Rings with finite Gorenstein injective dimension

Holm, Henrik Granau

Published in:
Proceedings of the American Mathematical Society

Publication date:
2004

Document Version
Peer reviewed version

Citation for published version (APA):
RINGS WITH FINITE GORENSTEIN INJECTIVE DIMENSION

HENRIK HOLM

(Communicated by Bernd Ulrich)

Abstract. In this paper we prove that for any associative ring R, and for any left R-module M with finite projective dimension, the Gorenstein injective dimension Gid_RM equals the usual injective dimension id_RM. In particular, if Gid_RR is finite, then also id_RR is finite, and thus R is Gorenstein (provided that R is commutative and Noetherian).

1. Introduction

It is well known that among the commutative local Noetherian rings (R, \mathfrak{m}, k), the Gorenstein rings are characterized by the condition $\text{id}_RR < \infty$. From the dual of [10] Proposition (2.27) ([8] Proposition 10.2.3] is a special case) it follows that the Gorenstein injective dimension $\text{Gid}_R(-)$ is a refinement of the usual injective dimension $\text{id}_R(-)$ in the following sense:

For any R-module M, there is an inequality $\text{Gid}_RM \leq \text{id}_RM$, and if $\text{id}_RM < \infty$, then there is an equality $\text{Gid}_RM = \text{id}_RM$.

Now, since the injective dimension id_RR of R measures Gorensteinness, it is only natural to ask what does the Gorenstein injective dimension Gid_RR of R measure? As a consequence of Theorem (2.1) below, it turns out that:

An associative ring R with $\text{Gid}_RR < \infty$ also has $\text{id}_RR < \infty$ (and hence R is Gorenstein, provided that R is commutative and Noetherian).

This result is proved by Christensen [2] Theorem (6.3.2) in the case where (R, \mathfrak{m}, k) is a commutative local Noetherian Cohen-Macaulay ring with a dualizing module. The aim of this paper is to prove Theorem (2.1), together with a series of related results. Among these results is Theorem (3.2), which has the nice, and easily stated, Corollary (3.3):

Assume that (R, \mathfrak{m}, k) is a commutative local Noetherian ring, and let M be an R-module of finite depth, that is, $\text{Ext}^m_R(k, M) \neq 0$ for some $m \in \mathbb{N}_0$ (this happens for example if $M \neq 0$ is finitely generated). If either

(i) $\text{Gid}_RM < \infty$ and $\text{id}_RM < \infty$ or
(ii) $\text{fd}_RM < \infty$ and $\text{Gid}_RM < \infty$,

then R is Gorenstein.
This corollary is also proved by Christensen [2, Theorem (6.3.2)] in the case where \((R, \mathfrak{m}, k)\) is Cohen-Macaulay with a dualizing module. However, Theorem \([3, \text{Theorem } 3.2]\) itself (dealing not only with local rings) is a generalization of \([8, \text{Proposition } 2.10]\) (in the module case) by Foxby from 1979.

We should briefly mention the history of Gorenstein injective, projective and flat modules: Gorenstein injective modules over an arbitrary associative ring, and the related Gorenstein injective dimension, was introduced and studied by Enochs and Jenda in [3]. The dual concept, Gorenstein projective modules, was already introduced by Auslander and Bridger [1] in 1969, but only for finitely generated modules over a two-sided Noetherian ring. Gorenstein flat modules were also introduced by Enochs and Jenda; please see [5].

1.1. Setup and notation. Let \(R\) be any associative ring with a nonzero multiplicative identity. All modules are—if not specified otherwise—left \(R\)-modules. If \(M\) is any \(R\)-module, we use \(\text{pd}_R M\), \(\text{fd}_R M\), and \(\text{id}_R M\) to denote the usual projective, flat, and injective dimension of \(M\), respectively. Furthermore, we write \(\text{Gpd}_R M\), \(\text{Gfd}_R M\), and \(\text{Gid}_R M\) for the Gorenstein projective, Gorenstein flat, and Gorenstein injective dimension of \(M\), respectively.

2. Rings with finite Gorenstein injective dimension

Theorem 2.1. If \(M\) is an \(R\)-module with \(\text{pd}_R M < \infty\), then \(\text{Gid}_R M = \text{id}_R M\). In particular, if \(\text{Gid}_R R < \infty\), then also \(\text{id}_R R < \infty\) (and hence \(R\) is Gorenstein, provided that \(R\) is commutative and Noetherian).

Proof. Since \(\text{Gid}_R M \leq \text{id}_R M\) always, it suffices to prove that \(\text{id}_R M \leq \text{Gid}_R M\). Naturally, we may assume that \(\text{Gid}_R M < \infty\).

First consider the case where \(M\) is Gorenstein injective, that is, \(\text{Gid}_R M = 0\). By definition, \(M\) is a kernel in a complete injective resolution. This means that there exists an exact sequence \(E = \cdots \to E_1 \to E_0 \to E_{-1} \to \cdots\) of injective \(R\)-modules, such that \(\text{Hom}_R(I, E)\) is exact for every injective \(R\)-module \(I\), and such that \(M \cong \text{Ker}(E_1 \to E_0)\). In particular, there exists a short exact sequence \(0 \to M' \to E \to M \to 0\), where \(E\) is injective, and \(M'\) is Gorenstein injective. Since \(M'\) is Gorenstein injective and \(\text{pd}_R M < \infty\), it follows by [4, Lemma 1.3] that \(\text{Ext}^1_R(M, M') = 0\). Thus \(0 \to M' \to E \to M \to 0\) is split-exact; so \(M\) is a direct summand of the injective module \(E\). Therefore, \(M\) itself is injective.

Next consider the case where \(\text{Gid}_R M > 0\). By [10, Theorem (2.15)] there exists an exact sequence \(0 \to M \to H \to C \to 0\) where \(H\) is Gorenstein injective and \(\text{id}_R C = \text{Gid}_R M - 1\). As in the previous case, since \(H\) is Gorenstein injective, there exists a short exact sequence \(0 \to H' \to I \to H \to 0\) where \(I\) is injective and \(H'\) is Gorenstein injective. Now consider the pull-back diagram with exact rows and
columns:

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & M & H \\
0 & P & I \\
& H' & & C \\
& H' & & C \\
& 0 & 0 & 0
\end{array}
\]

Since \(I\) is injective and \(\text{id}_{R}C = \text{Gid}_{R}M - 1\) we get \(\text{id}_{R}P \leq \text{Gid}_{R}M\) by the second row. Since \(H'\) is Gorenstein injective and \(\text{pd}_{R}M < \infty\), it follows (as before) by \cite[Lemma 1.3]{1} that \(\text{Ext}^{1}_{R}(M,H') = 0\). Consequently, the first column \(0 \rightarrow H' \rightarrow P \rightarrow M \rightarrow 0\) splits. Therefore \(P \cong M \oplus H'\), and hence \(\text{id}_{R}M \leq \text{id}_{R}P \leq \text{Gid}_{R}M\).

The theorem above has, of course, a dual counterpart:

Theorem 2.2. If \(M\) is an \(R\)-module with \(\text{id}_{R}M < \infty\), then \(\text{Gpd}_{R}M = \text{pd}_{R}M\). \(\square\)

Theorem \cite[2.6]{2} below is a “flat version” of the two previous theorems. First recall the following.

Definition 2.3. The left finitistic projective dimension \(\text{LeftFPD}(R)\) of \(R\) is defined as

\[\text{LeftFPD}(R) = \sup \{ \text{pd}_{R}M \mid M \text{ is a left } R\text{-module with } \text{pd}_{R}M < \infty \}.\]

The right finitistic projective dimension \(\text{RightFPD}(R)\) of \(R\) is defined similarly.

Remark 2.4. When \(R\) is commutative and Noetherian, we have that \(\text{LeftFPD}(R)\) and \(\text{RightFPD}(R)\) equals the Krull dimension of \(R\), by \cite[Théorème (3.2.6) (Seconde partie)]{3}.

Furthermore, we will need the following result from \cite[Proposition (3.11)]{4}:

Proposition 2.5. For any (left) \(R\)-module \(M\) the inequality

\[\text{Gid}_{R}\text{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z}) \leq \text{Gfd}_{R}M\]

holds. If \(R\) is right coherent, then we have \(\text{Gid}_{R}\text{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z}) = \text{Gfd}_{R}M\). \(\square\)

We are now ready to state:

Theorem 2.6. For any \(R\)-module \(M\), the following conclusions hold:

(i) Assume that \(\text{LeftFPD}(R)\) is finite. If \(\text{fd}_{R}M < \infty\), then \(\text{Gid}_{R}M = \text{id}_{R}M\).

(ii) Assume that \(R\) is left and right coherent with finite \(\text{RightFPD}(R)\). If \(\text{id}_{R}M < \infty\), then \(\text{Gfd}_{R}M = \text{fd}_{R}M\).

Proof. (i) If \(\text{fd}_{R}M < \infty\), then also \(\text{pd}_{R}M < \infty\), by \cite[Proposition 6]{5} (since \(\text{LeftFPD}(R) < \infty\)). Hence the desired conclusion follows from Theorem \cite[2.1]{2} above.

(ii) Since \(R\) is left coherent, we have that \(\text{fd}_{R}\text{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z}) \leq \text{id}_{R}M < \infty\), by \cite[Lemma 3.1.4]{6}. By assumption, \(\text{RightFPD}(R) < \infty\), and therefore also...
pd_R \text{Hom}_\mathbb{Z}(M, \mathbb{Q}/\mathbb{Z}) < \infty$, by \cite[Proposition 6]{11}. Now Theorem \cite{24} gives that

$\text{Gid}_R \text{Hom}_\mathbb{Z}(M, \mathbb{Q}/\mathbb{Z}) = \text{id}_R \text{Hom}_\mathbb{Z}(M, \mathbb{Q}/\mathbb{Z})$.

It is well known that

$\text{fd}_R M = \text{id}_R \text{Hom}_\mathbb{Z}(M, \mathbb{Q}/\mathbb{Z})$ (without assumptions on R), and by Proposition \cite{25} above, we also get $G\text{fd}_R M = G\text{id}_R \text{Hom}_\mathbb{Z}(M, \mathbb{Q}/\mathbb{Z})$, since R is right coherent. The proof is done.

3. A theorem on Gorenstein rings by Foxby

We end this paper by generalizing a theorem \cite[Proposition 2.10]{8} on Gorenstein rings by Foxby from 1979. For completeness, we briefly recall:

3.1. The small support. Assume that R is commutative and Noetherian. For an R-module M, an integer n, and a prime ideal p in R, we write $\beta^n_R(p, M)$, respectively, $\mu^n_R(p, M)$, for the nth Betti number, respectively, nth Bass number, of M at p.

Foxby \cite[Definition p. 157]{8} or \cite[(14.8)]{7} defines the small (or homological) support of an R-module M to be the set

$$\text{supp}_R M = \{ p \in \text{Spec } R \mid \exists n \in \mathbb{N}_0 : \beta^n_R(p, M) \neq 0 \}.$$

Let us mention the most basic results about the small support, all of which can be found in \cite[pp. 157–159]{8} and \cite[Chapter 14]{7}:

(a) The small support, $\text{supp}_R M$, is contained in the usual (large) support, $\text{Supp}_R M$, and $\text{supp}_R M = \text{Supp}_R M$ if M is finitely generated. Also, if $M \neq 0$, then $\text{supp}_R M \neq 0$.

(b) $\text{supp}_R M = \{ p \in \text{Spec } R \mid \exists n \in \mathbb{N}_0 : \mu^n_R(p, M) \neq 0 \}$.

(c) Assume that (R, m, k) is local. If M is an R-module with finite depth, that is,

$$\text{depth}_R M := \inf \{ m \in \mathbb{N}_0 \mid \text{Ext}^m_R(k, M) \neq 0 \} < \infty$$

(this happens for example if $M \neq 0$ is finitely generated), then $m \in \text{supp}_R M$, by (b) above.

Now, given these facts about the small support, and the results in the previous section, the following generalization of \cite[Proposition 2.10]{8} is immediate:

Theorem 3.2. Assume that R is commutative and Noetherian. Let M be any R-module, and assume that any of the following four conditions is satisfied:

(i) $G\text{pd}_R M < \infty$ and $\text{id}_R M < \infty$,

(ii) $\text{pd}_R M < \infty$ and $G\text{id}_R M < \infty$,

(iii) R has finite Krull dimension, and $G\text{fd}_R M < \infty$ and $\text{id}_R M < \infty$,

(iv) R has finite Krull dimension, and $\text{fd}_R M < \infty$ and $G\text{id}_R M < \infty$.

Then R_p is a Gorenstein local ring for all $p \in \text{supp}_R M$.

Corollary 3.3. Assume that (R, m, k) is a commutative local Noetherian ring. If there exists an R-module M of finite depth, that is,

$$\text{depth}_R M := \inf \{ m \in \mathbb{N}_0 \mid \text{Ext}^m_R(k, M) \neq 0 \} < \infty,$$

and which satisfies either

(i) $G\text{fd}_R M < \infty$ and $\text{id}_R M < \infty$, or

(ii) $\text{fd}_R M < \infty$ and $G\text{id}_R M < \infty$,

then R is Gorenstein.
Acknowledgments

I would like to express my gratitude to my Ph.D. advisor Hans-Bjørn Foxby for his support, and our helpful discussions.

References

Matematisk Afdeling, Københavns Universitet, Universitetsparken 5, 2100 København Ø, Danmark
E-mail address: holm@math.ku.dk