Nitratudvaskning i nye skove på gammel landbrugsjord
Gundersen, Per

Publication date: 2018

Document Version
Også kaldet Forlagets PDF

Citation for published version (APA):
Nitratudvaskning i nye skove på gammel landbrugsjord

Per Gundersen

IGN Rapport
April 2018
Indholdsfortegnelse

RESUMÉ ... 4
ENGLISH SUMMARY ... 5
FORORD ... 6
BAGGRUND .. 7
Hypoteser ... 8
METODER ... 10
Lokaliteter og bevoksninger ... 10
Drastrup ... 10
Nørager ... 11
Trige og Baldersbæk ... 12
Stenholtsvang .. 13
Vestskoven og Gejlvang .. 13
Ring Skov .. 14
Prøveindsamling og prøvebehandling .. 14
Sugeceller .. 14
Jordprøver til ekstraktion ... 15
Sugeceller versus jordprøver .. 16
RESULTATER ... 18
Langtidseffekt af kulturmetode efter skovrejsning, Drastrup og Nørager .. 18
Landbrugsdrift til skov, Trige og Baldersbæk .. 20
Stenholtsvang .. 21
Vestskoven og Gejlvang, kronosekvenser ... 22
Sammenligning af træarter, Ring Skov ... 25
DISKUSSION .. 26
Udviklingen i nitratkoncentration i ny skov på landbrugsjord ... 26
Langtidseffekt af dybdepløjning .. 27
Træartens betydning for nitratkoncentration ... 28
Betydning af tyndingsindgreb .. 28
KONKLUSION ... 30
LITTERATUR .. 31
Resumé

Baggrund og formål: Skovrejsning er et vigtigt virkemiddel til reduktion af nitratudvaskning fra landbrugsjord og mange skovrejsningsprojekter har grundvandsbeskyttelse som et vigtigt formål. Der findes dog kun begrænset dokumentation af effekten af skovrejsning på nitratudvaskning. Formålet med denne undersøgelse er at belyse den langsigtede udvikling i nitratkoncentrationen efter skovrejsning på tidligere landbrugsjord. Tidligere landbrugsjord indeholder store mængder kvælstof bundet i organisk stof med et lavt C/N-forhold, i forhold til jord med lang skovhistorie. Derfor kan de nye skove på landbrugsjord være dårligere til at tilbageholde nitratkvælstof end gamle skove.

Metode: Rapporten sammenstiller nitratdata fra forskellige tidligere skovrejsningsforsøg og fra overvågning af jordvand fra nye skove på landbrugsjord. I nedlagte forsøg blev jordvandsindsamling med sugeceller genetableret eller der blev taget enkelte nye jordprøver til nitratbestemmelse. Nitratkoncentrationen i jordvand i 90 cm’s dybde fra otte lokaliteter dækkede perioder fra 17 op til 31 år i nye skove, fra 0 til godt 50 år efter tilplantning.

Resultater: Høje nitratkoncentrationer (50 - >100 mg/l) fra tidligere landbrugsdrift eller fra jordbearbejdning og ukrudtsbekæmpelse faldt i løbet af 3-5 år til lave koncentrationer under 10 mg/l. Men efter kroneslutning (15-20 år) var der på næringsrige jorde længere perioder med nitratkoncentrationer over 25 mg/l, og hvor N-balancen indikerede et nettotab af kvælstof fra jorden. Tyndingsindgreb så ud til at kunne reducere nitratkoncentrationen ved at stimulere trætilvæksten og bundfloraen. På næringsfattige sandjorde steg koncentrationerne lidt med alderen, men forblev under 10 mg/l. Træartens indflydelse på nitrat niveaulet blev undersøgt på en lokalitet; de højeste koncentrationer blev observeret under rødgran og med lavere koncentrationer under eg ask og ær.

Konklusion: Den landbrugsmæssige ’arv’ (højt N-indhold og lavt C/N i jorden) gør nye skove tilbøjelige til at udvaske mere nitrat end gamle skove, bortset fra på sandede og næringsfattige jorde, hvor N kan ophobes i jordens organiske stof. Ved høj kvælstoftilgængelighed er det i høj grad vegetations N-optag, der regulerer nitratkoncentrationen. Imidlertid forekom der på flere lokaliteter et nettotab af N fra jorden over flere årtier efter skovrejsning. Her vil hyppige tyndinger med heltresudnyttelse være et vigtigt middel til at fjerne N og samtidigt stimulere tilvæksten og øge N-optaget.
English summary

Background and aims: Afforestation on arable land is recognized within Danish agricultural regulations as an option to mitigate nitrate leaching. However, the mitigation effect is not well documented. The aim of this study was to evaluate the long term reduction in soil water nitrate concentrations after afforestation. Former arable soils have accumulated large amounts of N in organic matter with low C/N ratio compared to soils with long forest history. Due to this legacy from agricultural use we expect i) that soil N accumulation will be minor on former arable land; ii) that plant N demand control N leaching until canopy closure and keep the nitrate concentration low or close to zero; iii) that after canopy closure plant N demand diminish and N leaching increase to a level depending on N deposition.

Methods: Soil water chemistry data from previous and ongoing monitoring in new forests on former arable land were compiled. Some sites were revisited to obtain soil for nitrate extraction and at other sites soil suction cups were reinstalled and monitoring resumed. Soil water nitrate concentrations at 90 cm depth were available for 8 afforestation areas and covered monitoring periods from 17 to 31 years. Time since conversion ranged from 0 to >50 years. Effects of soil preparation alternatives and tree species could be compared in some of the areas.

Results: High nitrate concentrations (50 - >100 mg/l) from the preceding agricultural use and from soil preparation or mechanical weed control declined to <10 mg/l within 3-5 years after planting. Canopy closed forest on nutrient rich soils had longer periods with nitrate concentrations >25 mg/l, where N-balances indicated a net loss of soil N. Thinning activities, stimulating regrowth of both trees and ground flora, markedly reduced the nitrate concentration. On sandy and nutrient poor soils nitrate concentrations increase slightly with forest age but remained <10 mg/l. Tree species influenced the nitrate concentration with spruce having the highest concentration followed by beech and with lower concentrations in oak, ash and maple.

Conclusion: The agricultural legacy makes new forests prone to elevated N leaching compared to old forest, except on sandy nutrient poor soils where N may still accumulate in soil organic matter. On some nutrient rich sites a net loss of soil N was observed over several decades after afforestation. The vegetation N-sink is largely controlling the nitrate concentration dynamics, thus regular thinnings including whole tree harvest to remove N and to stimulate regrowth are important in managing new forest to reduce N leaching.
Forord

Per Gundersen, april 2017
Baggrund

Et væsentligt driftsformål i forbindelse med mange skovrejsningsprojekter er drikkevandsbeskyttelse. Skovrejsning er desuden et vigtigt virkemiddel i relation til vandmiljøplanerne. Nye skove på landbrugsjord vil alene på grund af ophør med pesticildbehandling og gødskning reducere belastningen af vandet, der forlader de pågældende arealer. Et antal undersøgelser har dokumenteret, at nitratudvaskningen fra rodzonen falder til nær nul i løbet af få år efter tilplantning (Gundersen m.fl. 2008), når træer og bundvegetation er kommet i god vækst. Men efter kroneslutning falder træernes kvælstofbehov betydeligt, og spørgsmålet er, om nitratudvaskningen vil stige på det lange sigt i de nye skove. Det er den langsigtede nitratudvaskning, der er mest relevant for drikkevand og vandmiljø. Ved undersøgelser af bevoksninger med forskellig alder i Vestskov fandt man forøgede nitratkoncentrationer (10-50 mg/L) i bevoksninger ældre end 20 år (Hansen m.fl. 2007). Vi ved ikke, om dette er et generelt fænomen, eller under hvilke forhold nitratkoncentrationerne vil være forøgede i de ældre bevoksninger.

I to forsøg ved Drastrup og Nørager blev effekten på nitratudvaskning af kulturmetoder som bl.a. dybdepløjning (reolpløjning) og almindelig landbrugspløjning undersøgt umiddelbart efter tilplantning (Gundersen m.fl. 2001, Pedersen m.fl. 2005). De første år var udvaskningen større ved brug af dybdepløjning på begge lokaliteter, men effekten udlignede sig med tiden i Nørager. Vi ved således ikke, om kulturmetoden giver anledning til forskelle af betydning ud over de første 4-5 år.

Formålet med projektet er:

- At belyse udviklingen i nitratkoncentrationer (og nitratudvaskning) efter skovrejsning på landbrugsjord mere end 15 år efter tilplantning.
- At undersøge om forskelle i kulturmetoder har langsigtede virkninger på nitratudvaskning.
- At undersøge hvilke andre forhold (jordbund, klima, træart, driftsindgreb etc.), der kan forklare mulige forskelle i nitratniveau i de nye skove på landbrugsjord.

Resultaterne er væsentlige for at dokumentere den langsigtede effekt af skovrejsning som virkemiddel til reduktion af nitratudvaskning. Desuden vil resultaterne forhåbentlig forbedre mulighederne for at forudsige nitratudvaskningen fra et areal efter skovrejsning og danne baggrund for anbefalinger til udformning og drift af nye skov i nitratfølsomme områder. Dette vil også være relevant viden for vandselskaber i forbindelse med beslutninger om ændringer i og krav til arealanvendelser i nitratfølsomme områder.
Hypoteser

De fleste gamle skove har lav nitratudvaskning (Callesen m.fl. 1999). Da agerjord er blevet gødet, kalket og homogeniseret, indeholder pløjelaget (øverste 30 cm) meget kvælstof (ofte 2-3 gange mere end en skovjord) og betingelserne for omsætning og frigivelse af kvælstof er gunstige. Nye skove på tidligere agerjord vil derfor have høj kvælstoftilgængelighed og stor risiko for nitratudvaskning i forbindelse med forstyrrelser. Det kan tage lang tid, inden de nye skove plantet på landbrugsjord nærmer sig karakteristika for gamle skove (Hansen m.fl. 2008a). Undersøgelser i Frankrig og USA (Koerner m.fl., 1997; Compton og Boone, 2000) viser bl.a., at jorden har en lang historisk hukommelse og forandrer sig yderst langsomt efter skovrejsning. Selv om landbruget for 100 år siden behandlede jorden meget mindre intensivt end i dag, har landbrugsjorde, der blev til skov dengang, andre karakteristika end jord, der aldrig har været opdyrket (Compton og Boone, 2000).

Figur 1: Hypotese for udviklingen i nitratkoncentrationen under rodzone efter skovrejsning på gammel agerjord (Gundersen m.fl., 1999; 2003). Koncentrationen på langt sigt afhænger især af kvælstofdepositionen fra luften.

Når kvælstoftilgængeligheden er høj, bliver planternes kvælstofoptag afgørende for om der forekommer nitratudvaskning. Når træer og bundvegetation (ukrudt) komme i god vækst efter tilplantning falder nitratudvaskningen til nær nul i løbet af få år (Gundersen m.fl. 2008), men efter kroneslutning falder træernes kvælstofbehov og risikoen for nitratudvaskning stiger (figur 1). Udgangspunktet for forudsigelsen af nitratudvaskning i ældre bevoksninger er en simpel kvælstofbalancebetragtning: Når kronetaget er lukket, falder N behovet, og træerne kan ikke længere optage nedfaldet fra luften, og N overskuddet udvaskes. Er luftforureningen med kvælstofforbindelser fortsat på 15-25kgN/ha/år i skov, vil der være et overskud på 10-20 kg N/ha/år i forhold til ophobningen af N i vedmassen. Dette overskud vil blive udvasket og med et nedbørsoverskud på knap 300 mm med en nitratkoncentration på 25 mg/L (figur 1).
Baggrunden for den generelle hypotese i figur 1 er ud over simple kvælstofbalance-betrætninger også følgende konstateringer:

- Træerne fanger mere kvælstof fra luften jo højere, de bliver, hvorved N depositionen bliver større end træernes N behov. Stigningen i N deposition afhænger af træarten (nål > løv) og det lokale luftforurensningsniveau.

- Efter kroneslutning falder træernes kvælstofbehov, fordi den kvælstoffrige krone (nål/blade, små grene, bark mv.) ikke længere vokser. Træerne vokser alene i vedmassen, der er meget fattig på kvælstof. I figur 2 er som eksempel vist et beregnet netto-optag af kvælstof i en egebefovksning over tid efter plantning. For en nåletræsbevoksning vil forløbet i kvælstofoptaget i princippet være det samme, som vist i figuren, men behovet til opbygning af kronen (inklusiv nåle) vil være større, indtil kronen lukker.

- Landbrugsjorden indeholder meget kvælstof fra den tidligere gødskning (C/N-forhold 8-12 mod 20-30 i gammel skovjord) og kan ikke binde et eventuelt overskud af kvælstof fra depositionen. Derfor er der risiko for en vis nitratudvaskning fra nye skove på landbrugsjord.

- Øget fordampning fra skov (nål >> løv) kan medføre forøgede nitratkoncentrationer, selv om nitratudvaskningen er mindre end under landbrugsdrift.

- Jordens evne til at ophobe organisk stof (med kulstof og kvælstof) under de nye betingelser, som skoven giver, vil være afgørende for om nitratudvaskningen fortsat vil være lav efter kroneslutning.

Figur 2: Beregnet netto kvælstofoptag i en egebevoksning på en god jord, dvs. den mængde kvælstof pr år, der akkumuleres i træerne over jorden. Her er set bort fra at tynding giver mindre ”buler” på den sidste flade del af kurven (Hansen m.fl., 2008).
Metoder

Lokaliteter og bevoksninger

For at belyse ovenstående formål og hypoteser har vi fortsat eller genoptaget målinger af nitrat i jordvand på otte lokaliteter (figur 1, tabel 1). Alle undersøgte bevoksninger er plantet mellem 1960 og 2000 på tidligere landbrugsjord i omdrift. Lokaliteterne er valgt ud fra, om omfanget af tidligere målinger kunne bidrage til at belyse den langsigtede udvikling i nitratudvaskningen fra nye skove på godsket landbrugsjord. Formålet med og frekvens af de tidligere undersøgelser varierer betydeligt. Fx har der væretindsamlet jordvand i en bøgebevoksning i Stenholtsvang hver måned i mere end 30 år, mens der i Baldersbæk kun er få målinger over samme periode (tabel 2).

![Figur 3: Placering af de valgte skovrejsningsbevoksninger](image)

Drastrup

I et større skovrejsningsområde sydvest for Ålborg blev der i 1999 installeret udstyr til jordvandsopsamling dels for at følge udviklingen i nitratkoncentration efter landbrugsdriftens ophør, dels for at sammenligne to alternative kulturmetoder (dybdeplojning vs alm. landbrugspløjning) (Gundersen m.fl. 2001). Undersøgelserne ved Drastrup drives af Aalborg Forsyning, der har stillet data til rådighed for dette projekt. Grundvandet under Drastrup findes i kalkmagasiner og er særligt ”nitratfølsomt”, hvilket er en væsentlig årsag til, at der er gennemført skovrejsning i området.
Udstyret til jordvandsopsamling blev installeret før jordbearbejding og tilplantning i 1999, med tre gentagelser i henholdsvis en dybdepløjet del (reolpløjet, til 55-60 cm) og alm. landbrugspløjet del (pløjet til 30 cm) med godt 50 meters afstand. De tre gentagelser er ikke uafhængige i statistisk forstand, idet det er jordvandsopsamling og måling, der er gentaget og ikke behandlingen.

Marken havde ligget brak året forud for tilplantningen. Der skete ingen renholdelse efter tilplantningen, hvilket er almindeligt efter dybdepløjning, men ikke for landbrugspløjning. Det er normal praksis at foretage mekanisk renholdelse en eller to sæsoner, hvorfor den landbrugspløjede behandling de første par år har haft en lavere nitratudvaskning, end hvis der havde været renholdelse.

Uheldigvis blev der lagt en sti/vej ind, således at målingerne, som repræsenterer den landbrugspløjede del, ligger tæt på skovkanten og derfor efterhånden kan være påvirket af større kvælstofdeposition end den dybdepløjede del. Der er blevet lagt kørespor i bevoksningen og foretaget lidt udtynning, men tidspunktet er ikke kendt.

Tabel 1: Undersøgte lokaliteter og bevoksninger

<table>
<thead>
<tr>
<th>Lokalitet</th>
<th>Tilplantning</th>
<th>Hovedtræart(er)</th>
<th>Jordtype</th>
<th>Særlige undersøgelser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drastrup</td>
<td>2000</td>
<td>Eg</td>
<td>Sand (JB4)</td>
<td>jordbearbejdning</td>
</tr>
<tr>
<td>Nørager</td>
<td>1999</td>
<td>Eg, bøg, lind</td>
<td>Sand (JB4)</td>
<td>jordbearbejdning</td>
</tr>
<tr>
<td>Trige</td>
<td>1991</td>
<td>Eg</td>
<td>Ler (JB10)</td>
<td>Ændring landbrug til skov</td>
</tr>
<tr>
<td>Baldersbæk</td>
<td>1989</td>
<td>Rødgran</td>
<td>Sand (JB1)</td>
<td>Ændring landbrug til skov</td>
</tr>
<tr>
<td>Stenholtsvang</td>
<td>1965</td>
<td>Bøg</td>
<td>Ler (JB10)</td>
<td>(Træartsforsøg)</td>
</tr>
<tr>
<td>Vestskoven</td>
<td>1970</td>
<td>Eg</td>
<td>Ler (JB10)</td>
<td>Kronosekvens</td>
</tr>
<tr>
<td>Gejlvang</td>
<td>1960</td>
<td>Rødgran</td>
<td>Sand (JB1-3)</td>
<td>Kronosekvens</td>
</tr>
<tr>
<td>Ring Skov (Mattrup)</td>
<td>1973</td>
<td>Eg/bøg/ask/ær/ lind/rødgran</td>
<td>Sandblandet ler (JB8)</td>
<td>Træartsforsøg</td>
</tr>
</tbody>
</table>

Nørager

Forsøget i Nørager blev oprettet i 1998 som en del af et større projekt med fokus på pesticidanvendelse, heri indgik alternative kulturmetoder med hensyn til såvel forbehandling og renholdelse de første år efter tilplantning (Pedersen m.fl. 2005). Her fokuserer vi alene på forskellen mellem almindelig landbrugspløjning og dybdepløjning, hvor der måske kan være en langtidseffekt på nitratudvaskning. Desuden kan de to behandlinger sammenlignes med de tilsvarende i Drastrup. Areal havde været dyrket med byg i sæsonen før dybdepløjning og almindelig landbrugspløjning i

Tabell 2: Undersøgelsernes oprindelse, måleperioder, målemetoder mm.

<table>
<thead>
<tr>
<th>Lokalitet</th>
<th>Oprindelse</th>
<th>Periode med nitratdata (kursiv, data fra ekstraktion)</th>
<th>Metode</th>
<th>Reference vedr. lokalitet og metoder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drastrup</td>
<td>Overvågning, Aalborg Forsyning Vand</td>
<td>2000-2016</td>
<td>Sugeceller</td>
<td>Gundersen m.fl. 2001</td>
</tr>
<tr>
<td>Stenholtsgård</td>
<td>Skovovervågning</td>
<td>1986-2016</td>
<td>Sugeceller</td>
<td>Hansen, 2003; Gundersen m.fl. 2009</td>
</tr>
<tr>
<td>Vestskov</td>
<td>EU Afforest-projekt, Skovovervågning</td>
<td>1999-2016 + kronosekvens</td>
<td>Sugeceller</td>
<td>Hansen m.fl. 2007; Gundersen m.fl. 2009</td>
</tr>
<tr>
<td>Gejlevang</td>
<td>EU Afforest-projekt</td>
<td>2001-2003 + kronosekvens</td>
<td>Sugeceller</td>
<td>Hansen m.fl. 2007</td>
</tr>
<tr>
<td>Ring Skov (Mattrup)</td>
<td>Træartsforsøg</td>
<td>2003, 2004-2006, 2016</td>
<td>Sugeceller, ekstraktion</td>
<td>Christiansen m.fl. 2010</td>
</tr>
</tbody>
</table>

Trige og Baldersbæk

Stenholtsvang

Vestskoven og Gejlvang

I Gejlvang ved Randbøl blev der i AFFOREST-projektet installeret udstyr til jordvandsopsamling i en kronosekvens med rødgran på sandjord som parallel til undersøgelsen på lerjord i Vestskoven (Hansen m.fl. 2007). Der blev indsamlet og analyseret jordvand med tre gentagelser i hver bevoksning månedligt fra 2001 til 2003. Vi har ikke gentaget målinger i dette område, idet nogle af de anvendte bevoksningerne var blevet fældet. Data fra kronosekvensen blev anvendt til at rekonstruere udvikling i nitratkonzcentration for området.

Ring Skov

Ring Skov er en lokalitet med et træartsforsøg i ’løvtræsserien’ (ofte omtalt som ”Mattrup”), hvor ti løvtærarter og to nåletræarter blev plantet i 1973. Forsøget ligger op ad Brædstrup by på tidligere landbrugsjord. I forbindelse med forundersøgelser til et projekt blev der i 2003 indsamlet jordprøver til måling af nitrat fra fire træarter (ask, bøg, eg og rødgran) i tre felter per træart. Projektet, der sammenlignede stofkredsløb i seks træarter, blev gennemført med Ring Skov som eksempel på ny skov på tidligere landbrugsjord, mens et træartsforsøg i Vallø på Sjælland indgik med samme træarter plantet på gammel skovjord (Christensen m.fl., 2010). Der blev installeret sugeceller til jordvandsindsamling i ask, bøg, lind, ær, eg og rødgran (8 sugeceller per træart), og der blev foretaget månedlig indsamling og analyse af en samleprøve per træart fra august 2004 til september 2006. I forbindelse med dette projekt genindsamlede vi i maj 2016 jordprøver til måling af nitrat i de seks tidligere undersøgte træarter og med gentagelse i to felter per træart.

Prøveindsamling og prøvebehandling

Vi har anvendt to forskellige metoder til at indsamle jordvand og måle nitratindholdet under rodzonen (tabel 2): Sugeceller til løbende indsamling af jordvand og indsamling af jordprøver til ekstraktion.

Sugeceller

Sugeceller anvendes til løbende indsamling af jordvand. En sugecelle trækker jordvand fra et lille område på omkring 1 m², derfor anvender man ofte flere sugeceller (4-10 stk) for at repræsentere et større område på fx 300-500 m² - et felt (eller plot). Jordvandet fra sugecellerne i et felt bliver enten opsamlet i samme flaske eller hældt sammen til en samleprøve ved indsamlingen. Et felt kan fx være dannet som en cirkel med fem sugeceller installeret, en som midtpunkt og fire 10 m derfra imod nord, syd, øst og vest. Disse felter gentages tre gange i en bevoksning eller behandling for at beskrive variationen i 300-500 m² skala. Præcis dette design blev anvendt til undersøgelserne i
Vestskoven og Gejlvang, mens designet i de øvrige undersøgelser fulgte samme princip med tre gentagelse af felter men med andre udformninger og flere eller færre sugeceller. I de foregående afsnit om de forskellige lokaliteter er der indføjet relevante oplysninger om undersøgelsesdesign.

Jordprøver til ekstraktion

Udtagning af jordprøver til efterfølgende ekstraktion og måling af nitratindhold er den metode der blev anvendt i Kvadratnettet, og den omtales ofte som N-min-metoden. Til målingerne, der blev udført i Kvadratnettet (Trige og Baldersbæk), blev der udtaget 15 stik med et jordbor langs en line på 50 m, og disse blev samlet til en prøve. I nærværende projekt har vi anvendt et andet design i provetagningen. I det indre af hver bevoksning blev der udlagt tre felter for at repræsentere den mulige variation indenfor bevoksningen. For hvert felt blev der udtaget fem delprøver (stik); en som midtpunkt og fire 10 m derfra imod nord, syd, øst og vest. De fem prøver blev sålæt sammen til én prøve pr felt, som dermed antages at repræsentere et areal på ca. 350 m². Delprøverne blev udtaget
med et halvåbent 3 cm jordbor, der blev hamret ned til 100 cm, hvorefter indholdet af jordprofilen fra 85-100 cm blev opsamlet i en plastpose pr felt. Jordprøverne blev straks lagt på køl og opbevaret ved <4°C indtil de blev behandlet i laboratoriet inden for maksimum 48 timer.

Hver prøve blev blandet grundigt og sigtet (<2 mm). Af den friske jord blev afvejet 20 g til vandbestemmelse efter tørring ved 105°C og 20 g til ekstraktion. Prøven til ekstraktion blev opbevaret frosset (-18°C) i 50 ml plastrør indtil ekstraktion. For at ekstrahere nitrat blev der tilsat 20 ml 0,1 M KCl til den frosne prøve, hvorefter de blev rystet en time, centrifugeret og filtreret gennem et Cellotron filter. Filtratet blev straks herefter analyseret for nitrat ved Flow Injection Analysis (FIA). Den målte nitratkoncentration i filtratet blev korrigert for fortrynding fra den tilførte opløsning, således at de præsenterede nitratværdier er koncentrationer i jordvand. Detektionsgrænsen for nitrat med denne metode var, pga. fortrynding ved ekstraktionen, 1-2 mg/L og dermed noget højere end for metoden med sugeceller.

Sugeceller versus jordprøver

Figur 4: Sammenligning af nitrat-koncentration bestemt på 'parallelt' indsamlede prøver for sugeceller (y-akse) og ekstraherede jordprøver (x-akse).
Resultater

Alle resultater for nitratkonzentration er fra 75-100 cm dybde, hvilket betragtes som under rodzonen, idet 90% af vegetationens rodbiomasse ofte er over denne dybde. Under 75-10 cm dybde har skovøkosystemet ikke længere væsentlig indflydelse på nitratindholdet i jordvandet.

Alle resultater er vist i mg nitrat per liter (mg/L). Dette er den relevante enhed i forhold til grundvand, hvor grænseværdien for drikkevand er 50 mg/L, mens det anbefalede niveau er under 25 mg/L. I figurerne er x-aksen angivet i år siden tilplantning således at udviklingen over tid kan sammenlignes selv om bevoksningerne er plantet på forskellige tidspunkter (tabel 1).

Langtidseffekt af kulturmetode efter skovrejsning, Drastrup og Nørager

Jordbearbejdning og især dybdepløjning havde en stor effekt på nitratkonzentrationen i Drastrup-forsøget (figur 5), hvor nitratkonzentrationerne generelt har holdt sig på et højt niveau efter skovrejsning. Kvælstofudvaskningen de første fem år blev anslået til omkring 300 kg N/ha for dybdepløjning, mens den var omkring 125 kg N/ha for landbrugspløjning (Gundersen & Buttenschøn, 2005). Senere har der derimod ikke været tydelig forskel mellem de to behandlinger (figur 5). De seneste tre år har nitratkonzentrationen dog været lavest for landbrugspløjning med 33 mg/L mod 40 mg/L for dybdepløjning, der er dog ikke tale om en signifikant forskel, da variationen er stor for begge behandlinger. Dette, selv om den landbrugspløjede del ligger tæt på skovkanten og formentlig modtager en højere N-deposition end den dybdepløjede del, der ligger mere end 50 m længere inde i skoven.

Selv om koncentrationen faldt hen over de første tre år, blev den aldrig lav og tæt på nul, som det ellers er observeret i andre skovrejningskulturer, når træer og markukruld er kommet i god vækst (Gundersen m.fl. 2008). Dermed følger udviklingen i nitratkonzentrationen ikke det forventede forløb i figur 1.

I Nøragerforsøget havde dybdepløjning også en stor effekt på nitratkonzentrationen straks efter den var blevet udført (op til 120 mg/L), men allerede efter et år var koncentrationen faldet til under 25 mg/L (figur 6). På grund af indvandring af kløver på kontrolbehandlingen og senere bortskygning heraf steg nitratkonzentrationen også til over 100 mg/L for den landbrugspløjede del.

Pedersen m.fl. (2005) anslog udvaskningen de første fem år til 200 kgN/ha for dybdepløjning, 275 kgN/ha for landbrugspløjningen, der ikke blev renholdt og dermed havde kløver, og 325 kgN/ha for en behandling med forholdsvis intensiv mekanisk renholdelse. De seneste målinger 16-17 år efter tilplantning viste, at selv om koncentrationerne var lave, så havde dybdepløjningen i gennemsnit højere koncentrationer (6,3 mg/L) end landbrugspløjningen (3,8 mg/L).

Hvis vi ser bort fra effekten af kvælstoffiksering fra kløveren, faldt nitratkonzentrationen til under 10 mg/L efter de første to-tre år, og var tæt på nul (eller under detektionsgrænse) ved den første måleperiodes slutning. Målerne 14 og 16 år efter tilplantning tyder på at koncentrationen stadig er lav, men tyndningshugsten gav (forsinket ca. et år) anledning til en stigning i nitratkonzentrationen op til 15 mg/L, højest for den dybdepløjede del (figur 6). For den del af perioden, hvor der er målinger, følger udviklingen i nitratkonzentrationen nogenlunde det forventede forløb i figur 1.

Landbrugsdrift til skov, Trige og Baldersbæk

Kun for de to Kvadratnetspunkter Trige og Baldersbæk findes der målinger af nitratkoncentrationer fra en periode med landbrugsdrift forud for tilplantning (figur 7). De høje koncentrationer under landbrugsdriften fortsatte nogle år efter tilplantning, og for Baldersbæk kan den voldsomme stigning i koncentrationerne i relation til tilplantningen være en effekt af dybdepløjning. Målingerne efter 6-9 år viste dog en væsentlig reduktion på begge lokaliteter (Hansen & Vesterdal, 1999). For Trige viste enkelte målinger i år 17 og 21 forekomst af lidt nitrat (10-20 mg/L), men månedlige målinger i 2015/16 (år 24) viste alle et lavt niveau under 1-2 mg/L. For Baldersbæk var de to målingerne efter kroneslutning (år 20 og 27) begge under detektionsgrænsen.

Stenholtsvang

yderligere i dette projekt. Der er en tydelig kortvarig forøgelse af nitratkonzcentrationen i forbindelse med nogle af tyndingsshugsterne. I perioden 2001 til 2006 blev vandbalancen modelleret, og udvaskningen blev anslået til 30 kgN/ha/år, mens tilførslen fra deposition kun var 15 kgN/ha/år (Gundersen m.fl., 2009). Dvs. at der i den periode var et væsentligt tab af kvælstof fra jordens pulje. Dels et nettotab på 15 kgN/ha/år ud fra input-output-balancen, dels optag og akkumulering i træerne i størrelsesordenen 10 kgN/ha/år.

Figur 8: Nitratkonzcentrationen under bøg (plantet 1965) i Stenholtswang målt hver måned fra 1985 til 2016 i tre felter i bevoksningen (kurven er et udjævnet gennemsnit over 2 måneder). Blå ruder viser tidspunkter for tyndingsindgreb.

Vestskoven og Gejlvang, kronosekvenser

I Vestskoven faldt nitratkonzcentrationen hurtigt i en nyplantet kultur, så snart den mekaniske renholdelse ophørte (figur 9). I yngre bevoksninger (<20 år) var nitratkonzcentrationen tæt på nul, mens der for de ældre bevoksninger ofte var koncentrationer op til 25 mg/L. Dette blev i Hansen m.fl. (2007) tolket som en bekræftelse af hypotesen i figur 1. Men for den ældste bevoksning (E70), der har været målt over 15 år, skete der et skift midt i perioden (omkring år 38; 2008). Mens nitratniveauet i gennemsnit var 10 mg/L for perioden før år 38, så faldt niveauet til et gennemsnit på 3 mg/L for de seneste 8 år (figur 9). En sådan ændring kan hænge sammen med et større N-optag i
vegetationen, dels ved at tyndingshugsten gav mulighed for ny ekspansion i trækronerne og dels ved stimulering af bundvegetationen, som er meget frodig i Vestskoven (figur 10). Der forekommer sæsonvariation i nitratkonzentrationen i Vestskoven (se fx målgerne over 3 år ved år 25). Koncentrationerne er signifikant højere i sommerhalvåret end i vinterhalvåret (Tekle, 2016). Den seneste tyndingshugst i år 45 synes forbigående at have øget nitratkonzentrationen (figur 9), men der har også været gentagne angreb af frostmålere, der har reduceret bladmassen i sommerperioden og sandsynligvis har mindsket trærnes tilvækst.

I perioden 2001 til 2006 blev vandbalancen modelleret, og udvaskningen blev anslået til 12 kgN/ha/år, svarende til tilførslen fra deposition i samme periode (Gundersen m.fl. 2009). Dvs. at N-akkumuleringen i trærnes biomasse i perioden blev frigivet fra jordens organiske stof.

Figur 9: Nitratkonzentrationen under eg i Vestskoven (plantet 1970). Data op til år 26 er rekonstrueret fra yngre bevoksninger. Fra år 29 er vist data fra E70 målt hver måned fra 1999 til 2016 i tre felter i bevoksningen (kurven er udjævnet gennemsnit over 2 måneder). Blå ruder viser tidspunkter for tyndingsindgreb.
Figur 10: Efter tyndingshugsten og på grund af frostmålerangreb i Vest-skoven (E70) kom der meget lys til bundvegetationen, som i de senere år har været meget tæt og kraftig og domineret af brændenælder. I forgrunden en strofaldsopsamler og en gennemdrypstragt (foto fra juni 2015).

I Gejlvang var mange nitratmålinger tæt på detektionsgrænsen. For de yngre bevoksninger under 30 år var der i gennemsnit 1,5 mg/L mens det for den ældste bevoksning var 3,6 mg/L (figur 11). I forbindelse med AFFOREST-projektet blev vandbalancen modelleret, og udvaskningen blev anslået til kun 2 kgN/ha/år for den ældste bevoksning og mindre for de øvrige bevoksninger (Hansen m.fl. 2007).

Figur 11: Nitratkoncentrationen under rødgran i Gejlvang rekonstrueret fra fem bevoksninger med månedlige målinger 2001 til 2003 (gennemsnit og standardafvigelse for 3 felter per bevoksning).
Sammenligning af træarter, Ring Skov

I Ring Skov (ofte kaldet Mattrup) blev nitratniveauet sammenlignet under seks træarter (figur 12). Træartsforskellene i nitratkonzentrationer var relativt konsistente over de 13 år, som målingerne dækker, med meget lave koncentrationer i ask og ær og de højeste koncentrationer under rødgran. Bøg og eg havde de højeste koncentrationer blandt løvtræerne, men forskellene mellem løvtræerne er mindre udtalte i den seneste prøvetagning (år 43). De høje nitratniveauer for bøg og eg svarer til niveauerne for samme alder i Stenholtsvang og Vestskoven (figur 8 og 9).

Figur 12: Nitratkonzentrationen under seks træarter i Ring Skov for tre tidspunkter efter plantning i 1973. Data for år 30 og år 43 er fra ekstraherede jordprøver (gennemsnit og standardafvigelse for henholdsvis tre og to felter per træart). Data fra år 31-33 er gennemsnit over måleperioden (2004-6) for én samleprøve per bevoksning, mens den viste standardafvigelse (stiplet linje) er variationen over måleperiodens 26 måneder.)
Diskussion

Udviklingen i nitratkoncentration i ny skov på landbrugsjord

Nitratmålingerne fra de udvalgte lokaliteter og bevoksninger dækker ændringen i arealanvendelse fra agerjord til ny skov op til 50 år efter tilplantning. I årene umiddelbart efter tilplantning sker der et fald i nitratkoncentrationen (figur 5, 6, 7 og 9) svarende til den første del af kurveforløbet i figur 1. Den tid, det tager, før træer og ukrudt optager alt tilgængeligt kvælstof, således at der forekommer meget lave koncentrationer (ofte under 5 mg/L), varierer fra 3-4 år i Nørager, Vestskoven og Gejlvang (figur 6, 9 og 11), og op til 7-9 år i Trige og Baldersbæk (figur 7). Dette er en variation, der blev beskrevet tidligere i en analyse, der inkluderede data fra disse fem lokalitet samt fra fire andre skovrejsningslokaliteter (Gundersen m.fl. 2008).

For alle lokaliteter med data forblev koncentrationerne lave op til 20-25 år efter tilplantning som forventet (figur 1) undtagen i Drastrup (figur 5). Forsøget i Drastrup synes at have usædvanligt høje nitratkoncentrationer i perioden 5-20 år, hvor N-optaget i træerne antages at være særligt højt (figur 2). Derfor blev der i foråret 2016 udtaget jordprøver til ekstraktion i ti andre skovrejsningsbevoksninger i samme område rundt om Drastrup og Frejlev (Gundersen, 2016). Denne undersøgelse viste, at forsøget i Drastrup er repræsentativt for området, idet dette areal havde samme nitratniveau som gennemsnittet fra alle de øvrige skovrejsningsarealer (23 mg/l). Pål det lange sigt (>25 år) er der i Trige, Baldersbæk og Gejlvang fortsat lave nitratkoncentrationer under 5 mg/L (figur 7 og 11), mens der i Stenholtsvang og Vestskoven forekommer mellem 10 og 50 mg/L, dog med faldende koncentrationer over de seneste 10 år (figur 8 og 9). Det er altså alene de to lerede og naturligt næringsrige lokaliteter, Stenholtsvang og Vestskoven, der bekræfter hypotesen om et kvælstofoverskud og nitratudvaskning i sluttede ældre bevoksninger (som vist i figur 1). Jorden i Trige er også leret og med dårlig dræning, således at jorden i perioder er vandmættet. Dette angik måleperioden vintersæsonen 2015/16, hvor der var meget lave nitratkoncentrationer (år 24 i figur 7a). Under disse forhold med højtstående vand, er det sandsynligt at alt nitrat i og under rodzonen, er blevet denitrificeret til frit kvælstof (N₂). Ved målingen i foråret 2013 (år 21 i figur 7a), hvor der forekom nitrat (20 mg/l), var der mere tørt i bevoksningen. De to sandede lokaliteter med rødgran (Baldersbæk og Gejlvang) er bedst til at tilbageholde nitrat, selv om kvælstofopositionen i rødgran er højere end i løvskov. Forskellen mellem sandjord (repræsenteret ved Gejlvang) og lerjord (repræsenteret ved Vestskoven) blev undersøgt yderligere af Hansen m.fl. (2007). De fandt, at
sandjorden i Gejlvang akkumulerede organisk stof (og dermed også kvælstof), mens lerjorden i Vestskoven tabte organisk stof (i alt fald de første 30 år efter skovrejsning).

På basis af N-balanceberegninger og de dengang tilgængelige data om N-udvaskning på kort og langt sigt anslog Gundersen m.fl. (2004), at N-udvaskningen (hovedsageligt som nitrat) efter skovrejsning ville være 12 kgN/ha/år som gennemsnit over en omdrift. Dette estimat anvendes som normtal for N-udvaskning for virkemidlet ’skovrejsning’ i forbindelse med beregninger af effekten for vandmiljøet (Eriksen m.fl., 2014). Det har ikke været muligt indenfor rammen af nærværende projekt at modellere vandbalancer og beregne N-udvaskning for de undersøgte lokaliteter. Men talmaterialet tyder på, at dette normtal kan reduceres. Som et groft overslag, baseret på en simpel relation mellem årsmiddel-nitratkonzentration og N-udvaskning i Gundersen m.fl. (2009), svarer årsmiddel-nitratkonzentrationer på 5, 10 og 25 mg/L til udvaskning af henholdsvis 4, 7 og 14 kgN/ha/år. I hvert fald Nørager, Trige, Baldersbæk, Vestskoven og Gejlvang vil have en N-udvaskning (langsigtet gennemsnit), der er væsentligt under de 12 kgN/ha/år.

Langtidseffekt af dybdepløjning

Dybdepløjning (reolpløjning) er mest blevet anvendt på sandede jorde ligesom i Drastrup og Nørager. Dybdepløjning forøgede nitratudvaskningen betydeligt i de første år, efter den blev udført, i
Drastrup og Nørager (figur 5 og 6). Det er formentlig også dybdepløjningen, der var årsag til høje nitratkoncentrationer over 100 mg/L i de første år efter tilplantning i Baldersbæk (figur 7b). Ved dybdepløjning vendes det kvælstofrige pløjelag ned i 30-60 cm dybde til et fugtigt miljø med en konstant temperatur og gode forhold for omsætning og frigivelse af nitrat i en dybde, hvor der ikke er mange rødder de første år. Dette giver betydelig N-udvaskning i starten, men denne effekt ser ud til hurtigt at aftage. Data fra de seneste par år (15-16 år efter dybdepløjningen) tyder på en lidt højere nitratkoncentration ift. almindelig landbrugspløjning i Drastrup (figur 5) og lidt større stigning i nitratkoncentration efter tyndingshugst i Nørager (figur 6, indsat close-up). Men det er usikkert, om disse mindre forskelle er vedvarende.

Træartens betydning for nitratkoncentration

Valget af træart har vedvarende betydning for nitratkoncentrationen i jordvand under rodzonen (figur 12). Dette gælder især på lokaliteter med høj kvælstoftilgængelighed som i Ring Skov, mens træarten har mindre betydning på næringsfattige lokaliteter (Gurmesa m.fl., 2013). På næringsrige lokaliteter som Ring Skov, Vestskoven og Stenholtsvang finder man de højeste nitratkoncentrationer under rødgran (og sitkagran) (figur 12, Hansen m.fl., 2007; Hansen, 2003). Dette skyldes forøget tørdeposition (partikler og gasser) af kvælstof i gran. Indenfor løvtærarterne er nitratkoncentrationerne lavest under ær og ask (ofte under detektionsgrænsen) og højere for lind, eg og bøg (figur 12). I andre undersøgelser var nitratkoncentrationerne 2 eller 3 gange højere under bøg end under eg (Gundersen, 2016; Gurmesa m.fl., 2013). Årsagerne til de væsentlige træarts-forskelle i N-kredsløbet mellem løvtærarterne er ikke klarlagt, men forskelle i hvilken type mykorrhizasvampe træarterne har symbiose med – arbuskulære mykorrhiza (ær og ask) og ektomykorrhiza (lind, eg, bøg og gran) - synes at have væsentlig betydning (Callesen m.fl., 2013).

Betydning af tyndingsindgreb

Hugstindgreb gav anledning til en kortvarig og ofte lidt forsinket forøgelse af nitratkoncentrationen i Nørager, Stenholtsvang og Vestskoven (figur 6, 8 og 9). Igen er det de mere næringsrige lokaliteter, der er følsomme over for forstyrrelser i træernes N-optag. Men tyndingsindgreb har yderligere en væsentlig funktion i at øge både træernes og bundvegetations N-optag i en periode indtil krontaget igen er lukket. I Vestskoven kan forøgelse af lysindfaldet fra tydningen og fra afløvning af egetræerne pga frostmålerangreb have forøget bundvegetationen og dens N-optag, og dermed reduceret N-udvaskningen de seneste otte år. Tynderinger kan endvidere være med til at give plads for
buske og selvsåede træer, således at man kan få en skov med flere etager, der sammen med de ud-
tyndede hovedtræer kan sikre et kontinuert N optag i vegetationen.

På nitratfølsomme arealer vil hugst af tømmer, brænde eller flis være vigtig for at få fjernet noget af
den mængde N, som kommer fra deposition, og evt. også en lille del af det ophobede N, der findes i
landbrugsjorden. Hugstindgrebene bør dog ikke være for omfattende, idet planternes N-optag ikke
skal reduceres for kraftigt. Tyndinger, som de normalt foretages i almindeligt skovbrug (ca. 10-15% af træerne), vil kun give risiko for en mindre kortvarig (~1 år) øgning i nitratudvaskningen som
observeret i Stenholtsvang (figur 8). Flisning af hele træer om sommeren med blade/nåle (grønflis-
ning) vil fjerne mest muligt N, idet nåle, blade og bark har det højeste indhold af N. Fældning og
flisning senere efter fortørring er den almindeligste metode og anbefalet for gamle skove, hvor der
can være behov for at efterlade blad- eller nålemassen i skoven af hensyn til forsyningen med andre
næringsstoffer end N. Flisen bliver også mere tør efter fortørring, men her får man ikke fjernet den
mængde N, som var i bladene eller nålene. Hugst af brænde og tømmer fjerner mindre N, idet kviste
go grene med stort N-indhold i barken bliver på areal.
Konklusion

Litteratur

