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Abstract

HIV-1 protease represents an appealing system for directed enzyme re-design, since it has various different endogenous
targets, a relatively simple structure and it is well studied. Recently Chaudhury and Gray (Structure (2009) 17: 1636–1648)
published a computational algorithm to discern the specificity determining residues of HIV-1 protease. In this paper we
present two computational tools aimed at re-designing HIV-1 protease, derived from the algorithm of Chaudhuri and Gray.
First, we present an energy-only based methodology to discriminate cleavable and non cleavable peptides for HIV-1
proteases, both wild type and mutant. Secondly, we show an algorithm we developed to predict mutant HIV-1 proteases
capable of cleaving a new target substrate peptide, different from the natural targets of HIV-1 protease. The obtained in
silico mutant enzymes were analyzed in terms of cleavability and specificity towards the target peptide using the energy-
only methodology. We found two mutant proteases as best candidates for specificity and cleavability towards the target
sequence.
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Introduction

Proteases represent a class of enzymes ubiquitous in all living

organisms, with multiple applications in industry and biotechnol-

ogy research [1–3]. There is thus interest in designing new

proteases capable of cleaving specific peptide sequences [4]. HIV-

1 protease (PR) represents an attractive starting structure for

directed enzyme re-design, since it is known to cleave a variety of

sequences. PR is the enzyme responsible for processing the gag –

pol fusion polyproteins of the HIV virus [5]. PR is an aspartic

protease [6–8] and is a homodimer where each chain is composed

of 99 residues. Wild type PR (WT-PR) is very specific for the

endogenous cleavage sequences of the polyprotein (endogenous

substrate peptides, Table S1 in File S1), even if the source of this

specificity is still not completely clear. A series of other non-

endogenous peptides have also been found to be cleaved by PR.

The latest hypothesis on the origin of this specificity, called

dynamic substrate envelope [9,10], states that peptides fitting into

the protease cavity through a certain number of hydrogen bonds

will be bound and possibly cleaved nearly regardless of their amino

acid composition. In fact, there is no clear trend in amino acid

sequence (e.g. a negatively charged amino acid in position P1 or a

hydrophobic one in position P29). This suggests that with few

mutations PR could be made to cleave other target peptide

sequences in a specific manner.

Many computational studies on PR, both wild type (WT) and

drug resistant mutant enzymes, are aimed at elucidating the

affinity of the enzymes towards endogenous substrates and

inhibitors to be used as drug candidates [11–14]. Recently

Chaudhury and Gray [15] published a computational algorithm

specifically tailored for PR and aimed at the identification of the

specificity determining residues. The algorithm is based on

PyRosetta [16], a python script-based interface to Rosetta [17].

Thanks to the algorithm the authors were able to predict accurate

protease – substrate complex structures (within 1.1 Å rms of the

corresponding crystal structure) and introduced an energetic

discrimination of cleavable peptides. More recently Alvizo et al.

[18] employed computational methods to re-engineer a mutant

PR (Pr3) more specific for one of the endogenous peptide

sequences over two others.

The first aim of this study is to develop an energy-only based

methodology to discern cleavable and non cleavable peptides for

PRs, WT and mutant. This methodology is based on the

qualitative evaluation of PR: peptide complexes binding energies

and is derived from the algorithm developed by Chaudhury and

Gray. The second aim is to search and define an algorithm to

predict mutant PRs capable of cleaving a specific target peptide

sequence different from any endogenous substrate. We use our

cleavability discerning methodology on the suggested mutant

proteases, in order to define the best guess in terms of specificity

towards the peptide sequence. In other words, the sought after

mutant structure has to show better and worse binding towards the

target and endogenous peptides, respectively, than WT-PR. To

the best of our knowledge ours is the first study aimed at predicting

a mutant PR capable of cleaving specifically a non endogenous

peptide sequence.

The paper is organized as follows: first, we present our

computed binding energies for known cleavable and non-cleavable

peptides bound to WT-PR, selected peptides bound to a set of

single, double and triple mutants (Pr3 set) derived from Pr3 as

developed by Alvizo et al., and a set of known mutant PRs and

PLOS ONE | www.plosone.org 1 May 2014 | Volume 9 | Issue 5 | e95833

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0095833&domain=pdf


peptide derived from drug resistance (DR set) studies [19–21].

Secondly, we present two different versions of our algorithm to

determine mutant PRs that will cleave the sequence

HFLSF*MAIP, where the * symbol indicates the desired cleaving

site. A discussion about the best strategy to suggest mutant

enzymes follows. The conclusions summarize the main findings of

the paper, followed by a detailed description of the employed

computational methods.

List of Abbreviations
PR HIV-1 protease.

WT-PR Wild type HIV-1 protease.

mutant PR Mutant HIV-1 protease.

Pr3 set Set of mutant proteases derived from Pr3, a mutant

protease developed by Alvizo et al. These were heterodimer

proteases.

DR set Set of mutant proteases derived as a subset of HIV-1

proteases that have been found to be drug resistant. These were

homodimer proteases.

Results and Discussion

Development of a Cleavability Test
In general, the activity of an enzyme towards two similar

substrates is regulated by (i) the strength of the enzyme-substrate

binding and (ii) the efficiency of the enzymatic reaction. The two

processes are regulated by two constants, usually indicated as km

and kcat, respectively. The overall enzymatic efficiency is given by

the ratio of these two constants. The dynamic substrate envelope

hypothesis [10] suggests that if a peptide is bound to PR it will be

cleaved. Thus, we decided to evaluate the binding energy of

different peptides to PR, which can be correlated to km. We then

compared the computed binding energies to PR of known

cleavable and non cleavable peptides, to be correlated to

corresponding ranges of binding energies. By so doing we

disregarded kcat, that is we did not consider possible effects from

the enzymatic reaction.

The cleavability test was developed by considering binding

energies of WT-PR with its endogenous and known cleavable

substrates and known non-cleavable peptides. Afterwards we

investigated the reliability of the test with mutant PRs (the Pr3 set)

when binding PR endogenous substrates. Finally, we assessed the

test on mutant PRs (the DR set) when binding mutant substrates.

The complete methodology for evaluating binding energies is

described in the computational methods section. In brief, it is

composed by a structure optimization algorithm, followed by an

energetic re-evaluation of the obtained structures. In the following

paragraphs we evaluate our methodology in terms of binding

energies versus cleavability for: (1) WT-PR and its endogenous

substrates and known cleavable and non-cleavable peptides, (2) the

Pr3 set of mutant PRs and endogenous substrates and (3) the DR

set with wild type and mutated endogenous peptides. Binding

energies were computed also for WT-PR and all mutant PRs in

complex with octa-alanine (poly-Ala) and octa-arginine (poly-Arg)

peptides to test for aspecific binding.

(1) Table 1 reports the computed binding energies of the set of

known cleavable endogenous peptides of WT-PR. The sequence

of the tested endogenous cleavable peptides is reported in Table

S1 in File S1. Alongside the endogenous peptides, a set of 59

known cleavable peptides was also tested. The sequence of the 59

tested non-endogenous cleavable peptides was obtained as

previously described [15,22–26]. Table S5 in File S1 reports the

computed binding energies to WT-PR and Table S2 in File S1 the

sequences of these non-endogenous peptides. Table S6 in File S1

reports the computed binding energies of a set of peptides

supposedly non-cleavable by WT-PR. The sequence of the 43

tested non-cleavable peptides was obtained as previously described

[15,26,27] and is reported in Table S3 in File S1.

We performed a Mann-Whitney’s U test [28] to compare the

computed binding energies, and found a significant difference

between the cleavable and non-cleavable sets (p &10{7), as

reported in Table 2. Thus, we deemed the binding energy

criterion sufficient to achieve discrimination. We further analyzed

the computed binding energies through an ROC plot [29] relative

to different cutoff values, so as to differentiate between cleavable

and non-clevable peptides. The plot is reported in Figure 1, and

the relative data in Table S11 in File S1. The computed area

under ROC [30] is 0.79 and 0.80 for FMO and RosettaDock

energies, respectively, being the values of 0.50 and 1.00 typical

correspondingly of a useless and a perfect test. Through the ROC

plot, we found the best cutoff values discerning cleavable and non-

cleavable peptides as those closest to (0, 1), which represents the

theoretical perfect test. We found that cutoff values of 225 kcal/

mol and 23 kT are best at discerning FMO and RosettaDock

computed binding energies, respectively. Both FMO and Rosetta-

Dock perform well in computing binding energies capable of

Table 1. Computed binding energies of WT-PR and cleavable endogenous peptides.

Substrate Peptide FMO (kcal/mol) RosettaDock (kT) exp Km (mM) [22]

MA-CA 257 29 0.15

CA-p2 252 26 0.01

p2-NC 272 24 0.05

NC-p1 268 23

p1-p6 247 1

p6pol-PR 241 26

TF-PR 262 25 v0.01

PR-RTp51 264 27 0.07

RTp51-RTp66 268 212 0.04

RTp66-INT 262 26

RH-IN 263 210 0.006

doi:10.1371/journal.pone.0095833.t001
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discerning cleavable and non-cleavable peptides. However, Figure

S1 in File S1 shows that there is no apparent correlation between

FMO and RosettaDock computed binding energies. Thus, we

repeated the Mann-Whitney’s U test and ROC analysis excluding

the set of non-endogenous known cleavable peptides binding

energies. The rationale behind this analysis is that we expect WT-

PR to bind the endogenous peptides with higher affinity, as

opposed to the broader range of the complete cleavable set,

characterized only by cleavability and not specificity. Consequent-

ly, we assume that the endogenous peptides set have better binding

energies, than the complete set of cleavable peptides. The Mann-

Whitney’s U test (Table 2) shows that the RosettaDock based

binding energies are in this case two orders of magnitude worse

than FMO at discerning cleavable and non-cleavable peptides.

The relative ROC plot (Figure S2 in File S1) shows as well that the

FMO data performs better than RosettaDock, in terms of more

strict best cutoff value and larger area under the ROC. Thus, we

concluded that FMO computed binding energies are better than

RosettaDock ones since are capable of discerning expected effects,

such as the usage of a better performing subset of peptides. In the

rest of this paper we will discuss only binding energies computed

through FMO energy re-evaluation.

From Table 1 it is expected that WT-PR exhibits qualitatively

different binding to the poly-protein substrates, given their

computed binding energies ranging from 241 for the binding

of p6pol-PR to 272 kcal/mol for p2-NC, with an average value of

260 kcal/mol. However, available experimental Km values [22]

do not show any trend similar to the computed data. Still, one has

to remember that these computed binding energies should be

considered only qualitatively and only compared to others

obtained in the same manner. See the Computational Methods

section for further details. Furthermore, the span of both

computed energies for which experimental data are available

(20 kcal/mol) and the Km values (2 orders of magnitude) is too

small to allow a clear trend. The computed binding energies for

the set of cleavable non-endogenous peptides (Table S5 in File S1)

span a wide range of values, from 22 to 286 kcal/mol, with

average 240 kcal/mol. These peptides not being the natural

target of WT-PR may account for this large span. The average

computed binding energy for all cleavable peptides is 243 kcal/

mol. The computed binding energies for the non-cleavable set of

peptides (Table S6 in File S1) span an even wider range of values

than those of the cleavable ones. Some PR – peptides complexes

show positive energies. The majority (56%) of the computed

binding energies are in the range 235–0 kcal/mol. However, a

few peptides show a binding energy to WT-PR similar to those of

the cleavable peptides.

(2) Recently Alvizo et al. [18] suggested through computational

means a triple mutant (Pr3) with increased binding capability

towards the endogenous RTp51-RTp66 cleavage sequence

peptide compared to that towards other two cleavage sequences

CA-p2 and p2-NC. The efficiency of Pr3 in cleaving preferentially

RTp51-RTp66 was later experimentally verified. Pr3 was made by

tethering a mutated chain of protease (A28S, D30F, G48R) to a

wild type one. For comparison with our predicted mutant PRs,

Table 3 reports our computed binding energies for the Pr3 three-

fold mutant, as well for simpler one- and two-fold mutant PRs

derived from Pr3 (Pr3 set), as compared to WT. Note, however,

that experimental data are available only for the three-fold mutant

PR. In our calculations, Pr3 set carried mutations only on chain A,

while still being formed by two separate chains. We expected to

find that Pr3 computed binding would be stronger towards

RTp51-RTp66, while weaker towards CA-p2 and p2-NC,

compared to WT-PR. The computed binding energies of the

Pr3 set show that the mutant enzymes often have higher affinity

for the desired RTp51-RTp66 peptide compared to CA-p2 and

p2-NC. Most notably the double mutant A28S/G48R has a

stronger computed binding energy towards the target peptide than

WT-PR, while lower for the other two endogenous substrates. The

binding energy test indicates that A28S/G48R (for which there is

no experimental data available) would have been a more successful

mutation than Pr3. Nevertheless, the possibility of using the

binding energy test with mutant PRs was found viable.

(3) Finally we decided to apply the binding energy test to series

of mutant PRs binding mutant endogenous substrates. Thus, we

evaluated the binding energies of drug resistant HIV-1 proteases

towards wild type and mutant substrate peptides. It has been

found that mutations of the cleavage sites are correlated to

mutations of the protease, often leading to drug resistance. We

analyzed the K436R and A431V mutations of the NC-p1 Gag

substrate peptide cleavage sequence in relation to a series of single

mutations and one double mutation of HIV-1 protease (DR set). It

has been reported [19] that a K436R mutation increases resistance

to protease inhibitor drugs when combined with I50 V, I84 V and

I84 V/L90M PR mutations, while the A431V mutation results in

a more efficient PR regardless of other mutations. We expected

that the more efficient mutant PR – mutant peptide combinations

were also characterized by stronger binding energies. Table 4

reports the results of our binding energy test for the DR set. Our

methodology indicates cleavability for all combinations of mutant

PRs and mutated NC-p1 substrate peptides. While there are some

fluctuations in the binding energies, no clear pattern arises that

can be related to the experimental findings. Possibly, the increased

efficiency of drug resistant mutant proteases towards mutated

peptides is related to kcat. As previously stated, the effects of this

constant are not considered by the present approach. Nevertheless,

the binding energy test was found suitable also for combinations of

mutant PRs with any peptide.

Prediction and Analysis of Mutant PRs
The second aim of this study was to develop a computational

methodology for the design of a mutant PR. The sought after

Figure 1. ROC plot comparing different cutoff values for
binding energies computed through FMO energy re-evalua-
tion or RosettaDock energy function. The values for each method
closest to the theoretical optimum (0,1) are highlighted. The computed
area under the ROC curve is 0.79 and 0.80 for FMO and Rosetta,
respectively. The raw data is reported in Table S11 in File S1.
doi:10.1371/journal.pone.0095833.g001
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enzyme had to be capable of cleaving a new target substrate

different from the endogenous ones. The obtained mutant PR

should also be specific for the target peptide sequence compared to

the endogenous peptides. The chosen sequence for the target

peptide was HLSF*MAIP, where the * symbol indicates the

desired cleaving site. The sequence was extracted from that of

k-casein. Once candidate mutant PRs were obtained, we

employed the binding energy test to asses the enzymes cleaving

capabilities. The possibility of an increase in cleaving capability

towards the target substrate was asserted by differences in binding

energy between WT-PR and mutant PRs. We evaluated the

binding energies of mutant PRs in complex with the TF-PR

peptide, used as a starting template (see the Computational

Methods section), and the CA-p2 and p2-NC peptides (for selected

mutant PRs) in order to test the specificity of our mutant PRs.

The mutant-generating algorithm is described in details in the

Computational Methods section. Two main strategies (Strategy1

and Strategy2) were employed for generating mutant PRs. In

Strategy1, the side chains of only the 6 residues previously

indicated as specificity determining [15] were allowed to change.

The analysis of the binding energies of the mutant PRs generated

by Strategy1 found the enzymes insufficient to perform the desired

scope. This prompted us to further develop the algorithm. In

Strategy2, the side chains of 26 residues were allowed to change.

See the Computational Methods section for further details on the

residues choice. The analysis of the binding energies of these

mutant PRs found some of the predicted enzymes to be adequate

to cleave the desired target sequence.

Tables S7 and S8 in File S1 reports the Strategy1 mutant PRs

(M1–M16) and their computed binding energies towards the

targetpeptide and TF-PR, CA-p2 and p2-NC endogenous

peptides. Among these mutant PRs, M5 shows the strongest

binding energy towards the target peptide. However it has to be

noted that the computed binding energy of M5 towards the TF-

PR peptide (used as a starting template for all mutant enzymes) is

also stronger with respect to WT. Possibly M5 is simply a better

generic binder. To verify this hypothesis we tested M5 as a binder

also for other two endogenous peptide sequences, CA-p2 and p2-

Table 2. Comparison of WT-PR computed binding energies.

RosettaDock Energy Function FMO Energy Re-evaluation

Average endogenousa 26 (kT) 260 (kcal/mol)

(Standard deviation) (3) (kT) (10) (kcal/mol)

Average all cleavableb 25 (kT) 243 (kcal/mol)

(Standard deviation) (3) (kT) (22) (kcal/mol)

Average non cleavablec 21 (kT) 215 (kcal/mol)

(Standard deviation) (4) (kT) (28) (kcal/mol)

U test probability (all cleavable VS non-cleavable) 1:46:10{7 2:21:10{7

U test probability (only endogenous VS non-cleavable) 3:49:10{4 6:16:10{6

aTable 1.
bTable 1 plus Table S5 in File S1.
cTable S6 in File S1.
Energies were computed with the standard RosettaDock energy function, as described in [15] and with the FMO re-evaluation. A Mann-Whitney’s U test probability was
evaluated by comparing the binding energies of the set of endogenous peptide against the non-cleavable and the entire set of cleavable peptides against the non-
cleavable. The FMO based binding energies are more clear in discriminating cleavable and non cleavable peptides than the Rosetta based ones.
doi:10.1371/journal.pone.0095833.t002

Table 3. FMO computed binding energies of HIV-1 protease WT and Pr3 set of mutant PRs.

PR Peptides

RTp51-RTp66 poly-Ala poly-Arg TF-PR CA-p2 p2-NC

WT-PR 268 215 241 262 252 272

Single mutant

A28S 265 212 235 241 213 267

D30F 248 21 0 27 24 243

G48R 266 244 227 255 215 243

Double mutant

A28SD30F 244 216 30 235 222 255

A28SG48R 296 216 254 235 214 260

D30FG48R 276 3 18 219 21 254

Triple mutant

A28SD30FG48R 242 221 12 232 212 263

Computed binding energies (kcal/mol) of WT and mutant HIV-1 proteases in complex with RTp51-RTp66, poly-alanine, poly-arginine, TF-PR, CA-p2 and p2-NC peptides.
doi:10.1371/journal.pone.0095833.t003
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NC. Compared to WT-PR, M5 has weaker binding energy for the

former peptide, but equal for the latter. In conclusion, M5 is not

predicted to be more specific for the target sequence than for the

endogenous peptides. Moreover, M5 was not directly predicted

through Strategy1, but as a homodimeric derivative of M2, which

shows only a small improvement in binding of the target peptide.

All other mutant PRs suggested by Strategy1, M1–M4 and M6–

M16, were found having a weak binding energy towards the target

peptide, with some of them showing prominently positive binding

energies. It can be concluded that Strategy1 is unsatisfactory at

predicting a mutant PR with an increased and specific affinity

towards the target peptide. This is possibly due to the fact that

allowing only six residues to change is too strict a condition to

achieve a suitable mutant PR.

Thus, we decided to further improve the mutation algorithm by

including more residues among those that can be changed. The six

generations of mutant PRs computed through our Strategy2

mutant algorithm are presented in Table 5. We refer to them as

generations since at each macro step of the algorithm the lowest in

energy (as computed with the standard RosettaDock energy

function) structure was used as starting point for the next step. The

sixth generation (M23) did not produce any new change with

respect to the fifth (M22), and the algorithm was consequently

terminated. For each generation the structure with the lowest

absolute energy was further optimized. After generation 1 two

mutant structures were chosen (M17 and M18) since they are very

close in energy (as evaluated with the RosettaDock energy

function, data not shown) but relatively different as mutation

sites. In addition, an extra mutant PR (M24) was generated as

homodimer of M22. The computed binding energies of the

Strategy2 mutant PRs (M17–M24) are shown in Table 6. All

Strategy2 mutant PRs show a binding energy towards the target

sequence two to four fold stronger than WT-PR, with M17
displaying the strongest binding energy. However, as for M5,

binding energies towards the template peptide TF-PR as well as

CA-p2 and p2-NC are also stronger than WT. Possibly M17 is

also a good but generic binder. Through the subsequent

generations of mutant proteases, at last M22 shows a binding

energy towards the target peptide more than three fold stronger

than WT, while the computed binding energy towards the natural

endogenous substrates is weaker than WT. Similar results were

obtained for its homodimer M24. M22 and M24 show binding

energies below the cutoff value of 225 kcal/mol, and thus

represent the best candidates to be further studied experimentally.

We compared the structures of WT-PR and M24 as optimized

while binding the target peptide. Figure 2 reports the superim-

posed backbones of the two enzymes after structure alignment.

The two computed structures are quite coincident. Hence, it is

expected that M24 should retain the main structural features of

the wild type enzyme. We also tried to analyze the choice of

changed residues. Figure 3 shows that the residues that were

changed from WT-PR to M24 are disposed all around the bound

peptide. Figures S3–S14 in File S1 compare each residue that

differs between WT-PR and M24, while bound to the target

peptide. Although it is evident that the A28S substitution on chain

A introduces a hydrogen bond between the residue and the side

chain of the serine in the peptide (Figure S3 in File S1), the other

substitutions are less easily rationalized. On going study aims at

elucidating the role of the other residues substitutions.

It is interesting to note that Strategy2 mutated only 7 out of the

26 residues that were set as mutable in the method. It is also worth

noting that of the 7 residues (A28, D30, K45, I50, P81, V82, I84)

suggested by Strategy2 in the various mutant generations, A28,

K45, P81 are not included in the set of major mutations site of

HIV-1 protease responsible for drug resistance [31], that is: D30,

V32, M46, I47, G48, I50, I54, Q58, T74, L76 V82, N83, I84,

N88, L90. A28, K45, and P81 together with I50 are also not

included in the specificity determining residues set [15]. However,

A28 was located by Alvizo et al. for the Pr3 mutant [18]. We

envision Strategy2 also as a tool to locate those residues most

involved in binding a given substrate peptide.

From the analysis of the different PRs, mutant and wild type,

and their binding energies, it is worth to note that WT-PR has a

certain affinity with the octa-arginine peptide. Its computed

binding energy is at the limit to consider the octa-arginine peptide

as cleavable by WT-PR. Possibly this relatively strong binding is

given by very few interactions. Accordingly, the single D30F

change on chain A, that is changing one negatively charged

residue into an aromatic hydrophobic one, is able to drop the

computed binding energy to 0, as shown in Table 4. The currently

going analysis of the residue by residue interactions for the

modified side chains will give further information also on this

aspect of the binding of PR.

Finally, it is interesting to note that the algorithm is not always

preserving amino acid side chain changes through the generations.

For example, I84 V on chain A is introduced in M18 and kept in

M19, M20 and M21, but later reverted. Possibly, an isoleucin in

position 84 is energetically more favorable, given the other side

chain changes.

Table 4. FMO computed binding energies of HIV-1 protease WT and selected drug resistance mutant PRs (DR set).

PR Peptides

NC-p1WT NC-p1K436R NC-p1A431V poly-Ala poly-Arg

WT-PR 249 270 256 215 241

D30N 229 244 236 215 223

I50L 264 249 254 216 249

I50V 254 246 252 218 234

V82A 245 254 252 216 238

I84V 246 275 235 223 238

I84V L90M 255 267 255 220 246

Computed binding energies (kcal/mol) of WT-PR and selected drug resistance mutant proteases in complex with NC-p1 as wild type, K436R and A431V drug resistance
associated mutant peptides, poly-alanine and poly-arginine peptides.
doi:10.1371/journal.pone.0095833.t004
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Conclusions

In the first part of this study we developed a methodology to test

the cleavability of a peptide by HIV-1 protease (Tables 1 and S6 in

File S1), solely based on the binding energy between the enzyme

and the substrate. The methodology can also be applied to mutant

PRs, Table 3. The technique is based on a PyRosetta algorithm

generating, iteratively, optimized structures, coupled with an

energy re-evaluation at a higher level of theory (FMO/PCM

MP2/6-31G(d)).

In the second part of this study, the optimization algorithm was

extended to permit the stochastic change of the side chain of

selected residues, in order to better bind a given target peptide

sequence. The selected target peptide was required to be different

from the endogenous peptides. The desired outcome was a mutant

PR with stronger and weaker predicted binding energy for the

target and endogenous peptides, respectively, compared to WT-

PR. The mutant PRs M22 and M24 generated through Strategy2

exhibit such desired characteristics (Table 6). We analyzed the

backbone structure of WT-PR and M24 and found no major

differences, thus indicating that M24 should retain the general

structure features of wild type HIV-1 protease. Strategy2

algorithm is able to predict mutations outside the usual set of

residues involved in drug resistance, possibly giving an ulterior

insight into the binding process of HIV-1 protease.

Ongoing experimental studies will show if and how well M22
and/or M24 bind and cleave the target sequence. Our current

experimental and computational studies are also aimed at

analyzing M24 mutations, residue by residue and in combination,

and their possible role in binding the target sequence. It is our

hope that the experimental tests will provide enough information

to be used to further improve the mutant generating algorithm. If

the combination of computational algorithm and experimental

verification is successful it will maybe permit the design of mutant

PRs specific for any given substrate peptide.

Computational Methods

In general, the activity of an enzyme towards two similar

substrates is regulated by (i) how good the enzyme-substrate

binding is and (ii) how efficient the enzymatic reaction is.

Following the dynamic substrate envelope hypothesis [9,10], we

Table 5. Strategy2 suggested mutant PRs.

Mutant ID Chain A Chain B Mutation Scheme Notes

M17 A28S D30T A28S D30T K45M I50L V82F F After one mutation step

M18 A28S D30T I50L P81D V82R I84V A28S D30T K45M I50L V82Y F After one mutation step

M19 A28S D30T I50L P81D V82R I84V A28S D30T K45A I50L V82Y I84L F After two mutation steps

M20 A28S D30T I50L P81D V82R I84V A28S D30T K45D I50L V82Y I84L F After three mutation steps

M21 A28S D30T I50L P81L V82Y I84V A28S D30T K45D I50L V82Y F After four mutation steps

M22 A28S D30T I50L P81L V82Y A28S D30T K45A I50L V82Y F After five mutation steps

M23 A28S D30T I50L P81L V82Y A28S D30T K45A I50L V82Y F After six mutation steps

M24 A28S D30T K45A I50L P81L V82Y A28S D30T K45A I50L P81L V82Y – Homodimer of M22

M17–M23 represent the subsequent generations of mutant PRs suggested by Strategy2. All mutant enzymes were generated following Scheme F.
doi:10.1371/journal.pone.0095833.t005

Table 6. FMO computed binding energies of HIV-1 protease WT and Strategy2 mutant PRs.

PR Peptides

Target poly-Ala poly-Arg TF-PR CA-p2 p2-NC

WT-PR 29 215 241 262 252 272

Gen 1

M17 234 213 247 268 282 274

M18 224 219 245 282 262 263

Gen 2

M19 217 2 1 267 246 281

Gen 3

M20 223 22 219 267 233 284

Gen 4

M21 220 2 7 237 232 218

Gen 5

M22 229 26 10 242 225 230

M24 229 211 7 244 233 233

Computed binding energies (kcal/mol) of WT-PR and Strategy2 mutant proteases in complex with Target, poly-alanine, poly-arginine, TF-PR, CA-p2 and p2-NC peptides.
doi:10.1371/journal.pone.0095833.t006
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assume a correlation between the binding of different peptides to

PR and cleavability of the former. Thus we compute qualitative

binding energies, on the premise that lower binding energy equals

better cleavability.

Binding Energies
PyRosetta Algorithm. The structure of wild type (WT) HIV-

1 protease in complex with different octa-peptides was optimized

using PyRosetta 1.1 [16], a python script-based interface to

Rosetta [17], and the algorithm depicted in Figure 4. The

algorithm is based on the flexible peptide-docking algorithm used

by Chaudhury and Gray [15] to identify in WT HIV-1 protease

the active-site residues mostly involved in the discrimination of

cleavable and non-cleavable peptides. Following their algorithm,

the HIV-1 protease – peptide complexes are represented in atomic

resolution, as opposed to a coarse-grain representation. With

respect to the algorithm described in [15], our algorithm (Figure 4)

has a larger number of cycles (86466 = 192 compared to

8612 = 96), and more ‘small’ and ‘shear’ moves for the

perturbation of both the side chain and the backbone atoms.

The side chain conformations are further optimized through a

repacking algorithm [32] and using the extended Dunbrack library

[33,34]. The moves are applied to all residues of the substrate

peptide plus a selected number of residues of the protease, with the

following criterion: all residues inside a 5 Å distance from any

atom of the substrate peptide, plus all the residues reported as

active by Chaudhury and Gray [15], plus their +1 neighbours,

plus if one residue is included on only one chain it is made to be

included in both. After the moves, an energy minimization step is

performed, based on the Davidon-Fletcher-Powell method

[35,36]. Each structure is then accepted or rejected based on a

Monte Carlo (MC) criterion depending on the standard

RosettaDock energy function [32,33,37–39]. Along the optimiza-

tion a temperature gradient was applied, from an initial value of

kT = 3.0 to 1.0, unless differently stated. 500 decoy structures were

generated using 5 parallel algorithm runs, each producing 100

structures.

The main difference with the algorithm of [15] is that after the

algorithm produced 500 decoy structures, the lowest in energy is

chosen and used as a starting structure for another cycle of

optimization. This process is repeated K times, until convergence.

It was found that, after at least 5 cycles, the computed

RosettaDock energy did not change between subsequent cycles

as soon as all 5 parallel runs of a single cycle produced structures

with the same energy. Consequently, in order to render as

automatic as possible the algorithm, the fact that Kw5 and that

each parallel run produced, as best structure, a decoy with the

same energy was taken as a mark for convergence. It was found

that, on average, a value of K~20 was sufficient. As an example,

Figure 5 reports the energy of WT-PR bound to TF-PR along the

optimization. The points at each step corresponds to the

RosettaDock energy of the lowest in energy decoy out of the

500 computed at that particular step. Such structure would then

be used as starting point for the next cycle. At the end of the K
cycles the lowest in energy decoy is chosen as the PyRosetta

optimized structure.

The same algorithm was also used for the optimization of

mutant HIV-1 proteases (vide infra), the octa-peptides alone, and

the protease alone as apo-protein.

The starting structures were prepared from that of HIV-1

protease in complex with an inhibitor (PDB accession code 1HXB

[40]), considered as apo-protein. In order to place the substrate

peptide, the structure of a D25N deactivated protease in complex

with the natural substrate peptide p2-NC (PDB accession code

1KJ7 [9]) was aligned with respect to the backbone atoms of the

protease (RMS = 0.436 Å). The starting structure was then

composed using the apo-protein from 1HXB and the substrate

peptide from 1KJ7. All subsequent protease-peptide complexes

were created starting from this structure and mutating the peptide

accordingly. See Tables S1, S3 and S4 in File S1 for a complete list

of the considered substrate peptides. Hydrogen atoms were added

through the program Pymol [41].
Further Structures Optimization and Energetic Re-

evaluation. The position of the hydrogen atoms of each

PyRosetta generated structure was optimized using Open Babel

[42] with the MMFF94 [43–47] force field. The energy of each

structure was finally re-evaluated at the higher level of theory

‘FMO2-MP2/6-31G(d)/PCM [1]’. Single point energy evalua-

tions were carried out using the fragment molecular orbital (FMO)

approximation [48,49], as implemented in GAMESS [50]. Each

FMO calculation was carried out at the MP2 level of theory [51]

with the 6–31 G(d) basis set [52,53] and the Polarazible

Continuum Model (PCM) approximation [54,55]. Pairs of

fragments separated by more than two van der Waals radii were

calculated using a Coulomb expression for the interaction energy

and ignoring correlation effects (RESDIM = 2.0 RCORSD = 2.0

in $FMO). The input files for the FMO calculations were prepared

using the program FRAGIT [56].
Binding Energies Evaluation. The re-evaluated energy of

every optimized structure was used to compute the binding energy

of PR with different substrate peptides. The binding energy (EBind )

of HIV-1 protease (wild type or mutated) and a peptide was

evaluated with equation (1), where EComplex is the energy of the

complex, EAPO the energy of the protease optimized as apo-

protein, EPep the energy of the optimized peptide.

EBind~EComplex{ EAPOzEPep

� �
ð1Þ

These binding energies can not be directly compared to

experimental values, for which a much more complex and

accurate methodology is required [57]. These energies were used

only to qualitatively compare different PR – peptide combinations.

Mutation Algorithm
A similar procedure as that described in Figure 4 was used to

produce mutant HIV-1 proteases, possibly capable of cleaving a

given peptide different from the endogenous substrate peptides.

The general idea was to ‘expose’ the protease to a different peptide

Figure 2. Backbone difference between PyRosetta computed
structures of WT-PR and M24. The optimized structures of WT-PR
and M24 binding the target peptide were aligned with respect to their
a-carbon atoms using PyMol. The backbone of M24 (red) is almost
coincident with that of WT-PR (green) with a RMS of 0.227 Å.
doi:10.1371/journal.pone.0095833.g002
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and allow some residues to change in order to accommodate it

better. A target octa-peptide was chosen: HLSF*MAIP, where the

* symbol indicates the desired cleaving site. The peptide sequence

was extracted from that of k-casein.

The assumption behind the algorithm is that lowering the

energy of the PR – peptide complex by changing the side chains of

selected residues would decrease also the binding energy, thus

increasing the cleavability.

Two different methodologies were designed to predict mutant

PRs, Strategy1 and Strategy2. The Strategy1 mutation algorithm

is depicted in Figure 6. Each optimization step corresponds to the

algorithm of Figure 4. In the mutation steps (also based on the

previous algorithm), the Dunbrack library of rotamers includes all

rotamers of all amino acids, but only for a selected number of

residues. The six specificity determining residues, as found by [15],

are chosen to be altered. In other words, during the mutation step,

whenever one of the alterable residues is being optimized, the

random choice of a test rotamer is among all possible amino acids.

In Scheme A alterations are allowed on all 6 residues on both

chains, for a total of 12 alterable residues. Thus, side-chain

perturbation and repacking rotamer choice is performed randomly

selecting among 12620 = 240 possible amino acids. In Scheme B

only alterations on L76 and V82 of Chain A and D30, I47, G48,

and I84 of Chain B are allowed, for a total of 6 alterable residues.

Figure 3. Spatial disposition of the residues changed by Strategy2. The six residues of chain A (top) and 6 residues of chain B (bottom) are
highlighted in ball-and-sticks. The reported structure (as semi-transparent cartoon) is that of WT-PR optimized when binding the target peptide (only
the backbone is shown in sticks). Figures S3–S14 in File S1 report the full residue by residue changes. A movie showing the three dimensional
structure is included as Supporting Material in File S1.
doi:10.1371/journal.pone.0095833.g003
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In this case, side-chain perturbation and repacking rotamer choice

is performed with a random selection among 6620 = 120 possible

amino acids. Each mutation step took ca. 40 hours on 5 cpus to

produce 500 decoys. The lowest energy decoy is then chosen as

starting structure for the next step. The energy of the structure is

evaluated with the standard RosettaDock energy function. The

residue reference energy part of the energy function [32] takes into

account also the differences between different amino acids. In

other words, energy differences between two mutant structures

originates solely from different side chain interactions rather than

from a different number of atoms.

Both the mutation and the optimization steps were repeated K
0

and K times, respectively. The mutation cycles are considered

converged once two following cycles do not introduce new

mutations. Different values of K and K
0

were found necessary to

reach convergence. After a series of mutation cycles (K
0
§8), a

series of optimization cycles was performed (K§8), followed by

another usually shorter mutation cycle (K
0
ƒ3) and finally a short

optimization cycle (Kƒ3).

Among the naturally cleaved peptides, TF-PR (sequence

SFNF*PQIT) was chosen as a starting substrate peptide, since it

is the most similar, in terms of conserved residues, to the target

peptide (sequence HLSF*MAIP). Consequently, the optimized

structure of WT protease in complex with the TF-PR peptide was

chosen as starting template. The substrate peptide sequence was

altered one amino acid at the time, as reported in Table S10 in

File S1. After each peptide alteration, a series of protease mutation

and optimization cycles were performed. Once convergence was

reached, a new peptide single amino acid change was introduced

and the procedure repeated. Different mutant PRs were obtained

from different runs by changing a few parameters, e.g. the initial

temperature of the simulation. These parameters are specified in

Table S7 in File S1. Some mutant PRs were also produced by

‘exposing’ the protease directly to the target peptide without prior

intermediates (mutation Scheme F). This last process required a

higher number of K
0

cycles (K
0
§15), but without having to cycle

through one substrate peptide residue at the time.

All mutant PRs obtained through Strategy1 were heterodimers.

By simply equalizing alterations on both chains a number of extra

homodimer mutant PRs were also obtained. These structures were

subsequently optimized as previously described.

In Strategy2 the number of residues allowed to change was

increased in order to include all amino acids residing inside a 3 Å

radius from the TF-PR peptide. In other words, we chose those

residues with at least one atom that is distant at most 3 Å from any

atom of the substrate peptide. The specificity determining residues

were also included in the set of alterable amino acids, if not already

present. The residues Asp25, Thr26 and Gly27 of both chains

were excluded from the set, since they represent the catalytic triad

[5]. The full set of 26 residues is reported in Table S9 in File S1.

Thus, side-chain perturbation and repacking rotamer choice is

performed randomly selecting among 26620 = 520 possible amino

acids. The mutant PRs were generated using the target peptide

directly (Scheme F). Each mutation step took a bit more than 3

days on 5 cpus to produce 500 decoy structures. An initial

temperature of 9 kT was usued. K
0
= 6 mutation cycles were

performed. The lowest in energy decoy after each mutation step

was subsequently optimized (two after the first step). The sixth

mutation step did not introduce any new mutation in PR and the

mutation cycle was stopped.

Figure 4. PyRosetta based optimization algorithm. w, y, x
represent perturbations applied to both backbone and side chain
dihedral angles. MC criterion stands for a Monte Carlo based check of
decoy structures.
doi:10.1371/journal.pone.0095833.g004

Figure 5. Optimization algorithm convergence. Example of
energy convergence during the various macro cycles of the optimiza-
tion algorithm for WT-PR in complex with TF-PR peptide. Each point
along the graph corresponds to the energy (computed with the
RosettaDock energy function) of the lowest in energy decoy out of 500
produced during each of the K steps.
doi:10.1371/journal.pone.0095833.g005

Figure 6. PyRosetta based mutation algorithm. The optimization
step is the algorithm presented in Figure 4. In the mutation step the
side chain perturbation for the six specificity determining residues is
among all possible rotamer of all 20 amino acids.
doi:10.1371/journal.pone.0095833.g006
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Also the mutant PRs obtained through Strategy2 were

heterodimers. Only the homodimer of the final mutant PR was

considered, see Table 5.

Supporting Information

File S1 Tables S1–S11, Figures S1–S14, a movie showing the

three dimensional structure of WT-PR bound to the target

peptide, with highlighted the residues that are changed in M24.

(PDF)
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