Hugst og tørring af poppel til flis
Skov, Simon; Madsen, Palle

Publication date:
2017

Citation for published version (APA):
Hugst og tørring af poppel til flis

Simon Skov og Palle Madsen

IGN Rapport
September 2017
Titel
Hugst og tørring af poppel til flis

Forfattere
Simon Skov og Palle Madsen

Bedes citeret

Udgiver
Institut for Geoviden skab og Naturforvaltning
Københavns Universitet
Rolighedsvej 23
1958 Frederiksberg C
ign@ign.ku.dk
www.ign.ku.dk

Ansvarhavende redaktør
Claus Beier

ISBN
978-87-7903-770-0 (web)

Omslag
Jette Alsing Larsen

Forsidefoto
Simon Skov

Publicering
Rapporten er publiceret på www.ign.ku.dk

Gengivelse er tilladt med tydelig kildeangivelse
Skriftlig tilladelse kræves, hvis man vil bruge instituttets navn og/ejler dele af denne rapport i sammenhæng med salg og reklame
Forord

Poppel har åbenlyse styrker og svagheder i forhold til flisproduktion. Poppel vokser hurtigt og udgør et potentiale i forhold til flisressourcen i skovene. På minussiden er poplernes vandindhold og lave massefylde.

Det er nødvendigt at optimere håndteringen af poppel for at kunne udnytte potentialen optimalt.

Vandprocenten i skovflis har typisk et årsgennemsnit på ca. 42%. De flisfyrede varmeværker bygges, så de er optimeret til et bestemt fugtighedsinterval. Hvis flisen ligger udenfor intervallet, så falder udnyttelsesgraden af brændslet. Det ønskes med denne undersøgelse at kunne anvisse en hugst- og lagersmetode, så poppelflisen bliver så tør som muligt. Det er derefter op til varmeværkerne at vurdere, om flisen er et egnet brændsel.

Vi vil gerne sige tak til Esben Møller Madsen, Jakob Svendsen-Tune og Kim Hansen, Skåneskogens Utveklings AB, for godt samarbejde under projektet. Desuden stor tak til Nordisk Ministerråd og Dansk Fjernvarme for finansiering.

Foto 1: Stak af poppelflis ved Trolleholm Kraft.
Indholdsfortegnelse

Forord ... 3

Resumé ... 5
 Massefylde .. 5
 Træets vandindhold og fordelingen i træerne 5
 Hugsttidspunkt og lagring som 3-m rundtræ 5
 Flis af frisk træ ... 6
 Sammenligning af al flis .. 6
 Lagring af flis ... 6
 Opgørelse i november ... 7

Formål ... 8

Metode .. 8
 Forsøgsvært ... 8
 Lokalitet .. 8
 Forsøgsdesign ... 9

Resultater ... 13
 Massefylden (splint og kerne) .. 13
 Træets vandindhold afhængig af hugsttidspunkt 15
 Lagring som stammer ... 19
 Syrefældning .. 25
 Flis .. 26

Konklusion .. 32

Diskussion ... 33
 Design ... 33
 Resultater .. 33
 Anbefaling til praksis ... 36
Resumé

Massefylde

Massefylden (kg tørstof pr. m³ frisk træ) varierer fra bund til top på hvert træ og fra splint til kerne. Massefylden er højere i splinten end i kernen. Splinten har omtrent samme massefylde i hele træets højde, mens massefylden i kernen aftager med stigende højde. Den samlede massefylde ligger omkring 300 kg tørstof/m³.

Træets vandindhold og fordelingen i træerne

Træets vandindhold er højere i kernen (60-65 %) end i splinten (45-55 %).

Vandindholdet er beregnet efter normen for energitræ, dvs. efter formlen:

\[
\frac{(friskvægt - tørvægt) \times 100}{friskvægt}
\]

Det gennemsnitlige vandindhold i træet er faldende med stigende højde dels på grund af faldende kerneandel, dels på grund af faldende vandindhold i splinten. Der er ikke forskel på vandindholdet i træer fældet i hhv. marts, august og november. Det gennemsnitlige vandindhold i træerne, der indgår i projektet, er ca. 50 %.

Hugsttidspunkt og lagring som 3-m rundtræ

Undersøgelsen indeholder fire behandlinger, hvor fældede træer lagres som 3-meter træ under fiberdug og på strøer i forskellige tidsspænd fra fældning til flisning. Til slut flises træet samme dag i november. Lagringstiden varierer mellem behandlingerne og er fra marts 2015 (Beh. 1), august (Beh. 3), september efter syrefældning (Beh. 5) og fra august efter afbarkning (Beh. 7).

Efter sommerfældning (Beh. 3) er der ikke systematiske ændringer i vandindholdet fra august til november. Resultaterne tyder på en vis opfugtning. Efter syrefældning (Beh. 5) ses et reduceret vandindhold i både prøver af splintved samt i prøver af hele skiver. Vandindholdet i kernen ændres ikke
væsentligt. I løbet af lagringen fra september til november opfugtes stammerne igen. Der er dog stadig et mindre vandindhold end i stammer, der ikke er syrefældet.

Lagring af afbarkede stammer (Beh. 7) fører ikke til øget tørring. Der er ingen signifikant ændring af vandindholdet fra august til november.

Flisen fra disse behandlinger, som blev hugget samme dag i november, giver flis med en vandprocent mellem 48 % (Beh. 5 - syrefældning) og 51 % (Beh. 7 – lagring af afbarket 3-m træ hugget i august). Forskellene er ikke statistisk signifikante.

Flis af frisk træ

Undersøgelsen indeholder også tre behandlinger, hvor træer er fliset umiddelbart efter fældning. Det gælder Beh. 2 (marts), 4 (august) og 8 (november). Beh. 6 er flisning direkte efter syrefældning. Disse 4 behandlinger producerer flis med en vandprocent mellem 49 % (Beh. 6) og 56 % (Beh. 8). Forskellene er ikke statistisk signifikante.

Sammenligning af al flis

Der er produceret flis med en vandprocent mellem 48 % og 56 %. Af alle behandlinger giver Beh. 5 (flisning af syrefældede heltræer ca. en måned efter syrefældningen) den laveste vandprocent i flisen. Resultatet er dog ikke signifikant anderledes end flere andre behandlinger.

Lagring af flis

Al flis, der er hugget af friske træer, er lagret i stakke. Prøver er udtaget af stakkene fra hhv. 20, 40 og 100 cm dybde. I alle tilfælde steg vandprocenten i de yderste 40 cm af stakken markant under lagringen. I behandling 2 og 4 steg vandprocenten også i 100 cm dybde under lagringen, mens vandprocenten i 100 cm dybde faldt i Beh. 6, som kun lå i flisstak fra september til november.
Opgørelse i november
Når alle behandlinger gøres op i november kan slutproduktet sammenlignes. Der er tendens til, at behandlingerne, der indeholder lagring i flisstak har en højere vandprocent i november end behandlingerne, der indeholder lagring som 3-meter træ. Flere behandlinger ender med et resultat lige under 50 % vand i flisen i november. Det tørreste flis (46 % vand) fås ved Beh. 6, som er fældning i august, syrefældning til september og derefter lagring i flisstak fra september til november.

Foto 3: Poppelbevoksningen, hvor forsøget blev udført.

Formål
Det er formålet med undersøgelsen at finde og dokumentere velegnede hugst og lagringsmetoder, så hugst og lagring af poppel fører til den bedst mulige flis. Det sker ved at afprøve en række hugsttidspunkter og lagringsformer for til sidst at analysere den endelige vandprocent i flisen, når den typisk skal bruges i fyringssæsonen.

Det er et delformål at afprøve syrefældning, hvor træerne fældes med blade på, og ligger i skovbunden mens bladene fortsat transpirerer. Da vandoptaget er stoppet, vil fordampningen reducere træets samlede vandindhold. Det er en velkendt metode i skovdriften til at opnå en hurtig reduktion af vandindholdet i løvtrækævler.

Metode
Projektet indeholder forskellige hugsttidspunkter og en sammenligning af lagring som rundtræ i stak vs. syrefældning vs. direkte flisning. Desuden afprøves lagring som flis i stak. Forsøgsanlæg blev påbegyndt i februar 2015.

Forsøgsværkt
Esben Møller Madsen, Skåneskogens Utvecklings AB ved Trolleholm Gods i Skåne, Sverige.

Lokalitet
Rækkehugst af hver anden række i 2005, samt selektionshugst i 2010
Nuværende stamtal – ca. 500 pr. ha.

Forsøgsdesign

- 3 gentagelser, dvs. 3 blokke (A, B og C) med alle 6 behandlinger i hver (figur 1).
- Tilfældig fordeling af behandlingerne til de enkelte parceler indenfor hver blok.
- I alt 18 parceler (Nr. A1-A6, B7-B12 og C13-C18). – to rækker træer á 100 m.
- 10 træer udvises efter sædvanlige tyndingskriterier jævnt fordelt i hver parcel (som udgangspunkt hvert fjerde træ); i alt indgår 180 træer i forsøget.
- Hjørnetræerne i hvert af de fire parcelhjørner (start og sluttræer i hver af de to rækker, som indgår i parcelerne) er markeret med påsprøjtet orange markeringsspray. Træet i det syd-østligste hjørne er markeret med parcel nr. (fx A1), men ikke behandlingsnr.

Med hensyn til udvisningen af de 10 træer i hver parcel kan det tilføjes, at vi har undladt at udvise:
- Randtræer
- Træer, som ikke er en del af overetagen
- Træer og nabotræer til træer, som indgår i andre løbende undersøgelser i bevoksningen.
- Træer, som udpræget står i et hul, og som vil skabe et relativt stort hul i trækronerne, hvis de fjernes.

Behandlinger

8 behandlinger:

1. Vinterskovning (marts) – 3-m træ til stak – flisning (nov.).
2. Vinterskovning (marts) – flisning omgående.
3. Sommerskovning (aug.) – 3-m træ til stak – flisning (nov.).
5. Syrefældning (aug.) – 3-m træ til stak (sept.) – flisning (nov.).
6. Syrefældning (aug.) – flisning (sept.).
7. Sommerskovning (aug.) afbarkning – 3-m træ til stak – flisning (nov.) (foretaget udenfor blokforsøget).
Tidsforløb

Vinterfældning 6/3 2015
Vinterflisning 12/3 2015
Sommerfældning 12/8 2015
Sommerflisning 13/8 2015
Syrefældning 13/8 til 18/9 2015
Syreflisning 23/9 2015
Novemberfældning 23/11 2015
Flisning af alt 3-m rundtræstokke 30/11 2015

Flowbeskrivelse

- 3 skovningstidspunkter: marts, august og november
- Sommerskovningen omfatter dels omgående oparbejdning, dels syrefældning – dvs. træerne får lov at ligge ca. en mdr. med blade på efter skovning.
- Alle tre skovningsbehandlinger omfatter 2 forskellige oparbejdninger af effekter: 3-m træ og flis umiddelbart efter henholdsvis skovning og syrefældningsperiodens afslutning.
- Fra træer, som skal flises umiddelbart efter skovning, tages prøver under flisingen til bestemmelse af fugtigheden. Flisen aflægges herefter i bunker for hver behandling – dvs. flisen fra 3 parceller samles i én bunke (ca. 120 rm) på pladsen i nærheden af Trollehøm Kraft(værk) – for at opnå bunkestørrelser, der kan understøtte dynamikken, som den vil være i praktisk drift (praksisnært forsøg).
- 3-m træet lagres i fælles stak ved vej og stakken opbygges fortørende, i takt med udtag af 3-meter træ fra forsøgsparcellerne. Det er vigtigt, at stokkene fra de enkelte parceller – ca. 21 rm - holdes adskilte i stakken. Det sker med markering af parcelnummer i enden af stokkene.
- Stakken overdækkes med fiberdug.
- I de 3 behandlinger med aflægning af 3 m træ sker flisning i november. Hver parcel flises for sig og prøveudtagning af flis til fugtbestemmelse sker for hver parcel – men flisen lægges også her i fælles stak for hver behandling.
- Efter at alle 6 behandlinger er fliset i efteråret vil der ligge 6 flisbunker å ca. 120 rm (som udgangspunkt) ved Trollehøm Kraft. Dertil kommer de to ekstra flisbunker fra de to behandlinger (Beh. 7 og 8), som vi tilføjede undervejs i projektarbejdet, da vi skønnede de ville være relevante som en form for forundersøgelser (pilotforsøg).
Forventede mængder 3-m træ og flis
- Stammevolumen pr. træ: 1,5 m3 - 15 m3 pr. parcel – 45 m3 fastmasse pr. behandling.
- Volumen af 3 m stak (fastmasse 0,7): 21 rm pr. parcel – 63 rm stak pr behandling.
- Flismængde pr. træ: 4 rm - 40 rm pr. parcel – ca. 120 rm flis pr. behandling.

Forsøgsskitse

Figur 1: Hver parcel er 5 meter bred (to trærækker) og 100 meter lang. Parcelmærke i SØ hjørne af parcel.

Der udtages 10 træer fra hver parcel. Vælges som 5 træer i hver række, som udgangspunkt hvert 4. træ.
Prøvetagning

Af de fældede træer er der udtaget vedprøver hver 3. meter op til en diameter på ca. 10 cm. Prøverne er delt i radiale “lagkagestykker”, som dels er brugt hele (kaldet skive, idet prøven indeholder samme andele splint og kerne, som hele skiven), dels er delt i hhv. splint og kerne. Hver prøve er således analyseret som hel skive, splint og kerne. Alle prøver er afbarket. Der er målt diameter på hele skiven og på kernen.

Der er udtaget prøver af flis, dels ved udtagning direkte fra flishuggeren, dels ved udtagning fra flisstakke.

Fra flishuggeren er der udtaget tre prøver, som hver er samlet af 10 delprøver.

Fra flisstakkene er der udtaget 6 delprøver fra hver af dybderne 20, 40 og 100 cm. Delprøverne fra hver dybde er samlet til én prøve pr. dybde.

Foto 6: Udsavede skiver fra prøvetagningen på lagrede poppelstammer. Én prøve deles i splint og kerne og én prøves tørres hel.
Tørring
Både vedprøver og flisprøver er tørret ved 105 °C til konstant vægt.
Flisprøverne er tørre efter ca. et døgn, mens vedprøverne først er tørre efter 3-4 døgn afhængigt af størrelsen. Alle vandprocenter opgøres på basis af vådvægten. Vandprocenten beregnes som:

\[
\frac{(friskvægt - tørvægt) \times 100}{friskvægt}
\]

Foto 7: Poppelflis inden tørring

Massefylde
Massefylden er beregnet på basis af frisk volumen, bestemt ved nedsænkning af den friske prøve i vand. Derefter tørres prøven og tør-vægten måles.
Massefylden angives som tør vægt/frisk volumen med enheden (kg tørstof/m³).

Resultater
Massefylden (splint og kerne)
Massefylden er målt ved analyse af tre repræsentative træer fra hhv. parcel 4, 9 og 16. Træerne er fældet, og der er udtaget skiver hver 3. meter fra bund til top (defineret som ca. 10 cm Ø). Fra skiverne er der udtaget prøver af hhv. splint og kerne. Hver prøve er volumen-målt og derefter tørret og vejet.
Der er således en udvikling af massefylden som funktion af højden. Kernens massefylde falder med stigende højde. Generelt har kernen lavere massefylde end splinten.

Massefylde (heltræ)
Den gennemsnitlige massefylde på poppel er undersøgt på tre af træerne fra heltræsundersøgelsen i marts.

Resultatet omfatter den variation, der ses mellem splint og kerne og de højdemæssige forskellige.
Tabel 1: Massefylde som gennemsnit over hele træets højde. Enheden er tørvægt/vådvolumen (kg/m³). Tre træer indgår.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gennemsnit</td>
<td>295</td>
</tr>
<tr>
<td>Max.</td>
<td>328</td>
</tr>
<tr>
<td>Min.</td>
<td>261</td>
</tr>
<tr>
<td>Std. afv.</td>
<td>16</td>
</tr>
<tr>
<td>Antal</td>
<td>28</td>
</tr>
</tbody>
</table>

Træets vandinhold afhængig af hugsttidspunkt
Der er lavet analyse af vandinholdet i hhv. splint og kerne udtaget hvert 3. meter fra bunden til toppen af tre hele træer umiddelbart efter fældning i hhv. månederne marts, august og november.

Figur 3: Vandprocent i marts. Målt hver 3. meter - gennemsnit af prøver fra tre træer
Vandindholdet i kernen viser sig at være ret konstant over året og ligge relativt højt på mellem 60 og 65 %. Vandindholdet i splinten varierer en smule i løbet af året. I marts er splinten relativ våd (55 %) i den nederste del af splinten, mens den midterste del er relativ tør (42 %) og den øverste del lidt vådere (45 %). I august er vandindholdet relativt stabilt (45 %), men stiger dog på til 50 % i toppen af træet. I november er vandindholdet jævnt faldende med højden fra 55 % i bunden af træet til 47 % i toppen.
Vandindholdet i hele skiver er ligeledes målt på de tre træer i hver af månederne marts, august og november (figur 9).

![Vandindholdstrends](image1.png)

Figur 6: Vandindholdet på friskvægtsbasis i hele skiver som gennemsnit af tre træer fra hver af månederne marts, august og november.

Der ses et tydeligt fald i vandindholdet med stigende højde.

Månederne er ikke signifikant forskellige (Anova, F-Ratio: 1,9944; P: 0,1431)
Derfor kan de tre træer fra tre måneder vises som én kurve (figur 10).

![Vandindholdstrends](image2.png)

Figur 7: Vandindholdet i hele skiver målt hver 3. meter.

Det faldende vandindhold har en lineær sammenhæng med stigende højde.
Med en R^2 på 0,977 viser tendenslinien 97,7 % af variationen i datarækken.
På baggrund af ovenstående data og træernes afsmalning, kan det gennemsnitlige vandindhold for heltræ beregnes.

Seks heltræsundersøgelser indeholder målinger af skivenes diameter. Nedenstående figur er gennemsnit over alle målingerne.

Figur 8: Træernes ydre diameter (skive), og kernens diameter (kerne) målt hver 3. meter.

Skivenes diameter er jævnt aftagende med stigende højde. Der ses en svag fortynkning i højde 0, som er defineret lige over rodudløbende. Kernen har samme jævne afsmalning op gennem stammen. Kernens andel af skiven er derfor også jævnt aftagende.
Ud fra tværsnitsarealerne i tre meter intervaller og træernes vandindhold i den pågældende højde findes hele træets samlede gennemsnitlige vandindhold. Der er i gennemsnit 53 % vand i de popler, der indgår i projektet.

Lagring som stammer
Foto 11: Lagrede poppelstammer. Hver stamme markeret med parcelnummer

Behandling 1

Vinterfældning. Fældning i marts og lagring i stak frem til november.

![Graph showing water content in kerne, splint, and skive from fældning to flisning in November.](image)

Figur 9: Vandindholdet i hhv. kerne, splint og skive fra fældning til flisning i november.

Der ses en tørring fra marts til juni og en opfugtning fra juni til november.
Tabel 2: Statistisk oversigt over de samme data, som indgår i figuren her over. Tabellen indeholder Anova-testresultat, LSD-test hvor fælles bogstaver viser signifikante grupperinger, samt det gennemsnitlige vandindhold i den pågældende måned.

Behandling 1

<table>
<thead>
<tr>
<th>Kerne</th>
<th>F: 3,0514</th>
<th>P: 0,0426</th>
</tr>
</thead>
<tbody>
<tr>
<td>Måned</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>marts</td>
<td>august</td>
</tr>
<tr>
<td>Vandpct. (%)</td>
<td>60,4</td>
<td>56,2</td>
</tr>
<tr>
<td>Gruppe</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skive</th>
<th>F: 4,287</th>
<th>P: 0,0119</th>
</tr>
</thead>
<tbody>
<tr>
<td>Måned</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>marts</td>
<td>august</td>
</tr>
<tr>
<td>Vandpct. (%)</td>
<td>53,6</td>
<td>48</td>
</tr>
<tr>
<td>Gruppe</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Splint</th>
<th>F: 3,8349</th>
<th>P: 0,0188</th>
</tr>
</thead>
<tbody>
<tr>
<td>Måned</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>marts</td>
<td>august</td>
</tr>
<tr>
<td>Vandpct. (%)</td>
<td>47</td>
<td>45,1</td>
</tr>
<tr>
<td>Gruppe</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Der ses en statistisk signifikant udvikling over tid. For kerne og skiver gælder det, at veddet er vådest i marts efter fældning og signifikant tørrere i august og juni. For splinten gælder det, at vandindholdet er størst i november og signifikant lavere i august og juni.

Behandling 3

Sommerfældning. Fældning i august og lagring i stak frem til november.

Figur 10: Vandindholdet i hhv. kerne, splint og skive fra fældning til flisning i november.
Der ses en begrænset udvikling af veddets vandindhold fra august til november.

Tabell 3: Statistisk oversigt over de samme data, som indgår i figuren her over. Tabellen indeholder t-testresultat, samt det gennemsnitlige vandindhold i den pågældende måned. En P-værdi under 0,05 viser en signifikant forskel mellem månederne.

<table>
<thead>
<tr>
<th>Behandling 3</th>
<th>Kerne</th>
<th>Måned</th>
<th>Vandpct. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t: -1,6556</td>
<td>august</td>
<td>62,4</td>
</tr>
<tr>
<td></td>
<td>P: 0,1173</td>
<td>november</td>
<td>60,8</td>
</tr>
<tr>
<td>Skive</td>
<td>t: 2,4106</td>
<td>august</td>
<td>49,4</td>
</tr>
<tr>
<td></td>
<td>P: 0,0283</td>
<td>november</td>
<td>52,6</td>
</tr>
<tr>
<td>Splint</td>
<td>t: 1,1105</td>
<td>august</td>
<td>43,9</td>
</tr>
<tr>
<td></td>
<td>P: 0,2832</td>
<td>november</td>
<td>45,1</td>
</tr>
</tbody>
</table>

Der er signifikant forskel på vandindholdet i skiver i hhv. august og november. Der er ikke signifikant forskel på vandindholdet i hhv. kerne og splint.

Behandling 5

Fældning i august med efterfølgende syrefældning til september, hvorefter 3-m stammerne lagres i stak til flisningen i november.

Der sker en opfugtning af splinten og dermed skiven fra september til november.
Tabell 4: Statistisk oversigt over de samme data, som indgår i figuren her over. Tabellen indeholder t-testresultat, samt det gennemsnitlige vandindhold i den pågældende måned. En P-værdi under 0,05 viser en signifikant forskel mellem månederne.

Behandling 5

<table>
<thead>
<tr>
<th>Kerne</th>
<th>t: 0,2608</th>
<th>P: 0,7995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Måned</td>
<td>september</td>
<td>november</td>
</tr>
<tr>
<td>Vandpct. (%)</td>
<td>59,5</td>
<td>60,0</td>
</tr>
<tr>
<td>Skive</td>
<td>t: 3,3973</td>
<td>P: 0,0068</td>
</tr>
<tr>
<td>Måned</td>
<td>september</td>
<td>november</td>
</tr>
<tr>
<td>Vandpct. (%)</td>
<td>38,2</td>
<td>47,8</td>
</tr>
<tr>
<td>Splint</td>
<td>t: 2,4604</td>
<td>P: 0,0337</td>
</tr>
<tr>
<td>Måned</td>
<td>september</td>
<td>november</td>
</tr>
<tr>
<td>Vandpct. (%)</td>
<td>36,3</td>
<td>40,7</td>
</tr>
</tbody>
</table>

Opfugtningen af splint og skive er signifikant.

Behandling 7

Figuur 12: Vandindholdet i hhv. kerne, splint og skive fra fældning til flisning i november.

Resultaterne viser, at der ikke sker ændringer i fugtighed i løbet af lagringen.
Tabel 5: Statistisk oversigt over de samme data, som indgår i figuren her over. Tabellen indeholder t-testresultat, samt det gennemsnitlige vandindhold i den pågældende måned. En P-værdi under 0,05 viser en signifikant forskel mellem månederne.

Behandling 7

<table>
<thead>
<tr>
<th></th>
<th>t-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Måned</td>
<td>august</td>
<td>november</td>
</tr>
<tr>
<td>Vandpct. (%)</td>
<td>62,4</td>
<td>62</td>
</tr>
<tr>
<td>Skive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Måned</td>
<td>august</td>
<td>november</td>
</tr>
<tr>
<td>Vandpct. (%)</td>
<td>49,4</td>
<td>52,4</td>
</tr>
<tr>
<td>Splint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Måned</td>
<td>august</td>
<td>november</td>
</tr>
<tr>
<td>Vandpct. (%)</td>
<td>43,9</td>
<td>44,6</td>
</tr>
</tbody>
</table>

Der er ikke sket signifikante ændringer i lagringsperioden.

Behandling 3 og 7 er parallele mht. fældning og flisning. I behandling 3 lagres 3-meter træet med bark, mens 3-meter træet afbarkes før lagring i behandling 7. Ved sammenligning af resultaterne kan afbarkningen evalueres. Der er ingen signifikant udvikling under lagring i behandling 7, mens der er signifikant mere vand i skiverne i behandling 3.

Den oprindelige hypotese var, at afbarkning vil øge fordampningen, men denne effekt ses ikke.

Foto 12: Oplægning af 3-meter-stammer i stak.
Syrefældning

Syrefældningen skete ved at fælde træer i august og lade dem ligge i skovbunden med blade på. Bladenes transpiration forventes at trække vand ud af stammen.

![Syrefældning](image)

Figur 13: Sammenligning af vandindholdet i hhv. kerne, skive og splint før og efter syrefældning. Der er statistisk signifikant forskel på vandindholdet før og efter syrefældningen i både skive og splint hhv., dette er markeret med *.

Syrefældningen har således en tydelig effekt på vandindholdet i splinten og dermed også på skivernes samlede vandindhold. I skiverne falder vandindholdet fra 49 % til 38 %, altså et fald på 22 %.

Tabel 6: Statistiske resultater ved sammenligning af 9 prøver af hver type. P-værdier under 0,05 viser signifikante forskelle.

<table>
<thead>
<tr>
<th></th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerne</td>
<td>-0,8354</td>
<td>0,418</td>
</tr>
<tr>
<td>Skive</td>
<td>-3,3992</td>
<td>0,0045</td>
</tr>
<tr>
<td>Splint</td>
<td>-3,4706</td>
<td>0,0033</td>
</tr>
</tbody>
</table>

Der er således signifikant mindre vandindhold i hhv. splint og hele skiver efter syrefældning. Kernen viser også et svagt reduceret vandindhold, men denne forskel er ikke signifikant.

Flis

Der er produceret flis efter hver fældning dvs. i marts (Beh. 2), august (Beh. 4) og november (Beh. 8), og efter syrefældningen (Beh. 6). De stammer, der har været lagret, blev flishugget i november (sammen med nov. fældningen).

Flis af friske træer

Der er udtaget tre repræsentative prøver ved hver flisning. Nedenstående figur viser vandprocenten i flis, der er hugget af træ uden forudgående lagring.

![Vandprocent i flis efter fældning](image)

Den statistiske sammenligning af resultaterne viser, at der ikke er signifikant forskel på nogle af behandlingerne. (Anova. F-ratio: 1,6162, P: 0,2337)

Flis af lagrede stammer

D. 30/11 2015 blev alle lagrede stammer fliset. Der blev udtaget tre repræsentative prøver af hver flistype.

De lagrede stammer er lagret fra fældning i marts (Beh. 1), fældning i august (behandling 3), efter syrefældning i september (Beh. 5) og efter afbarkning i august (Beh. 7).

Foto 14: Poppelstammer flises. Der udtages løbende prøver af flisen.

Den statistiske sammenligning af resultaterne viser, at der ikke er signifikant forskel på nogle af behandlingerne. (Anova. F-ratio: 0,9405; P: 0,4651)

Tendensen er dog, at Beh. 5 (flisning af stammer, der er lagret fra syrefældning til november) giver det tørreste flis.

Foto 15: Lys, tør flis yderst og mørk, fugtig flis inderst i stakken.

Sammenligning af flis fra alle behandlinger

Når alle behandlinger sammenlignes er der heller ikke statistiske forskelle i vandprocenten (Anova. F-ratio: 1,9806; P:0,1067).

En LSDtest, der bygger på en t-test mellem hver behandling, giver dog en gruppering af behandlingerne.

Tabel 7: LSDtest opdeler data i grupper. Fælles bogstav indikerer fælles gruppe.

<table>
<thead>
<tr>
<th>Behandling</th>
<th>8</th>
<th>2</th>
<th>7</th>
<th>4</th>
<th>6</th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signifikante grupper</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Gns. vandpct. (%)</td>
<td>55,7</td>
<td>53,8</td>
<td>51,5</td>
<td>50,1</td>
<td>49,6</td>
<td>49,1</td>
<td>48,8</td>
<td>47,8</td>
</tr>
</tbody>
</table>

Resultatet af LSDtesten viser, at der ikke er en behandling, der skiller sig tydeligt ud fra de andre. Det er dog signifikant, at Beh. 8 (novemberfældning)
giver vådere flis end Beh. 1, 3 og 5, og at Beh. 5 (syrefældning og lagring fra september til november) giver tørrere flis end Beh. 8 og 2.

Lagring af flis

Det flis, der er hugget før november, er lagt i stakke. Hver behandling er lagt for sig.

Der er udtaget prøver af flisen i hhv. 20, 40 og 100 cm dybde i stakkene.

![Figur 16: Flis fra Beh. 2. Fældet og fliset i marts. Opbevaret i stak fra marts til november. Prøver udtaget i hhv. 20, 40 og 100 cm dybde i stakken.](image)

For Beh. 2 ses en hurtig stigning af vandprocenten i de øverste centimeter og en lidt mindre markant stigning i de dybere dele af stakken. I november, efter 8 måneders lagring, er både prøver fra 20 cm og fra 40 cm dybde opfugtet til en vandprocent på 70 %. Fra marts til november sker der også en opfugtning af de indre dele af stakken fra under 55 % vand til over 65 % vand.

Flisen fra Beh. 4 er hugget i august lige efter fældning og lagret i stak frem til november. Flistakkens vandprocent er målt en uge efter flisning og sidst i november.
Figur 17: Flis fra Beh. 4. Fliset efter fældning i august og lagret som flis frem til november. Der er målt vandprocent i hhv. 20, 40 og 100 cm dybde i stakken.

Der ses, at der sker en kraftig stigning i vandprocenten i både 20 og 40 cm dybde fra august til november. Der er også en stigning i 100 cm dybde, dog kun fra ca. 50 % til ca. 57 %.

Flisen fra Beh. 6 er hugget efter endt syrefældning i september og har ligget i flisstak frem til november.

Figur 18: Flis fra Beh. 6. Fliset efter endt syrefældning i september og lagret som flis frem til november. Der er målt vandprocent i hhv. 20, 40 og 100 cm dybde i stakken.

Flisen i de yderste 40 cm er kraftigt opfugtet efter lagringen, men som det eneste tilfælde er flisen i 100 cm dybde blevet mere tørt under lagring.
Sammenligning af al flis i november
Da slutresultatet i november er relevant i forhold til fyringssæsonen, så er alle flispartierne gjort op d. 30/11 2015.

Tabel 8: Alle flispartier opgjort d. 30/11-15 efter lagring enten som stammer eller i flisstak. For flisstakkene er vandprocenten i 100 cm dybde anvendt.

<table>
<thead>
<tr>
<th>Behandling</th>
<th>Fældet</th>
<th>Lagret</th>
<th>Vandpct. i flis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marts</td>
<td>stammer</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>Marts</td>
<td>flis</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>Aug.</td>
<td>stammer</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>Aug.</td>
<td>flis</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>Aug.</td>
<td>syrefældet, stammer</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>Aug.</td>
<td>syrefældet, flis</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>Aug.</td>
<td>afbarkede stammer</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>Nov.</td>
<td>ingen</td>
<td>56</td>
</tr>
</tbody>
</table>

Der er således produceret flis med et vandprocenter fra 46 % til 65 % pr. 30/11.

Der er klar tendens til at partier, der er lagret i længere tid som flis er vådere (65 % og 57 %) end den tilsvarende lagring som stammer (49 % og 49 %). Efter endt syrefældning i september, er det underordnet om stammerne lagres i stak eller flises, begge giver relativt tørt flis (48 % og 46 %).
Det tørreste flis til rådighed pr 30/11 indeholder 46 % vand og er fra Beh. 6, hvor træerne er fældet i august, syrefældet til september, og så fliset og opbevaret som flis til november.

Foto 17: Poppel lagret som stammer til november måned.

Konklusion

Den overordnede konklusion er, at ingen af de 8 behandlinger afviger betydeligt fra resten. Slutresultatet er flisen, der er til rådighed i november, og som viser en vandprocent mellem 46 og 57 %.

Behandlingerne, som giver den vådeste flis er hhv. Beh. 2 (som har lang tids lagret i flisstak fra marts til november) og Beh. 8 (november skovning og direkte flisning). Den tørreste flis fås i Beh.6 (Syrefældet og fliset) og Beh. 5 (Syrefældet og lagret som stammer frem til november).

Da vandindholdet er betydeligt højere i kernen end i splinten, vil det samlede vandindhold stige med stigende træalder, idet kerneandelen stiger med alderen.

Der er generelt ikke sket tørring under lagring som 3-m træ. Ikke engang afbarket 3-m træ tørre fra august til november.

Der er generelt sket en stigning i vandprocenten under lagring i flisstak. Der er ikke fundet tegn på varmeudvikling i stakkene.

Der er samme vandindhold i træerne året rundt, så fældningstidspunktet er ikke afgørende for flisens vandprocent.

Syrefældning ses at reducere vandindholdet i splinten og dermed reducere træets samlede vandindhold. Effekten er signifikant. Flisning umiddelbart efter syrefældning er da også undersøgelsens tørreste flis.
Almindelig blandet skovflis har som tommelfingerregel en vandprocent på 42 % i gennemsnit over året. I forhold til det, så resulterer alle forsøgsbehandlingerne i en relativ våd poppelflis. Syrefældningen viser dog et vist potentielle til at kunne reducere vandindholdet til et acceptabelt niveau for moderne varmeværker.

Foto 18: Fældning af poppel er en hurtig proces pga. træernes ensartethed

Diskussion

Design
Lokaliteten vurderes at være ideel til forsøget. Det anvendte areal er homogent og bevoksningen er homogen.

Træerne har en størrelse, der forholdsvis sjældent ses i Danmark. Det er derfor yderst positivt for projektet, at få mulighed for at arbejde i Skåne. Det må forventes, at det også bliver dansk praksis at lade poplerne blive ældre inden skovning, da poplerne skal opnå denne alder (ca. 25 år) for at yde maksimal gennemsnitlig produktion – skoves de tidligere bliver den gennemsnitlige årlige produktion på poplerne lavere.

Resultater
Det er øjnufaldende, at kernen adskiller sig fra splinten ved et langt højere vandindhold. Deraf følger, at større træer med større kerneandel vil have et
større vandindhold. Denne sammenhæng er uheldig i forhold til hugst at større træer, hvor poplernes vækstpotentiale udnyttes bedre.

Dansk blandet skovflis produceret af for-tørrede træer har typisk et vandindhold på 42%.

Vandindholdet i frisk poppelflis er generelt højere end i blandet skovflis. Europæiske undersøgelser af forskellige poppelkloner har vist et vandindhold på 50 til 60% (Tabel 9). Vandindholdet varierer mellem kloner, men kan for hver enkelt klon også variere betydeligt mellem lokaliteter1. Bemærk, at træalderen varierer mellem undersøgelserne. Træalderen og dermed kerneandelen er væsentlig for resultatet, idet kernen har et højere vandindhold end splinten.

Vandprocenten for frisk flis (Beh. 2, 4 og 8) lå i denne undersøgelse mellem 50 og 56%, hvilket er sammenligneligt med poppelflis i de europæiske undersøgelser.

Tabel 9: Oversigt over studier af vandindhold (%) (± standartafvigelse) i frisk poppelflis fra forskellige hybrider/kloner, steder og træalder. SRC står for short rotation coppice.

<table>
<thead>
<tr>
<th>Hybrid/klon</th>
<th>Sted</th>
<th>Træalder (år)</th>
<th>Flistype:</th>
<th>Vandindhold (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populus x canadensis M.</td>
<td>Italien</td>
<td>15</td>
<td>Stamme Krone</td>
<td>47.7 (± 2.7)</td>
<td>1</td>
</tr>
<tr>
<td>AF2</td>
<td>Italien</td>
<td>2-4</td>
<td>SRC</td>
<td>54.2 (± 1.5)</td>
<td>2</td>
</tr>
<tr>
<td>Populus nigra x P.maximowiczii</td>
<td>Tyskland</td>
<td>4</td>
<td>Fin Grov</td>
<td>59.9 (±0.7)</td>
<td>3</td>
</tr>
<tr>
<td>MAX 1,3,4</td>
<td></td>
<td>5</td>
<td></td>
<td>58.5 (±1.0)</td>
<td></td>
</tr>
<tr>
<td>AF8, A5, H275, MAX 1, MAX 3, OP42</td>
<td>Danmark</td>
<td>3</td>
<td>SRC Gns.</td>
<td>55</td>
<td>4</td>
</tr>
</tbody>
</table>

Poppel har en lav massefylde i forhold til andre løvtræer. Poppels massefylde svarer til gran – se nedenstående figur med tal fra Dansk Skovforening (Fig. 19). Poplerne i denne undersøgelse havde en gennemsnitlig massefylde på 295 kg/m³, og dette er lavt sammenlignet med den generelle poppel tabelværdi på omkring 360 kg/m³. Den særligt lav massefylde kan skyldes, at poplerne på

forsøgsarealerne har haft en hurtig vækst. Det er typisk for løvtræer, at høj vækst fører til en lav massefylde.

Taeroe et al. (2016) fandt i en undersøgelse af poppelkronen OP42 i det sydlige Skandinavien en massefylde for stammetræ på 400 kg/m³ for små trær og 355 kg/m³ for trær på omkring 20 m.² Generelt faldt den gennemsnitlige stammemassemassfylde med stigende DBH (diameter i brysthøjde). Denne sammenhæng synes at være gældende for store trær på næringsrige jorde.

![Figur 19: Massefylde (kg tørvægt pr. m³) for et udvalg af træarter. Kilde: Skovforeningen.dk.](image)

Syrefældningen blev foretaget, så trærne lå mellem rækkerne af stående trær og placeret, så kronerne kun i begrænsset omfang lå oven på hinanden.

Det vil sige, at syrefældningen skete i læ og skygge. Det er ikke utænkeligt, at en mere åben placering af de fældede træer ville have givet en øget udtørring.

Det generelle indtryk er, at flisstakkene optager vand i alle dybder. Dette resultat afviger fra forventningen om, at fliisoptager vand i alle dybder. Det er ikke utænkeligt, at en mere åben placering af de fældede træer ville have givet en øget udtørring.

Det generelle indtryk er, at flisstakkene optager vand i alle dybder. Dette resultat afviger fra forventningen om, at fliisoptager vand i alle dybder. Det er ikke utænkeligt, at en mere åben placering af de fældede træer ville have givet en øget udtørring.

Det generelle indtryk er, at flisstakkene optager vand i alle dybder. Dette resultat afviger fra forventningen om, at fliisoptager vand i alle dybder. Det er ikke utænkeligt, at en mere åben placering af de fældede træer ville have givet en øget udtørring.

Anbefaling til praksis
Det er underordnet, hvornår på året poplerne fældes.

Syrefældning reducerer træernes vandindhold. Det må vurderes lokalt, om det ekstra arbejde i forbindelse med syrefældningen honoreres tilstrækkeligt ved en mindre reduktion i fliisens vandprocent. Umiddelbart overstiger ulempen gevinsten.

Afbarkning fører ikke til tørring af 3-meter træ i overdækket stak.

Poppelflis bør ikke opbevares i stak. Det er muligt at større stakke og blanding med andre flister kan vise andre egenskaber. I undersøgelsen fandt vi kun kolde og våde stakke.

Det samlede billede er, at poppelflis er let (ca. 300 kg pr m³) og vådt (46-65 % vand). Afsætning af poppelflis vil kræve særlige aftaler med køberen, som formodes at være et fliisfyret varmeværk. Ved afregning efter nedre brændværdi, vil prisen være relativ lav pr ton tørstof.

Undersøgelsen er udført med 24-årige OP42 popler med en højde på godt 30 m og stamme diameter 10 cm i ca. 27 m's højde. Kernen har et betydeligt højere vandindhold end splinten. Da kerneandelen stiger med alderen, må det formodes, at det samlede vandindhold vil være mindre i yngre popler.
Foto 19: Flislagring under halvtag er ikke belyst i dette projekt.