Identification of Fungal H+-ATPase Inhibitors by Microfractionation and HPLC-HRMS-SPE-NMR

Wubshet, Sileshi Gizachew; Kongstad, Kenneth Thermann; Johannesen, Ane; Nyberg, Nils; Jäger, Anna; Kjellerup, Lasse; Vinther, Anne-Marie; Stærk, Dan

Publication date:
2014

Citation for published version (APA):
Identification of Fungal H+-ATPase Inhibitors by Microfractionation and HPLC-HRMS-SPE-NMR

Sileshi Wubshet1*, Kenneth Kongstad1, Ane Johansson1, Nils Nyberg1, Anna K. Jäger1, Lasse Kjellerup2, Anne-Marie Winther3, Dan Stærk1

1Department of Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
2COVERT, Thermolysisvej 57, DK-1871 Frederiksberg C, Denmark
3E-mail: sge@kurt.lu.dk

Background - Fungal Fight

A large number of fungal proteins have been proposed as potential targets for novel antifungal agents.1 However, current available antifungal agents are primarily targeting the intracellular membrane biosynthesis2 and thus need to enter the fungus to act. In our search for novel and more efficient antifungal compounds, we are focusing on the plasma membrane (PM) H+-ATPase enzyme as target.

Plants are exposed to a wide array of patho-pathogenic fungi in their natural habitat, and have been forced to develop antifungal metabolites in order to survive.3 Hence, as previously suggested by Monk and coworkers,4 it is reasonable to assume that some plants have the PM H+-ATPase enzyme as target for the antifungal metabolites. However, plant extracts are very complex mixtures, and the traditional bioassay-guided fractionation used for identification of individual bioactive compounds are very time-consuming and suffer from inherent low resolution during the fractionation process. To circumvent this, we have developed a bioassay-guided screening for high-resolution bioassay profiles using a high-performance liquid chromatography (HPLC), high-resolution mass spectrometry (HRMS), solid-phase extraction (SPE) and nuclear magnetic resonance (NMR) system. In the present work, we report crude extract screening of 48 plant extracts - fungi PM H+-ATPase inhibitors - followed by high-resolution bioassay and HPLC-SPE-NMR analysis for identification of individual bioactive constituents.

Results - Crude extract screening

\textbf{From 48 plants to 20 plants}

Extracts were tested in three different concentrations and those showing inhibition higher than 95% for all concentrations or a concentration-dependent activity profile were selected for semi-high-resolution screening.

Results - Semi-HR-screening

\textbf{From 20 plants to 2 compounds}

The 20 samples selected for semi-high-resolution screening (assay resolution: 2.66 data points per min) were assayed for their ability to inhibit the PM H+-ATPase.

Results - HPLC-HRMS-SPE-NMR

Detailed analysis of HRMS and NMR data acquired via HPLC-HRMS-SPE-NMR analysis allowed optimized workflow.

Concluding remarks

- Thorough investigation of 48 plant extracts for fungal PM H+-ATPase inhibitors led to identification of two active metabolites, i.e., Chebulagic acid (1) and Tellimagrandin II (2).
- Systematic combination of crude extract screening, high-resolution screening and HPLC-HRMS-SPE-NMR analysis allowed optimized workflow.
- High-resolution PM H+-ATPase inhibition assay allows subsequent HPLC-SPE-NMR analysis to target bioactive constituents only.
- Cryogenic probe detection (1.7 mm) allowed characterization of metabolites (high PM H+-ATPase inhibition) from analytical-scale HPLC of crude extract.

Acknowledgment

The project is financially supported by the Danish Research Council for Strategic Research - Food and Health. HPLC equipment used for high-resolution bioassay profile was obtained via a grant from The Carlsberg Foundation. The 600 MHz HPLC-HRMS-SPE-NMR system used in this work was acquired through a grant from “Apotekerfonden af 1991”, The Carlsberg Foundation, and the Danish Agency for Science, Technology and Innovation via the National Research Infrastructure funds.

References