredskab .. 29
 Inspektion ... 32
 Geodata ... 34
 Natur- og miljøovervågning .. 36
 Landbrug ... 39
 Anden anvendelse .. 41

KAPITEL 6: SAMFUNDSMÆSSIGE ASPEKTER ... 45

Miljø .. 45

Luftfart og sikkerhed ... 46
 Risikovillighed ... 46
 Software og andre fejl ... 47
 Intentionel skade med droner .. 48

Overvågning ... 50
 Det offentlige narrativ og negative konnotationer ... 52

KAPITEL 7: BARRIERER ... 53

Fælles international regulering .. 56

Standarder ... 58

Teknologi ... 60
 Flyvetid .. 61

KAPITEL 8: ANBEFALINGER .. 63

Arbejdsgruppens anbefalinger .. 63
 Sikkerhed og regulering ... 63
 Tiltag for vækst og udvikling ... 65
 Teknologisk udvikling .. 67

LITTERATURLISTE ... 69
BILAG 2: GENERISK INTERVIEWGUIDE... 83
BILAG 3: SKRITLIGE TILKENDEGIVELSER ... 85
BILAG 4: BLOGPOST TEMATIKKER .. 86
BILAG 5: DANSK LOVGIVNING .. 95
BILAG 6: DRONER OG PRIVATLIV .. 98
BILAG 7: LISTE OVER ORGANISATIONER MED PROJEKTER INVOLVERENDE CIVILE DRONER ... 100
Kapitel 1: Indledning

INDLEDNING

Droner kan ændre træk ved det moderne samfund - lige fra logistik og transport, der kan effektivisere hverdagen, til den personlige drone, der er en assistent i hverdagen. Andre teknologier har gennem tiden forandret menneskets forståelse af verden; Jernbanen medførte etablering af tidszoner og var en kerneteknologi i industrialiseringen, og flyvemaskiner udfordrede den gængse idé om grænser og afstande. Med evnen til at transportere både data og genstande kan droner også blive en væsentlig faktor i fremtidens infrastruktur.

En drone er oftest både udstyret med processor, GPS, Wifi, videokamera, kompas og software og kan derfor både stedsangive og opfange og videresende data. Hvilke data afhænger nærmest kun af det udstyr, der bliver påmonteret dronen. Tendensen til at it indgår i alting - fra lyskryds til sensorer på vilde svaner -, bevirket at droner i fremtiden kan indgå som forbindende led mellem steder og forskellige typer af data og aflæse eksempelvis RFID data.

Droner vil ikke bare kunne effektivisere en infrastruktur af data og information, men vil også med tiden kunne revolutionere transportveje som bærere af genstande - lige fra dagligvarer til medicin - både hurtigt, billigt og til og fra vanskeligt tilgængelige områder. Droner kan derved skabe nye forbindelser mellem steder, der ikke før har været forbundet.
Astronauten på Apollo 17 Eugene Cernan udtalte: “We went to explore the Moon, and in fact discovered the Earth.”

På samme måde kan droner, der originalt blev udviklet til militære handlinger, nu forandre vores opfattelse af den fysiske verden. Den materialeteknologiske udvikling betyder, at droner i stigende grad bliver i stand til at udforske mere og flere miljøer på kloden (jord, is, luft, vand, gas og røg), og ved hjælp af sensorer og data-transmittering kan vi se, hvad dronerne ser, og få informationer, vi ikke før kendte til.

Der er behov for at undersøge droners potentiale i det danske samfund og samtidigt tage højde for de samfundsmæssige aspekter forbundet med øget implementering. Denne rapport vil således undersøge både potentialer og udfordringer ved civile droner i Danmark og give anbefalinger til videre tiltag.

Rapportens formål

Som led i aftalen af 31. oktober 2013 om fordeling af forskningsreserven i 2014 vedtog regeringen og forligspartierne følgende under overskriften ”Videngrundlag for forskning, innovation og uddannelse, dansk kystturismeforskning samt teknologivurdering af

1 Eugene Cernan citeret af National Aeronautics & Space Administration, NASA: 2009
droner” (afsnit. 5.5): “Inden for rammerne af de afsatte midler igangsættes en kortlægning og teknologivurdering af igangværende og planlagte civile aktørers anvendelse af droner i Danmark. Der iværksættes endvidere en kortlægning af dansk kystturisme-forskning. Kortlægningerne færdiggøres således at partierne i forbindelse med finansloven for 2015 kan vende tilbage til spørgsmålet om opfølgning og finansiering inden for en ramme på 20 mio. kr.”

Rapportens metode

Denne teknologivurdering har kortlagt de danske erfaringer med civil anvendelse af droner og inddraget vidensinstitutioner og interessenter i et struktureret og åbent videndelingsforløb for at belyse, vurdere og prioritere ideer til anvendelse af droner, samt give anbefalinger til videre tiltag. Projektets metode har bestået af følgende elementer:
Desk research

Ved projektets begyndelse i december 2013 påbegyndte Teknologirådet desk research om droner og relateret teknologi vedrørende de teknologiske muligheder, erfaringer med anvendelsesområder, danske og internationale regler og anbefalinger til implementering i luftområdet.

Arbejdsgruppe

Gennem projektets indledende desk research blev det danske vidensmiljø kortlagt, og heraf blev et tværfagligt udvalg inviteret til at indgå i projektets arbejdsgruppe.

Arbejdsgruppen har bestået af:

- Anders la Cour-Harbo, lektor, Institut for Elektroniske Systemer, AAU
- John Paulin Hansen, lektor, Software and Systems, IT-Universitetet
- Kim Steenstrup Pedersen, lektor, Datalogisk Institut, Københavns Universitet
- Lars Michael Larsen, projektchef, UAS Denmark
- Peter Vedel Kessing, seniorforsker, Institut for Menneskerettigheder
- Thomas Madsen Almdal, konsulent, Robotteknologi, Teknologisk Institut
- Thomas Ploug, prof., Inst. for Kommunikation, AAU, medlem af Etisk Råd
- David Grønbæk, fuldmægtig, Styrelsen for Forskning og Innovation (observatør)

Deltagere fra Teknologirådet:

- Anne Kirstine Smith Lygum, projektleder
- Jacob Skjødt Nielsen, senior projektleder
- Nicklas Bang Bådum, projektmedarbejder

Arbejdsgruppens opgave har været at give status på den aktuelle viden på området, læse og kommentere projektets løbende dataindsamling og tekstproduktion samt bidrage til projektets konklusioner.
Interviews
Der er foretaget 14 interviews med udvalgte aktører.1 Interviewene har taget udgangspunkt i en generisk interviewguide,2 men i praksis forløb hvert interview som en semi-struktureret samtale. Projektet har også indsamlet skriftlige tilkendegivelser fra 8 interessenter.3

Innovationskonference
Midtvejs i projektet blev der afholdt en innovationskonference med repræsentanter fra erhvervslivet og eksperter fra de identificerede anvendelsesområder. På konferencen blev de godt 50 deltagere, gennem en række oplæg, præsenteret for den nuværende lovgivning, de teknologiske muligheder og fik eksempler på nuværende anvendelse. Gennem struktureret brainstorm diskuterede deltagerne, inddelt i mindre workshops, dronernes kommende anvendelsespotentiale - herunder muligheder og barrierer - og formulerede konkrete anbefalinger til beslutningstagere.4

Under hele projektet har teknologirådet været i mundtlig og skriftlig dialog med en bred række aktører, herunder også enkeltpersoner og firmaer der ikke kunne deltage i innovationskonferencen.

Rapportens afgrænsning

Denne teknologivurdering omhandler civil anvendelse af droner i Danmark.

I definitionen heraf læner rapporten sig op ad Europa Kommissionens oplysningsmateriale fra april 2014: A New Era for Aviation. Opening the aviation market

2 Se bilag 1
3 Se bilag 2
4 Se bilag 3
5 Se bilag 4
to the civil use of remotely piloted aircraft systems in a safe and sustainable manner, ved at definere civil anvendelse som værende droner til kommerciel, erhvervsmæssig og til myndigheders brug. Dette indbefatter således både statslig og militær anvendelse af droner, men er begrænset ved udelukkende at gælde ikke-bevæbnede droner.

Teknologivurderingen er afgrænset til kun at behandle flyvende droner, og dermed ikke beslægtede teknologier som ubemandede sejlende, gravende eller kørende fartøjer.

Deciderede autonome droner - dvs. droner, der navigerer uafhængigt, uden at en pilot overtager styringen under flyvningen - indgår kun sporadisk i rapporten, idet analyser fra International Civil Aviation Organisation (ICAO), den amerikanske Federal Aviation Administration (FAA) og fra EU slår fast, at dette udviklingstræk først vil aktualiseres senere i den teknologiske udvikling. Når det alligevel nævnes, er det foranlediget af, at adspurgte informanter eksplicit har peget på droners autonomi som et væsentligt potentiale i den fremtidige anvendelse.
KAPITEL 2: RESUMÉ

Denne rapport undersøger potentialer og udfordringer forbundet med civile droner i Danmark, og giver anbefalinger til videre tiltag.

I kapitel 5: Droner i Danmark behandles civile droners potentielle indflydelse på det danske arbejdsmarked, hvorefter der fokuseres på de mest lovcende anvendelsesområder; beredskab, inspektion, geodata, natur- og miljøovervågning og landbrug. Inden for disse områder gives overblik over udviklere, brugere og planlagte aktiviteter. Der gives eksempler på øvrig anvendelse, samt fremtidigt potentiale ved brug af droner indenfor en række områder, herunder brug af droner til optimering af infrastruktur og som personlig assistance.

Kapitel 6: Samfundsøkonomiske aspekter, diskuteres en række områder der kan berøres af øget civil brug af droner, herunder miljø, luftfart, sikkerhed, privatliv samt overvågning. Kapitlet sætter således fokus på væsentlige aspekter i både dansk og international kontekst, der fortjener fortsat opmærksomhed i en situation hvor droner i stigende grad bliver mere tilgængelige for en lang række af aktører.

Kapitel 7: Barrierer, diskuteres eksisterende forhold der vurderes at udgøre hindringer for succesfuld øget implementering af civile droner i det danske samfund. I henhold hertil behandles lovgivning, fælles internationale regelsæt, standarder og teknologi.

I kapitel 8 konkluderes med projektets arbejdsgruppes anbefalinger for videre tiltag, som er struktureret inden for; lovgivning og regulering, tiltag for vækst og udvikling samt teknologisk udvikling.
KAPITEL 3: DRONER – BEGREBER OG DEFINITION

En drone kan defineres på mange forskellige måder. Betegnelsen bliver brugt om fjernstyrede, programmerede og autonome enheder, som både kan være luftbårne, sejlende eller kørende.

Begrebet drone har fortsat stærke associationer til den militære anvendelse, men er i løbet af de seneste år blevet udbredt til også at beskrive den ikke-militære brug. Det er derfor vurderingen, at ordet drone vil vinde indpas til også at indbefatte beskrivelsen af civile droner i privat, kommersiell og forskningsmæssig henseende.

RPAS er en nyere betegnelse, som betyder Remotely Piloted Aircraft System. ICAO har taget denne betegnelse i anvendelse for at specificere, at der menes et fartøj, der har en ekstern pilot, der enten styrer direkte eller overvåger flyvningen og dermed kan gribe ind efter behov.

\(^6\) Betegnelsen anvendes både af ICAO, EASA, JARUS, EUROCAE, EUROCONTROL.
systemelementer kan eksempelvis være software, systemmonitorering, kommunikationsudstyr, flyvekontroltjenesten og sikkerhedsudstyr, der overtager styringen i tilfælde af fejl (fail-safe-udstyr). Ofte inkluderes også den enkelte drones tilføjede komponenter (payload).

Med betegnelsen UAS forstås dronen således som en konvergerende teknologi, dvs. sammensat af flere teknologier. Dronen kan med andre ord forstås som et multi-system, hvor flere enheder er samlet på én platform.

Involverede teknologier

Ud fra betragtningen, om at en drone er en mobil platform, er det i praksis de påsatte teknologier, der sætter rammerne for droners anvendelsespotentiale. Dermed er det som udgangspunkt kun fantasien, der sætter grænser for, hvad droner potentielt vil komme til at kunne gøre. I dag er det almindeligvis kameraer og sensorer, der kobles på dronen, da det muliggør udførelsen af en bred vifte af opgaver, der kræver indsamling af geodata.

7 Konvergerende teknologi kan både henvise til det samlede operationelle system og til de teknologier, der er indeholdt i dronen.

Væsentligheden af den enkelte drones karakteristika afgøres af brugskonteksten. Eksempelvis er den fastvingede model bedst til at dække store arealer, mens rotorblade muliggør at dronen kan lette og lande lodret og er giver fordele hvis dronen skal kunne lande inden for et mindre område eller navigere præcist i lav hastighed.

I det følgende vil rapporten give en introduktion til den danske lovgivning, andre nationale reguleringer samt implementeringsstrategier.
Internationale organisationer:

FAA:
Federal Aviation Agency,
Det amerikanske luftfartsvesen

EASA:
European Aviation Safety Agency;
Det Europæiske
Luftfartssikkerhedsagentur

ICAO:
International Civil Aviation
Organisation; Den international civile
luftfartsorganisation

ERSG:
European RPAS Steering Group; Den
Europæiske styringsgruppe for RPAS

JARUS:
Joint Authorities for Rulemaking on
Unmanned Systems; Ekspergruppe
med repræsentanter fra nationale
luftfartstilsyn.

KAPITEL 4: LOVGIVNING OG
IMPLEMENTERINGSSTRATEGIER

Droner er som civil teknologi og civilt værktøj
stadig et nyt område, hvilket medfører, at
der i mange lande hverken foreligger klare
regler for civil praksis eller planer for,
hvordan droner skal indgå i samfundet.

I det følgende vil den danske lovgivning blive
kort skitseret, hvorefter den sammenlignes
med reguleringer fra udvalgte lande.
Afslutningsvist giver kapitlet et overblik over
de mest fremtrædende
implementeringsstrategier, udarbejdet af
internationale organisationer, der giver
anbefalinger og tidsrammer for udvikling af
lovgivning og forskning.

Dansk Lovgivning

Flyvning med droner reguleres ud fra Trafikstyrelsens BL 9-4 Bestemmelser om luftfart
med ubemandede luftfartøjer, som ikke vejer over 25 kg fra 2004.8 Af bestemmelserne
fremgår det, at flyvning med droner skal ske på en måde, hvor andres liv og ejendom
ikke udsættes for fare. Gældende lovgivning byder, at ved flyvning med ubemandede
fartøjer skal:

8 Trafikstyrelsen 2004.
• afstand til en offentlig flyveplads være mindst 5 km
• afstand til bymæssig bebyggelse og større offentlig vej være mindst 150 m, dog må ‘særligt følsomme naturområder’ ej heller overflyves.
• flyvehøjden højst være 100m over terræn.

Reglerne foreskriver, at en pilot eller operatør til enhver tid skal kunne fjernstyre eller programmere fartøjet.

Trafikstyrelsen har mulighed for at give dispensation hvis det ubemandede fartøj anvendes til:
• Test
• Forskning
• Kommercielle formål

Området udvikler sig imidlertid hastigt, hvorfor Trafikstyrelsen i forbindelse med erhvervsmæssig brug har muliggjort dispensationer fra den gældende lovgivning (BL 9-4). I tillæg hertil har Trafikstyrelsen i 2014 udarbejdet nye retningslinjer (AIC B 08/14) for dispensation til erhvervsmæssig

Kategorier:

I AIC B 08/14 bliver droner kategoriseret inden for fire kategorier:

1A: Flyvning ved VLOS (se nedenfor):
Startvægt på maksimum 1,5 kg, som maksimalt udvikler en kinetisk energi på 150 J
(Eksempel: Fartøj på 1 kg ved 60 km/t udvikler 139 Joule)

1B: Flyvning ved VLOS. Startvægt fra 1,5-7kg som udvikler en kinetisk energi på maksimalt 1000 J
(Eksempel: Fartøj på 5 kg ved 72 km/t udvikler 1000 Joule)

2: Flyvning ved VLOS. Maksimal startvægt på mere end 7kg

3: Flyvning ved BLOS. For denne kategori skal flyvning foregå i reserveret luftrum, og der vil være en række skærpede krav til luftfartøj, datalink og pilot.

9 Se BL 7-16 for specifikation af regler for naturområder
10 Se Trafikstyrelsens AIC B 08/14 for nærmere definition.
brug af droner i Danmark. De nye retningslinjer indeholder afstandskrav i forhold til det såkaldte flyve- og sikkerhedsområde for lette droner (0-7 kg). Endvidere findes der krav om en afstand på 150 meter til politistationer, fængsler og arresthuse, militære områder, kongehusets ejendomme og lignende. Ligeledes er der krav om en afstand på 200 meter til uheldssteder, hvor politi, sikkerheds- og redningsmandskab arbejder.

Øvrige nationale regler

I mange lande har erhvervsinteresser gennem længere tid forsøgt at fremme en liberalisering af lovgivningen inden for droner. Alligevel har lovgivningen udviklet sig meget forskelligt fra land til land.

11 Trafikstyrelsen 2014 (1).

12 I denne sammenhæng skal pilot forstås som den eller dem, der tilrettelægger og står for udførelsen af flyvningen, mens operatør skal forstås som den organisation hvis regi flyvningen udføres i.

13 Kilde: Trafikstyrelsen. For mere udførlig gennemgang se 'Bilag 5: Dansk lovgivning'
I Sverige er reglerne udførligt beskrevet og dikterer, at al kommerciel og forskningsmæssig flyvning samt flyvning uden for pilotens synsvidde (BLOS) kræver forudgående tilladelse fra de svenske myndigheder - en tilladelse som samtidigt indbefatter registrering af al flyvning. Det også et krav, at piloter, der flyver med droner i kategori 2, skal have gennemført træning i den pågældende drone og have taget den svenske trafikstyrelsens færdighedstest.14

I Norge er droner reguleret i henhold til AIC-N 14/13 20 Juni, der gælder flyvning med RPAS, defineret som al ubemandet luftfart, der ikke udelukkende er rekreativ. Alle, der ønsker at flyve kommercielt med droner, skal således søge om en tilladelse, der kan løbe op til 2 år. Hvis man ønsker at flyve EVLOS eller BLOS, kræver det, at man søger særlig tilladelse til dette. I Norge gælder det endvidere, at al foto- og sensoroptagelse fra luften kræver særskilt tilladelse fra en national sikkerhedsmyndighed. Rekreativ flyvning er for nuværende reguleret efter almindelige forsigtighedsprincipper og eventuelt straffeloven. Der ventes at komme en lovgivning på området inden for få år.15

I England er dronerreguleringen delt op i tre kategorier efter vægt: til og med 20kg; 20-150kg; og over 150kg. For droner på 0-20kg er flyvning begrænset ved, at der ikke må flyves over byområder, 150 meter fra mennesker eller bygninger, uden for synsvidde eller med kommercielt øjemed. Derudover må der ikke foregå overvågningsaktivitet eller foretages dataindsamling. Disse forhold kan der dog søges dispensation for, og per december 2013 er der registreret over 190 godkendte operatører, der udfører kommerciel flyvning med droner. I udgangspunktet er droner på 20-150kg reguleret som almindelig bemandet luftfart, dvs. at der stilles samme krav til uddannelse og udstyr, som der gør til almindelig luftfart. Det er muligt at søge dispensation fra en del af disse krav. Droner over 150kg falder ind under EASAs jurisdiktion og kræver derfor certificering herfra.

14 The Swedish Transport Agency 2009.
15 Civilian Aviation Authority - Norway 2013.
I **Tyskland** sondres ligeledes mellem rekreativ- og sportsbrug og al øvrig brug, hvor den første kategori er underlagt lempeligere lovgivning. Droner under 5kg til privat brug kræver ingen tilladelse og må flyve inden for synsvidde. Derudover gælder, at der ikke må flyves inden for 1,5km fra en lufthavn, og der er etableret særlige zoner over regeringsdistrikter og lignende. For kommerciel flyvning gælder, at man skal have en flyvetilladelse fra de tyske luftfartsmyndigheder samt en forsikring, der gælder for brug af droner. Operatøren kan nøje med én tilladelse til alle dennes droner under 5 kg. For droner mellem 5kg og 25kg skal der søges tilladelse for hver enkelt drone. Der gives ingen flyvetilladelser til droner over 25kg.\(^\text{16}\)

I **USA** gives der som udgangspunkt kun tilladelse til at flyve til ’public use’, altså med offentlige formål, eksempelvis universiteter. Det er således ulovligt at flyve kommercielt,\(^\text{17}\) hvilket møder modstand i store dele af det relaterede erhvervsliv. Det amerikanske luftfartsagentur (FAA) har i maj 2014 utalt, at udviklingen af lovgivning på området er et omfattende arbejde og derfor må forventes at kunne tage syv til ti år.\(^\text{18}\) FAA har samtidigt udpeget seks testcentre for droner, der både skal indgå i udviklingen af lovgivningen og af teknologien.

Spanien har i april 2014 indført et totalforbud mod al brug af droner til kommercielle formål.\(^\text{19}\) Dette har for mange europæiske aktører været en overraskelse, da Spanien er i gang med to større omfattende projekter, hvoraf det ene, en decideret dronelufthavn, åbnede i starten af april.

Australien og **New Zealand** bliver ofte fremhævet som lande med liberal lovgivning inden for droner. Australien tillader for eksempel flyvning over bebyggede områder og

\(^{16}\) Solmecke 2014.
\(^{17}\) Federal Aviation Administration 2014.
\(^{18}\) Goglia 2014.
\(^{19}\) Bennet 2014.
BLOS-flyvning for indehavere af et certifikat. New Zealand betragter alle droner under 25kg som modelfly og tillader næsten al flyvning, så længe der mindst 24 timer før flyvning oplyses kontaktplysnings på operatøren, stedsbestemmelse for flyvningen, dato, tidspunkt og varighed samt den maksimalt forventede flyvehøjde.

Den danske model er i vid udstrækning baseret på dispensationer fra den gældende lovgivning, med henblik på både at tilgodese teknologisk udvikling, der er gået forud for lovgivningen, og på at kunne vurdere hver enkelt sag ud fra ansøgning og kontekst. Siden medio 2013 har Trafikstyrelsen etableret et dialogforum for myndigheder, branche- og netværksorganisationer samt virksomheder med dispensationer fra de eksisterende regler til årlige møder med fokus på eventuel udvikling af området.

Implementeringsstrategier:

Både den danske og de fleste andre landes luftfartslovgivning er i store træk baserede på internationale organisationers implementeringsstrategier, dvs. såkaldte køreplaner for integration og lovgivning af droner i det civile luftrum.

I det følgende gennemgås Den Internationale Civile Luftfartsorganisationens Cirkular 328 om fjernstyrede droner, Europa Kommissionens og det amerikanske luftfartsagenturs implementeringsstrategier samt branchenetværket UAS Danmarks udviklingsplan.

20 Civil Aviation Safety Authority Australia 2002, 8.
21 Civil Aviation Authority New Zealand 2014.
ICAO, International Civil Aviation Organizations

Den Internationale Civile Luftfartsorganisation (ICAO) er et FN-organ, der udarbejder anbefalinger for den civile luftfart i hele verden med det formål at skabe transnational harmonisering af lovgivningerne, blandt andet ved udarbejdelse af Standards and Recommended Practices (SARPs). Den danske luftfartslov er i store træk baseret herpå. ICAO argumenterer først og fremmest for, at der for nuværende ikke skal fokuseres på fuldt autonome droner, da pilotens funktion og ansvar er nødvendig for atforetage sikre og forudsigelige flyvninger. Dertil kommer, at den nødvendige teknologi for atgøre dette autonomt i integreret luftrum endnu ikke er tilstrækkeligt udviklet, og at der i forhold til forsikringsansvar er en række ubesvarede spørgsmål om blandt andet ansvarsplacering.

I Cirkulære 328 argumenterer ICAO for, at droner gradvist skal implementeres i det generelle luftrum, og altså ikke som nu være adskilt fra almindelig civil lufttrafik.22 Dette skal ske uden at ændre kravene til den eksisterende luftfart eller at sænke sikkerheden. Af denne grund skal droner i regulativ henseende betragtes som værende et luftfartøj på linje med helikoptere og bemandede fly, hvilket bevirket at de, med mindre modifikationer, kan falde ind under de eksisterende reguleringer og SARPs.23 I henhold hertil anser ICAO de eksisterende standarder og certificeringssystemer for luftfart som anvendelige for droner. Væsentligheden af droneoperatørens kendskab til de eksisterende luftfartsregler på linje med konventionelle piloter påpeges, da en situation, hvor droner indgår i den generelle civile luftfartstrafik, vil medføre, at piloter af både bemandede og ubemandede fartøjer har samme ansvar for sikkerhed.24 Af denne grund anbefaler ICAO, at der indføres et førerbevis for droneoperatører. ICAO påpeger samtidigt, at der

22 International Civil Aviation Organization 2011, (iii).
23 Ibid. 2
24 Ibid. 7
er behov for yderligere indsamling af data og øget viden om de involverede teknologier, før integrering af droner i det civile luftfart er sikkerhedsmæssigt forsvarligt. Herunder ønskes en udvikling af standarder, certificeringer og fælles praksis for øget sikkerhed.

Europa Kommissionen

Både Europa Kommissionens working paper og European RPAS Steering Group anser droneteknologier for at have potentiale til at skabe nye jobs og vækst samt at skabe en helt ny service sektor.27 28

Når det gælder salg, er Europa for nuværende dog ikke så langt som USA og Israel, der står for henholdsvis 66% og 10% af det globale salg af droner.29 Af denne grund bliver det anbefalet at understøtte den produktionsmæssige og teknologiske udvikling samt sikre et koordineret europæisk samarbejde mellem forskellige udviklingsprojekter.30 31

EU's køreplan fra European RPAS Steering Group, læner sig, som flere andre implementeringsstrategier og analyser,32 op ad ICAOs cirkulære 328 ved at begrænse omfanget af de foreløbige aktiviteter til RPAS, og altså ikke autonome droner. Droner anses også her i udgangspunktet som konventionelle fly, og reguleringen koncentreres om de forskelle, der er, ved at en drone ikke har pilot eller passagerer om bord.

Målet for den europæiske implementeringsstrategi en gradvis integration af de fem typer flyvning (VLOS, EVLOS, BVLOS, IFR, VFR) i det integrerede luftfart for civil lufttrafik

25 Ibid. 4
26 European Commission 2012
27 European Commission 2012, 3.
28 European RPAS Steering Group 2013, 5.
29 European Commission 2012, 7.
30 Ibid, 5
31 Lentz 2012, s. 7
32 European RPAS Steering Group 2013, 5.
frem mod år 2028, med tre udviklingstrin for hver type (indledende øvelser, integration og evolution). Det er desuden målet, at denne regulering skal harmoniseres på tværs af EU og integreres i EU-Kommissionens Single European Sky-projekt (SES).
Køreplanen foreslår, at harmoniseringen på tværs af EU foregår ved at overlade reguleringen af alle droner til Det Europæiske Luftfartsagentur (EASA), i modsætning til nu, hvor droner under 150kg bliver reguleret efter nationale regler, hvilket indtil nu har skabt meget forskellige og fragmenterede regler.
Det bliver desuden forslået i køreplanen at lade fremtidig R&D vedrørende integration i det generelle luftfart foregår under Single European Sky-programmet.
Endelig beskriver køreplanen, at en fuld integration af droner i luftfart kræver en analyse af de samfundsmæssige konsekvenser forbundet med droner, indtog i det civile luftfart, både i forhold til ansvar og forsikring, sikkerhed i forbindelse med forskellige former for hacking og andre angreb på og med droner, foruden rettighedsafklaring vedrørende privatliv og databeskyttelse.

EU’s working paper konkluderer, at industrien og teknologien er i sin spæde fase, og at der på nuværende tidspunkt er mangel på slutbruger-efterspørgsel, men at så snart en del af de indledende lovgivningsmæssige og teknologiske spørgsmål er afklaret, vil markedet for droneteknologier kunne udvikle sig hurtigt. 33 I den sammenhæng vil udvikling af sikkerhedsregulering være en stor fordel og nødvendig for at skabe tillid og accept i den brede befolkning.

FAA, Federal Aviation Administration

FAA er af den amerikanske kongres blevet bedt om at integrere droner i det integrerede civile luftfart i år 2015. Som de fleste andre køreplaner, fastslår FAA’s strategi af 2013, 34 at det er nødvendigt, at droner bliver integreret i det civile luftfart, og at dette

33 European Commission 2012, 8.
34 Federal Aviation Administration 2013, 4-5
kommer til at foregå på en måde, så det ikke forringer sikkerheden for andre brugere af luftrommet eller folk og ejendom på landjorden, samt at det ikke stiller krav om nyt udstyr til de eksisterende trafikanter i luftrommet. FAA lægger sig dermed op ad ICAO ved langt hen ad vejen at betragte droner som fly, og derfor skal piloter, certificeringer og standarder også leve op til samme krav som ved konventionel luftfart - dog med forbehold for de forskelle, der er forbundet med, at droner hverken har passagerer eller piloter.

UAS Denmark

UAS Denmark har foreslået at lade UAS Test Center Denmark stå for visse certificeringer. Der er endnu ikke official tilladelse til dette, men testcentret har påbegyndt arbejdet med at udvikle en model for uddannelse og certificeringer af dronepiloter.

De fælles internationale regelsæt og dansk strategi på området belyses yderligere i kap 7.

\(^{35}\) UAS Denmark 2013.

\(^{36}\) Forsvarsministeriet 2012.
KAPITEL 5: DRONER I DANMARK

I det følgende præsenteres droners potentielle indflydelse på arbejdsmarkedet i form af arbejdspladser og teknologiforskkydning. Herefter gennemgås en række anvendelsesområder i dansk kontekst med nedslag i aktiviteter inden for forskning og udvikling, eksempler på nuværende brugere, planlagte aktiviteter samt potentiel fremtidig brug.

Arbejdsmarked

Droneindustrien og de relaterede teknologier har et stort potentielle til en mange facetteret opgaveløsning i det danske samfund. Meget tyder på, at industrien omkring droner og relateret teknologi kan udvikle sig voldsomt i den kommende tid. Eksempelvis har EU-Kommissionen for nyligt sammenlignet droneteknologien med de tidlige 1990’eres internetteknologi.37

Som meget anden ny teknologi kan droner overtage nogle arbejdsfunktioner, der før krævede menneskelig arbejdskraft. De mest nærliggende arbejdsopgaver, der kan erstattes af droner, er dem, der ofte beskrives som ’de tre D’er’, Dull, Dirty and Dangerous. - Og det er oplagt, at droner kan anvendes i kedelige, beskidte og farlige arbejdssituationer. Dronerne har samtidig potentielle til at effektivisere nogle arbejdsgange samt løse en række nye opgaver som i dag ikke udføres af ressourcemæssige årsager, eksempelvis rutinemæssig og systematiseret tilsyn med natur- og industriområder. Flere tiltag i den retning kan gøre danske virksomheder mere konkurrencedygtige - og på sigt skabe nye arbejdspladser.

Branchenetværket UAS Denmark blev etableret i 2012 og fungerer som en

netværksforening for interessenter i dronebranchen, favnende både producenter, udviklere og brugere. Foreningens 49 medlemmer repræsenterer således branchen bredt og tæller også Godkendt Teknologisk Service institutter (GTS-institutter), universiteter og offentlige brugere. Foreningen arbejder for dronebranchens interesser, herunder at skabe vækst og rammer for vækst gennem national og international klyngedannelse, finansiering og udviklingsprojekter samt en fortsat udvikling af UAS Test Center Denmark og muligheder for flere testflyvninger. Foreningens medlemstilgang viser en bred interesse for at indgå i tværfagligt samarbejde inden for droneindustrien og for at teste produkter og procedurer.

Det er vanskeligt præcist at vurdere potentiælet af markedet for droner og relateret teknologi, men EU-Kommissionen vurderer, at droner de næste ti år vil kunne udgøre 10% af markedet for civil luftfart, hvilket svarer til omkring 15 mia. euro. Allerede på nuværende tidspunkt findes der 566 droner produceret af 176 europæiske producenter, og i Danmark er antallet af dispensationer steget fra 12 til 24 på 5 måneder. I en rundspørge blandt UAS Denmarks medlemmer i maj 2014 skønnes det, at der frem til og med 2017 vil kunne skabes omkring 750 stillinger relateret til industrien i Danmark. EU-undersøgelse anslår desuden, at der i 2050 vil være over 150.000 europæiske jobs forbundet med droner.
Danmark har et godt udgangspunkt for at være på forkant med forskning, innovation og produktion på flere af de områder, der relaterer sig til droneudviklingen. Der er eksempelvis tale om igangværende forskning på områder som robotteknologi, automatisering, navigation og meget andet. De sensorer m.v., der kobles på dronerne, det opkoblingsinterface, der anvendes til at koble dem, samt kommunikationsmekanismerne og automatiseringen, er eksempler på teknologier, hvor Danmark har ekspertise, og hvor danske virksomheder kan blive nicheproducenter eller underleverandører til en droneindustri.

Billede 4: Danske Little Smart Things FW1 drone. www.littlesmartthings.com

De mange fremtidige anvendelsesområder betyder også, at domænespecifik viden kan bringses i spil i udviklingen. De danske vidensinstitutioner og virksomheder, der er førende i udvikling af eksempelvis vindmøller, vil potentielt kunne bruge eksisterende viden om vind og vinger til at udvikle bedre roterer til droner eller til at udvikle gear og stabiliserende mekanismer til dronerne, så de kan anvendes under ekstreme forhold. Andre eksempler på dansk ekspertise er sensorområdet, hvor Danmark på nuværende tidspunkt har adskillige udviklere af avanceret sensorteknologi, både til landbrug, industri og andre områder. Herved kan mange eksisterende danske virksomheder og vidensinstitutioner blive involverede i udviklingen af dronerelateret teknologi.

De nedenstående anvendelsesområder giver bud på, hvor dronerne kan gøre en forskel.

Anvendelsesområder

Dette afsnit vil skitsere det danske vidensmiljø inden for en række anvendelsesområder. Gennem Teknologirådets længerevarende undersøgelse af det danske videns- og erhvervsmiljø, er følgende anvendelsesområder blevet identificeret som værende de mest oplagte i en dansk kontekst: beredskab, inspektion og infrastruktur, geodata, natur- og miljøovervågning, landbrug samt ’anden anvendelse’. Under hvert anvendelsesområde giver kapitlet overblik over igangværrende og planlagte aktiviteter samt bud på potentiel fremtidig brug. Der er således udeladt informationer om allerede indsendte ansøgninger om støtte til projekter.

Beredskab

- Brug af droner inden for beredskab kan bidrage til en bedre koordineret indsats, give opdateret kortmateriale over ulykkessteder, risikominimere arbejdsgange og give overblik ved rednings- og eftersøgningsaktioner.

Udviklere:

- Dansk Brand- og Sikringsteknisk Institut (DBI), har inddraget potentiel brug af
droner i flere af sine forskningsprojekter.44 DBI’s interesse i droner vedrører især muligheden af at anvende droner som et supplement til opklaringen af brandens vej gennem en bygning, eller blot for at skabe en oversigt over en brandtomt.

• Der er desuden en række danske projekter, der endnu er i ansøgningsfasen.

Brugere:

• Beredskabsstyrelsen har en drone, som den anvender til indledende forsøg med teknologien til beredskabsmæssig anvendelse. Styrelsen har et grundigt overblik over de muligheder, der foreligger ved brug af droner, og er orienteret om andre landes operationelle beredskabers brug og erfaringer med forskellige typer af droner.

• Københavns Brandvæsen er i besiddelse af en drone, som blev anvendt ved en indsats første gang den 19. marts 2014. Dronen kan, uduover at give videooptagelser af branden fra oven, og dermed overblik, også styrke sikkerheden for mandskabet.45

• Firmaerne Danoffice IT og Anthea Technologies har som producenter erfaring med brug af droner til assistance til humanitære aktioner. Førstnævnte har anvendt droner i Afrika i en indsats mod krybskytteri, og sidstnævnte udførte i november 2013 projekter i forbindelse med nødhjælpsarbejdet efter tyfonen på Filippinerne.

• I starten af maj 2014 anvendtes droner til den internationale søredningsøvelse Baltic Sarex ved Bornholm. Det blev primært testet, hvordan droner kan anvendes til at lokalisere mennesker, der er faldet over bord.46

44 Skriftlig tilkendegivelse fra Dansk Brand- og sikringsteknisk Institut, 17/3 2014.
45 Københavns Brandvæsen 2014.
46 Heinricy 2014.
Planlagte aktiviteter:

- Politiets Efterretningstjeneste, Rigspolitiet, Politiets Videnscenter og Nationalt Beredskabscenter følger aktivt med i udviklingen af droner samt de potentielle muligheder og konsekvenser. Der foreligger dog ikke offentligt tilgængeligt materiale.
- Beredskabsstyrelsen planlægger at indkøbe to droner i 2014, bl.a. til forsøg og afprøvning. Dronerne skal på sigt kunne fungere som et støtte- og ledelsesværktøj ved at give overblik over forskellige ulykkessteder, men også fungere som et evalueringsredskab. Det er muligt, at dronerne vil kunne bidrage til at geo-referere informationer om et område, der som følge af ulykke eller naturkatastrofe har ændret karakter.47
- Gladsaxe Brand og Beredskab har planlagt indkøb af drone i 2014.48

Fremtidigt potentielle:

- ‘Search and Rescue’ er et område under beredskab, hvor brug af droner har potentielle. En drone med påmonteret varmesøgende kamera vil kunne spore nødstedte eller forsvundne personer, både i øde naturområder og til havs.
- Aalborg Universitet håber på at igangsætte et forskningsprojekt om brug af større dronehelikoptere til brug i dansk redningstjeneste.
- Brug af droner vil kunne gavne sikkerheden i tilfælde af potentielt ulykke med farlige stoffer. En drone med påsat udstyr, der kan måle farlige stoffer, vil kunne skabe situationsmæssigt overblik både indendørs og udendørs, og samtidig give hurtig indsats og minimere skaderisiko for både mandskab og borgere. Dette kræver fortsat forskning og udvikling i sensorer samt i navigationsudstyr, der forbedrer droners evne til indendørs inspektion.

47 Interview med Beredskabsstyrelsen, 28/2 2014.
48 Interview med Gladsaxe Brand og Beredskab, 14/2 2014.

Projektet er sat i bero indtil videre, grundet besparelser på redningsberedskabet.
• Brug af droner vil kunne bidrage til forebyggelse af trafikulykker ved at monitorere motorveje og trafikknudepunkter. Dette vil kræve dispensationer fra den eksisterende lovgivning.

• I fremtiden kan man forestille sig en automatisk udsendelse af en drone ved nødkald 112. Dronen vil kunne ankomme til ulykkesstedet før mandskabet, og dermed vil relevante oplysninger komme indsatssledere i hænde tidligere, end det i dag er muligt. Det vil give muligheder for at koordinere en bedre indsats, tage højde for den trafikale situation og dermed effektivisere tilkørselsmuligheder, samt give overblik over øvrige nødvendige tiltag.

• Flere aktører ser desuden potentiale i fremtidig brug af droner til transport af medicin.

• Droner vil på sigt kunne indgå som forstærker af Beredskabets SINE-netværk i områder med dårlig dækning, fordi dronen kan hænge højt i luften og modtage et ugeneret signal, som den kan videredistribuere.

Inspektion

• Et fagområde, der sandsynligvis vil blive præget af teknologiforskydning som følge af udviklingen i droner, er inspektion, hvor der er et stort potentiale, for at droner kan løse en række opgaver. Fælles for mange opgaver inden for inspektion er, at droner kan udføre mange af dem væsentligt billigere, og i nogle tilfælde bedre, end det hidtil har været muligt. Det skaber mulighed for dels at forbedre en service og dels at økonomisere den. Et eksempel er, hvordan droner kan reducere efterspørgslen på stilladser og kraner, endda helikoptere og fly, til inspektionsopgaver.

Udviklere:

• DTU Wind (tidligere Risø DTU) anfører projektet Autonomous Aerial Sensors for Wind Power Meteorology, der sammenligner forskellige slags droner til måling af turbulens bag havvindmøller. Projektet har også deltagelse af Aalborg
Universitetet, Bergen Universitet i Norge, Braunschweig Universitet i Tyskland samt GTS-instituttet Delta. Der bruges to fastvingede droner, en helikopter-drone samt en lighter-than-air drone (en mellemting mellem en drage og en ballon), alle udstyret med forskellige vindmålingsinstrumenter, der er tilpasset den enkelte drone. Der er hidtil foretaget vindmålinger på Lolland og i Frankrig.

- Ingeniørfirmaet NIRAS har i foråret 2014 opkøbt dronefirmaet Global Skyview, der igennem flere år har udviklet sin egen drone. I forlængelse heraf har NIRAS oprettet test- og uddannelsescentret for droneflyvning NIRAS Aerodrome i Allerød.

Brugere:

- Energinet.dk har haft positive erfaringer med droner til ledningsinspektionsopgaver.

- Vejdirektoratet har haft forsøg med droner over en byggeplads for at skaffe overblik over jordmængder, og dermed kunne fastslå opgavens omfang. De har også anvendt droner til at overvåge infrastruktur projekter.

- NIRAS bruger droner til at spore metanudslip fra lossepladser samt til at spore invasive plantearter.

- Adskillige konsulentfirmaer tilbyder forskellige inspektionserviceydelses udført med droner, bl.a. inspektion af termografimålinger (varmemålinger) af huse og fjernvarmerør.

Fremtidigt potentiale:

- I takt med, at droner vil kunne bære mere og flyve længere, og at der udvikles flere og mere avancerede sensorer dertil, er det helt oplagt, at droner vil komme

49 NIRAS 2014.
50 Andersen 2014.
51 Andersen 2014 (2).
52 Ibid.
til varetagelse en lang række inspektionsopgaver. Herunder inspektion af vejnet, ledningsnet, termografisk inspektion af huse og varmeledninger samt konstruktionsinspektion af høje bygninger og broer.\(^5\)

Geodata

- Geodata er relevante inden for brancher som landinspektion, naturkortlægning og -planlægning, landbrug, beredskab samt ingeniørfag. Forskellige typer af sensorer kan give overblik over og viden om forhold, der vil være ressourcekrævende eller er svært tilgængelige med andre metoder.

Udviklere:

- DTU Polar har planlagt forskning i brug af droner i Arktis, både i forsvarsmæssig og civil sammenhæng. Forskningen har især fokus på, at dronerne skal fungere i alle vejrforhold og dermed tilbyde et alternativ til helikoptere og fly i akutte redningssituationer, hvor vejret er en udfordring. Udviklingen af droner vil ikke bare kunne bidrage til et situationsmæssigt overblik, men også medføre en lettere adgang til geodata og dermed gavne flere videnskabelige undersøgelser.\(^4\)

\(^{53}\) SmartCity 2014.

\(^{54}\) Polar DTU 2013.
opstille scenarier og dermed være bedre forberedt. Disse informationer vil aktivt kunne bruges til strategisk planlægning af land- og byområder.55

Brugere:

- COWI tilbyder en lang række løsninger, hvor droner bliver brugt som en central del af opgaveløsningen. Blandt andet til at udføre en lang række kortlægningsopgaver. COWIs droner kan levere geodætiske kort med en høj nøjagtighed på 5cm.56 Det har de blandt andet gjort for Gentofte Kommune til kortlægning af kyststrækningen med henblik på analyse af kystsikring.57
- Mange landmålere har påbegyndt brug af droner som et værktøj til opmåling, kortlægning og andre geodætiske opgaver. For eksempel Skel.dk58, LE3459, Geopartner Landinspektørgården60 og Geopoint.61
- Den rådgivende ingeniørvirksomhed GEO undersøger pt. mulighederne for at bruge droner til kystopmåling og bathymetriopmåling, dvs. topografiske opmåling i havet.62

Planlagte aktiviteter:

- Landinspektørfirmaet Hvenegaard skal i løbet af 2014 til at kortlægge en række kirkegårde i Odense og Nyborg.63
- Geodatastyrelsen overvejer, hvordan droner vil kunne bistå deres arbejde,

55 Højteknologifonden 2013.
56 COWI 2013.
57 Gentofte Kommune 2014.
58 Telefoninterview med Ejnar Flensborg, Skel.dk, 10/1 2014.
59 LE34.dk/droner
60 Geopartner Landinspektørgården.
61 Maskinbladet 2013.
62 Skriftlig tilkendegivelse fra GEO, 12/5 2014
63 Loftlund 2014.
blandt andet ved ajourføring af topografiske kort og Danmarks Højdemodel, samt som redskab i kortlægning af Grønland.64

Fremtidigt potentiale:

- Droner har stort potentielle inden for indsamling og behandling af geodata. Hidtil er meget materiale indsamlet via overflyvninger med traditionel, bemandet luftfart. I løsningen af denne type opgaver vil droner kunne betyde en stor besparelse, fordi der ikke skal betales for leje af et dyrt fly samt en pilot. Derudover er det hurtigere og mere fleksibelt, og desuden vil det ofte ikke længere være nødvendigt at indhente eksterne konsulenter til at udføre opgaverne.

Natur- og miljøovervågning

- Droner er relevante til naturovervågning inden for et bredt spektrum af undersøgelsesområder, da især droner med påmonterede sensorer kan give nøjagtige informationer om natur- og miljøforhold - også på ellers ufremkommelige steder.

Udviklere:

- IT-virksomheden Explicit har, med støtte fra Miljøstyrelsen, og i samarbejde med Force Technology, igangsat et projekt, hvor droner ved hjælp af sensorer, skibspositions- og vejrdatal skal bruges til at måle indholdet af svovl i udstødning fra skibe.65 66

64 Skriftlig tilkendegivelse fra Geodatastyrelsen, 26/4 2014.
65 Explicit 2014.

Figur 1: Illustration af hvordan Explicit's Project Sense drone navigerer. © Explicit.
Brugere:

- Aarhus Universitet er en del af forskningslejren Station Nord i det nordlige Grønland, der undersøger klimaforandringer, hvor droner anvendes til studiet af luftkvalitet.67
- HOBE – the Danish Hydrological Observatory, Center for Catchment Hydrology, et forskningscenter finansieret af VILLUM Fonden, anvender droner til måling af infrarød overfladetemperatur med henblik på estimering af evapotranspiration, dvs. den samlede fordampning af jordoverfladens og planternes overflade, samt indsvingning af grundvand til sører og vandløb.68
- Naturstyrelsen har i samarbejde med COWI kortlagt af forekomsten af den invasive rynket rose på Jyllands vestkyst. Desuden har Naturstyrelsen investeret i to droner for at finde ud af, hvordan de kan indgå i deres arbejde. Herunder til afdækning af skovfald, dokumentation og formidling af projekter samt til plantetælling.69
- Institut for Bioscience ved Aarhus Universitet forsker i ændringer i den arktiske tundra på Vestgrønland. De vil i sommeren 2014 anvende en drone til overflyvning af et område på 700.000 m², som vil være udstyret med et kamera, der måler tæt på det infrarøde område. Målet er at identificere arter og udvikle overflademodeller med henblik på at måle og forudsige vegetationssændringer og globale forandringer.70

Fremtidigt potentiale:

- I Danmark har Beredskabsstyrelsen overvejet mulighederne ved at bruge droner til overvågning af de arktiske områder, både i forbindelse med olieudslip og

66 Holm 2014.
67 Pedersen 2013.
68 Skriftlig tilkendegivelse fra HOBE, 16/02 2014.
69 Interview med Naturstyrelsen, 24/2 2014.
70 Hjuler (2014).
lignende og ved kæntringer af skibe i fjerne egne.71

- Danmarks Naturfredningsforening har overvejet, hvordan privates droner kunne bruges til at dokumentere forskellige typer miljøskadelige aktiviteter.72
- Derudover kan droner også bruges, i stil med Explicits koncept, til at monitorere luftkvalitet i byer og bestemte områder, samt flere andre miljømonitoreringsopgaver.

I udlandet findes en række eksisterende erfaringer med brug af droner til natur og miljøovervågning. Eksemplerne tæller:

- Indien 2013: I delstaten Assam bruges droner til at opspore krybskytter.73
- Nepal 2012: Et projekt støttet af WWF bruger droner til opsporing af krybskytter.74
- Louisiana, USA: Nicholls State University bruger UAV til at kortlægge kystlinjen i Louisiana for at have overblik over den aktuelle situation for habitatet for en række trækfugle.75
- Optælling af hvaler fra droner.76
- Nordirland: USPCA bruger droner til overvågning af tilfælde af ulovlig såkaldt \textit{badger-baiting}. En jagtform, hvor både grævlinge og hunde kan komme slemt til skade. Der er igangværende opstart i England af droner til overvågning af ulovlig jagt.77

71 Interview med Beredskabsstyrelsen, 28/2 2014.
72 Skriftlig tilkendegivelse fra Danmarks Naturfredningsforening, 03/04 2014.
73 Hussain 2013.
74 World Wildlife Foundation Global 2012.
75 Urbaszewski 2013.
76 Oskin 2013.
77 League Against Cruel Sports 2013.
Landbrug

- Et af de områder, som i mange rapporter og handlingsplaner bliver nævnt som et oplagt område til at adoptere droner som værktøj, er landbruget. Brug af droner med øvrige påmonterede teknologier har potentiale til at effektivisere landbruget yderligere. Og især brug af sensorer, der kan analysere jordbundsforhold og plantevækst, vil kunne give landmanden værdifulde oplysninger. Teknologierne har også potentiale til at skåne vildt i forbindelse med høst.

Udviklere:

- På Aarhus Universitet i Foulum forskes der i, hvordan man kan effektivisere udnyttelsen af dronens dataindsamling, blandt andet gennem smartere plantegenkendelse og plante- og jordtilstandsanalyse. Derudover laver de også et projekt med vildtvægning høst, hvor et dronesystem kan fastslå, om der gemmer sig vildt i marken.

- Københavns Universitet og Videncentret for Landbrug har et fælles forskningsprojekt, bestilt af Miljøstyrelsen, om udviklingen af software, der muliggør en automatisk behandling af dronernes billedmateriale med henblik på kortlægning af ukrudt. Metoden kan på sigt muliggøre, at sensorteknologi kan give landmanden konkrete anbefalinger, der direkte overføres til landbrugsmaskiner, således at der foregår en automatisk behandling af

78 European Commission 2012, 4.

79 Skriftlig tilkendegivelse fra seniorforsker Rasmus Nyholm Jørgensen, 13/5 2014.
specifikke jordområder.80

- Aalborg Universitet leder et projekt om præcisionslandbrug med deltagelse af Københavns Universitet og Nordic Beet Research. En drone overflyver og tager billeder, først fra stor højde for at dække hele marken, derefter udvælges repræsentative områder ved hjælp af en algoritme, som overflyves fra lavere højde, og altså med større detaljegrad. Et automatisk billedbehandlingssystem udvælger områder, som besøges af et ubemandet køretøj, der vha. optisk sensor kan genkende planter og på den måde lave højt detaljerede ukrudtskort af hele marken. På denne måde kan brugen af pesticider og sprøjtemidler reduceres betydeligt.81

Brugere:
- Der findes enkelte eksempler på landmænd, der har indkøbt dronen som nyt værktøj,82 men endnu er det ikke mange.

Planlagte aktiviteter
- AgroTech, der er et godkendt GTS-institut inden for jordbrugsteknologi, har i øjeblikket et projekt med brug af droner under opsejling.83
- UAS Denmark har etableret arbejdsgruppen Agricultural Working Group, der vil arbejde for at fremme dansk forskning, udvikling og kommercialisering af droneteknologier i landbruget.

80 Institut for Plante- og miljøvidenskab og Datalogisk Institut, Det Natur- og Biovidenskabelige fakultet, Københavns Universitet og Videnscenter for Landbrug http://www.vfl.dk
81 Aalborg Universitet.
82 Landbrugsavisen.dk 2014.
83 Skriftlig tilkendegivelse fra AgroTech, 16/5 2014.
Mulig fremtidig brug:

- Mange landbrug er allerede i besiddelse af teknologier, der kan detektere jordforhold og plantevækst. For at det bliver miljømæssigt og økonomisk rentabelt at anvende droner til samme formål, skal der derfor forskes yderligere i de såkaldte ‘ukrudtskort’ og effektivisering af analysen af de indsamlede data samt processen med at brug af disse data til konkret handling.

- Der er stort potentiale i at bruge droner til at bestøve, vande og sprøjte planter, som man for eksempel har gjort i Japan gennem mere end 20 år.84

- Droner kan bruges til at skabe et overbliksbillede med en helt ny grad af frekvens, overskuelighed, detaljerigdom end før. Det kan være med til at effektivisere brugen af pesticider og vand samt give landmænd et bedre billede af, hvordan deres afgrøder udvikler sig på forskellige dele af markerne.

- Inden for landbruget kan droner også anvendes til at skabe et overblik over og tælle dyrehold. Her vil det også være muligt at afdække dyrenes bevægelsesmønstre og spore afvigende adfærd eller temperaturer fra syge dyr.

Anden anvendelse

Ud over de ovennævnte anvendelsesområder findes der en række områder, hvor droner allerede bliver brugt flittigt, eller hvor de kan tænkes at komme til at indgå i fremtiden. Herunder præsenteres eksempler på hvor droner allerede anvendes, eller hvor de spås en fremtid.

Brugere:

- Film- og TV-produktion: DR har forsøgsvisist brugt droner til nogle optagelser og regner med at komme til at bruge droner mere i fremtiden.85 Danske

84 Szondy 2013.
85 Kunzendorf og Nissen 2013.
produktionsselskaber har brugt droner til at optage videoer til forskellige medier, for eksempel i forbindelse med det danske Melodi Grand Prix i år.\(^{86}\) Andre danske produktionselskaber har anvendt droner til at filme sekvenser til spillefilm, mens der i udlandet er mange eksempler på, at droner er blevet brugt til at filme til forskellige medier.

- Flere ejendomsmæglere har enten selv investeret i en drone eller har hyret et dronefirma til at lave video- og billedeoptagelser. Dels giver droner mulighed for en komplet visning af huset inde og ude, rundt om og oppefra, og dels giver det muligheder for at tage billeder til salgsannoncer, der viser huset fra nye vinkler.\(^{87}\)

- I udlandet har droner blandt andet været brugt til at filme vinter-OL i Sochi 2014\(^{88}\) og forskellige koncerter og festival events.

Fremtidigt potentielle:

- **Medieproduktion:** Indtil videre er brugen af droner relativt begrænset i den danske medieverden, men det er oplagt, at det vil udvikle sig voldsomt over tid. Ud over koncerter, mediebegivenheder og videooptagelser, vil også andre aktører inden for eksempelvis opsøgende fotojournalistik muligvis se fordelene ved at bruge drone som et redskab.

- **Serviceindustrien:** Hvis droner for alvor udvikler sig til at være et mange facetteret værktøj, der bruges i adskillige forskellige sektorer, er det sandsynligt, at en serviceindustri til droner vil udvikle sig. Allerede nu tilbyder COWI en række supportopgaver i forhold til droner og brugen af dem.\(^{89}\) Det er sandsynligt, at en del vedligehold og service vil blive varetaget gennem serviceaftaler, hvor specialiserede firmaer vil kunne varetage en del af de mere tekniske

\(^{86}\) NIRAS 2014 (2).

\(^{87}\) Christoffersen og Ravn 2013.

\(^{88}\) Charlton 2014.

\(^{89}\) Cowi 2013 (2).
vedligeholdelsesopgaver, så den enkelte operatør ikke behøver at have en fast tekniker ansat.

- **Infrastruktur:** Droner har potentielle til at forandre det herskende infrastruktursystem på flere fronter. Hvis firmaerne Amazons og DHL’s planer om pakkeudbringning via droner\(^90\) bliver realiseret, vil det kunne komme til at forskyde en hele logistiksektoren. Trods den udbredte skepsis vedrørende deres planer,\(^91\) er det dog oplagt at et sådant initiativ vil komme fra kommercielle og økonomisk ressourcestærke firmaer.

- **Personlig assistance:** Der findes allerede nu eksempler på droner, der kan bruges som personlig assistent til både at vise vej og se om hjørner. Eksempelvis har MIT University udviklet en drone til at vise ansatte og besøgende rundt på deres campus,\(^92\) og der er udviklet en drone, der kan assistere handicappede i deres dagligdag.\(^93\)\(^94\) På nuværende tidspunkt bliver dronens optagelser fremvist på en bærbar computer eller en tablet, men på sigt er det sandsynligt, at teknologier som Google Glasses vil udgøre brugerens skærm.

- **Turisme:** Der er potentielle i udbredelsen af såkaldt droneturisme, hvor en drone udstyret med kamera flyver en ønsket rute, og en bruger på et medie kan følge dronens optagelser.

- **Sport:** Det er ikke utænkeligt, at der vil udvikle sig nye rekreative måder at anvende droner på. Allerede nu er der udviklet en flyvende dronebold, og det er muligt at en række nye spil og konkurrencer med droner vil udvikles.

- **Internetbaserede ydelser:** Google har i 2014 opkøbt firmaet Titan Aerospace, der udvikler den soldrevne dronemodel *Solara*, der har potentielle til at holde sig på vingerne i 5 år. Det menes, at Googles interesse skyldes planer om på sigt at

\(^90\) Halverson 2013.
\(^91\) Djursing 2013.
\(^92\) Campbell-Dollaghan 2013.
\(^93\) Yu et al. 2012.
\(^94\) Se også Paulin Hansen et al. 2014.
bruge dronerne til udbringning af internet samt til at levere billeder til brug for vejrprognoser og live-opdateret trafikinformation.95

Hvis dronen får en lang flyvetid, udvikler evnen til at bære tunge payloads, samt hurtigere opdateringsfrekvens og mulighed for næsten realtidsvejrudsigt, vil dronerne kunne forbedre services som Google Maps og Google Earth med bedre højopløsningsbilleder.

Facebook har opkøbt firmaet Ascenta, der udvikler dronefly drevet på solenergi og med op til flere ugers flyvetid. Motivationen for Facebook er primært udbredelsen af internet, men der er også potentiale i, at dronerne kan udgøre en erstatning for satellitter til meteorologiske analyser, jordanalyser og til overvågning af afgrøder.96

95 Naughton 2014.

96 Ibid.
KAPITEL 6: Samfundsmæssige aspekter

Der er en række samfundsmæssige aspekter, som bør indgå i overvejelserne om, hvordan droner skal implementeres i samfundet, så det sker uden at bringe privatlivsrettigheder og den generelle sikkerhed i fare. Dette kapitel vil se nærmere på disse.

Miljø

Der er en potentiel risiko for, at både erhvervsmæssige flyvnings og privat hobbyflyvning kan genere naturopplevelsen hos borgere, der har søgt naturen for rekreative oplevelser. Dette kan både vedrøre støjgener samt gener forbundet med dronens flyveruter.

Der kan være miljømæssige fordele forbundet med brug af droner, hvilket især skyldes dronens lave brændstofforbrug sammenlignet med forbruget hos fly og helikoptere. Brug af droner som erstatning herfor vil derfor kunne forbedre luftkvalitet og reducere drivhusgasser. Dronens lave energiforbrug og CO₂-udledning er relevant nu, men kan blive yderligere miljøforbedrende, hvis droner på sigt også får tilladelse til at stå for udbringning af forskellige typer af varer. Konceptet har potentielle til at medvirke til en renere luftkvalitet i byerne, hvis der tages højde for de pågældende sikkerhedsrisici.

Det er væsentligt at være opmærksom på, at selvom droner er et mere CO2-venligt alternativ end traditionelle bemandede luftfartøjer, kan droner også udgøre en gene for
dyrelivet. Den eksisterende lovgivning har allerede restriktioner for brug af droner i særlige naturområder, men det er fortsat vigtigt at tage hensyn til især fuglelivet, hvor især fuglereder risikerer at lide overlast ved fugletælling ved hjælp af droner.

Opmærksomhed bør rettes mod, at brug af droner til miljø- og naturovervågning ikke påvirker natur og dyreliv negativt, eller forstyrre naturbrugere.

Luftfart og sikkerhed

Der er en række forhold forbundet med luftfart og sikkerhed i forbindelse med øget brug af droner, som kan indvirke på samfundet. I det følgende behandles risikovillighed, softwarefejl og andre fejlkilder samt intentionel skade med droner.

Risikovillighed

I debatten om den militære anvendelse af droner er det ofte blevet anført, at fjernstyring af et luftfartøj, modsat fysisk tilstedeværelse på fartøjet, medfører uagtetomhed og reduceret samselig opmærksomhed.\(^\text{97}\) Denne betragtning kan også gøre sig gældende ved droner anvendt til civile formål. Eksempelvis vil en dronepilot muligvis flyve tætt på en højspændingsledning eller lavere henover folkemængder, end hvis der er en personlig risiko forbundet med det for piloten. Dette fremhæver nødvendigheden af at professionalisere brugen af droner i bestemte sammenhænge, så piloten er bekendt

\[^\text{97}\] Cox 2009, 94-95.

Der er i flere fagdiscipliner forskellige holdninger til forskellen mellem pilotens dømmekraft i bemandede og fjernstyrede fly.
med dronen, og hvordan den kan navigeres væk i tilfælde af fejl eller andet.

Software og andre fejl

Som ICAO understreger i cirkulære 328, stiller ubemandede fartøjer nye krav til sikkerhedsprocedurer. I det tilfælde, at der er fejl mellem datalinket og ground control station, eller der opstår en software fejl i systemet, må en række sikkerhedsmekanismer aktiveres. Droner er endnu i et tidligt udviklingsstadium, og der mangler en række standardiserede sikkerhedsmekanismer, før de kan indgå problemfrit i det integrerede luftrum.

Generelt er der relativt set flere uhelde med droner end i konventionel luftfart. American Civil Liberties Union (ACLU) har i en rapport anslået, at droners gennemsnitlige uhelde rate er syv gange højere end anden generel luftfart og 353 gange højere end kommerciel luftfart. Tallene viser, at droner på nuværende tidspunkt ikke er klar til at blive integrerede i det resterende luft rum. Samtidig viser de også, at der især er brug for at udvikle på de systemer, der kan sikre dronerne, hvis der opstår fejl, eller hvis forbindelsen til styringsmekanismen mistes. Et sådant system vil kunne sørge for, at

Der er allerede flere eksempler på droner, der har mistet radiokontakt, og trods de er programmerede til at returnere til udgangspunkt ved fejl, er det ikke altid, at de gør det. 2. august 2010 opstod der fejl i kommunikationen i et af det amerikanske søværns droner. Den fortsatte med at flyve i en halv time, før operatøren var i stand til at genetablere kontakten. Ingen af sikkerhedsmekanismerne trådte til, så dronen nåede at tilbagelægge 34km på egen hånd. Ekse mplet viser, at der må tages højde for fejlkilder - også ved de avancerede og specialbyggede droner.

98 ICAO 2011, 5.
en drone enten bliver svævende over samme punkt, automatisk lander, hvor den er, eller at den vender tilbage til et prædefineret udgangspunkt. Af denne grund kan backup-systemer, de såkaldte fail-safe-systemer, være nyttige i tilfælde af uforudsete fejl.

Intentionel skade med droner

Lige så vel som droner kan bruges til samfundsgavnlige opgaver, kan de også bruges til at forrette skade på mennesker og ejendom med forsæt. I det følgendes ses nærmere på hacking af droner, brug af elektromagnetisk puls og brug af dronen som våben.

Hacking af droner:
En potentiell risikofaktor er at droner kan hackes på en række forskellige måder. Et sådant scenarie vil både kun forvolde menneskelige tab og skade udviklingen inden for brug af droner.

En drone kan hackes på to måder, ved såkaldt ’jamming’ og ’spoofing’. Ved ’jamming’ ’overdøves’ dronens GPS-signal eller kontrolsignal fra grundstationen med elektronisk støj, således at dronen ikke modtager sit signal korrekt. Dette vil enten betyde, at dronen fortsætter med at flyve ligeud eller eventuelt styrter ned. Ved ’spoofing’ forfalskes signaler, GPS eller andre, for enten at få kontrol med en drone eller forvirre dens system, således at dronen styrter ned. Især i kombination med

100 Dronen modtager to signaler. Hvis kun det ene signal blokeres, vil det andet være tilstrækkeligt til at transportere dronen tilbage, men hvis de begge blokeres, har dronen ikke noget signal at navigere ud fra.

101 Wesson & Humphreys 2013, 43.

102 Ibid. 43
'jamming' kan 'spoofing' blive et problem, fordi kontroldet signaler først forstyrres, og der efterfølgende sendes 'falske' signaler til dronen, så en tredjepart kan overtage styringen.

Elektromagnetisk puls:
Et sikkerhedsproblem kan også udgøres af udviklingen inden for 'elektromagnetisk puls' (EMP teknologi). EMP kan bruges til at stoppe et elektrisk kredsløb, som det der findes i en drone.

Dette vil betyde, at dronen falder til jorden, hvor den er. Herved kan droner potentielt set udgøre en sikkerhedsfare, hvis de hænger over en folkemængde.

Dronen som våben:
En drone kan udstyres med diverse våben, herunder kemiske. Det amerikanske militærs drone af modellen Reaper er allerede et eksempel herpå, og på internettet findes adskillige eksempler på privatpersoner, der eksperimenterer med lignende.

Ud over privatpersoners eksperimenter med at bevæbne droner, findes der også eksempler på at terroristgrupper, der har udstyret droner med våben eller bomber. Den libanesisk funderede politisk-militære organisation Hizbollah har anerkendt at have sendt droner ind over Israel, og FBI afslørede i 2011 en terrorist, der planlagde at sende en drone udstyret med en bombe mod Pentagon og regeringsbygninger i Washington D.C., USA.

103 Ibid. 43
104 Se f.eks. https://www.youtube.com/watch?v=56veH8-KbEM
105 Se f.eks https://www.youtube.com/watch?v=SNPJMk2fgJU
106 Goodman 2013.
Overvågning

Brug af droner som overvågningsteknologi er en kompleks problemstilling.⁵⁰⁷ Ved vurderingen af, om en overvågning er i strid med borgenes ret til privatliv, sondres der juridisk set mellem, hvorvidt overvågningen foregår på privat område eller i det offentlige rum. Foretages droneovervågning inden for privat område er der altid tale om et indgreb i retten til privatliv. Et sådant indgreb er som udgangspunkt ikke tilladt, medmindre en nødvendighed konkret kan dokumenteres.⁵⁰⁸ Det kan eksempelvis være tilfældet ved en konkret mistanke om nært forestående kriminalitet.

Overvågning fra droner af færden i det offentlige rum vil derimod ikke i sig selv udgøre et indgreb i retten til privatliv, men kan efter omstændighederne gøre det.⁵⁰⁹ Fortalere mener, at brugen af droner i offentligt rum kan forbedre sikkerheden i samfundet - og dermed også trygheden. Omvendt hævder kritikere, at man som borgerskab ikke skal overvåges uden grund. Hvad der for myndigheder kan være en sikkerhedsskabende foranstaltning under fx en demonstration, kan for demonstranterne opfattes som overvågning og mistænkeliggørelse, hvilket i realiteten kan have en indskrænkende virkning på demokratiske frihedsrettigheder, herunder eksempelvis ytringsfrihed.

Det er dog væsentligt at holde fast i, at dronen i sig selv er en neutral platform, hvorpå der kan påmonteres overvågningsudstyr, og at dette udstyr også vil kunne anvendes på andre teknologier.

"Man skal som samfund tage stilling til om man synes, det er OK at overvåge borgerne, og så giver resten ligesom sig selv - så er det ligegyldigt, hvilket

⁵⁰⁷ Retten til privatliv er beskyttet af Den Europæiske Menneskerettighedskonvention. (Artikel 8 i Den Europæiske Menneskerettighedskonvention (EMRK).

⁵⁰⁸ Jf. EMRK artikel 8, stk. 2.

⁵⁰⁹ For nærmere specifikationer af regler på området, se bilag 6.
værktøj man bruger. Dronen er jo bare et værktøj”110

Droner med påmonteret overvågningskamera kan gøre billedregistrering mere fleksibel og mobil i modsætning til fastmonterede kameraler. En udpræget brug af droner til overvågning af befolkningen kan medføre konsekvenser for borgernes oplevelse af ret til anvendelse af ytringsfrihed. Dette kan vedrøre frygt for identifikation, frygt for ubegrundet fejl-identifikation og frygt for uretmæssig mistænkeliggørelse. På sigt kan dette medføre, at borgerne ikke føler samme tryghed ved at tilkendegive deres tilhørsforhold, sympati og holdning offentligt, og dermed kan det hæmme den offentlige debatkultur.

En sammenkobling af droner med avancerede overvågningskameraer, kan have yderligere konsekvenser. Det avancerede systems mulighed for at identificere personer og registrere særlige typer af adfærd, giver muligheder for at udpege potentielle trusler, men medfører også en risiko for fejlidentifikation. Samtidig vil vurdering af anormal og afvigende adfærd basere sig på et normalitetsbegreb, som ikke nødvendigvis tager højde for kulturelle forskelle og kulturelle udviklinger.

“Som jurist består mit problem i, hvem der har adgang til det (data red.) - og hvem der beslutter, hvornår nogen må gå ind og rode. Vi skal hele tiden sørge for, at det er de rigtige personer, der har adgangen - og at vi ikke går på kompromis med privatlivet.”111

110 Interview med Esben Nielsen, Little Smart Things, 6/3 2014
111 Interview med Anders Henriksen, DIIS, 14/01 2014.
Brug af droner til overvågning og tilsyn har ikke kun potentielle til at blive brugt af ordensmagten, men også af befolkningsgrupperinger, der enten ønsker at overvåge og kontrollere magthavere eller overvåge andre befolkningsgrupper. Eksempelvis er droner blevet anvendt på Christiania i foråret 2014 til overvågning af politiets aktivitet i området.

Det offentlige narrativ og negative konnotationer

Brug af ordet ‘drone’ giver ofte associationer til den militære væbnede anvendelse. Derfor er der også ofte en vis ængstelse at spore, når talen falder på brug af droner i det danske alarmberedskab, herunder politiet. Foruden de negative konnotationer, der vækkedes ved ordet drone, spiller de også ind i en gennemgribende samtidsdebatt om overvågning.

De seneste års sager med efterretningstjenesters overvågning af internet- og telefontrafik, kan have skabt en mistanke i befolkningen, der kan udmønte sig som mistro mod myndighedsbrug af droner i det offentlige rum.

Hovedparten af projektets informanter har benævnt de negative konnotationer, der knyttes til ordet ‘drone’, men samtidig er der også en udbredt enighed om, at en alternativ, mundret benævnelse, der samtidig er rammende, er svær at komme i tanke om.

Fortalere for civil anvendelse af droner og kommende eksempler på nye anvendelsesmuligheder vil formentlig bidrage til en udvikling af både det offentlige narrativ og de konnotationer, der knytter sig til ordet ‘drone’.

![Billede 9: Aerosonde fastvinget drone. Med vingefang på 3.6 meter og række vide på 3000 km er det et meget brugt fly til missioner i Antarktis](image-url)
KAPITEL 7: Barrierer

Kapitlet har til hensigt at skabe klarhed over, hvilke barrierer der er, for at en droneindustri for alvor kan udvikle sig i Danmark. Det er af projektets informanter blevet vurderet, at de væsentligste barrierer vedrører lovgivning, regelsæt, standarder og teknologi.

Lovgivning

Flere informanter taler for, at når først en gennemsigtig og pålidelig lovgivningsstruktur er på plads, kan et nyt marked for alvor udfolde sig. Et eksempel herpå er Frankrig, hvor en indledende regulering for droner under 25kg trådte i kraft i april 2012, og på under to år steg antallet af godkendte operatører fra 86 til over 400.\\(^{112}\)

Mere lempelige og gennemsigtige regler er et yderst vigtigt emne for mange af projektets informanter. Som en producent formulerer:

> ”Lovgivningen lige nu er en jungle.”\\(^{113}\)

Den nuværende lovgivning praktiseres som nævnt ud fra et princip om dispensationer fra eksisterende regler, hvor hver enkelt sag bedømmes på baggrund af de konkrete omstændigheder. Denne type regulering har både fordele og ulemper. Som Trafikstyrelsen har udtalt, giver det mulighed for at tage højde for en teknologisk udvikling i rivende hast, uden kontinuerligt at skulle revidere lovgivningen.\\(^{114}\) Omvendt er det en ressourcekrævende proces, som også vil forøges, hvis droneindustrien vokser.

Nogle informanter tilsletter sig den nuværende lovgivning med den begrundelse, at professionelle brugere blot vil indhente de certifikater, tilladelser og dispensationer, der skal til for at få lov til at flyve, uanset om tilladelsen er dispensationsbaseret eller ud fra

\\(^{113}\) Interview med Esben Nielsen, Little Smart Things, 6/3 2014.
\\(^{114}\) Interview med Trafikstyrelsen.
almindelig regulering.115 Det skal hertil nævnes, at der inden for rammerne af den eksisterende lovgivning (BL9-4) er mulighed for at flyve uden dispensation. Derfor er det også svært præcist at fastslå, hvor mange brugere der flyver professionelt med droner, hvilket også er årsagen til, at der til dato kun er givet 24 tilladelser.116 Den danske regulering kan beskrives som restriktiv, men med rig mulighed for lempeligere vilkår gennem dispensationer.

Et flertal af projektets informanter er dog skeptiske over for Trafikstyrelsens model, og flere omtaler systemet som et ‘dispensationsregime’.117 Ved projektets innovationskonference gav mange udtryk for, at de finder det meget vanskeligt at drive forretning efter vilkårene i den danske model.118

Trafikstyrelsens dispensationsmodel er en midlertidig løsning på reguleringen, da der endnu mangler overblik over den teknologiske udvikling, og det er uvist, hvornår der kommer en transnational regulering.119 Det betyder også, at der kan opstå nye situationer, hvor de krav der skal efterleves for at beholde eller få dispensationen ændres. Denne type regulering er især problematisk for producenter og brugere, fordi det kan gøre det svært at planlægge en forretningsgang, da kravene kan vedrøre både udstyr og uddannelse. Som en informant har udtrykt:

\begin{quote}
”Vi prøver at lægge os op ad den lovgivning, som vi prøver at gætte os til kommer, og det er jo et kaos.”120
\end{quote}

Dels kan det, som Trafikstyrelsen forklarer, være:

115 F.eks. Ejnar Flensborg, Skel.dk og Beredskabsstyrelsen.
116 Det skal nævnes, at Trafikstyrelsen til dato endnu ikke har givet afslag på nogen ansøgninger.
117 F.eks. Rasmus Nyholm Jørgensen, Aarhus Universitet, Foulum, 20/5 2014; og Svend Elgaard, Vejdirektoratet, 21/1 2014.
118 Bilag 4
119 Interview med Trafikstyrelsen, 14/1 2014
120 Interview med Esben Nielsen, Little Smart Things, 6/3 2014.
Næsten alle informanter har understreget, at droner kun er interessante for dem, så længe de udgør en besparelse eller en effektivisering af deres arbejdsgange, eller hvis de gør det muligt at løse opgaver, de ellers ikke ville være i stand til at varetage. I mange sektorer er en af de afgørende faktorer for denne effektivisering tilladelse til flyvning uden for synsvidde (BLOS). De nuværende regler hindrer dermed en optimal besparende arbejdsgang i flere sektorer. Dette gælder eksempelvis inspektionsbranchen, hvor mange opgaver i forbindelse med inspektion af infrastruktur over længere distancer kræver, at man enten følger med dronen, eller at operatører fordeler sig langs ruten, så styringen kan overtages løbende.

Trafikstyrelsen har i det nyeste AIC åbnet for muligheden for at få dispensation til at flyve BLOS i reserverede luftrum, hvilket betyder, at det dog endnu ikke kan anvendes i mange af de tilfælde, hvor BLOS er en nødvendighed, for at droner er omkostningseffektive. Som en informant har udtrykt, skal lovgivningen ideelt set

”(...)gerne understøtte brugen af droner i fremtiden, mere end begrænse en udvikling på området.”

Det er fra flere sider blevet påpeget, at en måde at understøtte forskning og udvikling af droner vil være at etablere en minimumsgrænse, hvorunder der kan flyves BLOS. Argumentet for en sådan grænsesætning er, at den valgte minimumsgrænse vil være så

121 Interview med Trafikstyrelsen, 14/1 2014. Trafikstyrelsen har siden udgivet AIC B 08/14, som fremsætter retningslinjerne for hvad der skal til for at få en sådan dispensation.
122 Trafikstyrelsen 2014 (1).
123 Skriftlig tilkendegivelse fra Jesper Florin, Dansk Brand- og sikrings Institut, 17/3 2014.
124 Denne vil enten kunne være baseret på vægt eller kinetisk energi (J), dvs. den der skal til for at stoppe et element.
lav, at risikoen for personskade stort set udebliver. Det er blevet foreslået fx at sætte en minimumsgrænse på 60J med det argument, at en tilladelse til flyvning hertil vil medføre interesse i at udvikle sådanne droner. I denne tankerække vil der skabes et eksperimentelt miljø for droneudvikling i Danmark, som har mulighed for at komme på forkant med udviklingen i andre lande.

"Hvis vi virkelig skal have gang i udviklingen, kræver det et samspil mellem lovgivningen og den teknologiske udvikling."\(^{125}\)

Mange informanter har påpeget, at der bør gøres en aktiv indsats, hvis man vil komme på forkant med den udvikling, der kommer inden for droneteknologier. En måde at imødekomme dette ønske på er at sikre mulighed for at afprøve nye teknologier i praksis. Et udbredt ønske blandt projektets informanter har dermed været flere testområder, hvor der må eksperimenteres med flyvning uden for synsvidde (BLOS), samt autonomt flyvning, så dansk udvikling på disse områder bliver understøttet på bedste vis.

Fælles international regulering

Som nævnt har Trafikstyrelsen valgt at følge den nuværende type dispensationsregulering, mens den afventer udviklingen internationalt. Direkte adspurt har hovedparten af informanterne givet udtryk for, at det vil være fordelagtigt, hvis der blev etableret fælles internationale regelsæt for droneflyvning, certificering, standardisering m.v. Især danske producenter af komponenter og software vil kunne drage nytte af en øget transnational harmonisering, da mange mener, at det danske marked i sig selv vil være for små til, at der vil kunne skabes virksomheder, der kan

\(^{125}\) Interview med Philipp Trénel, Agroech, 10/2 2014.
være internationalt konkurrencedygtige.126 Et fælles europæisk eller internationalt regelsæt vil både spare tid og øge den danske konkurrencefordel. Forskellige regler landene imellem betyder i dag, at der bl.a. er forskellige grænseværdier for dronernes vægt og kinetiske energi. Konsekvensen heraf er, at producenter skal tilpasse droner forskellige markede.

Der er desuden stor sandsynlighed for, at droner vil komme til at arbejde på tværs af landegrænser,127 eksempelvis inden for nødhjælp og beredskabsopgaver.

En fælles transnational lovgivning vil give mulighed for at dele erfaringer på tværs af lande og herved udvikle de bedst mulige reguleringer. Udviklingen mod en sådan harmonisering er allerede i gang i flere regi, hvilket ses i de tidligere nævnte internationale implementeringsstrategier.

Skønt mange af projektets informanter har givet udtryk for, at det er bedst at forfølge den nuværende danske strategi med at afvente den internationale udvikling, mener andre, at Danmark skal begynde udviklingen af nye og mere tidssvarende lovgivningskrav. Der er blevet argumenteret for, at Danmark som foregangsland vil kunne skabe særegent dansk vidensmiljø, som igen vil kunne give dansk erhvervsliv en klar konkurrencemæssig fordel, blandt andet ved at tiltrække udenlandske virksomheder.

En detaljeret dansk regulering kan dog blive omkostningsfuld, da det er svært at forudsige den teknologiske udvikling. Omvendt hersker der bred enighed blandt informanterne128 om, at der snarest skal laves nye regler, hvis det danske erhvervsliv skal fremmes. Den løsning, der vil tilgodese ønsker hos flest informanter, er hvis Trafikstyrelsen får mere indflydelse i internationale foreninger og fora som ICAO og

126 F.eks. Esben Nielsen, Little Smart Things; Frank Bill, Forsvars- og Aerospaceindustrien i Danmark, FAD

127 European Commission 2014 (2), 1.

128 F.eks. Rasmus Nyholm Jørgensen, Aarhus Universitet, Foulum; Esben Nielsen, Little Smart Things; Svend Elgaard, Vejdirektoratet.
JARUS, således at danske interesser kan blive repræsenteret.

Standarder

Standarder er ønskværdige for både producenter af komponenter og for brugere, da de kan medføre en række ressourcebesparende arbejdsgange. Men udviklingen af droner og relateret teknologi er fortsat en ny industri, og da mange komponenter endnu ikke er gennemtestede, foreligger der endnu ikke standarder.

Underleverandører af komponenter til droner skal i dag tilrette produktionen efter en række parametre, som er forskellige fra land til land.

"I jo højere grad sådan noget er omfattet af standarder, jo lettere er det at være underleverandør."

Projektets informanter ønsker, som med lovgivningen, at standarderne bliver europæiske eller internationale, da dette vil øge handelsmulighederne og det danske vækstpotentiale, herunder eksport- og eksportmuligheder. Dette er endnu en grund til, at Trafikstyrelsen har valgt ikke at udvikle den danske lovgivning fuldt ud endnu.

129 Interview med Frank Bill, Forsvars- og Aerospaceindustrien i Danmark, FAD, 7/3 2014.
"Standarderne skal allerhelst være i internationalt regi, altså minimum i europæisk regi. Ellers er der jo risiko for, at vi med danske standarder kører i skoven."

Som Trafikstyrelsen har givet udtryk for, er det svært at lave en fast og udtømmende regulering, hvis der ikke findes standarder at tage udgangspunkt i.

Det er Trafikstyrelsens opfattelse, at denne standardisering skal komme fra industrien. I andre tilfælde har industrien udviklet standarder, og dette kan sikre, at innovation og udvikling ikke bliver bremsset af for restriktive certificeringskrav. Herved kan standardiseringen komme successivt, når teknologien og producenterne er klar til det.

Der er i branchen tale om at udvikle certifikater for operatører, såkaldte pilotcertificeringer, for at sikre, at de professionelle brugere af droner er i stand til at operere dem på en sikker og hensigtsmæssig måde. Det er eksempelvis en af anbefalingerne i ICAO’s Cirkulære 328, at dronepiloter skal certificeres på lige fod med piloter af regulær bemandet luftfart og som minimum have samme kendskab til luftfartsregler og sikkerhedsprocedurer. Den type regulering ICAO lægger op til i Cirkulære 328 stiller store krav til operatørerne og deres ressourcer. Mange potentielle brugere vil ikke finde det rentabelt at investere i droner, i det tilfælde at de skal leve op til en række uddannelses- og certificeringskrav. Dog vil opgaver med flyvninger under 100 meters højde, dvs. uden for det generelle luftrum med regulær flytrafik, ikke kræve omfattende certificering. Af denne grund peger flere på, at det vil være formålstjenstligt at lade droner certificere efter en gradueret skala ud fra forskellige parametre.

En lønsningsmodel er at definere dronens certificering ud fra tre overordnede parametre: Payload, flyvningens karakter (fjernstyret, automatiseret eller autonom) og kapacitet (vejr, tid, distance, højde). Herved vil det være muligt at udvide den nuværende

130 Interview med Trafikstyrelsen, 14/1 2014.
131 Interview med Trafikstyrelsen, 14/1 2014.
graduerede liste, og baseret på disse forhold kan det gradueres, hvad der tillades for forskellige droner, opgaver og steder.

En anden løsningsmodel er at have differentierede regelsæt alt efter vægt og områder. Eksempelvis, at overflyvninger over 25 meter ved 'ikke-bebygget område' ikke skal kræve samme type certificering og uddannelse som en 15kg drone, der flyver over bymæssig bebyggelse.

Teknologi

En af de helt centrale mangler ved droner er, at der endnu ikke er udviklet ’detect & avoid’-systemer, der effektivt kan sørge for, at droner ikke flyver ind i diverse forhindringer i form af ledninger, master, træer og ikke mindst andre brugere af luftrummet. Et sådan system skal både kunne oplyse andre luftumsbrugere om dronens position samt opfange andres droners og luftfartøjers tilstedeværelse og manøvrere dronen udenom. Systemet skal også kunne overtage, selvom dronen bliver aktivt fjernstyret og overtage styringen, indtil dronen er fri af kollisionsfare. Lignende systemer findes til bemandet luftfart, men dels stiller det for store krav til systemernes præcision, og dels vejer de for meget, til at de vil kunne installeres på i hvert fald de mindre droner. Denne teknologi kan med fordel også indeholde en identifikationsmekanisme, da der er et udbredt ønske om, at det skal være muligt at identificere droner i luften, på samme måde som det er muligt at identificere biler på vejen. Både offentligheden og myndighederne har en interesse i at kunne identificere droner, og da droner ikke kan bære en traditionel nummerplade, som nemt kan aflæses fra jorden, er en trådløs løsning oplagt. Der findes i øjeblikket ingen løsninger, og Trafikstyrelsen undersøger pt., hvilke muligheder der er for at udarbejde et system. En mulighed er at lave en løsning baseret på eksisterende teknologier såsom WiFi, Xbee, RFID eller tilsvarende. En anden mulighed er transpondere, en lovpligtig enhed der giver melding om bemandede flys

Flyvetid

En af de store begrænsninger ved droneteknologien er den begrænsede flyvetid, der er for især rotormodellerne, og den begrænsede manøvrerbarhed og præcision hos de fastvingede modeller. Rotormodellerne kan gennemsnitligt holde sig i luften i 30-40 minutter, mens fastvingemodellerne kan holde sig på farten i op til to timer. Til nogle opgaver er det ikke nødvendigt med mere end 30-40 minutters flyvetid, men en beredskabsindsats vil eksempelvis kræve, at dronen kan svæve over et punkt og skabe overblik over en periode på flere timer, uden at de skal interagere med den mere end at sende den op,\(^{132}\) lige så vel som nogle inspektionsopgaver vil kræve, at dronen kan svæve langsomt langs en strækning på flere kilometer.\(^{133}\)

Flyvetid hænger også sammen med dronens løftekapacitet. På nuværende tidspunkt er der stadig grænser for, hvor meget vægt dronen kan bære, og jo højere vægt, der kobles på, jo kortere bliver flyvetiden. Dette er både et problem for fastvingede modeller og for rotormodeller. De fleste standard konsummodeller er fastvingede og kan ikke bære mere end 2-3kg, og det kan derfor vise sig gavnligt at udvikle rotorbaserede modeller for at forbedre flyvetiden.

\(^{132}\) Interview med Gladsaxe Brandvæsen og Beredskab, 14/2 2014.

\(^{133}\) Interview med Svend Eldgaard, Vejdirektoratet, 21/1 2014.
Vejrbestandighed

Et andet problem for dronerne indtil nu er, at de er forholdsvis sårbare over for vind og vejr. Især de større rotordroner er meget udsatte og kan ikke flyve, når vinden tager til. For de fleste firmaer, men især for beredskabsorganisationer og myndigheder, er det vigtigt, at dronen kan flyve i alt slags vejr. Der er derfor brug for at udvikle systemerne til at være mere robuste over for udsving i vejret, så brandvæsen, politi og private firmaer kan regne med, at deres drone er operationel, når de har brug for det.

Der er ikke mange af projektets informanter, der mener, at der vil udvikle sig en egentlig droneproduktionsindustri i Danmark. Dog kan det forventes, at teknologier, der udvikles i forbindelse med andre brugsområder, f.eks. brugsområder, i vid udstrækning vil kunne anvendes inden for droneindustrien. Eksempelvis kan den proces, der er i gang med at udvikle førerløse biler, komme til at gavne udviklingen af droner, fordi de to områder er omfattet af mange af de samme problematikker, herunder automatisering og fjernstyring.

Kapitel 8: Anbefalinger

Denne rapport og teknologivurdering har demonstreret både store potentialer og nogle grundlæggende barrierer for dansk udvikling inden for droner og relateret teknologi. I det følgende præsenteres de anbefalinger, som projektets arbejdsgruppe har udvalgt som værende de mest væsentlige for at fremme den danske udvikling inden for droner og relateret teknologi. De behov og ønsker, som projektets informanter har pointeret gennem interviews og på innovationskonferencen er forskelligartede og spænder vidt, og ikke alle er blevet fremhævet af arbejdsgruppen. Bilag 4 indeholder en tematiseret oversigt over anbefalingerne fra innovationskonferencen.

Arbejdsgruppens anbefalinger

Arbejdsgruppens anbefalinger falder ind under tre hovedkategorier, Lovgivning og regulering og Tiltag for vækst og udvikling samt Teknologisk Udvikling, hvorunder der for hver er en række forslag.

Sikkerhed og regulering

Database over køb og salg
Det anbefales, at køb og salg af droner over en vis størrelse registreres i en database med henblik på at kunne identificere både drone og ejer i tilfælde af lovovertrædelser eller ulykke.

Identifikation
Identifikation af droner er væsentlig af sikkerhedshensyn og for at kunne eftervise eventuelle lovovertrædelser. Det anbefales, at der indføres et krav om en identifikationsteknologi, eksempelvis lignende den eksisterende ”black-box”- eller
transponderteknologi, så relevante myndigheder kan identificere operatøren og drage vedkommende til ansvar i tilfælde af lovovertrædelser (i forbindelse med fx flysikkerhed, naturbeskyttelse, privatliv). I særlige områder bør der være krav om, at droner kommunikerer ejerskab og formål med flyvningen, mens den er i luften.

Godkendelse og certificering

Droner kan oplagt reguleres ud fra en gradueret skala efter eksempelvis størrelse, bæreevne, flyvetid, hastighed og andre karakteristika, der vil kunne sammenkøres med certificering af operatører, som vil kunne tage et certifikat passende til den drone og de opgaver, der skal udføres.

Det anbefales, at de danske myndigheder overdrager ansvaret for teknologisk godkendelse og certificering af droneoperatører til ekstern(e) organisation(er).

Database med flyveinformation

En database for operatører af droner over en vis størrelse, hvori der registreres flyvninger, herunder tidspunkt og sted, samt uheld. Databasen vil kunne bruges til skabe klarhed over hændelsesforløb ved tvivlspørgsmål om uheld samt danne grundlag for statistik til fremadrettet forebyggelse og sikkerhed.

Luftkorridorer

Det kan være hensigtsmæssigt at give mulighed for, at droner kan flyve i bestemte ruter, gerne struktureret gennem flyvning i luftkorridorer eller -søjler, dvs. horisontale og/eller vertikale luftrum.

Luftkorridorerne vil især være nyttige, når myndigheder og beredskab skal nå hurtigt frem til et ulykkessted, føre tilsyn med infrastruktur eller overvåge trafikken. Det kan være oplagt at følge eksisterende landbaseret infrastruktur, før der evt. skabes nye luftveje. Det anbefales, at der gives stående tilladelser til myndighed og beredskab.
Tiltag for vækst og udvikling

National strategi
En national strategi for håndtering af øget implementering af droner i det danske samfund anbefales. Strategien bør basere sig på en analyse af det danske vækstpotentiale, herunder såvel forskningsmæssigt som kommersielt potentielle. Strategien bør formuleres i struktureret tidsplan, indeholdende nye tiltag, planer for eventuel udvikling af lovgivningen samt eventuel støtte til forskning og erhverv. Strategien vil give sikkerhed for investorer og udviklere, for forskere og for operatører. Det anbefales at en sådan national strategi udarbejdes snarest hvis der skal profiteres på det danske potentialte inden for droneområdet.

Indflydelse på lovgivningen
Det bør prioriteres at Danmark i højere grad indgår i internationale fora og derved sikrer sig indflydelse på reguleringen af hensyn til danske interesser.

Standarder
Det anbefales at Danmark går foran ved at udvikle standarder i forhold til sikkerhedsprocedurer og certificering samt tekniske standarder, og således danner internationalt eksempel. Det anbefales at den danske industri bidrager aktivt til udviklingen heraf. Standarderne kan skabe retningslinjer og dermed give sikkerhed for udviklere og investorer. Dette vil muliggøre at Danmark vil kunne facilitere forskning, udvikling og tests samt tiltrække udenlandske firmaer interesserede i at drage fordel af disse muligheder.

Test og afprøvning
Af hensyn til afprøvning og test af teknologier under udvikling vil lettere adgang til testflyvninger være en fordel for udviklere og producenter.
Lempeligere regler, herunder tilladelse til at flyve uden for synsvidde (BLOS) og autonom flyvning, vil gavne kvalitetssikringen af teknologier under udvikling og dermed også gavne de kommercielle vækstmuligheder. Det anbefales på den baggrund at styrke det eksisterende UAS Test Center Denmark for at imødekomme behovet hos kommercielle partnere og muliggøre flyvning med store droner.

Derudover skal det sikres, at der er testområder for mindre droner i nærheden af relevante forskningsinstitutioner og udviklere for at imødekomme behovet for løbende test og afprøvning.

Der kan desuden etableres en bagatelgrænse i forhold til gradueringen af droner, under hvilken der gives lov til at eksperimentere mere.

Oplysning

Det foreslås at oplyse brugere om de gældende regler for flyvning, herunder tilladte områder. Det vil være en fordel, at brugere vil kunne finde information om, hvad de må, hvor og hvornår ét og samme sted, uden at det vil kræve en betydelig indsats fra deres side. Dette kunne for eksempel gøres via en applikation til alle smartphone-platformer, som mange dronebrugere må forventes at have i forvejen. På denne måde vil ulovlige flyvninger som konsekvens af manglende kendskab til loven kunne forventes reduceret betydeligt.

Derudover er det vigtigt også at lave et oplysningsarbejde for ikke-brugere, så de kan føle sig trygge ved de droner, der vil komme til at befinde sig i luften. Det skal blandt andet omfatte, hvad man må og ikke må med droner.
Videre undersøgelse af droners muligheder og konsekvenser

Det er vigtigt fortsat at undersøge, hvordan droner vil komme til at påvirke samfundet, herunder privatliv, menneskerettigheder og natur. Sådanne undersøgelser skal indrømme de relevante interessenter og være en del af en bredere samfundsdebat om overvågning, sikkerhed, datasikkerhed og teknologi. Formålet er at sikre at droner integreres i samfundet så hensigtsmæssigt som muligt.

Teknologisk udvikling

Sikkerhedsmekanismer

Det vil være hensigtsmæssigt at udføre nærmere undersøgelser af, hvilke sikkerhedsmekanismer der kan bidrage til, at droner kan indgå sikkert i det civile luftfartssystem. Dette indbefatter bl.a. kommunikation med kontroltårne, automatisk undvigelsessystem som eksempelvis ‘geofencing’, automatiseret afløsningssystem, hvis der opleves fejl i systemet, og muligheder for at myndigheder kan tvinge droner ned.

Udvikling af systemet

En teknologisk udvikling, der efterstørges bredt, er en øget flyvetid og forbedret flyveevne i hårdt vejr samt øget bæreevne. Et alternativ eller supplement til bedre bæreevne er udviklingen af lettere sensorer, så der vil kunne kobles flere eller andre sensorer på droner, end der kan i dag. Det anbefales også at sætte fokus på udvikling af en mere intuitiv brugerflade eller styringsmekanisme, der gør dronerne lettere at operere, med ingen eller lidt forudgående træning, hvilket er ofte efterstørgt.
Øget automatisering

Mange brugere har efterspurgt mulighed for at lade droner indgå i autonome eller automatiserede metasystemer med andre automatiserede enheder, der vil kunne minimere behovet for menneskelig interaktion til løsning af arbejdsopgaver.

Det anbefales at øge fokus på udviklingen af mere automatiserede databehandlingssystemer, eventuelt med mulighed for autonome systembeslutninger.
Litteraturliste

• Campbell-Dollaghan, Kelsey 2013: Meet the Drone That's Guiding New Students Around MIT This Fall. http://gizmodo.com/meet-the-drone-thats-guiding-new-students-around-mit-t-1294335491

• CONECTech Lab, Georgia Inst. of Technology,
 http://conectech.gatech.edu/Projects.html

• Charlton, Angela 2014: *Sochi drone shooting Olympic TV, not terrorists.*

• Christoffersen, Poul og Ravn, Hans 2013: *Drone ind på hussalg.*
 http://nordjyske.dk/nyheder/maegler-vil-bruge-drone-ved-hussalg/35d9a951-5bfd-468a-89ff-b05e8602e7cf/112/1513

• Civil Aviation Authority New Zealand (2014): *Part 101 - Gyrogliders and Parasails; and Unmanned Balloons, Kites, Rockets, and Model Aircraft - Operating Rules.*

• Civilian Aviation Authority - Norway (2013): *AIC-N 14/13*

• Civilian Aviation Authority - Norway: *Ubemannede luftfartøy - RPAS (FAQ).*
 www.luftfartstilsynet.no/selvbetjening/allmennfly/RPAS-FAQ/

• COWI 2013: *Hurtig og effektiv opmåling fra luften med dronefly.*

• COWI 2013 (2): *Dronerådgivning.*
 http://www.cowi.dk/menu/service/Geografiskinformationogit/Kortlaegningogdata/tandsamling/kortlaegning-fra-droner/Documents/Drone%20r%C3%A5dgivning_1104_Droner_04.pdf

• COWI 2013, 20.februar: *Kortlægning fra Drone.*

• COWI 2013, 28. februar: *Droner i kamp for miljøet,*
 http://www.cowi.dk/menu/NyhederogMedier/Nyheder/Geografiskinformationogit/Pages/Droner-i-kamp-for-miljoeet.aspx

 http://www.sdu.dk/nyheder/nyviden/alle_artikler/2013/december-januar/fugldrone

 http://www.science.ku.dk/presse/nyhedsarkiv/2013/droner_diku/

• DTU, Polar DTU Center for polare aktiviteter 2013: *Bedre overvågning og kommunikation i Arktis I*: DTU, 18.november 2013,
 http://www.polar.dtu.dk/forskning/forskningsomraader/bedre-overvaagning-og-kommunikation-i-arktis

• Easton, Ian M. & Hsiao, L.C. Russell 2013: *The Chinese People’s Liberation Army’s Unmanned Aerial Vehicle Project: Organizational Capacities and Operational Capabilities*, I: Project 2049 Institute

• European Commission 2012: *Commission Staff Working Document* - *Towards a European strategy for the development of civil applications of Remotely Piloted Aircraft Systems (RPAS).*

European RPAS Steering Group 2013: Roadmap for the integration of civil Remotely-Piloted Aircraft Systems into the European Aviation System - Final report from the European RPAS Steering Group.

Explicit 2014: Project Sense, Factsheet.

Fonden Teknologirådet 2013: Konvergerende Teknologier. Dronerne er her, l: Fra Rådet til Tinget, nr. 284, september 2013

• Geopartner Landinspektørgården: http://www.geopartner.dk/search/?search=drone

• Healy, Gene 2012: Drones Pose a Threat to Americans’ Privacy, I: The Cato Institutte http://www.cato.org/publications/commentary/drones-_pose-threat-americans-privacy

• Heinricy, Tine 2014: Droner skal vise deres værd i verdens største søredningsøvelse.
• Henriksen, Anders & Ringmose, Jens 2013: *Dronerne er her*, DIIS Report 2013:3

• Hjuler, Ulla Vibeke (2014): *Pris for forskning i vegetationssædning i tid og rum.*
 [Link](http://scitech.au.dk/aktuelt/nyheder/vis/artikel/pris-for-forskning-i-vegetationsaendringen-i-tid-og-rum/)

• Holm, Erik 2014: Dansk drone sniffer til røg fra skibe. [Link](http://ing.dk/artikel/dansk-drone-sniffer-til-roeg-fra-skibe-166474)

• Horgan, John 2013: *The Drones Come Home*, I: *National Geographic*, marts 2013
 [Link](http://ngm.nationalgeographic.com/2013/03/unmanned-flight/horgan-text)

 [Link](http://www.technewsdaily.com/16629-drones-watch-over-highways.html)

• Hussain, Wasbir 2013: *India use drones to protect rhinos from poachers.*
 [Link](http://bigstory.ap.org/article/india-use-drones-protect-rhinos-poachers)

• Højteknologifonden 2013: (nu 'Innovationsfonden'): *Ny dansk smartdrone forbereder os på stormflod og oversvømmelser.*
 [Link](http://højteknologifonden.dk/nyheder/nyhedsoversigt/investeringer_for_583_millioner_kroner_starter_nye_danske_teknologivejentyr/ny_dansk_smartdrone_forbereder_os_paa_stormflod_og_oversvoemmelser/)

• International Civil Aviation Organization 2009: Circular 238.

• Landbrugsavisen.dk 2014: *Drone hjælper landmand med at afsløre problemer i marken,*
http://www.landbrugsavisen.dk/Nyheder/Netnyheder/2014/3/21/Dronehjalperl andmandmeddatafsloreproblemerimarken.htm

- LE34: www.le34.dk/droner

• Møllerhøj, Jakob 2013: Deutsche Bahn sender antigraffiti-droner i luften, I: Ingeniøren, 28.5.2013

• Naughton, John 2014: Why Facebook and Google are buying into drones. http://www.theguardian.com/world/2014/apr/20/facebook-google-buying-into-drones-profit-motive

• Oskin, Becky 2013: http://www.livescience.com/28129-hexacopter-whale-tracking.html

• Paulin Hansen, John; Alapetite, Alexandre; MacKenzie, I. Scott; & Møllenbach, Emilie 2012: *The Use of Gaze to Control Drones*.

• Ringmose, Jens 2013: *Danske droner - en nuancering af debatten om ubemandede fly* (rapport), Forsvaret, Forsvarsakademiets Forlag

• Seidenfaden, Ritte Gredsted 2013: Danske droner sendt til Filippinerne I: dr.dk, 18.11.2013,
http://www.dr.dk/Nyheder/Indland/2013/11/17/211803.htm

• Senate Judiciary Committee 2013: The Future of Drones in America: Law
Enforcement and Privacy Considerations, Hearing Before the Committee on the
Judiciary United States Senate, One Hundred Thirteenth Congress, First session.

• Skel.dk 2013: Første firma klar med drone, 8. oktober, www.skel.dk/om-
skeldk/nyheder/foerste-i-landinspekoerfirma-i-danmark.aspx

• Shah, Naureen 2011: Targeting Operations with Drone Technology:
Humanitarian Law Implications, Background Note for the American Society of
International Law Annual Meeting, Human Rights Institute, Columbia Law School,

• Sharma, Pankaj 2013: Socio-Economic Implications of Wireless Sensor Networks
with Special Reference to its Application in Agriculture, I: African Journal of

• Standford Law School: International Human Rights and Conflict ResolutionClinic
& NYU School of Law: Global Justice Clinic & Living Under Drones 2012: Living
Under Drones. Death, Injury, and Trauma to Civilians From US Drone Practices in

• SmartCityDk 2014: Flyvende inspektion i byggeriet.
http://www.smartcitydk.dk/dk/projektprogram_1/ramboell og sky-
watch/flyvende_inspektion_i_byggeriet.htm

• Solmecke, Christian 2014: Civilian drones and the legal issues surrounding their
use. www.wbs-law.de/eng/civilian-drones-legal-issues-surrounding-use-50459/

• Stanley, Jay & Crump, Cathrine 2011: Protecting Privacy From Aerial Surveillance:
Recommendations for Government Use of Drone Aircraft. American Civil Liberties
Union, December 2011, s. 10

• Tjalve, Vibeke Schou 2012: *Obama-doktrinen,* I: Information, 1.10.2012, http://www.information.dk/312489

• Trafikstyrelsen 2013: *Godkendte UAS-Operatører, December 2013.*

• UAS Denmark 2014: Rundspørge blandt medlemmer. (ikke udgivet)

• Urbaszewski, Katie 2013: Nicholls 'pioneers' use drones to map the coast. (http://www.houmatoday.com/article/20130507/ARTICLES/130509623

Bilag 1: Interviews

<table>
<thead>
<tr>
<th>Myndighed:</th>
<th>Trafikstyrelsen</th>
<th>14/1 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vejdirektoratet</td>
<td>21/1 2014</td>
</tr>
<tr>
<td>Beredskab:</td>
<td>Gladsaxe Brand og Beredskab</td>
<td>14/2 2014</td>
</tr>
<tr>
<td></td>
<td>Beredskabsstyrelsen</td>
<td>28/2 2014</td>
</tr>
<tr>
<td>Naturovervågning:</td>
<td>Naturstyrelsen</td>
<td>24/2 2014</td>
</tr>
<tr>
<td>Landbrug:</td>
<td>AgroTech</td>
<td>10/2 2014</td>
</tr>
<tr>
<td>Landmåling:</td>
<td>Skel.dk</td>
<td>10/1 2014</td>
</tr>
<tr>
<td>Teknologi:</td>
<td>RoboCluster</td>
<td>25/2 2014</td>
</tr>
<tr>
<td>Erhverv:</td>
<td>GTS-foreningen</td>
<td>28/2 2014</td>
</tr>
<tr>
<td></td>
<td>FAD, Forsvars-og Aerospaceindustrien i Danmark</td>
<td>7/3 2014</td>
</tr>
<tr>
<td>Producent:</td>
<td>Little Smart Things</td>
<td>6/3 2014</td>
</tr>
<tr>
<td>Samfund:</td>
<td>Anders Henriksen CILJ</td>
<td>14/1 2014</td>
</tr>
<tr>
<td></td>
<td>Frederik Rosén, DIIS</td>
<td>14/1 2014</td>
</tr>
</tbody>
</table>
Bilag 2: Generisk interviewguide

[Organisation]

Interview dd. mm. åååå, kl. xx:xx

Teknologirådets kortlægning og teknologivurdering af civile aktørers igangværende og planlagte anvendelse af droner i Danmark.

1. Hvordan vil du/l karaterisere droner?

2. Beskæftiger du/l jer med droner?

3. Har [organisationen] udfordringer i forbindelse med forvaltningen af opgaver?

4. Kan du/l forestille jer andre anvendelsesområder for droner i [organisationen]?
 - Hvorfor?

5. Hvilke karakteristika skal en drone besidde for at bidrage bedst muligt til jeres faglige arbejde?

6. På hvilke måder mener du/l droner vil indgå i fremtiden?

7. Hvilke anvendelsesområder anser du/l som de vigtigste nu og i den nære fremtid?

8. Ser du/l muligheder og barrierer indenfor de forskellige anvendelsesområder?

9. Hvad er væsentligt for at droner i højere grad anvendes i civilt regi?

10. Ser du/l nogle konsekvenser ved at civile privatpersoner anvender droner?

11. Har du/l kendskab til eksisterende analyser eller erfaringer med civil anvendelse af droner?

12. Har du/l kendskab til igangværende og planlagte aktiviteter?
13. Hvilke personer og/eller vidensmiljøer finder du/I relevante?

14. Mener du/I at Danmark skal være aktiv i udviklingen af droner og relateret teknologi?

15. Hvordan mener du/I at vi i Danmark skal prioritere indsatsen af forskning og udvikling i droner?

16. Er der behov for forskning indenfor samfundsmæssige aspekter forbundet med en øget civil brug af droner?

17. Kan anvendelsen af droner medføre udfordringer for privatliv, rettigheder og overvågning?

18. Kan anvendelsen af droner kan medføre udfordringer for arbejdsmiljø?

19. Kan anvendelsen af droner kan medføre udfordringer for miljø?
Bilag 3: Skriftlige tilkendegivelser

- Agrotech 16/5 2014
- Dansk Brand- og sikringsteknisk Institut 17/3 2014
- Danmarks Naturfredningsforening 3/4 2014
- Geodatastyrelsen 26/4 2014
- GEO 12/5 2014
- HOBE 16/2 2014
- Anthea Technologies 20/2 2014
- Forsvarets Materiel Tjeneste 12/2 2014
- Trafikstyrelsen 24/4 2014

- Rasmus Nyholm Jørgensen, seniorforsker,
 Ingeniørhøjskolen AU 13/5, 20/5 2014.
- Mikkel Johansen, RoboLab 21/1 2014
- Søren Wiatr Borg, adjunkt,
 Inst. for teknologi og Innovation, SDU 10/3 2014
- Henrik Skov, prof. Inst. for Miljøvidenskab,
 Inst. for Bioscience: Arctic Research Center, AU & Research Director Villum
 Research Station 24/3 2014
Bilag 4: Blogpost tematikker

Gruppe 1: Miljø- og naturovervågning
Gruppe 2: Landbrug
Gruppe 3: Geodata
Gruppe 4: Inspektion
Gruppe 5: Infrastruktur
Gruppe 6: Beredskab

* indikerer at punktet figurerer 2 steder under forskellige tematikker

<table>
<thead>
<tr>
<th>TEMA</th>
<th>GRUPPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fordele:</td>
<td></td>
</tr>
<tr>
<td>- Tid</td>
<td>2</td>
</tr>
<tr>
<td>- Overblik*</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>- Mulighed for hyppigt overblik/foto</td>
<td>2</td>
</tr>
<tr>
<td>- Omkostningseffektivt</td>
<td>3</td>
</tr>
</tbody>
</table>

Teknologiske udviklingsområder:

- Bedre algoritmer | 2 |
- Bedre billedbehandling | 2 |
- Bedre dataanalyse | 2 |
- Præcisionsgødning kræver dual-sensor system med algoritmer | 2 |
- Skal udvikle sensor i lavere vægt | 3 |
- Effektivisering ag work-flow | 3 |
- Øget brugervenlighed
 3
- Udvikling af droner der kan navigere i indendørs røgmiljø
 8
- Back-up system i tilfælde af strømsvigt, så dronen lander et sikkert sted
 2
- Faldskræm
 2
- Indbygget geo-fenching
 2
- Forskning i sværme
 8
 5
- Udvikling af mere støjsvage droner* (aht. fugle)
 3
 3
 5
- Lettere platforme/teknologi
 3
- Mere nøjagtig positionsgengivelse
- ‘Bedre plads i frekvensplanen så signaler kan komme hjem’.
 Jo højere frekvens jo bedre signal
 3
 8
- Tilladelse til højere grad af autonomi
 8
 5
 8
- Mulighed for fjernadgang
 8
- Indbygget sløring af f.eks. ansigter, Privacy by design
 7
 2
- Forskning i dataflow fra drone til maskine(software)
 2
- Sense & Avoid
 2
- Detect and Avoid
 2
 8
- Launch and Forget
 8
- WIFI-forbindelse i drone til analyseudstyr
 3
- Data fra drone overføres til AR-briller
 5
- Intelligens (payload) 1
- Drone der ikke forstyrres af magnetiske felter 1
- Transpondere, forskning i lettere transp. 7
- Transpondere, aut. afsendelse af data 1
- Mere udvikling i termiske kamera 8
- Forskning i droners kom med andre robotter 5

Succeskriterier for forsøg og øget brug:

- Vejr-robusthed, stabilitet 3
- Payload 6
- Rækkevidde 6
- Flyvetid 6

Forslag til nye tiltag:

- Tilladelse til BLOS/BvLOS 2
 4
- Testcenter for BLOS 3
- Test af sværme 5
- ‘Tandem-droner’ som afløser hinanden automatisk 3
- Hurtigere behandlingstid i TS 8
- Billege sagsbehandling i TS 1
- Nye frekvenser 6
 8
- ‘Moderdrone ’som radiorelæ 8
- Drone-veje i luften, infrastruktur-netværk 8
- Databank 2
- Fælles data, frie data, data infrastruktur 2
 3
- Fælles drone med udskriftbare teknologier, stordrift

- Øget brugervenlighed
- Workflow-optimering

Forlag til nye tiltag, sikkerhed og kontrol:
- Drone’tårn’ hvor alle data, ruter ect kan ses
- Skiltning om hvor man må flyve
- Nummerplade, tag med ID
- Påmonteret chip der kan spores via WIFI
- Visuel ID til offentlige droner (f.eks. farve)
- Blackbox
- Database hvor alle flyvinger registreres automatisk
 →evt. statistik over fejl, ulykker ect.
- Drone-kørekort/certifikat
- Krav om lovkendskab for operatører
- Registering af køber/sælger ved køb/salg
- Oplysningskampagne i medierne
- Offentligt debat nødvendig
- Information om regler vedlagt dronen ved køb
- Driftshåndbog
- Mere dialog mellem myndighed og brugere 5
- Uddannelseskrav til brugere af BLOS(hvis lovligt) 5
- Lettere mulighed for benyttelse af testcenter 3
- Risikoanalyser 8
- Transpondere 4
- Fejlstatistik ud fra databank 3

Standarder:

EU-standarder 3
NATO standarder 6
Internationale standarder 6
Differentierede standarder 3

Tekniske standarder 6
Kvalitetsstandarder 6

Dansk udvikling:

- Marked for forsikring 5
- Danske cases der illustrerer potentiallet 3
- Vigtigt at Danmark går foran andre lande 2
- Dansk udvikling kræver lempeligere regler 4
- Dansk udvikling kræver kapitalindsprøjtning 7
- Dansk udvikling kræver niche-fokus
- Dansk udvikling kræver national strategi
- Dansk udvikling kræver godkendelse til BLOS
- Danmark skal repræsenteres ved internationale grupper
- Systematisering af viden, videndeling
- Samarbejde mellem myndigheder og udviklere
- Det offentlige skal være first-movers så kommer det private
- Statsstøtte til erhvervslivet

ANVENDELSESOMRÅDE

Search and rescue & Beredskab:
- Search and rescue til havs
- Hurtighed er en væsentlig forudsætning
- BLOS nødvendigt ved ulykkestilfæde
- Vigtigt med koordinering af droner fra forskellige instanser
- Fast dispensation til beredskabet*
- Luftkoridorer forbeholdt S&R og beredskab, myndigheder*
- Læringsværktøj, evalueringsværktøj
- Ledelsesværktøj ved kriser/ulykker
- Aut. udsendelse af drone ved nødkald 112
- Droner til vagtservice

Byplanlægning:
- Analyse af hvordan brugerne bevæger og fordeler sig ’Planlægningsværktøj’

Nødhjælp:
- Levering af bl.a. medicin
- Levering af medicin i Lesotho

Geodata:
- Påkobling af LIDAR system

Miljø- og naturovervågning:
- Miljøhensyn ift fly
- Vigtigt med hensyn til fugle
- Overvågning af miljøsyndere
- Overvågning af dyr
- Skovovervågning
- Tilsyn med miljøsyndere
- Ideel til brug ved Arktis
- Luftmåling

Hav:
- Sende drone i forvejen*
- Anti-pirateri*
- Eftersøgning ved mand-over-bord
Inspektion:

- Vindmøller 4
- Skorstene 4
- Varmeudslip 4
- Containerskibe 4
- Maste, el-ledninger 5
- Indendørs inspektion 5
- Broer 5
- Inspektion/analyse af farlige bygninger 5
- Togspor ved væltede træer, brud ect. 8

Samfund:

- Selvtægt 1
- Skjult overvågning 5
- Risici forbundet med offentliggørelse af personer eller nummerplader 6
- Etiske spørgsmål er væsentlige 7
- Negative konnotationer 6
- Overblik ved arrangementer, crowd-kontrol 5
- Genkendelse af adfærd 1
- Optisk genkendelse 2
- Sporing af alkoholånde (ikke pro dette) 8
- Droner mindsker muligheden for menneskelige fejl 5
- Muligheder for at politiet kan ’slukke’ for droner 1
- Vigtigt med håndhævelse af lovgivning 6
- Koordinering af offentlige droner så de ikke flyver samme sted 6
- Vigtigt med udveksling af data 6
- Fast dispensation til beredskabet* 8
- Luftkorridorer forbeholdt S&R og beredskab, myndigheder* 8
- 2. myndighed der tilgodeser erhvervslivet (ikke kun regulerer) 3
 7

Personlig brug:

‘Hustandsdrone’ 1
Personlig drone 8
Bilag 5: Dansk lovgivning

Vejer dronen over 25kg, falder den ind under Luftfartslovens bestemmelser.

I følge BL 9-4, må alle - både hobbyflyvere og folk, der flyver efter vederlag eller i forskningsmæssigt øjemed - flyve med en drone, så længe de overholder de operationelle regler. Ved flyvning skal

- afstand til en offentlig flyveplads være mindst 5 km.
- afstand til militærflyvestationer skal være mindst 8 km.
- afstand til bymæssig bebyggelse og større offentlig vej være mindst 150 m, dog må 'særligt følsomme naturområder' ej heller overflyves. 135
- flyvehøjden højst være 100m over terræn. 136

Derudover må man ikke flyve over tæt bebyggede områder eller områder, hvor større antal mennesker samles i fri luft. Ligeledes er det et krav, at man ikke er til fare for andre.

For droner der vejer 7-25kg gælder desuden, at de skal udstyres med radiostyringsanlæg, at flyvning skal foregå fra en godkendt modelflyveplads og inden for dennes luftrum, samt at flyvningerne sker under en organisation godkendt af Statens Luftfartsvæsen. Der skal desuden tegnes en ansvarsforsikring i henhold til Luftfartslovens §130.

134 Trafikstyrelsen 2004
135 se BL 7-16 for specifikation af regler for naturområder
136 Se Trafikstyrelsen 2004: BL 9-4 for præcis formulering, samt BL 7-16 for specifikation af regler ved naturområder.
En virksomhed eller institution har mulighed for at søge dispensation fra BL 9-4 i henhold til Trafikstyrelsens AIC B 08/14, 20. marts 2014, såfremt at dronen anvendes til test og/eller forskning, eller at der flyves med kommercielle formål.

Foregår flyvningen inden for Visual Line of Sight (VLOS), på en måde så omgivelserne ikke udsættes for fare eller ulempe, kan det omgivende luftrom overvåges for anden lufttrafik, og sker flyvningen i henhold til en, af Trafikstyrelsen godkendt, drifthåndbog, kan en dispensation forventes givet.

I AIC B 08/14 bliver droner kategoriseret inden for fire kategorier:

- **1A:** Flyvning ved VLOS. Startvægt på maksimum 1,5 kg, som maksimalt udvikler en kinetisk energi på 150 J
 (Eksempel: Fartøj på 1 kg ved 60 km/t udvikler 139 Joule)
- **1B:** Flyvning ved VLOS. Startvægt fra 1,5 op til 7kg som udvikler en kinetisk energi på maksimalt 1000 J\(^{138}\)
 (Eksempel: Fartøj på 5 kg ved 72 km/t udvikler 1000 Joule)
- **2:** Flyvning ved VLOS. Maksimal startvægt på mere end 7kg
- **3:** Flyvning ved BLOS. For denne kategori skal flyvning foregå i reserveret luftrum, og der vil være en række skærpede krav til luftfartøj, datalink og pilot.

Herudover er der for hver kategori, på nær kategori 3, en række specifikke krav til dronen og flyvningen, der skal overholdes for at få dispensation. Der er først i det nyeste AIC åbnet op for muligheden for at flyve BLOS (kategori 3). Kravene er ikke fastsat i AIC’en, men Trafikstyrelsen oplyser om de specifikke omstændigheder til de interesserede.

De enkelte personer eller firmaer, der modtager dispensation, stilles en række krav

\(^{137}\) Trafikstyrelsen 2013 b

\(^{138}\) Højere kinetisk energi kan tillades, hvis det kan påvises, at dronen er designet til at mindske skade på ejendom og personer ved kollision, AIC B 08/14.
vedrørende type af drone, operationerne, planlægning, udførelse, rapportering og uddannelse.
Det skal bemærkes, at der i hverken i BL 9-4 eller i AIC B 08/14 gives tilladelse til egentlig autonom flyvning, dvs. flyvning der foregår, uden at en pilot står klar til at overtage styringen, skulle det blive nødvendigt.
Den danske regulering baserer sig i praksis på dispensationer, således at Trafikstyrelsen bedømmer omstændighederne i hver enkelt sag og løbende tager højde for teknologisk udvikling og nye anvendelsesområder, der ville være svære at omfatte med fastsat lovgivning. Trafikstyrelsen har i skrivende stund endnu ikke givet afslag på ansøgninger,139 og har givet 17 dispensationer140.

139 Interview m. Trafikstyrelsen d. 14.1.14
140 Trafikstyrelsens 'Godkendte UAS-Operatører' pr. 22/4
Bilag 6: Droner og privatliv

af Peter Vedel Kessing, seniorforsker, Institut for Menneskerettigheder

Udviklingen af drone teknologien kan rejse en række spørgsmål i forhold til beskyttelsen af vores demokrati og frihedsrettigheder. Spørgsmål, som nærmere bør undersøges og belyses nærmere.

Det er navnlig retten til privatliv der kan være relevant. Retten til privatliv er beskyttet i artikel 8 i Den Europæiske Menneskerettighedskonvention (EMRK).

Der er endnu ikke domme fra Den Europæiske Menneskerettighedsdomstol (EMD) eller fra andre internationale menneskerettighedsorganer om droner og retten til privatliv. Men EMD har i en række sager taget stilling til forholdet mellem overvågning og retten til privatliv. Den mest relevante sag i forhold til overvågning ved hjælp af droner er formentlig Domstolens afgørelse i Uzun-sagen, der vedrører overvågning i det offentlige rum med GPS-udstyr.141

Ved vurderingen af om en overvågning er i strid med vores ret til privatliv, må der sondres mellem om overvågningen foregår på privat område eller i det offentlige rum.

Foretages droneovervågning inden for privat område er der altid tale om et indgreb i retten til privatliv. Et sådant indgreb er som udgangspunkt ikke tilladt, medmindre det konkret kan dokumenteres, at det var nødvendigt og proportionalt at overvåge den eller de pågældende personer, jf. artikel 8, stk. 2. Det kan fx være tilfældet ved en konkret mistanke om nært forestående kriminalitet.

Droneovervågning af færden i det *offentlige rum* vil derimod ikke i sig selv udgøre et indgreb i retten til privatliv, men kan efter omstændighederne gøre det. Ved denne vurdering må der lægges vægt på, om de berørte personer havde en rimelig forventning om at blive overvåget, og på den efterfølgende eventuelle opbevaring og anvendelse af data fra droneovervågningen.\(^\text{142}\)

Hvis der er tale om et indgreb i retten privatlivet, må det konkret må dokumenteres, at det var nødvendigt og proportionalt at overvåge den eller de pågældende personer.

Bilag 7: Liste over organisationer med projekter involverende civile droner

Offentlige organisationer:
Aalborg Universitet, Institut for elektroniske systemer
Aarhus Universitet, Bioscience Kalø
Aarhus Universitet, Foulum
Banedanmark
Beredskabsstyrelsen
Danmarks Meteorologiske Institut
Danmarks Radio
Danmarks Tekniske Universitet, DTU Miljø, DTU Polar, DTU Space, og DTU Wind.
DSB
Foreningen af kommunale beredskabschefer
Forsvarets Materieltjeneste
Geodatastyrelsen
GEUS
Gladsaxe Brandvæsen og Beredskab
Hjørring Brandvæsen
Ingeniørhøjskolen Aarhus Universitet
IT Universitetet
Københavns Brandvæsen
Københavns Universitet, datalogisk institut
Københavns Universitet, LIFE
Naturerhvervsstyrelsen
Naturstyrelsen
Rigspolitiet, Nationalt Beredskabscenter
Syddansk Universitet, RoboLab
Vejdirektoratet

Privat erhvervsliv og organisationer:
Agrotech
Anthea Technologies (søsterselskab til Danoffice IT og Sky-Watch)
Birdeye
COWI A/S
Danish Aviation Systems
Danmarks Jægerforbund
Danoffice IT (søsterselskab til Anthea Technologies og Sky-Watch)
Dansk Brand- og sikringsteknisk Institut
Delta
DONG Energy A/S
Dronefotografen.dk
DroneMedia
Energinet.dk
Explicit
Falck Schmidt Defence Systems A/S
Force Technology
GEO
Geopartner Landinspektørgården
Geopoint
GEOTEAM A/S
Hedeselskabet
Hvenegaard
HOBE - Center for Hydrology - Hydrological Observatory
Integra
LE34
Little Smart Wings
Naturfocus
New Heading
NIRAS A/S
Provector
Raafoto
Rambøll
Siemens
Skel.dk
Sky-Watch (søsterselskab til Anthea Technologies og Danoffice IT)
Systematic A/S
Teknologisk Institut
TV2 Danmark A/S
UAS Denmark og UAS Testcenter Danmark, Hans Christian Andersen Airport
Videncentret for Landbrug