Undervisning og læring i STEM

Nielsen, Jan Alexis; Waadegaard, Nina Holst; Dolin, Jens; Bruun, Jesper

Published in:
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Publication date:
2017

Document version
Også kaldet Forlagets PDF

Citation for published version (APA):
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Institut for Naturfagenes Didaktik, Københavns Universitet
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

2017, Institut for Naturfagenes Didaktik, Københavns Universitet

Redigeret af Jan Alexis Nielsen

Indholdsfortegnelse

RESUME ... 3
INDLEDNING .. 12
Opgivebeskrivelse og afgrensning ... 12
Reviewspørgsmål .. 13
Begrebsafklaring .. 15
Tilgang og metode ... 15
Læsevejledning .. 18

1. UNDervISNING OG LÆRING I STEM ... 19

Jan Alexis Nielsen, Nina Waaddegaard, Jens Dolin & Jesper Bruun

1.1. Resume af litteraturstudiets genstandsfelt 1 ... 19
1.2. Viden om elevers læring inden for de naturfaglige-/videnskabelige områder 21
1.2.1. Relevans og anvendelsesorientering som drivkraft for læring 23
1.2.2. Læring om naturforhold på dagtilbudsområdet ... 25
1.2.3. Læring i naturfag på erhvervsuddannelsesområdet .. 26
1.3. Viden om kvalitet i undervisning og om forskellige undervisningsformer 27
1.3.1. Generel viden om kvalitet i og omkring undervisning .. 27
1.3.2. Undersøgelsesbaseret undervisning (UBNU) ... 28
1.3.3. Praktisk arbejde: eksperimentelt arbejde og laboratorieøvelser 29
1.3.4. Tværfaglighed .. 31
1.3.5. Læring i uformelle miljøer ... 33
1.4. Viden om undervisning mod specifikke mål/kompetencer ... 34
1.4.1. Baggrund: kompetenceorientering .. 34
1.4.2. Scientific Literacy og naturfaglig dannelse ... 35
1.4.3. Sociovidskabelige problemstillinger ... 38
1.4.4. Teknologi-, engineering- og designundervisning (TED) 39
1.4.5. Innovationskompetence ... 43
1.5. Viden om evaluering af og for læring .. 45
1.5.1. Viden om evalueringsspraksis .. 46
1.5.2. Internationale storskalaevalueringer (PISA og TIMMS) ... 48

2. KOMPETENCEUDVIKLING FOR UNDervISERE/PÆDAGOGISK PERSONALE .. 50

Birgitte Lund Nielsen & Keld Nielsen

2.1. Resume af litteraturstudiets genstandsfelt 2 ... 50
2.2. Viden om STEM-læreres PCK og pædagogiske/fagdidaktiske kompetencer 52
2.2.1. PCK som område- eller emnespecifik? ... 53
2.2.2. Hvordan udvikles læreres PCK? .. 53
2.2.3. Fremadrettet: forskning i læreres udvikling af PCK og forandringer i praksis 54
2.3. Viden om design af læringsaktiviteter for STEM-læreere .. 55
2.3.1. Indhold i læreruddannelse .. 56
2.3.2. Komparative undersøgelser af læreruddannelse .. 56
2.3.3. Transition og induktion: de første år som STEM-lærer ... 57
2.3.4. Fremadrettet: forskningsbaseret læreruddannelse ... 58
2.4. Viden om efter- og videreuddannelse ift. design af læringsaktiviteter 58
2.4.1. Eksempler på design af CPD fra de nordiske lande ... 59
2.4.2. Udfordringer i forbindelse med CPD ... 60
2.4.3. Fremadrettet.. 60

2.5. Viden om fagligt og fagdidaktisk indhold i læringsaktiviteter for lærere ... 61
 2.5.1. Særligt for naturfagslærere .. 61
 2.5.2. Særligt for matematiklærere ... 63
 2.5.3. STEM-indhold og faglig integrering – med fokus på teknologi og engineering .. 64
 2.5.4. Computing og informatik .. 65
 2.5.5. IKT som hjælpemiddel og som genstand for professionelle udviklingsaktiviteter .. 67

2.6. Viden om lærersamarbejde og læringsfællesskaber ... 68
 2.6.1. Anden dokumentation af effekt af læreres kollektivitet .. 68
 2.6.2. Nogle udfordringer og muligheder .. 69

2.7. Viden om betydningen af STEM-læreres grundlæggende overbevisninger .. 70
 2.7.1. Sammenhæng mellem beliefs og praksis .. 71
 2.7.2. Læreres fagligt orienterede identitet .. 72
 2.7.3. Fremadrettet – sammenhæng mellem overbevisninger og praksis 72

3. ELEVERS MOTIVATION OG INTERESSE FOR STEM ... 73

Morten Rask Petersen

3.1. Resume af litteraturstudiets genstandsfelt 3 ... 73
3.2. Indledning ... 74
3.3. Viden om motivation og interesse: et overblik over genstandsfeltet ... 74
3.4. Viden om motivation og interesse for naturfag/-videnskab ... 77
 3.4.1. Viden om motivation og interesse for naturforhold i dagtilbud 77
 3.4.2. Viden om motivation og interesse for naturfag i grundskolen ... 78
 3.4.3. Viden om motivation og interesse for naturvidenskab på ungdomsuddannelsesniveau 80
3.5. Viden om motivation og interesse i matematik ... 81

4. PERSONALISERING I STEM ... 83

Helle Mathiasen

4.1. Resume af litteraturstudiets genstandsfelt 4 ... 83
4.2. Indledning ... 84
4.3. Viden om personalisering: en begrebslig oversigt ... 85
4.4. Viden om it, STEM og personalisering ... 87
 4.4.1. Viden om it, STEM og personalisering i dagtilbud ... 87
 4.4.2. Viden om it, STEM og personalisering i grundskolen .. 88
 4.4.3. Viden om it, STEM og personalisering på de gymnasiale uddannelser 89
 4.4.4. Viden om it, STEM og personalisering på erhvervsväddannelsenerne 90
4.5. Viden om kon, kultur, interesse og personalisering .. 90
 4.5.1. Viden om identitet ... 92
 4.5.2. Viden om interesse i forhold til kon og kultur .. 93
 4.5.3. Viden om undervisningsorganisering/-formen og personalisering 95
 4.5.4. Viden om kultur ... 96
 4.5.5. Viden om talent .. 97

REFERENCER .. 99
Resume

Formålet med dette litteraturstudium er at bidrage til et vidensgrundlag for arbejdet med en national naturvidenskabsstrategi. Litteraturstudiet dækker pædagogisk/didaktisk forskning inden for STEM-området (Science, Technology, Engineering, Mathematics) med fokus på de naturfaglige/-videnskabelige fagområder i dagtilbud og uddannelsessystemet.

I litteraturstudiet samles, analyseres og syntetiseres erfaringer om indsatser, metoder og strategier, der...

1. ... styrker STEM-undervisningen med henblik på elevers læring
2. ... udvikler pædagogiske/didaktiske kompetencer hos STEM-undervisere og pædagoger
3. ... udvikler elevers motivation og interesse for STEM
4. ... styrker personalisering i undervisning – ved at understøtte forskellige børne- og elevgrupper.

Datagrundlaget for litteraturstudiet er primært enkeltstående nordiske forskningsbidrag (med fokus på empirisk forskning) og engelsksprogede meta-reviews, forskningssynteser og forskningskortlægninger.

I det nedenstående præsenteres en syntese af den forskningsbaserede viden inden for de fire ovenstående genstandsfeltet. I syntesen fremsættes løbende anbefalinger til målsætninger på området, og der udpeges potentielle strategier til at opnå disse målsætninger, såfremt der er forskningsmæssigt belæg for disse strategier. I slutningen af resumeet angives det, hvilke områder der endnu ikke er dækket godt nok af den eksisterende forskning.

Syntese af forskningen

Elevers læring i STEM: deltagelse i praksisser om meningsfulde problemstillinger

Det er derfor helt centralt, at uddannelsen af STEM-lærere og deres fortsatte professionelle udvikling har fokus på at udvikle deres refleksive arbejde med fx undersøgelsesbaseret naturfagsundervisning og understøttelsen af kommunikation og dialog i klasserummet.
Kompetenceorientering: en meningsfuld rammesætning med udfordringer

Kompetenceorienteret STEM-undervisning samt undervisning, der fremmer scientific literacy og naturvidenskabelig almendannelse, har en stor styrke ved at fokusere på anvendeligheden af det lærte i forskellige situationer, men det er vanskeligt at operationalisere i den daglige undervisning, der ofte er delt op i mindre enheder, og hvor situationen for det meste er klasserummet. Det kræver derfor et stort arbejde for lærerne at lære at arbejde med det, og det kræver også ændrede rammer og evalueringsformer for at forløse begrebet potentielle. Her kan samarbejde med uformelle miljøer og det omgivende samfund og evalueringsformer, der gør det muligt at inddrage erfaringer herfra, være nyttige veje fremad.

Det faglige indhold er vigtigt på STEM-området. Der kan med fordel arbejdes på at udvikle materialer og metoder til STEM-undervisning, der tager afsæt i centrale, aktuelle problemer såsom bæredygtighed. Det er derfor generelt nødvendigt indholdsmæssigt at lægge mere vægt på dybde på bekostning af bredde. Wagensheins eksemplariske princip\(^1\) kan være en inspiration ligesom det amerikanske Project 2061 med mottoet 'Less is more'\(^2\) og det internationale projekt 'Big Ideas of Science Education'\(^3\).

Evaluering af og for læring: en mulig løftestang for ændring

Evaluering spiller en særlig og helt afgørende rolle for elevers læringsudbytte – frems for alt er det en bærende drivkraft for læring, at eleven løbende får formativ feedback med høj kvalitet. Med den nøglerolle, som evaluering spiller i et uddannelsessystem, er det oplagt, at ændringer og indsatser bedst understøttes og primært tilvejebringes igennem ændringer i evalueringspraksis.

Der er en række udfordringer forbundet med den eksisterende evalueringspraksis i STEM-fagene – nationalt som i mange andre lande – herunder at den samfundsmæssige og især politiske værdisætning af summative evalueringsdata om elevpræstationer sjældent stemmer overens med gyldigheden af disse data. Det er med andre ord veldokumenteret, at det, der måles til eksaminer i STEM-fagene, ikke korresponderer med de opsatte læringsmål. Der skal helt generelt etableres en klarere sammenhæng mellem læringsmål og evalueringsformer, således at evalueringerne er valide udtryk for elevernes beherskelse af læringsmålne. Overordnet set bør der arbejdes på to områder: Der skal være mere vægt på formativ brug af evaluering og på brugen af forskellige feedbackformer

\(^3\) Harlen, W. (Red.) (2010). *Principles and big ideas of science education*. Hatfield, UK: Association for Science Education.
for at øge læringsudbyttet af undervisningen. Dette forudsætter, at lærere uddannes til at arbejde med læringsprogression og feedbackformer. Den summative brug af evalueringsformeanlæg skal udvikles, så evalueringsformerne i højere grad er i stand til at indfange såvel faglige som generiske kompetencer. Desuden skal der mere fokus på, hvorledes man kan mindske de uhensigtsmæssige effekter af den øgede vægt på karakterer.

Internationale storskalATESTS som PISA og TIMMS giver en række nyttige oplysninger på et meget generelt niveau, men på grund af deres generalitet er de vanskelige at bruge som rettesnor for ændringer i den undervisningsmæssige praksis. Forskning viser desuden, at de kun evaluerer en del af de danske læringsmål i STEM. Derfor kan resultater fra disse tests ikke stå alene som baggrund for uddannelsesmæssige beslutninger.

Dygtige undervisere gør forskellen

Selvuddannede lærere er den afgørende faktor for udvikling og nytænkning af undervisning. Fremtidige læreres kompetenceudvikling under uddannelsen bør støttes, ved at de lærerstuderende deltager i aktiviteter koblet til undervisningspraksis. Men der er tydelige indikationer på, at det er vigtigt, at der i læreruddannelsen arbejdes systematisk med undersøgelse af professionens praksis. I forhold til uddannelse af STEM-lærere viser nordisk forskning, at uddannelsen især bør inkludere praksiserfaring og refleksion over denne – med fokus på elevers forståelse af de faglige begreber.

Da det er afgørende at undervisere løbende udvikler deres pædagogiske/didaktiske kompetencer, er det et væsentligt problem, at Danmark ligger betragteligt under OECD’s gennemsnit med hensyn til lærertid brugt på (og udbredelsen af) læreres fortsatte professionelle udvikling. Læreres fortsatte professionelle udvikling kan føre til ændret undervisningspraksis, givet at udviklingspraksis er udfordret af, at der ofte er manglende institutionel støtte og forankring, samt at lærere mangler tid og ressourcer til at udføre opgaver i forbindelse med programmat CPD.

Det er et væsentligt problem, at danske udviklingsprojekter meget sjældent sigter på varige effekter, går i stå undervejs og/eller ofte løber ud i sandet, og at de ikke evalueres i passende grad. Styrkelse af STEM-læreres løbende kompetenceudvikling og deres fortsatte professionelle udvikling bør være et nøgleindsatsområde.

En farbar vej til at styrke dette område er ved at understøtte udviklingen af professionelle læringsfællesskaber. Disse har kapacitet til at fremme og understøtte læring hos alle professionelle på institutionen med det formål at fremme børnenes/elevernes læring. Udvikling af professionelle
læringsfællesskaber understøttes bedst gennem en overordnet organisatorisk og politisk forankring og koordinering (fx i kommunalt regi).

Relevans og anvendelsesorientering af STEM: flere veje, samme mål

STEM-undervisningens kvalitet bør måles på dens evne til at gøre eleverne i stand til at generere og anvende STEM-faglig viden og deltagte i STEM-praksisser og diskussioner. Der er en række indirekte mål på undervisning, der fremmer dette, men direkte mål kræver udvikling af valide evalueringsformer både tilknyttet undervisningen og efterfølgende studie- eller erhvervspraksis.

STEM-undervisningen kan med fordel fokusere på relevans og anvendelse på en række forskellige måder:

- **Undersøgelsesbaseret undervisning**, hvor eleverne undersøger og kritisk forholder sig til fagligt relevante forhold, kan virke motiverende for elever og kan udvikle en række centrale kompetencer, såsom innovationskompetence og kreativitet, uden at det sker på bekostning af deres begrebsmæssige faglige forståelse. Danske elever oplever forholdsvist ofte undersøgelsesbaseret undervisning, og danske lærere er generelt positive over for undersøgelsesbaseret undervisning. Der bør dog fortsat arbejdes på at implementere undersøgende elementer i STEM-undervisningen. Det er en udfordring, at undersøgende elementer ofte har en kunstig kobling til resten af den faglige undervisning, og det kan være tidskrævende at indføre en undervisningspraksis med undersøgelsesbaseret undervisning. Det er et markant problem, at de kompetencer, der aktiviseres i undersøgelsesbaseret undervisning, sjældent indgår i vurderingen i eksaminer.

- **STEM-undervisning, der tager afsæt i samfundsømæssige problemstilling, der relaterer sig til STEM-området**, er en central måde at operationalisere scientific literacy og naturvidenskabelig almendannelse og bringe STEM-fagene i anvendelse. Men STEM-lærere skal støttes i at designe sådanne aktiviteter, så de kompetencemæssige potentialer uddybes. Frem for alt er der et generelt behov for udvikling af STEM-læreres kompetencer til at stilladsere elevers diskussioner af samfundsømæssige problemstilling i undervisningen. Derudover skal rammerne for undervisningen, herunder evalueringspraksis, tilpasses på en måde, der bedre understøtter, at elever i undervisningen bruger STEM-fag til at tematisere væsentlige samfundshold.

- **Praktisk arbejde og laboratorieøvelser** har potentielle til at aktivere elever til at anvende STEM-fag – fx er der et stort potentielle i at kombinere fysisk praktisk arbejde med virtuelle eksperimenter. Desværre er formålene med det praktiske arbejde ofte uklare. Der skal opstilles klare mål og udvikles evalueringsskriver og tilsvarende evalueringsskriver, som sikrer det praktiske arbejde en plads i STEM-undervisningen.

- **Tværfaglig undervisning og fagintegration** ser ud til at have et potentielle både motivationsmæssigt, læringsmæssigt og dannessemæssigt. STEM-fagernes isolation bør
brydes ved at udvikle didaktikker, som forankrer fagene i tværfaglige sammenhænge. Det er en stor udfordring, at læreder mangler viden og kompetencer (PCK) i relation til fagintegration, og at lærederne er uafklarede på området, bl.a. fordi læreuddannelsen ikke ruster lærederne til denne form for undervisning. Det kan overvejes, om fagene på de lavere niveauer i uddannelsessystemet skal integreres til et science-fag.

- Inddragelsen af *uformelle læringsmiljøer* kan virke motiverende og interesseskabende, men såvel det umiddelbare faglige udbytte som de lærlingsmæssige langtidseffekter er usikre og svært målbare.

- Inddragelsen af *teknologi, engineering og design* i den naturfaglige/-videnskabelige/matematiske undervisning har et interesse- og læringsskabende potentiale. Det samme gælder *innovationsfremmende undervisning*, hvor elever kan anvende STEM-faglighed på virkelighedsnære problemstillinger. Det er en udfordring, at teknologi, engineering og design stadig er relativt uklare områder, og at læreder derfor ofte relativt frit oversætter begreberne til eksisterende aspekter i deres praksis. Både i Danmark og internationalt er innovationskompetence som læringsskabende potentiale.

Elevers interesse for STEM: ikke kun et spørgsmål om undervisning

Små børns nysgerrighed over for naturen er overordentligt stor. Det kan dog være en udfordring på dagtilbudsområdet at omsætte nysgerrigheden til læring. Generelt kan bestemte undervisningsformer være med til at styrke interesse og motivation hos elever (se ovenfor); og der er et potentielle for at udvikle og formulere fagbekendtgørelser og læreplaner på en måde, der relaterer sig til værdier, som ligger i ungdomskulturen, for på den måde bedre at understøtte styrkelsen af børn og unges interesse.

Der har været et massivt politisk fokus på øget optag på videregående STEM-uddannelser; og dette har i noget omfang haft en effekt.4 Men de unges uddannelsesvej synes svær på grund af unges ungdomssuudannelsesiveau. Det er ikke nødvendigvis konstruktivt at betragte valgmønstre som et 'leaking pipeline'-problem – der er unge, der på et tidspunkt 'vender tilbage’ til STEM-fagene, men der er ikke umiddelbart evidens for, at arbejdet på at øge interesse og motivation på ungdomssuudannelser kan lede til STEM-karrierevalg. Der er væsentlige relationer mellem interesse for STEM og aktiviteter uden for klasserummet – herunder i høj grad STEM-relaterede hobbyer osv. Der mangler dog mere specifik viden om de nærmere betingelser og årsagssammenhængen for disse relationer. På trods af et stort fokus på specielt overgangen mellem grundskole og ungdomssuudannelse samt overgangen fra ungdomssuudannelse til videregående uddannelse oplever

Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

eleverne stadig, at der er et meget stort spring i disse overgange, både i forhold til fagligt niveau og undervisningskulturer.

På baggrund af litteraturstudiet anbefales det, at unges søgning til STEM-fag på videregående uddannelser skal tilgås fra et perspektiv, som lægger vægt på samspillet og afbalanceringen mellem forskellige forhold, og som betræger de unges interesser, motivation og valg som noget der udvikler sig over tid. Det gælder ikke mindst samspillet mellem det, de unge møder i skole og uddannelse, den identitet og det perspektiv de unge har adgang til at se inden for STEM, og den baggrund, viden, forudsætninger og erfaringer med naturvidenskab, de unge har med sig hjemmefra og fra fritidslivet, herunder det, som i den engelske litteratur benævnes ’sciencekapital’.

Personalisering i STEM: brug af it som en drivkraft for personaliseret læring

Personalisering er en paraplybetegnelse for bl.a. undervisningsdifferentiering og de generelle præmisser for at kunne aktualisere personaliseret læring, der tager afsæt i den enkelte elevs forudsætninger og faglige, personlige og sociale udvikling. I litteraturen om STEM-læring knyttes personalisering ofte sammen med undervisning, der tilgodeser konsforskelle og forskellige børne-/ungetyps interesse for STEM-fagene. Frem for alt har personaliseringsaspektet på STEM-området været præget af forskellige læringsredskabers potentiale.

Generelt inviterer brugen af it (fx i-bøger, adaptive træningsprogrammer og netbaserede kommunikationsfora) til en didaktisk tænkning, hvor personalisering er et udgangspunkt. Frem for alt kan it bruges som en læringsressource, der er målrettet den enkelte elev. Denne praksis kan få større udbredelse under de rette betingelser, som bl.a. inkluderer udvikling af lærernes didaktiske kompetence, nytænkning af tilstedeværelsestid og økonomi. Det gælder generelt, at it brugt som produktions-, kommunikations- og delingsværktøj har et læringspotentiale inden for STEM-fagene.

It bør være mere end et hjælpemiddel

Der er behov for didaktisk og indholdsmæssig nytænkning i forhold til det, der ofte refereres til som computing skills eller computer science education. Det er utilstrækkeligt, som hidtil, primært at satse på brug af computere som hjælpemiddel i undervisningen – det er heller ikke nok, at elever lærer at bruge computere. Det anbefales, at der er fokus på design af hardware og software, logik, algoritmeudvikling, programmering inkl. sprog og teori, sammenhæng mellem ’computing’ og matematik, anvendelser og sociale dimensioner.
Køn og talent: to personaliseringsoptikker med begrænsninger

Kønsforskelle har især været et fokus i forskning omkring personalisering i STEM-undervisning. Litteraturstudiet viser, at kønsoptikken har sine begrænsninger, og at optikken kan skjule en række væsentlige underliggende dynamikker. Ofte er der tale om komplekse forhold, når det handler om elevers tilgang til STEM-fag, -undervisning og -uddannelser. Et relevant spørgsmål er derfor, hvorfor elever vælger, som de gør, set i et bredere perspektiv, hvor bl.a. kulturelle perspektiver, elevopfattelser, -erfaringer, -interesse, identitetsønsker og -idéer er i fokus.

Et andet fokus inden for personalisering i STEM-undervisning har været talentfulde elever. Talentoptikken har ligesom kønsoptikken en række begrænsninger. Betegnelsen ’talent’ bruges flertydigt og ikke altid konstruktivt – men der er primært fokus på en intention om at tilgodese de fagligt stærke elever. Nyeste danske forskning fortæller om det problematiske i forskellige talentprogrammer i det danske uddannelsessystem, hvor de særligt talentfulde elever tages ud af den undervisningsmæssige kontekst, de har været en del af, og hvor de har vist deres særlige talent. Generelt er der ingen klare forskningsmæssige vidnesbyrd om, hvordan intentionen om at tilgodese talentfulde elever ved at tage dem ud af deres primære undervisningsmæssige rammer bedst kan operationaliseres.

Områder, der fortjener en større eller anden forskningsdækning

Litteraturstudiet viser, at en række områder fortjener at blive dækket mere indgående i den danske og internationale forskning. Der er på den ene side områder, hvorom der stort set ikke er bedreftet forskning. På den anden side er der områder, hvor den eksisterende forskning enten har vist at den hidtidige tilgang har været for ensporet eller har været af en type eller haft et fokus, der ikke giver det fulde billede. De væsentligste af sådanne områder opstilles her:

- **STEM på erhvervsuddannelsesområdet generelt:** Der er et markant behov for mere viden om undervisning og læring inden for STEM på erhvervsuddannelsesområdet. De få eksisterende forskningsbidrag indikerer, at der er en tendens til, at undervisning i naturfagligt indhold får en underordnet og instrumentel rolle i forhold til relevante færdigheder for elevens fremtidige erhvervspraksis.

- **Evaluering af og for læring i STEM:** Der er behov for mere viden om, hvordan evalueringpraksis i Danmark kan balancere på en god måde mellem på den ene side systemets legitime krav på uddannelses- og elevpræstationsdata og på den anden side formativ evaluering, der understøtter elevers læring. Et væsentligt led i dette vil være at danne mere praksisnær viden om, hvordan STEM-relaterede kompetencer kan evalueres på en gyldig måde i både den daglige undervisning og i eksamenssituationer. Endvidere vides der for lidt om detaljer og dynamikker i underviseres og pædagogers daglige evalueringpraksis.
• Forankring af udviklingsprojekter/-indsatser i og omkring STEM-undervisningen: Det er kendegnende for størstedelen af udviklingsprojekter/-indsatser, at de ikke rækker ud over deres egen levetid. Der mangler substantiel viden om, hvordan udviklingsprojekter kan sikres en varig effekt med henblik på en blivende og fortsat kapacitetsopbygning.

• Uddannelse af STEM-lærere: Der er behov for at udvide den eksisterende komparative forskning af læreruddannelsesprogrammer. Endvidere er der behov for forskning, der undersøger interaktionen mellem praktiksted og uddannelsessted og inddrager praktiklærere og praktikskolers betydning. I forlængelse heraf er der et stort behov for mere viden om, hvordan man eksplcit kan koble forskningsinformeret design af og indhold i læringsaktiviteter for lærere med henblik på bæredygtige forandringer i undervisningen i skolen.

• STEM-læreres viden, kompetencer og overbevisninger: Der er dog et stort behov for mere solid viden om, hvad der kan understøtte læreres løbende udvikling af pædagogisk/fagdidaktisk viden og kompetence (PCK), og om forholdet mellem læreres PCK og elevers læring. Der er endvidere behov for mere viden om sammenhængen mellem STEM-læreres overbevisninger (beliefs) om STEM-fag og -undervisning og deres praksis i klassesrummet samt om, hvordan der under uddannelsen kan arbejdes med de lærerstuderendes overbevisninger.

• Personalisering i STEM: Forskningen inden for personalisering består primært af case-baserede studier. Der bør opfordres til mere forskning inden for dagtillbud og i uddannelsessystemet med fokus på personalisering og kontekster for personalisering, herunder nytænkning af læringsressourcer og indholdsmæssige tilgange til de enkelte STEM-fag.

• Elevers interesse for og søgning til STEM-fag: De seneste 10-15 års forskning inden for elevers interesse og valg af STEM-relaterede karrierebaner har bidraget til en bedre og mere nuanceret forståelse af området. Det er nu tydeligt, at børn og unges løbende identitetskølv i forhold til STEM-området er en kompleks proces, der langt fra kun har noget at gøre med hvad der sker i undervisningen. En central pointe er derfor at simple lønsningsforslag har en stor risiko for ikke at virke. Der er brug for yderligere forskning, som undersøger samspillet mellem elevers baggrund og erfaringer, deres sociale og kulturelle sammenhænge, undervisningens og uddannelsernes elevopfattelser og underviser- og læringskulturer, de identitets- og livsperspektiver som fremstår tilgængelige inden for STEM.

• STEM-undervisningsformer: For i fremtiden at kunne understøtte STEM-læreres implementering af samfundsmæssige problemstillinger i STEM-undervisningen er der behov for mere systematisk viden om, hvordan sådanne undervisningsforløb bedst kan rammesættes i en dansk kontekst. Der er generelt for lidt målrettet forskning omkring tværfaglighed og faglig integration på STEM-området. Den eksisterende viden bygger primært på isolerede vidnesbyrd. På trods af at der har været et vedvarende fokus på at inddrage uformelle læringsmiljøer i STEM-undervisningen, har forskningen primært været
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

fokuseret på elevernes kortsigtede udbytte og interesseskabelse. Der er et stort behov for forskning i, hvad elever reelt lærer fra et fagligt perspektiv i uformelle læringsmiljøer. Både i Danmark og internationalt er *innovationskompetence* som læringsmål stadig så nyt i forhold til de traditionelle fag, at der er brug for mere forskning omkring, hvordan der kan undervises innovationsfremmende i STEM-fagene.
Indledning

Opgavebeskrivelse og afgrænsning

Denne rapport blev til i perioden 1/11 til 31/12 2016 på anledning af Ministeriet for Børn, Undervisning og Ligestilling, der udstak rammen for opgaven 4/10 2016 (sagsnummer 16/11186). I oplægget var angivet, at opgaven skulle bidrage til udformningen af en national strategi for naturfag og naturvidenskab. Opgaven var mere specifikt at skabe et solidt vidensgrundlag for strategigruppens arbejde med at identificere udfordringer og pege på løsninger ved at fremstille et systematisk litteraturstudium5 byggende på en kortlægning af dansk, nordisk og international forskning om indsatser, metoder og strategier, der har:

- bidraget til at styrke undervisningen i og det pædagogiske arbejde med natur og naturfag, herunder tværfaglig naturfagsundervisning
- bidraget til udvikling af det pædagogiske arbejde med naturfag/naturvidenskabelige fag i dagtilbud og uddannelsessystemet samt interessen for naturvidenskab, teknologi og it
- en særlig positiv effekt og kan understøtte forskellige børne- og elevgrupper.

I forlængelse heraf blev dette litteraturstudium afgrænset til at dække erfaringer med indsatser, metoder og strategier inden for fire pædagogiske/didaktiske genstandsfelter i de naturfaglige/naturvidenskabelige fagområder i dagtilbud og uddannelsessystemet:

2. Udvikling af pædagogiske/didaktiske kompetencer hos pædagogisk personale og undervisere, herunder især kompetencer til at gennemføre anvendelsesorienteret og/eller undersøgende naturvidenskabelig undervisning.

3. Udvikling af elevers motivation og interesse for naturvidenskab, teknologi og it.

4. Styrkelse af personalisering i undervisning – ved at understøtte forskellige børne- og elevgrupper.

I opgavebeskrivelsen blev det understreget, at litteraturstudiet skal være en kortlægning af dansk, nordisk og international forskning; at den danske og nordiske forskning skal inkludere både

Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

kvalitative og kvantitative studier; samt at engelsksproget forskning kan afgrænses til metaanalyser, systematiske reviews og forskningskortlægninger.

Således blev litteraturstudiet afgrænset til at inddrage følgende litteratur som grundlag:

- Dansk forskningslitteratur i perioden 1996-2016 fra relevante fagfiebelbedømte tidsskrifter samt andre publikationskilder, der bruges i feltet.
- Engelsksproget forskningslitteratur i perioden 1996-2016 i form af metaanalyser, systematiske reviews og forskningskortlægninger, herunder også ekspertudvalgte kilder, der har et mere alment pædagogisk/didaktisk fokus.

I opgaven blev det understreget, at litteraturstudiet skulle operere med de fagområder, som strategien i sidste ende skal omfatte, herunder matematik i anvendelse, it og teknologi, samt at litteraturstudiet skal dække bredt fra dagtilbud til ungdomsuddannelser.

Reviewspørgsmål

I forlængelse af den ovenstående afgrænsning blev der arbejdet ud fra de følgende fire analysespørgsmål for litteraturstudiet:

Figur 1: En grafisk oversigt over de fire genstandsfelter, og hvordan disse rækker på tværs over henholdsvis uddannelsesniveauer og fagområder.

![Grafisk oversigt over genstandsfelter](image-url)
• **Reviewspørgsmål 1:** Hvilke indsatser, metoder og strategier kan ifølge eksisterende forskning styrke *undervisningen med henblik på elevers læring* — i form af tilegnelse af viden, færdigheder, kompetencer og naturvidenskabelig almendannelse — herunder underviseres brug af en anvendelsesorienteret og/eller undersøgende tilgang til naturvidenskabelig undervisning samt inddragelse af it og teknologi, i forhold til de naturfaglige/-videnskabelige fagområder i dagtilbud og uddannelsessystemet?

• **Reviewspørgsmål 2:** Hvilke indsatser, metoder og strategier kan ifølge eksisterende forskning udvikle de *pædagogiske/didaktiske kompetencer* hos pædagogisk personale og undervisere, herunder især kompetencer til at gennemføre anvendelsesorienteret og/eller undersøgende naturvidenskabelig undervisning, i forhold til de naturfaglige/-videnskabelige fagområder i dagtilbud og uddannelsessystemet?

• **Reviewspørgsmål 3:** Hvilke indsatser, metoder og strategier kan ifølge eksisterende forskning udvikle elevers *motivation og interesse* for naturvidenskab, teknologi og it i dagtilbud og uddannelsessystemet?

• **Reviewspørgsmål 4:** Hvilke indsatser, metoder og strategier kan ifølge eksisterende forskning tilgodese *personalisering* — ved at understøtte forskellige børne- og elevgrupper i forhold til de naturfaglige/-videnskabelige fagområder i dagtilbud og uddannelsessystemet?

Disse reviewspørgsmål søges besvaret for alle relevante monofaglige og tværfaglige områder samt på tvers af dagtilbud, grundskole, ungdomsuddannelser og erhvervsuddannelser. De følgende mono- og tværfaglige områder (og deres internationale pendants) blev inkluderet:

- ’Biologi’ i grundskolen og på htx, stx og eud
- ’Bioteknologi’ på stx
- ’Fysik’ på htx, stx og eud
- ’Fysik/Kemi’ i grundskolen
- ’Geografi’ i grundskolen
- ’Geografi/Naturegeografi’ på stx
- ’Geovidenskab’ på stx
- ’Kemi’ på htx, stx og eud
- ’It’ og ’teknologi’
- ’Matematik’ i anvendelse og samspil med andre fag på alle niveauer
- ’Natur og naturfænomener’ i dagtilbud
- ’Natur/teknologi’ og (det tidligere) ’Natur/teknik’ i grundskolen
- ’Naturvidenskabelig faggruppe’ på hf
- ’Naturvidenskabeligt grundforløb’ på stx
- ’Naturfag’ på erhvervsuddannelser.
Begrebsafklaring

I rapporten bruges termer som 'STEM' (Science, Technology, Engineering, Mathematics), 'natur', 'naturforhold', 'naturfænomener', 'naturfag', 'naturvidenskab', 'design', 'matematik', 'geologi', 'geografi', 'biologi', 'fysik', 'kemi', 'teknologi' og 'it' til at udpege bestemte fag og grupperinger af fag.

Det er vanskeligt at skabe en uniform og enhedlig sprogbrug, da litteraturstudiets område er så bredt defineret. Det vil fx i mange sammenhænge være upræcist at tale om 'naturvidenskab' til at udpege aktiviteter i dagtilbud – hvor det i stedet giver mere mening at tale om 'natur', 'naturforhold' og 'naturfænomener'. På samme måde vil det være upræcist at tale om naturfag til at udpege aktiviteter i gymnasieskolen – hvor det i stedet giver mere mening at tale om 'naturvidenskabelige fag'.

En grov tommerfingerregel for rapportens terminologi er, at fagområdebetegnelser bruges ud fra, hvad der giver bedst mening i den umiddelbare kontekst.

Tilgang og metode

Specielt inden for uddannelsesforskningen, hvor forskellige studier ofte har meget heterogene forskningsgenstande og -fokuser, er disse udfordringer med at lave systematiske litteraturstudier ud fra søgestrenge i forskningsdatabaser særlig velkendte. Derfor var tilgangen i det nærværende litteraturstudie at kombinere en søgestrategi, der kaldes 'forward and backward snowballing' ud fra citationer i og af forskningspublikationer med ekspertvalidering. Ved at danne datagrundlaget ud fra citationer opnås en mere fordosfri sampling af litteraturen; og ved at lade danske og internationale eksperter validere datagrundlaget og frem for alt ved at lade forskere med omfattende erfaring omkring netop deres genstandsfelt analyser og syntetisere forskningen opnås en informeret beskrivelse af forskningen inden for genstandsafelterne. Metoden og analyseprocedure er nærmere beskrevet i det tekniske bilag (Bilag 1). Her følger en opsummering af metoden.

Søgestrategien bestod af følgende skridt:

1. Identificering af relevante danske og nordiske tidsskrifter og publikationer i samarbejde med udpegede nordiske og internationale eksperter (kerneforskere) inden for hvert af de fire genstandsfelter. Dette ledte til etableringen af en kernesamling bestående af væsentlige kilder for hvert af de fire genstandsfelter.

2. Etablering af en referencesamling ved at gennemsøge de kilder, som refereres af kilder i kernesamlingen. (Det vil sige en ’backward snowball sampling’). Her blev der foretaget en udvælgelse på baggrund af geografisk relevans: Kun publikationer om nordiske (herunder danske) forhold blev inddraget.

3. Etablering af en referentsamling ved at gennemsøge de kilder, som refererer til kilderne i kernesamlingen. (Det vil sige en ’forward snowballing sampling’). Her blev der også foretaget en udvælgelse på baggrund af geografisk relevans: Kun publikationer om nordiske (herunder danske) forhold blev inddraget.

4. Identificering af væsentlige engelsksprogede metaanalyser, reviews og forskningstilægninger, herunder også ekspertudvalgte kilder, der havde et mere alment pædagogisk/didaktisk fokus med substantiel relevans for de fire genstandsfelter.

5. Samling af alle relevante fundne kilder til en fletsamling inden for hvert af genstandsfelterne. Eksperterne inden for hvert af genstandsfelterne gennemgik nu de
respektive feltsamlinger og vurderede, om de identificerede kilder dækker genstandsfelterne.

I dette skridt blev der tilføjet en række nye publikationer.

Den systematiske søgning (søgeskrift 1-5) resulterede i fire ekspertvaliderede feltsamlinger, der i alt bestod af 1.223 publikationer inden for STEM-didaktisk forskning om nordiske forhold og 48 centrale engelsksprogde meta-reviews, oversigter, og feltanalyser. Disse tal dækker over datagrundlaget inden eventuelle tilføjelser i løbet af analyse- og skriveprocessen. Disse publikationer er gengivet i Bilag 2.

For at strukturere analysen af det omfattende datagrundlag blev der foretaget en lingvistisk netværksanalytisk kortlægning af den identificerede litteratur.9 Der blev således opbygget en database, der kunne angive og visualisere emnesammenfald, overlap og andre relationer mellem enkeltkilder i det samlede datagrundlag. I denne sammenhæng er lingvistisk netværksanalyse sammenlignelig med det, der typisk kaldes computerdreven "text mining," som er et meget effektfuld redskab til at skabe struktur i omfattende og ofte ustruktureret tekst10 – som fx abstracts og keywords i store mængder litteratur. I analysen blev der anvendt en klyngealgorithm11 med henblik på at finde underliggende strukturelle mønstre i litteraturen (se mere i Bilag 1).

Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

De netværksanalytiske produkter kunne bruges til at strukturere og skabe overblik over de fire genstandsfelter ved at gruppere publikationer efter indbyrdes forhold – gennem citationer og keywords (både keywords forbundet gennem publikationer og publikationer forbundet gennem keywords). Netværksanalysen blev således brugt til at stabilisere de skrivende parters tematiske opdeling af de respektive genstandsfelter. Denne tematiske opdeling er gengivet i rapportens opbygning, idet de enkelte afsnit under hvert genstandsfelt er et resultat af denne proces.

Det er vigtigt at understrege, at det inden for de satte rammer for udarbejdelsen af dette litteraturstudium ikke har været et mål at lave en udtømmende repræsentation af nordisk litteratur på området. Inden for de tidmæssige rammer har sigtet derimod været at benævne, validere og beskrive de tematikker i litteraturen, der må siges at være de væsentligste.

Læsevejledning

Rapporten består efter denne indledning af fire afsnit:

2. Kompetenceudvikling for undervisere/pædagogisk personale, som vedrører reviewspørgsmål 2. Dette afsnit er udarbejdet af Birgitte Lund Nielsen & Keld Nielsen

I begyndelsen af hvert afsnit oprideres i punktform hovedkonklusionerne omkring, hvad forskningen viser, og på hvilke områder der stadig mangler viden.

Bilagsmaterialet består af:

- **Bilag 1** er et teknisk bilag, der gennemgår formål, afgrænsning, søgestrategi, metode og analyseprocedure – herunder netværksanalysen.
- **Bilag 2** indeholder det samlede output af søgestrategien i form af de 1.223 identificerede publikationer om nordiske forhold og de 48 engelsksprogede meta-reviews, oversigter og feltanalyser.
1. Undervisning og læring i STEM

Jan Alexis Nielsen, Nina Waadegaard, Jens Dolin & Jesper Bruun

1.1. Resume af litteraturstudiets genstandsfelt 1

Dette afsnit handler om reviewspørgsmål 1: Hvilke indsatser, metoder og strategier kan ifølge eksisterende forskning styrke undervisningen med henblik på elevers læring – i form af tilegning af viden, færdigheder, kompetencer og naturvidenskabelig almendannelse – herunder underviseres brug af en anvendelsesorienteret og/eller undersøgende tilgang til naturvidenskabelig undervisning samt inddragelse af it og teknologi, i forhold til de naturfaglige/-videnskabelige fagområder i dagtilbud og uddannelsessystemet? Litteraturstudiet viser:

- At elevers læring i STEM i høj grad kan understøttes igennem et didaktisk arbejde med at sikre den oplevede og objektive relevans af det faglige indhold igennem anvendelsesorientering, hvor fagligheden bringes i anvendelse på et praksisfelt. Anvendelsesorientering kan manifesteres på forskellig vis som undersøgelsesbaseret undervisning, praktisk arbejde, tværfaglige sammenhænge, tematisering af samfundsmæssige problemstillinger, aktiviteter inden for teknologi, engineering og design samt innovationsfremmende undervisning.
- At den måde, elevers læring evalueres på, er én af de væsentligst faktorer, der afgør elevers læringsudbytte. Frem for alt er formativ feedback med høj kvalitet en bærende drivkraft for læring. Det er et gennemgående tema, at en væsentlig del af de opstillede læringsmål på STEM-området svært lader sig evaluere (formativt og summativt), og at en række eksisterende evalueringspraksisser hindrer optaget af fx kompetenceorienteret undervisning. Der er således et massivt behov for udvikling af både viden og praksis omkring evaluering af STEM-relaterede kompetencer.
- At undervisning i naturforhold på dagtilbudsområdet bør: tage afsæt i et børneperspektiv, give børn plads til at være aktive deltagere og udfolde eksperimenter sammen med andre børn og pædagoger, sikre, at læringen om naturforhold opstår gennem social interaktion, hvor pædagogen indtager en aktiv rolle, understøtte, at den professionelle pædagog aktivt anvender sine naturfagskompetencer, og tage udgangspunkt i, at børn lærer i hverdagslivet gennem spontant opståede aktiviteter.
- At undervisning i naturforhold på dagtilbudsområdet bør: tage afsæt i et børneperspektiv, give børn plads til at være aktive deltagere og udfolde eksperimenter sammen med andre børn og pædagoger, sikre, at læringen om naturforhold opstår gennem social interaktion, hvor pædagogen indtager en aktiv rolle, understøtte, at den professionelle pædagog aktivt anvender sine naturfagskompetencer, og tage udgangspunkt i, at børn lærer i hverdagslivet gennem spontant opståede aktiviteter.
- At undersøgelsesbaseret naturfagsundervisning (UBNU) har et potentiale for elevers læring. Frem for alt kan elever, der gennemgår UBNU-forløb, tilegne sig væsentlige generiske
kompetencer – fx at kunne træffe konklusioner på baggrund af data. I en international kontekst oplever danske elever forholdvist ofte UBNU-undervisning. Det er stadig et problem at integrere en konstruktiv evalueringspraksis i forhold til UBNU.

- At elevers læring i forbindelse med praktisk arbejde og laboratorieøvelser skal understøttes ved at tydeliggøre formålet med og give eleven ejerskab over aktiviteten. Det virker generelt ikke at bruge ’kogebogsopskrifter’ for forsøg – sådanne forløb er mindre motiverende, er ofte afkoblede fra teorien og giver et forkert billede af videnskabelig praksis. Der er behov for en fælles nordisk (såvel som international) sprogbrug omkring aktiviteter af denne type, og der mangler viden om, hvordan elevers læring i disse aktiviteter evalueres.

- At der generelt er for lidt målrettet forskning omkring tværfaglighed og faglig integration på STEM-området. I langt de fleste tilfælde består den eksisterende viden af isolerede ’vidnesbyrd’, ’how-to’-vejledninger og idéer til ’undervisningsforløb/aktiviteter’. Der er enkelte indikationer på, at der i visse former for tværfaglige forløb på STEM-området kan være et øget leringsudbytte, men implementeringen af tværfaglige forløb er udfordret af en række faktorer, herunder især læreres baggrund og mulighed for at udvikle tværfaglige forløb.

- At selvom der er omfattende forskning i, hvad der sker i uformelle læringsmiljøer (såsom feltture, besøg på naturskoler, museer, science-centre osv.), er der et stort behov for forskning i, hvad elever reelt lærer fra et fagligt perspektiv i uformelle læringsmiljøer.

- At der stadig foreligger en proces om at indføre kompetenceorienteret naturfags- og matematikundervisning (i modsætning til pensum/kernestofstyret undervisning). En væsentlig udfordring er, at kompetencebegrebet stadig er uklart for både praktikere og forskere, og at mange eksamensformer ikke godt nok kan evaluere elevers kompetencer (hvilket gør det mindre væsentligt at fokusere på kompetencetillige med i undervisningen). Lærersamarbejde om at udvikle, implementere og evaluere kompetenceorienteret undervisning kan styrke læreres fortsatte professionelle udvikling (CPD).

- At undervisning, der fremmer scientific literacy og naturvidenskabelig almendannelse, møder de samme udfordringer som kompetenceorienteret undervisning generelt. Denne form for undervisning kræver en substantiel transformering af traditionelle pensumorienterede skolepraksisser, hvor undervisningen styres af et kernestof, og lærers rolle primært er at docere viden. Derudover er der væsentlige dimensioner af både scientific literacy og naturvidenskabelig almendannelse, der er svære at evaluere på i de eksisterende eksamensformer.

- At et bærende element i scientific literacy og naturvidenskabelig almendannelse er, at elever har mulighed for (og bliver bedre til) at forholde sig fagligt reflekterende og argumenterende til samfundsægtige problemstillinger (socioscientific issues (SSI) – fx ’skal vi tillade genetapi?’). Men undervisningsaktiviteter, der giver plads til dette, er komplekse (over)faglige situationer, som naturfaglærere generelt ikke er klædt godt nok på til at rammesætte og (formativt) evaluere elever i. I Danmark, såvel som internationalt, inddrages
samfundsmæssige problemstillinger ofte på en måde, hvor der er så stærkt fokus på det fagfaglige indhold, at det overordnede kompetencemæssige potentiale i sådanne aktiviteter udvandes.

• At undervisning i teknologi, engineering og design (fx som afgrænsede forløb i natur-, naturfags-, naturvidenskabs- eller matematikundervisningen) har væsentlige læringspotentialer – især fordi de undervisningsformer, der typisk bruges, ser ud til at være konstruktive for elevers læring. Der er en stor udfordring i, at lærere ofte ser teknologi, engineering og design som uklare områder og relativt frit oversætter (og dermed udvander) begreberne til eksisterende aspekter i deres praksis. Endvidere er det en udfordring at danne ægte og meningsfulde koblinger mellem på den ene side teknologi, engineering og design og på den anden side naturfag/-videnskab og matematik.

• At det stærke politiske fokus på innovationskompetence i Danmark har ledt til en omfattende kritisk diskussion blandt uddannelsesforskere, og at der ud fra denne diskussion og en række empiriske undersøgelser er dannet et begreb om innovationskompetence, som er meningsfuldt og i en skolekontekst, har et pedagogisk potentiale, og som rummer en konkret operationalisering, som lærere kan bruge til at designe innovationsfremmende undervisning og til at evaluere elevers innovationskompetence. Både i Danmark og internationalt er innovationskompetence som læringsmål stadig så nyt i forhold til de traditionelle fag, at der er brug for mere forskning på området.

1.2. Viden om elevers læring inden for de naturfaglige/-videnskabelige områder

Det begrebslige læringsperspektiv tager udgangspunkt i, at når elever starter i skole, har de allerede opbygget en forståelse af fænomener og processer, som hører til det naturfaglige/-videnskabelige område, og at deres forståelse i mange tilfælde vil være substantielt anderledes end den etablerede forståelse inden for videnskabsfagene (Vosniadou et al., 2001). Der har været tradition for at betragte elevers initiale forståelser som naive og dermed som noget, der skal erstattes af ’rigtige’ forståelser, men nyere forskning dokumenterer, at børns initiale begrebsforståelser skal ses som intuitive og fragmenterede videnselementer, som bør udvikles og ikke erstattes (for et overblik se Duit & Treagust, 2003). Udviklingen af begreber afhænger af tidligere idéer og begreber (Helldén,
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

2004), og derfor bør læreren i undervisningen fokusere på det "korrekte" i elevernes "ukorrekte" forståelser (Angell, 2004). Alternative begrebsforståelser er med til at udvikle elevers evne til at ræsonnere og tage stilling, hvis de i en læringssituation konfronteres med dem som alternative (Hamza & Wickman, 2008). Hvis man ekskluderer alternative perspektiver fra naturfaglig undervisningspraksis, vil eleverne tilægne sig et unuanceret videnskabssyn. Hvis formålet med undervisningen er, at eleverne skal opnå scientific literacy, skal eleverne lære normer, værdier og handlinger i science-praksis, de skal have mulighed for at inddrage mange forskellige videnskabelige perspektiver, og de skal være med til at problematisere indholdet (Knain, 2005). Netop på grund af denne udvikling er det begreblige læringsperspektiv i dag markant mindre toneangivende (især i Norden) end for blot ti år siden.

Undersøger man elevernes brug af sprog og andre medierende artefakter over tid, er det tydeligt, at de er i stand til produktivt at bruge tekster og andre materialer, der gør dem i stand til at tilnærme sig videnskabelige måder at tænke på (se fx Jakobsson, Måkitalo & Säljö, 2009).

Inden for de seneste 20 år har der især internationalt været fokus på at betragte elevers læring i STEM i termer af deres tilegelse af faglige argumentationskompetencer. En væsentlig del af paraplybetegnelsen scientific literacy (se afsnit 1.4.2) angår elevers evne til argumentativt at forholde sig til fagligt indhold og samfundsmæssige forhold med et fagligt indhold. Men koblingen mellem argumentation og læring i STEM ser ud til at gå endnu dybere, i den forstand at det nu er veldokumenteret, at argumentation og diskussion er væsentlige heuristikker i elevers forståelse af

Fra det sociokulturelle læringsperspektiv er én af de væsentligste udfordringer for elevers læring, at lærere ofte vil lægge stor vægt på at formidle teoretisk viden til elever, for at de bliver i stand til at fortolke deres observationer korrekt og anvende naturvidenskabelig teori, men det kan hindre elevernes egne italesættelser og forståelser under udvikling (se fx Mestad & Kolstø, 2014). Det kan endvidere være svær for lærere at skabe sammenhæng mellem børns spontane handlinger og det naturfaglige-/videnskabelige indhold; elevspørgsmål kan forårsage emneskift væk fra det sciencerelvante tema, derfor skal lærerne til stadighed guide eleverne og udfordre dem på deres forståelser; på den måde kan elevspørgsmål bruges til at omsætte hverdagssprog til videnskabeligt sprog (se fx Öhman & Öhman, 2013; Lundin, 2007). En anden hindring for at engagere elever i diskursive aktiviteter er den oplevede legitimitet eller autenticitet af sådanne aktiviteter. Elever mener, at de har et demokratisk medansvar for at agere i samfundet på en bæredygtig måde, men nogle elever oplever ikke, at de har indflydelse på samfundets udvikling (se fx Ottander, 2015), hvilket kan udvande aktiviteter, hvor elever arbejder med beslutningstagen i undervisningen.

1.2.1. Relevans og anvendelsesorientering som drivkraft for læring

Der har vært tradition for at betragte konstrukter såsom motivation og interesse som proxyer for læring (se fx Petersen, 2012b). Udvikling af elevers motivation og interesse behandles som et særskilt område i afsnit 3. I forlængelse heraf er der i den naturfagsdidaktiske forskning en stærk tradition for at fokusere på begreber som *relevans og anvendelsesorientering* af det naturfaglige-/videnskabelige indhold i undervisningen. Her tales på den ene side om relevans og anvendelsesorientering af det naturfaglige-/videnskabelige indhold i undervisningen som tydelige uddannelsespolitiske mål i diverse læreplaner og bekendtgørelser og kan på den måde ses som en
nærmere operationalisering af undervisning, der fremmer scientific literacy (her oversat til naturfaglig dannelse) – se afsnit 1.4.2 for en dybere gennemgang af dette – på den anden side om relevans og anvendelsesorientering som en væsentlig drivkraft for elevers læring (for en kortlægning af en række studier omkring især anvendelsesorientering se Rambøll & Dansk Clearinghouse for Uddannelsesforskning, 2014); lidt forsimplet kan man sige, at den meningsskabende interaktion med og omkring et fagligt indhold udestår, hvis eleven ikke anser indholdet selv, interaktionen med indholdet eller anvendelsen af indholdet som værende relevant (se fx Stuckey, Hofstein, Mamlok-Naaman & Eilks, 2013).

I den hidtil mest dybdegående metaanalyse af relevansbegrebet i den naturfagsdidaktiske forskning præsenterer Stuckey og kolleger (2013, s. 18) en model for relevant naturfaglig/-videnskabelig undervisning:

- **Individdimensionen:** Naturfaglig/-videnskabelig undervisning skal tilpasses den enkelte elevs nysgerrighed og interesse, undervisningen skal tilbyde eleven de færdigheder og kompetencer, der er nødvendige for at kunne håndtere deres hverdagsliv nu og i fremtiden, og generelt stimulere til elevens kognitive udvikling.

- **Samfundsdimensionen:** Naturfaglig/-videnskabelig undervisning skal forberede eleven på selv at kunne tage stilling og ansvar i samfundet ved at fremme elevens forståelse af interaktionen mellem naturvidenskab og samfund og udvikle elevens kompetencer til at indgå i samfundet som en informeret borger.

- **Arbejdsdimensionen:** Naturfaglig/-videnskabelig undervisning skal fremme elevens evne til at orientere sig i fremtidige karrierer og forberede eleven på fremtidige uddannelser og jobmarkedet generelt.

Anvendelsesorientering betyder i denne kontekst, at fagligheden bringes i anvendelse på et praksisfelt (Holm & Jacobsen, 2013). Anvendelsesorientering kan ses som en måde at styrke den oplevede relevans af undervisning (Belova et al., accepteret), men ud over denne pædagogiske/læringsmæssige grund til at arbejde anvendelsesorienteret kan der være mange forskellige formål med at arbejde anvendelsesorienteret for en lærer (Holm & Jacobsen, 2013). I forhold til anvendelsesorientering foreslår T.S. Christensen og Svejgaard (2008) en begrebslig opdeling af ordet ‘anvendelsesorientering’, i forhold til hvordan fagligt indhold (teori) kan forholde sig til forskellige praksissfærer:

- Skolefagets praksis (anvendelse af fagets viden og færdigheder på intrafaglige forhold)
- Skoleverdenens praksis (anvendelse af et fag i og/eller med et anden fag)
- Praksis uden for skolen (anvendelse af faget på hverdagsmæssige forhold)
- Samfundslivets praksis (anvendelse af faget på samfundsmæssige problemstillinger og forhold).

På mange måder er det meste af indholdet i afsnit 1.3 og 1.4 nedenfor en nærmere gennemgang af undervisning, der på den ene eller anden måde er anvendelsesorienteret og/eller sigter på at være
relevant. I afsnit 1.3.2 og 1.3.3 gennemgås henholdsvis *undersøgelsesbaseret naturfaglig/-videnskabelig undervisning og praktisk arbejde*, hvor anvendelsesorientering er en central del af rammesætningen af forløb, hvor elever indgår i undersøgende processer, og hvor den oplevede relevans af det faglige indhold potentielt kan være sterk og umiddelbar. I afsnit 1.3.4 gennemgås *tværfaglighed* som et særskilt pædagogisk/didaktisk tema; her er der oplagt grobund for anvendelse af faglighed i samspil med eller endda inden for andre fag. I afsnit 1.4.3 gennemgås brugen af *samfundsøkonomiske problemstillinger* som kilde til at styrke elevers evne til at tildele sig og anvende fag gennem beslutningstagning og argumentation. I afsnit 1.4.4 gennemgås undervisning i *teknologi, engineering og design*, hvor der i høj grad er fokus på at anvende faglighed på praktiske teknologiske forhold til at tematisere teknologiens rolle i samfundet eller ved at arbejde i designprocesser. I afsnit 1.4.5 gennemgås undervisning, der fremmer innovationskompetence, hvor elever netop arbejder på at udvikle fagligt funderede forbedringsforslag på praksisfelter uden for skolefaget.

1.2.2. Læring om naturforhold på dagtilbudsområdet

På dagtilbudsområdet har der primært været fokus på relationen mellem barnet, pædagogen og naturforhold (læringsobjektet). I denne del af litteraturen er den verbale mediering central – fx når det undersøges, hvordan børn bruger sprog til at forstå naturforhold, og hvordan man generelt kan kommunikere naturvidenskabeligt indhold til børn, eller når det undersøges, hvordan børn bruger deres fantasi i aktiviteter, hvor de undersøger problemstillinger vedrørende bæredygtighed (Caiman, 2015). På dette område kan forskningen dokumentere det følgende:

- Det er vigtigt, at den voksne skal invitere barnet og bruge en undersøgende tilgang til de naturlige fænomener. Man skal lede barnets opmærksomhed hen mod sprogbrugen ved fx at spørge efter barnets perspektiv (se fx Åkerblom, 2015).
- Det er vigtigt, at børn eksplicit baserer deres vurderinger på værdier, når de tager stilling til situationer, hvor faktuel viden ikke slår til (se fx Hedefalk, Almqvist & Lidar, 2014).
- Såfremt man kan definere undervisning som at lede børns opmærksomhed i en særlig retning på linje med curriculum, så er undervisning en central aktivitet gennem hele dagen i førskolen; børn lærer principippet for læring gennem undersøgelser (se fx Hedefalk, Almqvist & Lundqvist, 2015).
Generelt for forskoleområdet kan der i forlængelse af Broström og Frøkjær (2016) foreslås en naturfagspædagogik i dagtilbud bestående af fem principper:

1) En naturfaglig praksis bør tage afsæt i et børneperspektiv og børns undren.

2) Børn skal have plads til at være aktive deltagere og udfolde eksperimenter sammen med andre børn og pædagoger.

3) Læringen om naturforhold opstår gennem social interaktion, hvor pædagogen indtager en aktiv rolle.

4) Den professionelle pædagog anvender aktivt sine naturfagskompetencer.

5) Børn lærer i hverdagslivet gennem spontant opståede aktiviteter, men med plads til på forhånd planlagte aktiviteter.

1.2.3. Læring i naturfag på erhvervsuddannelsesområdet

I litteratursamplingen er erhvervsuddannelsesområdet det markant mindst repræsenterede uddannelsesområde i forhold til det naturfagsdidaktiske felt. Der mangler således i særlig smede fokus om undervisning i og læring af naturfag på de erhvervserette ungdomsuddannelser såvel i Danmark som internationalt. Fx er der i tidsskriftet Nordic Journal of Vocational Education and Training indtil nu kun udgivet én fagfællebedømt artikel, der fokuserer på naturfagsdidaktik (specifikt: Valero, Daugbjerg & Svejgaard, 2014).

I én af de mest dybdegående internationale analyser på området viser Donnelly (2009), at der er få (givet det manglede forskningsmæssige fokus), men konsistente indikationer på, at naturfag ofte hæderes på en 'need-to-know'-basis på erhvervsuddannelsesområdet; hvor der undervises i det og kun det naturfaglige indhold, der skal til at udføre specifikke operationer i praksis. Lignende indikationer findes i forhold til matematisk indhold (Rosvall, Hjelmér & Lappalainen, 2016). Med andre ord er der en tendens til, at undervisning i naturfagligt indhold får en underordnet og instrumentel rolle i forhold til relevante færdigheder for elevnes fremtidige praksis. Faren her er, at selvom den fremtidige praktiker bliver i stand til at udføre operationer, vil fraværet af grundlæggende naturfaglig viden begrænse praktikerens kontrol af operationerne (Corrigan & Fensham, 2002).
1.3. Viden om kvalitet i undervisning og om forskellige undervisningsformer

1.3.1. Generel viden om kvalitet i og omkring undervisning

- Processer, aftaler, rollefordelinger i undervisningen og logikkerne bag undervisningen skal være klare og tydelige.
- Den tid, læreren har til rådighed, skal primært anvendes på design, implementering og evaluering af undervisning frem for organisatoriske og administrative opgaver.
- Arbejdsklimaet i og omkring klasserummet skal være læringsfremmende.
- Det skal være klart for eleverne, hvilket fagligt indhold undervisningen handler om, og hvor de er henne i processen med at tilegne sig dette indhold.
- Kommunikationskulturen i og omkring undervisningen skal forde elevernes meningsdannelse.
- Undervisningen skal rumme varierede metoder til og former for rammesætning af det faglige indhold.
- Den enkelte elevs læreproces skal i et vist omfang kunne tilgodeses i undervisningen.
- Eleverne skal bearbejde det, de lærer; deres metakognitive udvikling er en vigtig drivkraft for deres kognitive udvikling.
- Eleverne skal være klar over de læringsmæssige forventninger til dem, og de skal løbende have feedback på deres udvikling.
- De fysiske rammer for undervisningen skal danne et stimulerende læringsmiljø.

- Undervisningen, og kvaliteten af undervisningen, er en væsentlig faktor bag elevers læring.
- Læreren bør være en ledende og aktivt drivende kraft i undervisningen.
- Læreren skal være vidende om elevernes individuelle læring og kunne give dem feedback, der kan lede dem videre.
- Undervisningen skal være velstruktureret, og læreren skal have en klar plan for, hvordan elevernes læring skal udvikle sig, og for, hvordan han/hun kan evaluere elevernes læring.
Læreren skal spille en bærende rolle i forhold til at hjælpe eleverne med at udvikle deres viden til højere taksonomiske niveauer.

Det psykiske arbejdsmiljø i klasserummet skal være positivt og tillade, at der begås fejl.

1.3.2. Undersøgelsesbaseret undervisning (UBNU)

Undersøgelsesbaseret naturfagsundervisning (UBNU, på engelsk inquiry based science teaching/education (IBST/IBSE)) er en paraplybetegnelse for en bred vifte af undervisningsformer, som har til formål at øge elevers motivation og styrke elevers naturfaglige/-videnskabelige kompetencer (Østergaard et al., 2010). Der findes et væld af forskellige definitioner og modeller, som finder anvendelse i Norden og internationalt, både i forskningsprojekter, i nationale styredokumenter og i EU-projekter med den hensigt at udbrede UBNU-strategier (for et overblik se Rönnebeck, Bernholt & Ropohl, 2016).

Potentialet i UBNU-undervisning ligger i, at elever bliver kritiske og reflekterede modtagere og brugere af naturvidenskabelig information. De bliver i stand til selv at udtænke, udføre og vurdere forsøg og modeller inden for de naturvidenskabelige fag for derved at kunne indgå i, som kan give anledning til dyb faglig viden hos eleverne. I den største forskningssyntese (af 138 studier) på området konkluderede Minner, Levy og Century (2010), at der ikke var en signifikant sammenhæng mellem mængden af UBNU, en elev deltag i, og elevernes begrebslige læring, men at UBNU-følgb har en særlig positiv effekt på elevers læring, hvis eleverne aktivt bringes til at arbejde målrettet
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

med at konstruere og anvende begreber gennem formulering af spørgsmål og systematiske undersøgelser, hvor de drager konklusioner på baggrund af evidens (se også Kruse, 2013). Endvidere konkluderer Minner, Levy og Century (2010), at elever, der deltager i UBNU-forløb, kan lære mere end det rent begrebslige – fx er elever i UBNU langt mere engagerede i at skulle tænke aktivt selv og konkludere på baggrund af data.

Der er dog stadig udfordringer ved implementering af UBNU. En af de vigtigste er tid (Dolin, 2016). Især i begyndelsen, hvor elever ikke er vant til denne type undervisning, oplever mange lærere, at det tager meget lang tid at dække et forholdsvis nævnet fagligt område. Næst efter dette er udfordringen for læreren at finde balancen mellem at give plads til elevernes selvstændige arbejde og at hjælpe dem med at fokusere deres undersøgelser.

Studier i Norden beskæftiger sig ofte med læreres måde at bedrive og forholde sig til UBNU-undervisning på og på caseniveau, hvordan elever kan gøre i specifikke sammenhænge. Feltet synes at have en altovervejende interesse i gymnasiale uddannelser (hvad der svarer til stx og htx) og folkeskolen. Det kvantitative belæg for UBNU hentes fra internationale studier (se fx Kruse, 2013). I nordiske sammenhænge mangler der fortsat både kvalitativ og kvantitativ fagfælledansk forskning i

- Læringsudbyttet af UBNU for elever i de nordiske uddannelsessystemer
- Hvilke tiltag der tidligere har været lavet, som i dag ville betragtes som UBNU, men som er svære at finde i den tiltagende informationsstrøm
- Hvordan flere lærere kan bringes til systematisk at inddrage UBNU i deres daglige virke
- Hvordan man kan evaluere kompetencer i UBNU
- Hvordan UBNU kan implementeres i andre uddannelseslag end folkeskole og gymnasiale retninger.

I resultaterne fra PISA 2015 rapporteres det, at danske elever generelt ofte (og i højere grad end OECD-gennemsnittet) oplever at møde UBNU i deres undervisning (dette kan forklares ved, at UBNU-elementer har været faste dele af læreplaner de seneste år); der er dog ikke en signifikant sammenhæng mellem elevens oplevelse af at møde UBNU og deres præstation i testen, også når der korrigeres for socioøkonomisk baggrund eller køn (V.T. Christensen, 2016).

1.3.3. Praktisk arbejde: eksperimentelt arbejde og laboratorieøvelser

Praktisk arbejde er et stort felt, og der hersker en del forvirring om, hvad praktisk arbejde egentlig er (Dillon, 2008). En snæver definition af praktisk arbejde som eksperimenter eller forsøg udelukker elevers førstehåndserfaringer med naturvidenskabelige fænomener, fordi der i et eksperiment indgår systematisk dataindsamling. Hvis praktisk arbejde blot er, hvad der foregår i et laboratorie, udelukker man observationer i naturen og uformelle læringsmiljøer. Endelig vil praktisk
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

arbejde som noget, hvor eleverne kun kan manipulere med fysiske artefakter og entiteter, udelukke arbejde med virtuelle eksperimenter. Feltet omkring praktisk arbejde er stort, dels fordi mange ting kan anses for at være praktisk arbejde, og dels fordi det historisk set har været meget undersøgt i naturfagsdidaktikken. Det synes at være et svært emne at indfange, fordi praktisk arbejde ikke relaterer til et fagligt indhold, men til en række kompetencer, der indgår i det ’at gøre’ naturvidenskab.

1.3.4. Tværfaglighed

Der er generelt for lidt målrettet forskning omkring tværfaglighed og faglig integration på STEM-området. I langt de fleste tilfælde består den eksisterende viden af isolerede “vidnesbyrd”, ”how-to”-vejledninger og idéer til ”undervisningsforløb/aktiviteter” (Czerniak & Johnson, 2014, s. 401).

- Der var generelt et positivt læringsudbytte i både matematik og naturfagene ved de tværfaglige indsatser, undtagen når de deltagende fag indgik i et parallelfagligt samspil – dvs. at undervisningen i fagene blev planlagt og implementeret parallelt med udgangspunkt i et samlende begreb/emne.
- Tværfaglige indsatser mellem naturfag og matematik i højere grad fører til elevers læring i de deltagende naturfag end i matematik.
- Læring i naturfagene understøttedes bedst, når matematik enten bruges som støttefag til eller fuldstændigt integrerer i den naturfaglige/-videnskabelige undervisning.
- Læring i matematik understøttedes bedst, når den tværfaglige undervisning forløber sekventielt – dvs. først i de(t) naturfaglige/-videnskabelige fag og så i matematik (eller omvendt).

De få eksisterende undersøgelser af omfattende forsøg på at integrere naturfagene i et curriculum indikerer (for et overblik se Czerniak & Johnson, 2014), at et integreret naturfagscurriculum kan lede til større læringsudbytte og styrkelse af de affektive dimensioner (Greene, 1991; Ross & Hogaboam-Gray, 1998; Stevenson & Carr, 1993; Vitale & Romance, 2011). Mindre tværfaglige forløb har dog også potentielle til at styrke elevers motivation (se fx H.M. Andersen, 2014); og
teknologiske artefakter har potentielle til at skabe kontekster for tværfaglige samarbejder (se fx Majgaard, 2010).

Der er en række udfordringer forbundet med tværfaglig undervisning:

- Der er en markant risiko for, at det faglige samspil bliver for konstrueret eller kunstigt, med det resultat at undervisningen i de deltagende fag udvendes – at skrive et digt om fotosyntese udvikler ikke nødvendigvis din forståelse af hverken fotosyntese eller digtgenren (Mason, 1996, s. 266).
- Generelt er det usikkert, at lærerkøfter uddannes godt nok til at lade deres fag indgå i tværfaglige samspil (Czerniak & Johnson, 2014; S.H. Hansen, 2007). Se også afsnit 2.5.3.
- Undersøgelser i norske børnehaver indikerer, at pædagoger ofte ikke har fokus på ligeværdige tværfaglige samspil mellem matematik og naturfag (Brosström, 2013; Simensen & Anundsen, 2013).
- En analyse af SRP-rapporter i gymnasiet viser, at graden af tværfaglighed i rapporterne generelt er lav, men at tværfagligheden kunne øges ved at fokusere mere på den kvalitative karakter af det tværfaglige samspil samt ved at gøre opgaveformuleringerne mere problemorienterede (Jensen, 2010); her er det vigtigt at bemærke, at lærere generelt oplever, at det er svært at vurdere elevers arbejde i ’det andet’ fag (se også Winsløw, 2012).

fag sammenkædes inden for en velafgrænset kontekst med det formål at engagere eleverne i læringsaktiviteter hvor deres fagoverskridende kompetencer sættes i spil og udvikles”; og på den anden side en ”vertikal strukturering i fagene [...] hvor] de i den horisontale sammenkædnning af eleverne frembragte konstruktioner i form af begreber, idéer og færdigheder forankres efterfølgende begrebsligt i de enkelte fag gennem vertikal strukturering” (Iversen & Michelsen, 2009, s. 26).

1.3.5. Læring i uformelle miljøer

- Tiden, der bruges i uformelle læringssituationer, skal sættes ind i en større undervisningssammensætning, og her er læreren den vigtigste aktør i forhold til at bygge bro mellem besøg og den bredere faglige undervisning. Fx konkluderede Hyllested (2007a, 2007b), at besøg på naturskoler kan være en ramme for fagligt undervisning af høj kvalitet og kan understøtte lærere og elevers udvikling, men at besøgene ikke er fremmende for læringen i sig selv uden lærerens rammesætning af dem.
- Elevers tildelelse af autentiske naturfaglige/-videnskabelige arbejdspraksisser kan understøttes af undervisning uden for klasserummet. Fx kan fagligt rammesatte feltture danne en mere vedholdende praksisforståelse (fx Frøyland, Remmen & Sørvik, 2016); og fagligt rammesat arbejde med autentiske genstande på et museum kan danne ramme for tildelelse af autentiske praksisser (Achiam, Simony & Lindow, 2016).
- Udstillinger, genstande og materialer i uformelle læringsmiljøer skal designes med eksplicit henblik på at fordre besøgendes læring. Fx skal udstillingsdesignere være opmærksomme på, præcis hvilket fagligt indhold det er meningen, de besøgende skal tildele sig, og hvordan dette indhold rekonstrueres i udstillingen (Mortensen, 2011; Rennie, 2014).
1.4. Viden om undervisning mod specifikke mål/kompetencer

1.4.1. Baggrund: kompetenceorientering

Inden for uddannelsesområdet er der i løbet af de seneste årmeri er opstået et stigende behov for at kunne beskrive elevers tilgængede færdigheder, viden og evner med et begreb, som formår at indfange de komplekse situationer, vi møder i arbejds-, samfunds- og privatlivet. Kompetencebegrebet er et sådant begreb, og uddannelsesmål samt andre former for udviklingsprocesser beskrives i dag i dominerende grad i kompetencetermer. Begrebet er således blevet et led i en omformning af uddannelsessystemet (Dolin, Krogh & Troelsen, 2003).

Nationalt såvel som internationalt er der således sket et skift i målkravene; i stedet for at fokusere på konkret viden og omfattende indholdsbeskrivelser ser vi i dag et fokus på at kunne sætte viden i spil i konkrete situationer, således at kompetencerne ses som almene, sociale og personlige egenskaber. Kompetencer anskues som basis for livslang læring (Busch, Horst & Troelsen, 2003; Ropohl, Nielsen & Rönnebeck, i review). Dette skift skyldes ifølge Dolin (2014), at den foranderlige verden, hvor intet er givet, stiller nye krav og har gjort det vanskeligt at præcisere den viden, der er nødvendig bare på kort sigt, og derfor er det naturligt at lægge mere vægt på de generelle træk ved fagene og på kompetencer frem for på færdigheder. Ifølge Elmose (2005) er det
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

naturfaglige kompetencebegrebs styrke, at det kan fungere som retningsvisende for lærere og elever i forhold til essensen af naturfaglig kunnen og viden.

Selvom kompetencebegrebet har været toneangivende i omkring 20 år, er der stadig en række fundamentale udfordringer i forhold til kompetenceorienteret undervisning:

- Selvom teoretikere har behandlet kompetencebegrebet indgående, er det stadig et begreb, der i bedste fald har mange facetter og i værste fald er rodet. Fx er der ikke enighed om, hvorvidt kompetencer i første omgang skal betragtes som en persons manifeste handlinger eller som personens bagvedliggende kognitive og affektive dispositioner (Blömeke, Gustafsson & Shavelson, 2015; Koeppen, Hartig, Klieme & Leutner, 2008). Sådanne grundlæggende teoretiske uoverensstemmelser vil alt andet lige gøre det sværere at skabe overordnede rammer for og et fælles sprog om kompetenceorienteret undervisning.

- De fleste kompetencebeskrivelser er forholdsvis generelle. En kompetence må derfor operationaliseres til mindre enheder, for at lærere kan designe undervisning, der fremmer kompetencen, og frem for alt, for at læreren kan evaluere (formativt såvel som summativt) elevers kompetencetilgang (Nielsen & Dolin, 2016). Men ofте operationaliseres kompetencer ikke godt nok. Der er generelle indikationer på, at lærere oftere blander forskellige tegn på læring sammen i vurderingen af elevens kompetencetilgang (se fx McMillan, Myran & Workman, 2002); når kompetencemål operationaliseres, kan der være en tendens til, at kompetencer nedbrydes til alt for specifikke delelementer, og derved udvandes kompetencebegrebet til en serie af rudimentære færdigheder (se fx D.R. Sadler, 2013; Torrance, 2007).

- På trods af at kompetencer har spillet en tydelig fagdidaktisk rolle i Danmark siden 2000, er det stadig en omvæltning og tidskrævende for lærere at skulle operere med naturfaglige og matematiske kompetencer frem for en pensumorienteret tilgang (Dolin, 2016; R. Hansen, 2016). Forskning indikerer dog, at når lærere (generelt i alle fag, men specifikt for naturfags- og matematiklærere) arbejder fokuseret med kompetenceorientering af deres undervisning, kan det hjælpe til, at undervisningen fokuseres, og elever inddrages med et medansvar for deres læring; endvidere kan arbejdet med at designe undervisning på en kompetenceorienteret måde være fremmende for læreres professionelle udvikling (Nielsen, 2015b; Sølberg, Bundsgaard & Højgaard, 2015).

1.4.2. Scientific Literacy og naturfaglig dannelse

Scientific literacy er et væsentligt begrebsapparat, der oprider i den angelsaksiske naturfagsdidaktik, men som har været og stadig er toneangivende på internationalt plan, herunder i Danmark (for et begrebsligt overblik se Laugksch, 2000). En typisk definition på scientific literacy er "viden og forståelse, som er nødvendig for personlig stillingtagen, deltagelse i samfundsmæssige og kulturelle
forhold og for økonomisk produktivitet” (NRC 1996, s. 22; citeret og oversat i Dolin, Jacobsen, Jensen & Johannsen, 2016), og som et overordnet lærringsmål er dette typisk operationaliseret i følgende dimensioner (AAAS, 1995; oversat i Dolin et al., 2016):

- at være fortrolig med den naturbundne verden og forstå både dens mangfoldighed og dens helhed
- at forstå nogle af de vigtige måder, hvorpå naturvidenskab, matematik og teknologi afhænger af hinanden
- at forstå naturvidenskabens nøglebegreber og principper
- at have evne for naturvidenskabelig tænkemåde
- at forstå, at naturvidenskab, matematik og teknologi er menneskeskabte projekter; og have forståelse for, hvad det betyder for deres styrker og begrænsninger
- at kunne anvende naturvidenskabelig viden og tænkemåder til individuelle og samfundsrelaterede formål.

Fra et pædagogisk/didaktisk perspektiv er pointen i det centraleuropæiske dannelsesbegreb, at den enkelte gennem arbejdet med faget gør faget til en del af sin person og derved danner sig ved hjælp af faget, således at fagets objektive elementer transformeres til personlige egenskaber. Dannelse adskiller sig således fra scientific literacy ved at tilføje en personlighedsdimension, der nærmer sig et identitetstræk. I et forsøg på at definere et naturvidenskabeligt almendannelsesbegreb, der trækker på såvel centraleuropæiske som angelsaksiske traditioner, foreslår Dolin og kolleger (2017) følgende dimensioner af naturvidenskabelig almendannelse:

- **Viden** (om natur og -videnskab; om naturvidenskabens værdi og funktion; om begreber og metoder, færdigheder og kompetencer)
- **Perspektiv** (faginternt og -eksternt; til andre eller alle af fagets forhold; til og overskridende fagets grænser; historisk og til det samtidigt samfundsmæssigt relevante såvel som det fremtidigt fordrende)
- **Personlighed** (kendetegnet ved en vilje til at opsøge, forholde sig til og bruge viden – identitetsdrivende, -overvindende og -overkommende, kritisk reflekterende, aktivt deltagende og adfærdsvejledende).

Dolin og kolleger (2017) foreslår desuden, at disse dimensioner operationaliseres i en række aspekter, der sammenfattende kendetegner det naturvidenskabeligt dannede menneske:

- ”… har naturvidenskabelig viden i bred forstand: Man har både viden om det naturvidenskabelige indhold og færdighed i naturvidenskabelige metoder.
- … har en fornemmelse for naturvidenskabernes historie: Man har en forståelse for, at viden ikke er en statistisk størrelse, men at den udvikles løbende og bidrager til den samfundsmæssige, kulturelle og teknologiske udvikling.
• … er kritisk: Man kender naturfagenes begrænsninger og muligheder (virkeområder, relevansområder), og man kan derfor se fagene i forhold til andre fagområder. Man kan trække på og argumentere for brugen af forskellig faglig viden i en given problemstilling.

• … har selvfølgeligt: Man forholder sig til, hvilken rolle man spiller i verden, og hvordan den verden, man er del af, har betydning for, hvem man er.

• … forholder sig personligt: Man tænker på naturvidenskab som vedkommende og relevant, og man kan give et bud på, hvorfor ’et stykke naturvidenskabelig viden’ er meningsfuldt.

• … udvikler sig som menneske: Man bruger naturvidenskabelige fag til at udvide sin horisont med, til at tage stilling og danne meninger med, og i sidste ende til at sikre, at man kan agere med myndighed”.

Forsøg (på makro- såvel som på mikroniveau) på at rammesætte undervisning til at fremme naturvidenskabelig almendannelse og scientific literacy møder en række udfordringer:

• Der har i praksis vist sig at være et skisma mellem det, der efter Roberts (2007) kaldes Vision I scientific literacy – der dækker over en dekontekstualiseret undervisning af naturvidenskabeligt indhold ofte med det formål at lede elever ind i fremtidige naturvidenskabelige karrierebaner – og Vision II scientific literacy – der dækker over en stærk kontekstualisering af naturvidenskabeligt indhold med det formål at kultivere elever til at kunne indgå som naturvidenskabeligt dannede borgere lokalt, nationalt og globalt. Der er rig evidens for, at når Vision I omsættes i undervisning, leder det ikke til substantiel læring af de mål, der ofte associeres med scientific literacy (se ovenstående) (Aikenhead, 2007); den måde, scientific literacy ofte evalueres på – fx i PISA – ser dog ud til at fremme Vision I som den gennemgående vision for scientific literacy i et uddannelsessystem (Orpwood, 2007).

• Undervisning, der fremmer scientific literacy, kræver i mange tilfælde stadig en substantiel transformering af traditionel pensumorienterede skolepraksisser – hvor den dominerende pædagogiske tilgang er kendetegnet ved, at lærere docerer viden frem for at fostre elevernes meningsfulde diskursive interaktion med stoffet (Bartholomew, Osborne & Ratcliffe, 2004; Lemke, 1990; Osborne, 2007a).

• En særlig udfordring knytter sig til undervisning rettet mod naturvidenskabelig almendannelse. Selvom danske lærere i de naturvidenskabelige fag i gymnasiet fx mener, at dannelse er en vigtig dimension af naturvidenskabelig undervisning, oplever de ofte, at den er svær at inddrage i undervisningen, fordi den ikke direkte evalueres (Dolin et al., 2016).

• Der er fra et såvel teoretisk som praktisk perspektiv udfordringer forbundet med at finde en legitim status til personlighedsdimensionen af naturvidenskabelig dannelse i undervisningen. En række aspekter af personlighedsdimensionen er ikke bare svære at indfange i evaluering, men bør måske endda slet ikke være genstand for evaluering i en uddannelsesmæssig kontekst. Problemet her vil være at finde og give rum til sådanne aspekter i undervisningen, også selvom der ikke evalueres på dem (Dolin et al., 2016).
• Resultater fra PISA 2015 (der er designet til at teste elevers scientific literacy, se afsnit 1.5.2) indikerer, at understøttelsen af scientific literacy kræver klare strategier, som kan samle aktører i uddannelsesfeltet (især i forhold til at fremme elevers præstation og retfærdig behandling på tværs af ophav, kæn og socioøkonomisk status), omhyggeligt beskrevne og konsistente læringsmål på tværs af de enkelte klassesrum, kapacitetsopbygning blandt lærere og ledere, at skoler har ligeværdig adgang til ressourcer samt specielle politikker, der tilgodeser elever og skoler i risikogrupper (OECD, 2016).

1.4.3. Socioviden kabelige problemstillinger

Scientific literacy og naturvidenskabelig almindelighed er i mange sammenhænge blevet operationaliseret i terme af socioviden kabelige problemstillinger – socioscientific issues (SSI) (for et internationalt overblik se Zeidler, 2014). Her arbejder elever (grundskole og opefter) typisk med væsentlige problemstillinger fra samfundet, som har en tydelig relation til et naturvidenskabeligt eller teknologisk indhold. Et eksempel på sådan en problemstilling kunne være: ”Skal vi tillade genetik på mennesker?”. Ved at diskutere konkrete socioviden kabelige problemstillinger i undervisningen kan elever udvikle kompetencen til at træffe fagligt informerede beslutninger om verserende samfundsforhold og derigennem som fremtidige samfundsbærer at kunne navigere i og samtidig påvirke et samfund, der i større og større grad præges af naturvidenskab og teknologi (for en oversigt se Eilks, Nielsen & Hofstein, 2014; Kolstø, 2001a; Nielsen, 2012b), herunder:

• overordnede kompetencer i forhold til argumentation og beslutningstagen
• interesse for og forståelse for naturfaglig undervisning generelt
• en dybere forståelse af den tentativede status af state of the art naturvidenskabelig forskning (fx klimamodeller).

Men implementeringen af SSI-undervisning med høj kvalitet møder typisk en række udfordringer:

• Naturfaglige lærere er ofte ikke klædt godt nok på til at rammesætte og evaluere elevers arbejde i SSI-undervisning, fordi der ofte må inddrages kompleks information fra andre fagområder – fx samfundsviden kabelig og humanistisk viden og tilgange (Christenson & Chang Rundgren, 2015; Orlander Arvola & Lundegård, 2011; Simonneaux, 2014). I den
forbindelse skal elever kunne støttes til at forholde sig kritisk til ophavet af specifikke informationer, som indgår i SSI-beslutningstagen (Kolstø, 2001b).

- Selvom fagbeskrivelser og læringsmål i bekendtgørelser (fx på det gymnasiale område) rummer tydelige SSI-elementer, ser det ud til, at implementeringen af SSI-undervisning ofte har et så kraftigt fokus på det naturfaglige/-videnskabelige indhold, at det kan undergrave de diskursive og beslutningsmæssige læringsmål, der med fordel kunne ligge i SSI-undervisning (Barrett & Nieswandt, 2010; Levinson & Turner, 2001; Millar & Osborne, 1998; Tidemand & Nielsen, 2016).

1.4.4. Teknologi-, engineering- og designundervisning (TED)\(^\text{12}\)

I den internationale litteratur bruges begreber som *technology, engineering* og *design education* (TED) ofte flertydigt (Sherman, Sanders & Kwon, 2010). I denne kontekst bruges TED-undervisning som en paraplybegreb for undervisning, der angår kritisk evaluering og bearbejdning af teknologi og teknologiens rolle i samfundet samt eventuelt forsøg på at forbedre teknologier gennem design- og redesignprocesser (Benenson & Piggott, 2002). Det er vigtigt at understrege, at vi her alene taler om dagtilbuds-, grundskole- og ungdomsuddannelsesniveau; det vil sige *ikke* om undervisning på videregående teknologi-, ingeniør- og designuddannelser. På den måde dækker TED-undervisning over såvel undervisning i teknologifag (fx htx i Danmark) som forløb i naturfags- og matematikundervisningen, der relaterer sig til teknologi-, ingeniør- og designvidenskabelige kontekster, problemer, arbejdsmåder og indhold generelt.

I en dansk sammenhæng er *engineering* den mindst kendte ingrediens i STEM, derfor er der i det følgende fokus på *engineering*, og der bruges lidt ekstra plads på at udfolde dette potentielle indholdsområde i læringsaktiviteter for lærere fremadrettet. *Engineering* som en praksis i undervisningen handler om, hvordan eleverne skaber praktiske løsninger på praktiske problemer.

\(^{12}\) Skrevet i samarbejde med Birgitte Lund Nielsen og Keld Nielsen.
Hvordan indkredser man et problem? Hvordan kommer man frem til et godt design? Hvordan vurderer man, om en løsning er ’god’, og om den kan/bør gøres bedre?

TED-undervisning generelt og især engineering og design kan ofte sammenlignes med cykliske UBNU-forløb (se afsnit 1.3.2); men ifølge Cunningham og Carlsen (2014) er der væsentlige forskelle mellem ’rene’ naturfaglige-/videnskabelige undersøgelsesprocesser og typiske processer i TED-undervisning: UBNU-processer vil ofte have fokus på de spørgsmål, der stilles (som åbner for en undersøgelsesproces), mens engineering-/designprocesser typisk har fokus på at udvikle løsningsforslag. Engineering-/designprocesser vil være multi iterative igennem en iterativ analysefase; mens modeller primært informerer UBNU-processer, er modeller typisk et resultat af analyse og undersøgelse i engineering-/designprocesser.

TED-undervisning – såvel som undervisning i et selvstændigt fagområde som forløb i naturfag og matematik – har tydeligvis en række pædagogiske-didaktiske potentialer:

- Frem for alt lægger TED-undervisning naturligt op til pædagogiske tilgange, som i mange sammenhænge ser ud til at være læringsfremmende – fx problembaseret læring (Kolmos, 2016).
- Undervisningsforløb, hvor der indgik ’systems design’ i forbindelse med undervisning i elektriske kredsløb, støttede elevernes forståelse af naturfaglige begreber som spænding, strøm og modstand bedre end mere traditionel undersøgende undervisning. Særlig interessant er det, at en gruppe afroamerikanske elever, der ellers viste indlæringsproblemer, performede godt (Mehalik, Doppelt & Schunn, 2008).
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

- Når elever løser opgaver, der er rettet mod ’brugere’, vil løsning af en opgave ofte inkludere overvejelser af sociale kriterier som etik eller økonomi. Diskussioner af brugerrettede designløsninger fremmer elevernes villighed til at lære af hinanden og til at inddrage skoleeksterne perspektiver i deres diskussioner (Brophy, Klein, Portsmore & Rogers, 2008; Fortus, Dershimer, Krajcik, Marx & Mamlok-Naaman, 2004).

- Når naturfagslærere og teknologilærere arbejder sammen i forbindelse med deres efteruddannelse, bliver de mere aktive i udvikling og forbedring af egen undervisning (Lavonen et al., 2000).

- Der er åbenlyse sammenhænge mellem TED-undervisning og SSI-undervisning (for beskrivelse af SSI-undervisning se afsnit 1.4.3) i den forstand, at TED-undervisning ofte intenderer at udvikle elevers evne til kritisk at tematisere teknologiernes rolle i samfundet (Jones, Buntting & de Vries, 2013), og netop teknologiske emner (fx genterapi) kan være en vigtig drivkraft for SSI-undervisning i de eksisterende naturfag (Hodson, 2009).

Forskningen på området indikerer en række udfordringer i forbindelse med implementering af TED-undervisning:

- Der er eksempler på, at engineering-projekter ikke fører til bedre læring i science, dels fordi der tages tid fra anden undervisning, dels fordi det er en risiko, at eleverne ikke får underbygget deres forståelse af de involverede science-begreber (Barnett, 2005).

- TED-undervisning bruges på den ene side ofte til at udpege en bestemt måde at arbejde på; og det, der typisk udpeges, er forløb, hvor elever laver praktisk (design)arbejde, udbygger deres forståelse af (en teknisk/teknologisk beriget) verden og tematiserer autentiske teknologiske forhold og problemstillinger (se fx Stables, 1997). På den anden side kan TED-undervisning også bruges til at udpege bestemte læringsmål, der ofte stipulerer, at eleven skal udvikle sin tekniske/teknologiske viden og forståelse for samspillet mellem teknologi og samfundet (se fx Bybee, 2010). Denne flertydighed gør det svært at betragte TED-undervisning som et homogent genstandsfelt for forskning. Man kan argumentere for, at den manglende fælles forståelse af, hvad TED-undervisning dækker over, har ledt til, at det konkrete TED-førlob manifesterer sig på mange måder og ofte ikke nødvendigvis svarer...
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

overens med eksisterende uddannelsespolitiske intentioner på området (Sherman et al., 2010).

- Der er indikationer på, at der er udfordringer forbundet med at integrere teknologi-/designemner og naturfag/-videnskab på en måde, hvor både TED-undervisning og naturfaglig undervisning tilgodeses til fulde (Zubrowski, 2002). Frem for alt kan det være en udfordring, at nogle naturfag- og matematiklærere, der bliver bedt om at inddrage teknologiemner i deres fag, har en begrænset baggrund i TED-undervisning og i nogle tilfælde kun begrænset interesse for at inddrage sådanne emner i deres faglige undervisning (Ginns, Norton, McRobbie & Davis, 2007; Jones, Harlow & Cowie, 2004; Sherman et al., 2010). Det synes at være et generelt problem, at mange konkrete TED-undervisningsforløb har en ringe kobling til naturfagene/-videnskabelige indhold er et kunstigt add-on, der åbenlyst ikke spiller nogen anden rolle end at tjene et curriculum (Vries, Gumaelius & Skogh, 2016).

Et fremtidigt fokus i Danmark på STEM-fagene og deres integration vil være udfordret på en række områder:

- Vi har ikke nogen stærk tradition for samarbejde mellem de tre naturfag i folkeskolens overbygning, ej heller mellem de fire naturfag i gymnasiets.
• Der er heller ikke nogen stærk tradition for samarbejde mellem matematik og naturfagene.

• Vi har ikke noget fag eller nogen faglig tradition for engineering. Faget indgår ikke i nogen af de eksisterende læreruddannelser (hvis man ser bort fra rekutteringen af ingeniører til htx).

• Ordet teknologi som betegnelse for et fag må så omkalfatres, så det betyder nogenlunde det samme som teknologi/teknik/technology i andre landes læseplaner, nemlig et overvejende humanistisk fag med vægt på STS-temaer som samfund og teknik, forudsætninger for teknologisk udvikling, konsekvenser af teknologisk udvikling, teknologivurdering, bæredygtighed og teknologiens historie.

1.4.5. Innovationskompetence

Fokus her er på innovationskompetence forstået som et konstrukt, som elever kan tilegne sig – og ikke på innovation som sådan. Alligevel er det vigtigt at påpege, at ordet ’innovation’ er et begreb, der anvendes flertydigt i både offentlige diskurser og i forskningskredse (Fagerberg, 2006). Frem for alt bruges innovation ofte i en markedsorienteret og merkantil forstand – og nærmest synonymt med entreprenørskab; og denne brug har med rette ledet mange uddannelsesforskere til at opbygge en vis skepsis over begrebets læringsmæssige legitimitet (se fx Nepper Larsen, 2012).

forbedre (alså ikke blot forandre) en eksisterende praksis i verden på etisk forsvarlig måde sammen med aktører berørt af og agerende i denne praksis på baggrund af relevant viden” (s. 57). Med andre ord vil innovationsfremmende undervisning involvere enkelt- eller tværfaglige forløb, hvor elever aktivt arbejder på at anvende deres faglighed(er) på at komme med løsningsforslag til autentiske problemstillinger fra et praksisfelt. Et eksempel kunne være en klasse i gymnasiets evne om at fremme et etisk forsvarligt måde sammen med aktører berørt af og agerende i denne praksis på baggrund af relevant viden

Danmark ser på stående fod ud til at være forholdsvis langt fremme internationalt set i forhold til at udvikle en didaktisk/pædagogisk forståelsesramme for innovationskompetence som et meningsfuldt læringsmål i en skolekontext (se fx Nielsen, 2015a; Nielsen & Holmegaard, 2014). Meget af den empirisk funderede viden på området stammer fra følgeforskning på længerevarende og omfattende projekter såsom ISI (Innovation, Science, Inklusion) 2015 (Sølberg, Waaddegaard et al., 2015) på grundskoleområdet og Gymnasiet tænkt forfra (Nielsen, 2015b) på gymnasiaområdet; og mange erfaringer går igen på tværs af disse projekter:

- Faglærere, der begynder at implementere innovationsfremmende undervisning i deres fag, skal støttes til at identificere, hvad der tæller som legitime tegn på elevers tilstedeværelse af innovationskompetence. På den måde vil en satsning omkring innovationsfremmende undervisning i en vis grad udfordre den eksisterende faglige forståelse.

- Fagligt funderet innovationsfremmende undervisning kan med tiden gøre den faglige undervisning mere relevant, anvendelsesorienteret og autentisk og dermed stå i kontrast til 'traditionel' tavleundervisning.

- I Gymnasiet tænkt forfra var der indikationer på, at de deltagende elever blev mere mestrigsorienterede og udviklede en mere refleksiv tilgang til deres egen læring; baggrunden for dette skal muligvis findes i, at de deltagende lærere brugte anseelige ressourcer på at diskutere det ’nævke’ kompetencebegreb indbyrdes og med eleverne (Nielsen, 2015b).
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

- Gymnasielærere (der ikke nødvendigvis har stor erfaring med innovationsfremmende undervisning) kan pålideligt vurdere elevers fagligt funderede innovationskompetence i eksamenslignende situationer med udgangspunkt i konkrete evalueringsvejledninger (Belova et al., accepteret; Nielsen, 2015c).

Indførelsen af innovationskompetence som læringsmål er stadig relativ ny. Der kan med fordel forskes i, om nyere og kommende reformer (herunder den kommende gymnasieaftale) leder til innovationsfremmende undervisning af høj kvalitet. Derudover er det vigtigt at tematisere, hvilke fag der bedst kan indgå i målet om, at elever tilegner sig innovationskompetence.

1.5. Viden om evaluering af og for læring

Evaluering af og for læring er en af de væsentligste faktorer i og omkring undervisningen, der har indflydelse på elevers læring. I denne kontekst involverer al evaluering indsamling, fortolkning og anvendelse af informationer – fx om en elevs præstation i et fag – med et specifikt formål – fx for at nå til en vurdering af en elevs faglige niveau (Harlen, 2007). Man sondrer overordnet set mellem formativ og summativ evaluering:

- Formativ evaluering – eller evaluering for læring – har til formål at understøtte elevens læring. Her indsamles og fortolkes informationer om eleven med henblik på at vurdere, hvor eleven er (i forhold til sin læring), hvor eleven skal hen (hvad er de intendedere læringsmål), og hvordan eleven når i mål med sin læring (strategier til at lukke hullet mellem elevens nuværende niveau og læringsmålene) (Assessment Reform Group, 2002).

- Summativ evaluering – eller evaluering af læring – har til formål at fastslå elevens læringsniveau til et specifikt tidspunkt. Her indsamles og opsummeres informationer om elevens læring i en afgrænset periode (fx en årskarakter), eller elevens læring afprøves i en udvalgt situation på et givet tidspunkt (fx en eksamen).

En stor del af den nyere litteratur på området fokuserer på muligheder og udfordringer forbundet med at evaluere elevers kompetencetilegnelse i forhold til mere eller mindre specifikke kompetencer:

- Argumentationskompetence (Christenson & Chang Rundgren, 2015; Kolstø et al., 2006; Nielsen, 2013a, 2013b; Tidemand & Nielsen, 2016).

1.5.1. Viden om evalueringsspraksis

Det er klart, at ethvert uddannelsessystem har et legitimt krav på at kunne trække data om præstation ud om den enkelte elev eller om grupper af elever. Således er det en væsentlig opgave for et uddannelsessystem at understøtte en balanceret evalueringskultur, hvor behovet for summative data ikke underminerer kvaliteten af den formative evaluering i den daglige undervisning.

Til trods for den voksende forskningsproduktion inden for evaluering er der stadig en række helt centrale underbelyste områder:

- Vi har ikke en dybere forståelse af, hvordan formativ evaluering påvirker elevers læring og motivation – det er fx et åbent spørgsmål, på hvilken måde (hvis overhovedet) der er forskel på den formative evaluering, der kan ligge i den daglige interaktion mellem lærer og elev, og den formative evaluering, der ligger i målrettede evalueringsaktiviteter (McMillan, 2012); frem for alt mangler vi mere viden fra forsøg med stringent at indføre og/eller sammenligne forskellige feedbackformer (Ruiz-Primo & Li, 2012).

- Vi ved generelt lidt om, hvordan lærere bedst (efter-/videre) uddannes i forhold til at forbedre deres formative evalueringspraksis (Andrade, 2012; McMillan, 2012; Schneider & Andrade, 2013); men se dog Nielsen (2015b); på samme måde vi generelt lidt om, hvordan elever skal klædes på til optimalt at modtage og konstruktivt bruge feedback (McMillan, 2012).

- Læreres konkrete formative evalueringspraksis i den daglige undervisning er stadig underbelyst. Vi ved således for lidt om, hvordan lærere i det daglige indsmalter, fortolkker og reagerer på information om elevers læring med henblik på at understøtte elevernes fremtidige læring (Campbell, 2012); og der er endnu ikke udviklet valide instrumenter til at vurdere læreres formative evalueringspraksis i den daglige undervisning (Randel & Clark, 2012).
• Der foreligger kun spredt viden om, hvordan nordiske lærere går til arbejdet med at opsummere elevers præstation – fx i standpunkts- eller årskarakterer (for et internationalt overblik se Brookhart, 2012; Moss, 2012). Analyseresultater fra Danmarks Evalueringstitut (EVA, 2016) og nylige kvalitative undersøgelser af erfarne læreres praksis (naturfag, teknologi og matematik) (Dolin, 2016; Nielsen & Dolin, 2016) indikerer, at karaktergivningen i danske gymnasier i høj grad er en individuel praksis, at den ikke altid er transparent for eleverne, at de opsummerende karakterer ofte bruges som pædagogiske redskaber, samt at nogle lærere i de naturvidenskabelige fag og matematik kan operationalisere denne karaktergivning ved at teste elever.

1.5.2. Internationale storskalaevalueringer (PISA og TIMMS)

I det, der må betegnes som den mest dybdegående danske undersøgelse af PISA-testens validitet, konkluderede Dolin og Krogh (2011), at der er markante begrensninger ved PISA 2006-testens naturfaglige del. Dolin og Krogh gentestede 120 danske elever, der scorede omkring 25 % højere inden for et mere sociokulturelt orienteret testregime (samme faglige indhold og samme vurderingskriterier), end de gjorde i PISA-testen; den nye testsituation viste dog, at eleverne besad en relativt lille faktuel viden inden for de relevante områder af Fælles Mål og var i ringe grad i stand til at bruge fagsprog (ud over på et rent basalt niveau). Der er således dokumentation for, at resultater fra storskalatests, såsom PISA, er relative og ikke i sig selv retvisende for elevers færdigheder og kompetencer. (For lignende større analyser af PISA-resultater henvises der til Anker-Hansen, 2015; Anker-Hansen & Andrée, 2015a, 2015b; Serder, 2015; Serder & Ideland, 2016; Serder & Jakobsson, 2015a, 2015b).
2. Kompetenceudvikling for undervisere/pædagogisk personale

Birgitte Lund Nielsen & Keld Nielsen

2.1. Resume af litteraturstudiets genstandsfelt 2

Dette afsnit handler om reviewspørgsmål 2: Hvilke indsatser, metoder og strategier kan ifølge eksisterende forskning udvikle de pædagogiske/didaktiske kompetencer hos pædagogisk personale og undervisere, herunder især kompetencer til at gennemføre anvendelsesorienteret og/eller undersøgende naturvidenskabelig undervisning, i forhold til de naturfaglige-/videnskabelige fagområder i dagtilbud og uddannelsessystemet? Litteraturstudiet viser:

- At veluddannede lærere er den afgørende faktor for udvikling og nytænkning af undervisning. Her er det et problem, at Danmark (i tal fra både 2009 og 2013) ligger betragtelt under OECD’s gennemsnit med hensyn til tid brugt på (og udbredelsen af) læreres fortsatte professionelle udvikling (CPD).

- At PCK (Pedagogical Content Knowledge) er en toneangivende og konstruktiv begrebsramme til at forstå læreres pædagogiske/fagdidaktiske kompetencer (nyere modeller for PCK indrager bl.a. et færdigheds- og kompetenceaspekt). Det er centralt for udviklingen af PCK, at lærerstuderende deltager i aktiviteter koblet til undervisningspraksis, og at lærere og lærerstuderende løbende arbejder systematisk med at udvikle deres PCK – fx gennem diskursivt arbejde, med afsæt i konkrete praksiserfaringer, og samarbejde med mentorer/forskere. Der er dog et stort behov for mere solid viden om, hvad der kan understøtte læreres løbende udvikling af pædagogisk/fagdidaktisk viden og kompetence (PCK), og om forholdet mellem læreres PCK og elevers læring.

- At der ikke er substantiel evidens for, hvordan læreruddannelser generelt skal udformes, men der er tydelige indikationer på, at det er vigtigt, at der i læreruddannelsen arbejdes systematisk med undersøgelse af professionens praksis. I forhold til uddannelse af STEM-lærere viser nordisk forskning, at uddannelsen især bør inkludere praksiserfaring og refleksion over denne med fokus på elevers forståelse af de faglige begreber.

- At det er vigtigt, at uddannelsen af STEM-lærere inkluderer de studerendes refleksive arbejde med især undersøgelsesbaseret naturfagsundervisning og understøttelse af kommunikation og dialog i klasserummet. Desuden er det centralt, at der i løbet af uddannelsen fokuseres på de studerendes grundlæggende overbevisninger (beliefs) om (undervisnings)faget, arbejdet med nature of science-aspekter (NOS) og brugen af IKT i undervisningen. Der er behov for mere viden om sammenhængen mellem STEM-læreres beliefs og deres praksis i klasserummet samt om, hvordan der under uddannelsen kan arbejdes med de studerendes beliefs.
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

- At læreres fortsatte professionelle udvikling (CPD) kan føre til ændret undervisningspraksis, hvis følgende faktorer tilgodeses i CPD: fokus på det konkrete faglige indhold og fagdidaktik relevant for dette, lærernes aktive læring, lærernes samarbejde i kooperative lærerprocesser, deltagelse af flere kolleger fra samme skole, længerevarende forløb med tid til iværksættelse af nye tiltag lokalt og til refleksion og sammenhæng mellem det, der arbejdes med på kursus, og det, der afprøves lokalt.

- At læreres fortsatte professionelle udvikling (CPD) er udfordret af, at der ofte er manglende institutionel støtte og forankring, samt at lærere mangler tid og ressource til at udføre opgaver i forbindelse med programat CPD. Det er et væsentligt problem, at danske udviklingsprojekter meget sjældent sigter på varige effekter, går i stå undervejs og/eller ofte løber ud i sandet, og at de ikke evalueres i passende grad. Der mangler substantiel viden om, hvordan udviklingsprojekter kan sikres en varig effekt med henblik på en blivende og fortsat kapacitetsopbygning.

- At der er et stort behov for mere viden om, hvordan man eksplicit kan koble forskningsinformeret design af og indhold i læringsaktiviteter for lærere, med henblik på bæredygtige forandringer i undervisningen i skolen.

- At naturfagslærere generelt er positive over for undersøgelsesbaseret undervisning (UBNU), men at læreres arbejde med UBNU ofte er udfordret. UBNU bliver ofte et add-on til den øvrige undervisning og kobles ikke altid godt nok til elevernes begrebsforståelse. Generelt er det en udfordring, at en række kompetencer, elever kan tilegne sig i UBNU, ikke evalueres i passende grad til eksamen. Derudover kan UBNU være tidskrævende især for lærere, der begynder at designe UBNU-forløb.

- At i forbindelse med ønsket om at sikre elevers tilegnelse af scientific literacy og naturvidenskabelig almendannelse er der et generelt behov for udvikling af læreres kompetencer til at stilladsere elevers faglige diskussioner af samfundsmæssige problemstillinger (socioscientific issues, SSI).

- At der er behov for didaktisk og indholdsmæssig nytænkning i forhold til det, der ofte refereres til som computing skills eller computer science education. Det er utilstrækkeligt kun at satse på brug af computere som hjælpemiddel i undervisningen – det er heller ikke nok, at elever lærer at bruge computere. Det anbefales, at der er fokus på design af hardware
og software, logik, algoritmeudvikling, programmering inkl. sprog og teori, sammenhæng mellem ’computing’ og matematik, anvendelser og sociale dimensioner.

- At der mangler en didaktik for faglig integration mellem STEM. Det er en stor udfordring, at lærere mangler faglig viden (PCK) i relation til fagintegration, og at lærerne mangler erfaringer på området, bl.a. fordi læreruddannelsen ikke ruster lærerne til denne form for undervisning.

- At det er givtigt at understøtte udviklingen af professionelle læringsfællesskaber (PLF), da disse har kapacitet til at fremme og understøtte læring hos alle professionelle på skolen med det formål at fremme elevernes læring. Udvikling af PLF understøttes bedst gennem en overordnet organisatorisk og politisk forankring og koordinering (fx i kommunalt regi). Et PLF kan med fordel bl.a. fokusere på undersøgelsesbaseret professionel læring; det er vigtigt, at fællesskabets aktiviteter har et relevant didaktisk indhold, og at der inddrages synspunkter og inspiration uden for gruppen selv, fx fra forskere eller eksperter.

2.2. Viden om STEM-13-læreres PCK og pædagogiske/fagdidaktiske kompetencer

Der anvendes i litteraturen en række forskellige begreber til at beskrive og undersøge karakteren af læreres pædagogiske/fagdidaktiske kompetencer, men betegnelsen *pedagogical content knowledge* (PCK) må siges at være én af de mest udbredte nationalt som internationalt, særligt når det gælder forskning inden for STEM-området (dansk opsamling på PCK-forskningen: Ellebæk & B.L. Nielsen, 2016, for et internationalt overblik se Abell, 2007; Berry, Friedrichsen & Loughran, 2015; Lougran 2014).

PCK blev introduceret af Shulman (1986), bl.a. med målet om at sætte det faglige indhold på dagsordenen igen, når man diskuterede lærerfaglighed, efter en periode med fokus på mere almene metodiske spørgsmål. Shulman (1986, s. 9) skriver om PCK:

“De mest almindeligt forekommende undervisningsemner inden for ens faglige felt, de mest brugbare former for repræsentationer af disse idéer, de stærkeste analogier, illustrationer, eksempler, forklaringer og demonstrationer – i et ord, måden at repræsentere og formulere det faglige emne, så det bliver forståeligt for andre”.

13 STEM anvendes her som en forkortelse til angivelse af, at det som udgangspunkt gælder hele gruppen af fag: naturfagene (science), teknologi, *engineering* og matematik. Forskningen handler dog mest om naturfag og matematik. I afsnit 2.5.3 omtales STEM kort som særlig didaktisk målsætning.
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

2.2.1. PCK som område- eller emnespecifik?

2.2.2. Hvordan udvikles læreres PCK?

I relation til udvikling af PCK fremhæves værdien af, at lærerstuderende under uddannelsen deltager i aktiviteter koblet til undervisningspraksis (Nilsson 2008b; 2014), og at de eksplicit

2.2.3. Fremadrettet: forskning i læreres udvikling af PCK og forandringer i praksis

2.3. Viden om design af læringsaktiviteter for STEM-lærere

I den internationale forskning findes der ikke den samme skelnen mellem grundskolelæreruddannelse og gymnasielæreruddannelse som i Danmark, så de internationale referencer, der anvendes i afsnittet, kan som udgangspunkt handle om begge dele. De danske referencer er dog alle til den UC-baserede, fireårige integrerede professionsbacheloruddannelse til folkeskolelærer. Da gymnasiepedagogikum i Danmark er arrangeret noget anderledes, end læreruddannelse typisk er, er det vurderet, at en behandling af dette ville fordre umådeholden meget særplads (ift. indsigt i gymnasiepedagogikum generelt, se fx Beck, 2016).

2.3.1. Indhold i læreruddannelse

Lærerstuderendes refleksion diskuteres i mange studier, fx har Kaasila og Lauriala (2012) identificeret en stor variation i dybde og bredde i de lærerstuderendes refleksioner og diskuteret, hvordan de lærerstuderendes egne erfaringer med at lære matematik så ud til at have stor indflydelse på, hvordan de angreb det at undervise i matematik. Denne indflydelse fra mange års ’indirekte lærlingetid som elev’ på, hvordan man bevidst eller ubevidst angriber og tænker om undervisning, er fremhævet i mange studier, siden Lortie (1975) satte fokus på denne udfordring. Opmærksomhed på egne grundlæggende overbevisninger (beliefs) og eksplicit arbejde med disse i uddannelsen fremhæves i den forbindelse (fx Bulien, 2008).

IKT er et andet område, der berøres i flere studier, fx anbefales det at have eksplicitte mål relateret til integration af IKT og systematisk opfølgning på disse i læreruddannelsen (Meisalo, Lavonen, Sormunen & Vesisenaho, 2010), da forskning har vist, at lærerstuderende mangler kompetence til at anvende IKT med et særligt fokus på undervisning og læring (Kontkanen et al., 2014). For mere om brugen af IKT se afsnit 4. Specifikke interventioner inden for området er også undersøgt, bl.a. i et forskningsprojekt, hvor lærerstuderende er støttet i brug af simulationer i naturfagsundervisning, og hvor resultaterne viste statistisk signifikante forskelle imellem før- og eftertest både i indholdsviden, pædagogisk viden og TPACK (en særlig variant af PCK ift. inddragelse af IKT) (Lehtinen, Nieminen & Viiri, 2016). Det anbefales at arbejde eksplicit med lærerstuderendes tænkning om egen teknologisk viden og dermed understøtte deres refleksive brug af fx simulationer i deres naturfagsundervisning.

Et tredje område, der specifikt er undersøgt i relation til primær læreruddannelse, er nature of science (NOS). Det fremhæves som en udfordring at integrere nye innovative undervisningsformer såsom NOS-undervisning i primær læreruddannelse, men evaluering af den intervention, der henvises til, underbygger, at det kan lade sig gøre, og at dette kan ses som et første skridt frem mod at få NOS ind i læreruddannelsens curriculum (Vesterinen & Aksela, 2013).

2.3.2. Komparative undersøgelser af læreruddannelse

Resultater fra de ovenfor refererede reviews og internationale komparative undersøgelser af forskellige læreruddannelsesprogrammer kan suppleres med komparativ undersøgelse, der sammenligner indholdet i folkeskolelæreruddannelsen i Danmark med tre toppræsterende lande i
PISA og TIMMS: Canada, Finland og Singapore (Rasmussen, Bayer & Brodersen, 2010). Specifikt er indholdet i de pædagogiske fag, matematik og naturfag undersøgt. I resultaterne peges der på, at læreruddannelserne i toptrelandene er forskningsbaserede, og at underviserne har forskningskompetence. Der er ikke entydige forskelle i indholdet, dog er det fremhævet, at evidensbaseret professionsviden fylder mere i toptrelandene end i Danmark, hvor det, der betegnes som filosofisk orienteret professionsviden, til dels af normativ karakter, fylder mere. Finsk læreruddannelse er integreret ligesom dansk læreruddannelse, forstået således at der i naturfag og matematik begge steder arbejdes med både fagfaglige og fagdidaktiske aspekter, som undervises og lærer integreret. På alle læreruddannelserne tilstræbes der sammenhæng mellem undervisning i praktik og på læreruddannelsessted, og i toptrelandene prioriteres praktiklærernes kompetencer højt.

Begrundelsen er behov for udvikling af kvaliteten af naturfagsundervisning i nogle af de europæiske lande, og forskerne har en hypotese om manglende variation i naturfagsdidaktiske tilgange og/eller en didaktik, som er mindre engagerende end i andre fag. Resultatet af denne analyse opsamles i tre temaer: 1) Den finske læreruddannelse lægger mere vægt på forskning end de to andre, herunder lærerstuderendes udforskning af egen undervisning, 2) værdien af praktiserfaringer fremhæves i alle systemer, men i den finske læreruddannelse er der særligt fokus på balancen, altså højkvalitetspraktik på skoler med særligt uddannede mentorer og ’teoretisk’ fordybelse, og 3) der er ingen af de tre lande, der har obligatoriske indsatser med løbende efter- og videreuddannelse. Det understreges af forskerne som forbloffende, at lærere ikke forventes løbende at videreuddanne og opdatere sig, og det problematiseres, at de tilbud, der er til fortsat professionel udvikling, er enkeltstående og usammenhængende.

Efter- og videreuddannelse/fortsat professionel udvikling for STEM-lærere behandles i afsnit 2.4, men her er en kort opsamling om overgangen mellem primær læreruddannelse og praksis.

2.3.3. Transition og induktion: de første år som STEM-lærer

flere forskellige planer. Der har i dansk kontext også været forskning, der har handlet om de første år som naturfagslærer (Andersen et al., 2004; Ellebæk & Evans, 2005). En af konklusionerne fra denne forskning er, at udvikling i de nye natur/teknologi-læreres håndteringsforventninger (self-efficacy beliefs) er meget afhængig af det, der begrebssættes som undervisningsmiljøet på de skoler, de bliver ansat på. Baseret på gentagne undersøgelser over tid med et internationalt udviklet survey-instrument, sammen med observationer og interviews, blev det konkluderet, at der er en signifikant positiv korrelation mellem de nye læreres udvikling af self-efficacy og støttende undervisningsmiljø-komponenter.

2.3.4. Fremadrettet: forskningsbaseret læreruddannelse

Her og inden for andre områder kan det anbefales at udvide den hidtidige komparative forskning, der har sammenlignet forskellige læreruddannelsesprogrammer overordnet set, med undersøgelser, der afprøver samme konkrete indhold og/eller metode i forskellige (internationale) kontekster. Det kunne fx handle om forskellige konkrete modeller for lærerstuderendes undersøgelser-baserede aktiviteter eller om måder at stilladsere refleksiv kobling mellem fag og fagdidaktik og mellem teoretiske og praktiske studier. Et tredje bud på forskning fremadrettet er, at der synes at være brug for mere forskning med interaktion mellem praktiksted og uddannelsessted som genstandsfelt, også forskning, der inddrager praktiklærere og praktikskolers betydning.

2.4. Viden om efter- og videreuddannelse ift. design af læringsaktiviteter

Der påpeges både i forskning og på policyniveau, at veluddannede lærere er den afgørende faktor for udvikling og nytænkning af undervisning (Hattie, 2012; OECD, 2009). Derfor er der et internationalt fokus på fortsat kompetenceudvikling efter primær læreruddannelse, der fx kan tage form som kursusaktivitet, skoleudviklingsprojekter og daglig sparring med kolleger. For et internationalt overblik henvises til Hewson (2007) og van Driel et al. (2012). Van Driel et al. (2012) definerer læreres fortsatte professionelle udvikling (CPD) som ”… processes and activities designed to enhance the professional knowledge, skills and attitudes of teachers so that they might, in turn, improve the learning of their students”. Mange danske 'naturfaglige projekter’ kan med denne
definition karakteriseres som CPD-projekter (Jacobsen & Elmeskov, udateret). Forskning fra sådanne projekter inddrages derfor, men nogle projekter, fx det danske fireårige QUEST-projekt (Nielsen, Pontoppidan, Sillasen, Mogensen & Nielsen, 2013), har også handlet om praksisfælles-skaber og lokal naturfaglig kultur, se afsnit 2.5 nedenfor.

Der er fra forskningen konsensus om en række faktorer, der er afgørende for, at CPD fører til ændret undervisningspraksis (Borko, 2004; Desimone, 2009; B.L. Nielsen et al., 2013, Richmond & Manokore, 2010; Van Driel et al. (2012):

- Fokus på det konkrete faglige indhold og fagdidaktik relevant for dette
- Lærernes aktive læring
- Lærernes samarbejde i kooperative læreprocesser
- Deltagelse af flere kolleger fra samme skole
- Længerevarende forløb med tid til iværksættelse af nye tiltag lokalt og til refleksion
- Sammenhæng mellem det, der arbejdes med på kursus, og det, der afprøves lokalt.

Timperley (2011) tilføjer en række yderligere faktorer, der har betydning for læreres professionelle læring, fx eksternt ekspertinput, lærernes undersøgelse af elevernes læring, fokus på ønsket elevlæring, og en aktiv og supporterende ledelse.

2.4.1. Eksempler på design af CPD fra de nordiske lande

Det danske QUEST-projekt, med naturfagslærere fra 42 skoler/fem kommuner, blev designet i overensstemmelse med de nævnte konsensuskriterier og med inspiration fra Timperley (2011). Trods udfordringer fra skolereform, skolesammenlægninger og ny lov om læreres arbejdstid rapporterer følgeforskningen om ændret undervisningspraksis med inddragelse af nye, forskningsinformede undervisningsstrategier (Mogensen, B.L. Nielsen & Sillasen, 2015; B.L. Nielsen et al., 2013; B.L. Nielsen, 2016). Stadler (2016) konkluderer: "QUEST succeeded in implementing a collaborative development model of science instruction in Denmark. The model is well accepted by teachers and recognised as an exemplary model of school development".

59
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

2.4.2. Udfordringer i forbindelse med CPD

2.4.3. Fremadrettet

Jacobsen & Elmeskov (udateret) påpeger, at mange danske udviklingsprojekter i grundskole eller ungdomsuddannelser går i stå undervejs eller løber ud i sandet, og at de enten ikke evalueres eller kun evalueres på Guskeys (2000) niveau 1. Der er generelt brug for at knytte følgeforskning til de projekter, der sættes i gang. Endvidere er der brug for forskning, der følger op på den viden, vi
allerede har, fra projekter, der er grundigt evalueret, herunder viden om, hvilke faktorer der i dansk skolesammenhæng gør, at nogle skoler reagerer smidigt og effektivt på større CPD-indsatser, mens andre ikke kommer ret langt (Stadler, 2016; B.L. Nielsen, 2016).

2.5. Viden om fagligt og fagdidaktisk indhold i læringsaktiviteter for lærere

Når man taler om forskningsbaserede eller -informerede læringsaktiviteter for lærere, må det i lige så høj grad handle om det indhold, der arbejdes med, som om design af læringsaktiviteterne. Van Driel et al. (2012) refererer til fokus blandt de elementer, der er konsensus om er vigtige for effekt i forbindelse med læringsaktiviteter for lærere. Et fokus på klasserumspraksis er vigtigt, altså på undervisning i – og læring af – et konkret fagligt indhold for at understøtte udvikling af lærernes PCK (afsnit 2.1), som er tæt knyttet til deres fokus på elevernes læringsudbytte (van Driel et al., 2012, s. 132). Derfor er dette afsnit opdelt i relation til indholdsområder. Mange af de elementer, der i forskningen er behandlet som indhold i læringsaktiviteter for lærere, er grundigere behandlet i andre dele af dette review. I herværende afsnit inddrages litteratur, der eksplicit nævner det pågældende element i relation til læringsaktiviteter for lærere. Det er ikke al den refererede forskning, der har lærernes læring som sit primære genstandsfelt, men her kondenseres de elementer, som bedømmes relevante ift. læringsaktiviteter for lærere.

2.5.1. Særligt for naturfagslærere

Undersøgelser af naturfagsundervisning (se afsnit 1.3.2) for elever er et centralt tema i læringsaktiviteter for naturfagslærere. Termen ’inquiry’ bruges i den forbindelse og i nogle tilfælde af IBSE (Inquiry Based Science Education). Mål kan overordnet set både være, at eleverne lærer at lave inquiry, at de lærer om inquiry, og at de lærer naturfagligt indholdsstof, og undersøgelser af aktiviteter for elever kan beskrives med forskellig grad af åbenhed ift. problem, metode og resultat (Gyllenpalm, Wickman & Holmgren, 2010). Svensk forskning har vist, at undersøgelser af aktiviteter generelt værdsættes blandt naturfagslærere, særligt fordi hands-on-aktiviteter
Italesættes om sjove og motiverende, men de er også et ideal for lærerne, som kan være svært at nå i praksis; aktiviteter med lave frihedsgrader er fortsat dominerende, og der er udfordringer i forhold til lærernes skarphed på mål og type i egne undersøgelsesbaserede aktiviteter (Gyllenpalm et al., 2010). Dansk forskning om læreres arbejde med IBSE i ramme af udviklingsprojektet QUEST bekræfter, at lærerne umiddelbart er meget positive og ser hands-on-aktiviteter som motiverende for elever, men viser også udfordringer, fx i forbindelse med at bestemte aktiviteter fra udviklingsprogrammet kopieres og bliver en add-on til den øvrige undervisning og i forhold til kobling til elevernes minds-on og naturfaglige begrebsforståelse (B.L. Nielsen et al., 2013). Finske undersøgelser har også vist, at lærere og lærerstuderende har udfordringer med kobling af hands-on med minds-on i undersøgelsesbaseret naturfagsundervisning, bl.a. i forhold til hvordan lærerspørgsmål og dialog kan bruges målrettet (Lehesvuori, Ratinen, Kulhomäki, Lappi & Viiri, 2011).

I relation til behov for mere viden om naturfagsdidaktiske indholdsområder, der kan anvendes i læringsaktiviteter for lærere, henvises til andre dele af dette review, hvor forskningsbaseret viden
om 'elementer’, der understøtter elevernes læring og motivation, er grundigt behandling. Pointen er, at dette alt andet lige må være det vægtige indhold i læringsaktiviteter for lærere. Baseret på kondenseringen ovenfor kan man dog sige, at der er brug for mere viden om, hvordan lærerne konkret kan støttes i at udvikle kompetencer i forhold til undersøgelsesbaseret naturfagsundervisning med diskursive minds-on-elementer og et eksplicit fokus på NOS. Det er tankevækkende, at disse indholdsområder, som har været fremhævet som centrale i læringsaktiviteter for lærere gennem mange år, fortsat ser ud til at give udfordringer. Dette indikerer et stort behov for mere viden om, hvordan man eksplicit kan koble forskningsinformeret design af og indhold i læringsaktiviteter for lærere med henblik på bæredygtige forandringer i undervisningen i skolen.

2.5.2. Særligt for matematiklærere

- Mønstergenkendelse (pattern sniffing).
- Egne beskrivelser af egne problemløsningsprocedurer.
- Udvikling af egen notation.
- Udvikling af sproglige argumenter, fx til at overbevise klassekammerater om argumenters holdbarhed.
- Selv at genkende eller konstruere (invent) ligheder mellem tilsyneladende forskellige matematiske strukturer.

UMU muliggør nye former for arbejde og samarbejde i klasseværelset, og matematisk diskussion og kommunikation spiller en central rolle. Dette supplieres af en række andre forskningsresultater med fokus på lærer-elev-dialoger og med elevernes tænkning og argumentation i centrum (Altrø & Skovsmose, 2004; Blomhøj & Kjeldsen, 2006; Johnsen & Altrø, 2010). Også i forbindelse med lærernes oplæg i klassen fremhæves fokus på oplæggets betydning for elevernes udvikling af råsønnementskompetence (Lindhart, Ejdrup & Skipper-Jørgensen, 2010). Generelt konkluderes det, at

2.5.3. STEM-indhold og faglig integrering – med fokus på teknologi og engineering

I den særlige didaktiske målsætning, der i litteraturen omtales som STEM (Science, Technology, Engineering og Mathematics), er det hensigten, at der undervises i de fire områder, således at de integreres og supplerer hinanden. Undervisningen forbindes tæt til, at eleverne arbejder med at finde løsninger på praktiske eller teoretiske problemer (Hom, 2014); og som det diskuteres i afsnit 1.4.4, har teknologi-, engineering- og designundervisning generelt en række pædagogiske og læringsmæssige potentialer. Her gennemgås en række af udfordringer i forbindelse med implemertering af især engineering fra et lærerkompetence-perspektiv.

Som beskrevet i afsnit 1.4.4 ser det ud til, at krav om, at der skal undervises i teknologi, gør lærere og pædagoger i færskolen usikre på, hvad de skal undervise i og hvordan. I færskolen er der ikke nogen tradition at falde tilbage på, og der er generelt behov for at udvikle lærernes undervisning på
dette område. Lærerne mangler værktøjer til at undervise med udgangspunkt i børnenes egen verden og egne valg (Sundqvist, 2016).

De største udfordringer ser dog ud til at være det tværfaglige samarbejde (se afsnit 1.3.4) eller den faglige integration, som STEM lægger op til. STEM er jo netop ikke et nyt fag, men en ny måde at anskue fagenes relationer på. Ud over at vi ikke har nogen stærk tradition for engineering og ikke nogen egentlig didaktik for området, har vi heller ikke nogen stærk tradition – eller en didaktik – for integreret samarbejde mellem fagene. Et nyere review konkluderer, at integration mellem naturfag og matematik stadig står svagt internationalt, men kan dog konkludere, at integration forbedrer elevernes læring. Udfordringer for at komme videre er lærernes manglende faglige viden/kompetence (PCK) i relation til fagintegration, og at lærerne mangler erfaringer på området, bl.a. fordi en læreruddannelse ikke ruster lærerne til denne form for undervisning (Kurt & Pehlivan, 2013).

Der er meget lidt litteratur, der beskriver, hvordan man i en dansk skolekontekst konkret kan udfolde en integreret eller fællesfaglig undervisning, og der mangler forsøg og dokumentation. I Finland har der været forsøg i læreruddannelsen, hvor den faglige integration opnås ved, at man først underviser monofagligt i de indgående fag, for derefter, sammen med de studerende, at kortlægge associationer mellem kernebegreber i ét fag og fagligt indhold i de andre fag (Karppinen, Kallunki, Kairavuori, Komulainen & Sintonen, 2013). I det nye ’framework’ for science-undervisning i USA (NRC, 2012) og den tilhørende didaktiske konkreter gennem ’Next Generation Science Standards’ (NGSS) lægges der overordentlig stor vægt på, at eleverne skal lære engineering-metoder og -færdigheder. Men NGSS er tilbageholdende med at tale om STEM. De nøjes med at fastslå, at science er en kvantitativ disciplin, så det er vigtigt, at underviserne sikrer sig, at science-undervisningen hænger sammen med elevernes læring i matematik. Derfor er formuleringen af læringsmål i NGSS udarbejdet i samarbejde med rammerne for læreplaner i matematik. I NGSS sikres integrationen i naturfagene, gennem at det, der er fælles for fagene (methods, procedures, core concepts), i undervisningen fremstilles som værende fælles. Men hvert af naturfagene har samtidig sine egne ”disciplinary core ideas”.

I dansk sammenhæng mangler der forsøg med, undersøgelser af og dokumentation af STEM-undervisning, ligesom der mangler formulering af mål for og formulering af en didaktik vedrørende engineering i undervisningen og faglig integration af STEM-fagene.

2.5.4. Computing og informatik

En række internationale rapporter beskriver status for undervisning relateret til computere og brugen af dem i hhv. USA, UK og Europa og peger på behovet for en nytænkt indsats, fordi computere og brug af computere har en voksende indflydelse på den måde, hvorpå vi forstår verden, viden og hinanden, og fordi efterspørgslen efter computing skills inden for alle professioner vokser (Wilson et al., 2010; Royal Society, 2012; Informatics Europe & ACM, 2013). Der peges enstemmigt på, at den hidtidige indsats i skoler mht. uddannelse i at bruge og forstå informations- teknologi har fejlet, så der er behov for didaktisk nytænkning. Det konstateres, at behovet for

En ny, mere koherent faglig tænkningsstruktur, der omfatter – men ikke begrænser sig til – *computational thinking* (for en definition se nedenfor), er nu på vej ind i læseplaner; i ”The New National Curriculum” i UK er der på faglisten indført ”Computing Programmes Study”, hvor formålet er at sætte alle elever i stand til at bruge: ”A computational thinking and creativity to understand and change the world (…) The core of computing is computer science, in which pupils are taught the principles of information and computation, how digital systems work and how to put this knowledge to use through programming” (Gov.uk – Department for Education, 2014). I den nye føderale australske læreplan fra 2015 skal elever fra 0. til 10. klasse udvikle ”understanding and skills in computational thinking” (Australian curriculum, 2015). I et forslag til et nyt curriculum i New Zealand skal *digital technology* være et fagområde, der bl.a. skal omfatte algoritmer, data repræsentation, digitale applikationer, digital infrastruktur og programmering (Parsons, 2016; se også Core, 2016), ligesom der i de foregående år har været lavet forsøg i New Zealand med almen undervisning i programmering og *computer science* (Bell et al., 2014), Tre af de største skoledistrikter i USA (Chicago, San Francisco og New York City) vil indføre *computer science education* på alle klassetrin (Guzdial, 2016).

Inden for feltet *computational thinking* (CT) er der internationalt en rivende udvikling, der indikerer, at dette kunne blive et meget relevant indholdsområde i læringsaktiviteter for lærere fremadrettet (Grover & Pea, 2013; Heinz et al., 2016). Grover og Pea (2013) opsummerer, at CT handler om en generisk analytisk kompetence, der understøtter læring i STEM-fagene. CT involverer altså almen problemløsning, men trækker på begreber, der er fundamentale i *computer science*. De konkluderer, at der fra forskningen er konsensus om centrale indholdsområder i undervisning i CT, som fx *mønstergenkendelse*, *struktureret problemopdeling* og *parallel tænkning*, og foreslår også forskellige evalueringstilgange. Heinz et al. (2016) har lavet en komparativ undersøgelse af, hvordan ti lande, herunder Norge, Sverige og Finland, har inkluderet computing-området i grundskole og gymnasium (K-12). CT nævnes sjældent eksplicit, men de nævnte idéer ift. generisk problemlæsning og mønstergenkendelse m.m. indgår i en eller anden grad.

I Danmark er idéerne fra *computational thinking* og *computer science education information* på vej ind i gymnasiets faget informatik, der netop er blevet permanentgjort, efter at det har været forsøgsfag siden 2011. Med udgangspunkt i internationale erfaringer er der udviklet indhold og didaktik for faget (Caspersen & Nowack, 2013). ”Informatik” er hermed indført som en dansk
betegnelse for ”computing” som skolefag. Informatik bruges også i andre ikkeengelsktalende lande, da computing anses for at være uoversætteligt.

Regeringens Vækstråd anbefaler, at computational thinking gøres til en fast del af undervisningen på relevante uddannelser fra folkeskoler til de videregående uddannelser og i efteruddannelsessystemet (Danmarks Vækstråd, 2016b). Computational thinking anvendes i denne sammenhæng om at et bredt spektrum af kompetencer, der bl.a. omfatter programmerings- og kodningskompetencer (Danmarks Vækstråd, 2016a).

Indførelsen af computing/informatik på alle niveauer i grundskole og ungdomsuddannelse vil betyde, at Danmark følger med i en tydelig didaktisk og uddannelsespolitisk trend, og vil byde på en lang række udfordringer, ikke mindst med hensyn til forskningsviden og lærer(efters)uddannelse. Bortset fra at Aarhus Universitet/It-vest har oprettet Center for Computational Thinking, kan man ikke sige, at Danmark står godt rustet.

2.5.5. IKT som hjælpemiddel og som genstand for professionelle udviklingsaktiviteter

Der findes en del forskning i nordisk kontekst, der handler om IKT som hjælpemiddel i undervisningen (se afsnit 4) og bredt set som genstandsfelt i professionelle udviklingsaktiviteter for lærere (Brandt & Johansen, 2009; Kontkanen et al., 2016; Lavonen et al., 2012; Lavonen & Meisalo, 2000; Meisalo et al., 2010; Misfeldt, 2016; Røkenes & Krumsvik, 2016; Valtonen et al., 2015).

Denne kondensering viser, at den hidtidige forskning i Norden har beskæftiget sig med en række forskellige aspekter af IKT som genstandsfelt i læringsaktiviteter med lærere uden dog at have karakter af et kumulativt forskningsprogram. Man kan fremadrettet anbefale forskning, der undersøger nogle af de samme tilgange og indhold i flere læreruddannelseskontekster.
2.6. Viden om lærersamarbejde og læringsfællesskaber

Dermed får PLF’et kapacitet til at fremme og understøtte læring hos alle professionelle på skolen med det formål at fremme elevernes læring (Bolam, McMahon, Stoll & Wallace, 2005). Vescio et al. (2008) skriver: "well-developed PLCs have positive impact on both teaching practice and student achievement". I 8 af de 11 projekter, hvor elevernes læring blev undersøgt, kunne der dokumenteres øget elevlæring. Der var en positiv sammenhæng mellem effekten hos eleverne og kvaliteten af arbejdet i skolens PLF’er, og det konkluderes, at deltagelse i PLF påvirker lærernes praksis, da de bliver mere elevopmærksomme. Så elevernes læring forbedres gennem lærernes fokus på læring, og skolens undervisningsskultur forbedres gennem forøget samarbejde, udvikling af lærerautoritet og fortsat lærer-læring (Vescio et al., 2008).

2.6.1. Anden dokumentation af effekt af læreres kollektivitet

indføres begrebet ”distribueret ledelse”, hvor fokus flyttes fra den person, der udøver ledelse, til situationer, hvor der udøves ledelse, så også den uformelle ledelse blive mere synlig og gennemskuelig (Albrechtsen, 2015).

Et større kvantitativt studie har vist, at når matematiklærere fik mulighed for hyppige, åbne samtaler med kolleger, scorede deres elever signifikant bedre (Leana, 2011).

Baseret på forskning i det danske QUEST er det beskrevet, hvordan fagteam på en skole kan støttes og udvikle sig hen imod et PLF (Mogensen et al., 2015; B.L. Nielsen, 2016). Projekts kursusform (QUEST-rytmen) fungerede som støtte til lokal fagteamudvikling, og arbejdet i fagteamet handlede om videndeling og diskussion af artefakter fra undervisning på skolen. Det konkluderes, at rammesætning i form af struktur og ressourcer ikke i sig selv er nøk til at sikre fagteamudvikling. Teamets aktiviteter skal have et relevant didaktisk indhold.

2.6.2. Nogle udfordringer og muligheder

En opsamling på øvrige identificerede udfordringer og muligheder:

- Sølberg & Jensen (2012) analyserer data fra Science-kommune-projektet, der havde udvikling af naturfagsområdet som fokusområde. To elementer er vigtige for forandring og
udvikling i en kommune: politisk forankring af naturfagsindsatsen og etableringen af et koordinerende netværk i kommunen.

- Fehr (2016) har analyseret Science-kommune-projektet for at undersøge, hvordan centrale aktører påvirkede udviklingen af bl.a. de tilknyttede science-konsulenter. Konsulenternes ager i det udviklede koordinaturnetværk er vigtig og sætter dem i stand til at mobilisere ressourcer i deres kommuner til gavn for udviklingen af science-undervisningen.

- Søgaard (udateret) omtaler vanskelighederne i fagteam på små skoler. Netværk med andre skoler øger muligheden for faglig sparring og lyst til at lave innoverede undervisningsforløb.

- Mogensen (2015) presenterer den japanske metode med lesson study som en metode til at lave kollegial faglig sparring på en måde, så man metodisk samarbejder med fagkolleger om at afprivatisere undervisningen og udvikle undervisning af høj faglig kvalitet.

2.7. Viden om betydningen af STEM-læreres grundlæggende overbevisninger

Der er en relativt stor mængde forskning både internationalt og i Norden, der med forskellige begrebsætninger som beliefs og conceptions har undersøgt betydningen af læreres grundlæggende overbevisninger for deres pædagogiske/didaktiske kompetencer. I nogle tilfælde refereres der endvidere til den måde, lærerne anskuer faget på (attitudes), deres forventning til egen håndtering af undervisning i faget (self-efficacy) og deres faglige identitet. I afsnittet her anvendes de engelske termer med reference til bestemte projekter. Formuleringer som ”grundlæggende overbevisninger” og ”måde at anskue faget på” bruges i opsamling på tværs af forskning, der har anvendt forskellige termer.

Forskningen i Norden har dels handlet om lærernes måde at anskue fagene på overordnet set, både naturfag (Andersen & Krogh, 2010; Nilsson & van Driel, 2011; Walan & Rundgren, 2014) og
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Af mere overordnede resultater fra enkelte af disse referencer er det centralt, at grundlæggende overbevisninger i relation til et fag kan underindeles. Bulien (2008) inddeler lærerstuderendes faglige beliefs inden for matematik i fire områder: beliefs iht. 1) faget matematik, 2) egen praktisering af matematik, 3) undervisning i matematik, og 4) hvordan man lærer matematik. Denne forskning viste ikke en sammenhæng mellem de lærerstuderendes tidligere beliefs og attitudes i relation til matematik og deres erfaringer og oplevelser med matematik på et kursus i læreruddannelsen. Halvdelen af dem overvurderede, hvordan de ville klare sig i det pågældende kursus, måske fordi matematik i læreruddannelsen viste sig at være meget anderledes end deres tidligere erfaringer med matematik (Bulien, 2008). Derfor understreges vigtigheden af at arbejde eksplicit med lærerstuderendes faglige beliefs. Misfeldt et al. (2016) har også undersøgt beliefs inden for det matematiske felt og korreleret med beliefs i relation til brug af teknologiske værktøjer i matematikundervisning. Deres resultater viser variationer i lærernes beliefs inden for teknologi og matematik, men at disse to typer af beliefs påvirker hinanden indbyrdes.

2.7.1. Sammenhæng mellem beliefs og praksis

En overordnet begrundelse for, at forskningen har fokuseret på læreres beliefs, er, at det internationalt er påpeget, at læreres beliefs kan være afgørende for, hvordan de praktiserer som undervisere i faget, dog uden at forskningen har kunnet vise entydige resultater om karakten af disse sammenhænge (Kaspersen, Pepin & Sikko, 2016; Skott, 2001). I en dansk naturfagsdidaktisk kontekst har Andersen og Krogh (2010) vist, hvordan det, de begrebsætter som “core teaching conceptions”, påvirker biologi-, fysik- og matematiklæreres praksis, fx i relation til hvordan de engagerer sig i de nye tværdisciplinære undervisningstilbud i det danske gymnasium. De konkluderer, at der med reforminitiativer bør følge professionelle udviklingsaktiviteter, hvor der fx arbejdes eksplicit med lærernes “core teaching conceptions”. Sammenhæng mellem beliefs og praksis er også undersøgt i en dansk matematikdidaktisk kontekst (Skott, 2001, 2009). En nyuddannet matematiklærer, hvis forståelse af matematikundervisning var meget påvirket af den nyeste reform, er fulgt i den første undervisningspraksis, og det påpeges, at ”critical incidents” i denne praksis kan være en vej til at komme til at forstå de komplekse sammenhænge i relation til matematiklæreres beliefs (Skott, 2001). Det problematiseres desuden, at forskning i en sammenhæng mellem beliefs og klassespraksis har fastholdt en individuelt orienteret præmis til trods for det øgede fokus på sociale interaktioners og konteksters betydning inden for øvrige dele af den matematikdidaktiske forskning (Skott, 2009). Kaspersen et al. (2016) problematiserer ligeledes de hidtil anvendte forskningsmæssige tilgange og fremhæver det som særligt problematisk, at de ’instrumenter’, der hidtil er anvendt til at undersøge beliefs og praksis, er baseret på helt forskellige forståelser og
tilgange, hvad der udfordrer muligheden for at konkludere på relationen mellem disse forhold. Med dette afsæt præsenteres to Rasch-kalibrerede instrumenter til måling af hhv. lærerstuderendes beliefs og praksis, med særligt fokus på niveau af teacher-centredness. Analysen viser, at der er mulighed for direkte at sammenligne brug af disse to forskningsinstrumenter (Kaspersen et al., 2016).

2.7.2. Læreres fagligt orienterede identitet

Over tid handler det fx om, at en lærers undervisning, i.e. i matematik, gradvist transformeres i takt med udvikling af egen faglig identitet gennem både opmærksomhed på nye og andre muligheder, fx for at interagere med eleverne, og begrænsninger, fx i relation til at kunne være den lærer, man ønsker at være (Andersson, 2011). Identitet ses altså ikke som fast, men som fluktuerende og hele tiden i udvikling. Dette giver store metodologiske udfordringer (Kaasila et al., 2012). Kaasila et al. (2012) har med en kombination af forskellige metodologiske tilgange fulgt en gruppe lærerstuderende, der som udgangspunkt havde et negativt syn på matematik, fra start til slut gennem faget i læreruddannelsen. De har på denne basis kondenseret forskellige temaer, der manifesterede sig i de lærerstuderendes italesættelse af egen identitet, og konkluderer bl.a., at der ved slutningen af uddannelsen er en sammenhæng mellem italesættelse af egen identitet og øget tiltro til sig selv som matematiklærer. Supplerende har Lutovac og Kaasila (2014) fulgt en gruppe lærerstuderende i to forskellige læreruddannelsesprogrammer, og de konkluderer, at de lærerstuderende på trods af meget ens matematisk baggrund har overraskende forskellige forløb i relation til udvikling i identitet, og at forskellige pædagogiske tilgange i de to læreruddannelser ser ud til at have stor betydning.

2.7.3. Fremadrettet – sammenhæng mellem overbevisninger og praksis

Baseret på ovenstående kondensering fra et meget bredt og spredt forskningsfelt er det ikke muligt inden for de enkelte typer af begrebssætninger at identificere 'huller' i forskningen. Det interessante i relation til den overordnede tematisering om udvikling af STEM-læreres pædagogiske/didaktiske kompetencer er, at der fortsat er stor brug for viden om sammenhænge mellem grundlæggende overbevisninger og praksis i klasserummet, og om hvordan der kan arbejdes med STEM-læreres overbevisninger i læreruddannelse og fortsatte udviklingsaktiviteter. Flere af de aktive forskere inden for feltet anbefaler endvidere metodologisk nytænkning (Kaasila et al., 2012; Kaspersen et al., 2016; Skott, 2009). Afslutningsvis henvises til afsnit 2.1, hvor det fremhæves, at grundlæggende overbevisninger er repræsenteret som "forstærkere og filtre" i den nyeste PCK-model (Gess-Newsome, 2015). Dette kan være en rammesætning i fremadrettet forskning, der netop ser på sammenhænge på tværs og på udvikling af læreres konkrete praksis i klasserummet.
3. Elevers motivation og interesse for STEM

Morten Rask Petersen

3.1. Resume af litteraturstudiets genstandsfelt 3

Dette afsnit handler om reviewspørgsmål 4: Hvilke indsatser, metoder og strategier kan ifølge eksisterende forskning udvikle elevers motivation og interesse for naturvidenskab, teknologi og it i dagtilbud og uddannelsessystemet? Litteraturstudiet viser:

- At små børns nysgerrighed over for naturen er overordentligt stor. Det kan dog være en udfordring på dagtilbudsområdet at omsætte nysgerrigheden til læring. Der er indikationer på, at en undersøgelsesbaseret tilgang til naturen og naturfenomener kan være en løsning på dette problem. Generelt er det en udfordring, at børns nysgerrighed daler gennem børnenes udvikling og på vej gennem uddannelsessystemet.

- At generelt kan bestemte undervisningsformer være med til at styrke motivationen hos elever. Undersøgelsesbaseret undervisning synes især at være en motiverende faktor, der kan bruges hele vejen gennem uddannelsessystemet. Det er her en udfordring, at denne tilgang til undervisningen kan være svær at håndtere for både lærere og pædagoger.

- At på trods af et stort fokus på specielt overgangen mellem grundskole og ungdomsuddannelse samt overgangen fra ungdomsuddannelse til videregående uddannelse oplever eleverne stadig, at der er et meget stort spring i disse overgange både i forhold til fagligt niveau og undervisningskulturer.

- At der generelt mangler mere viden om de forskellige overgange i uddannelsessystemet. Det gælder ikke kun fra sekundært til tertiært niveau, men også overgange mellem dagtilbud og grundskole samt overgange internt i grundskolen mellem indskoling og mellemtrin samt mellemtrin og overbygning.

- At der er væsentlige sammenhænge mellem interesse for STEM og aktiviteter uden for klasserummet – herunder i høj grad STEM-relaterede hobbyer osv. Der mangler dog mere specifik viden om fx kausaliteten i denne sammenhæng. Frem for alt kan det være nyttigt i Danmark at indføre begrebet om science capital, der stammer fra det britiske ASPIRES-projekt. Der er klare indikationer på, at børns og unges adgang til viden om og erfaringer
med naturvidenskab, typisk i hjemmet, er en bærende faktor for barnets/den unges identitetsopbygning i forhold til STEM.

3.2. Indledning

De efterfølgende dele af afsnittet er struktureret således, at der først vil være en kort afklaring af de centrale begreber interesse og motivation. Herefter vil de mest betydelige tematikker fra litteratursøgningen blive behandlet, i forhold til hvad vi ved, og hvilke udfordringer der er, set i forhold til uddannelsesniveauer. Endelig vil disse resultater og udfordringer blive diskuteret, i forhold til hvad vi umiddelbart kan bruge dette til fremadrettet, samt hvad der mangler viden om inden for dette genstandsområde.

3.3. Viden om motivation og interesse: et overblik over genstandsfeltet

Udgangspunktet for motivation og interesse er, at man er motiveret for noget eller interesseret i noget. I daglig tale bliver disse begreber ofte sat som synonym, men i forhold til dette litteraturreview er det væsentligt at skelne mellem begreberne, da det giver nogle meget forskellige resultater inden for forskningsområdet, om man kigger på motivation eller på interesse (Renninger & Hidi, 2016).

Som nævnt er man motiveret for noget. Så at være motiveret for naturvidenskab, teknologi eller it betyder i den sammenhæng, at man har et mål med det. Man kan se for sig, hvor man vil hen. Omvendt er det med interessen. Når man er interesseret i naturvidenskab, teknologi eller it, er der ikke nødvendigvis et mål med det. Det er indholdet i sig selv, der er det interessante. Når der i dette review derfor kigges på motivation, ses der altså på, hvilket mål eleverne har med at beskæftige sig med naturvidenskab, teknologi eller it, mens der i forhold til undersøgelser af interesse ses på, hvad det er i dette, som fanger eleverne.

Det er denne grundlæggende skelnen mellem begreberne, der ligger til grund for analysen af artiklerne i dette review. Når der tilføjes yderligere begreber som relevans, nysgerrighed, engagement, vilje, værdi m.m., vil disse blive tolket ind i den grundlæggende skelnen mellem motivation og interesse.

Et andet overordnet udgangspunkt for de fundne artikler er, at fokus synes at gå fra at være på interesse for de yngre børn i retning af motivation for de ældre. Dette ses, bl.a. ved at der er en stor repræsentation af undersøgelser med fokus på rekuttering og fastholdelse til naturvidenskabelige, tekniske og it-uddannelser, når man kommer højere op i uddannelsessystemet.

Figur 4 viser nogle af de generelle fokusskift, der er fundet i undersøgelserne i dette review. Ud over det teoretiske skift af position fra interesse til motivation findes der også et fokusskift fra børnenes/elevernes nysgerrighed i retning af deres egen opfattelse af relevans.

I forhold til skift i fokus fra interesse og nysgerrighed på dagtilbudsområdet til motivation og relevans på ungdomsuddannelsesområdet er det relevant, at det kan hænge sammen med et institutionelt og et finansieringsmæssigt forhold.

Fra et institutionelt perspektiv er det centrat, at dagtilbuddene (indtil videre) ikke har et valgfokus, fordi alle fortsætter på grundskoleniveau. Der er altså mulighed for, at børnene kan være nysgerrige og interessere sig for forhold, uden at det nødvendigvis skal lægges ind i faste bekendtgørelsesrammer – også selvom der er et fastlagt læringsmål. For de ældre elever er naturfagene i skolen defineret ud fra nogle indrefaglige logikker, og samtidig er de unges identitetsprojekter og kulturelle orienteringer bredere end skolen. Naturfagene i skolen skal derfor trænge ind til den unge (relevans), mens der (foreløbig) i dagtilbuddene i højere grad kan arbejdes indefra og ud. Forskellen i fokus er derfor muligvis til en vis grad udsprunget af feltet snarere end af forskerne selv. Fra et finansieringsmæssigt perspektiv er det centrat, at forskning i naturfag gennem de seneste 20 år har haft et stort fokus på rekuttering og fastholdelse. Der er derfor givet bevillinger til at få unge ind på uddannelser, men mindre til, hvad der sker, når de først er kommet indenfor. De konklusioner,
reviewet kan finde, afspejler således i vid udstrækning, hvad der på politisk plan er blevet spurt om.

I forhold til interesse for naturvidenskab og valg af uddannelse er ASPIRES-projektets begreb science capital væsentligt: Det henviser til børnenes og de unges adgang til viden om og erfaringer med naturvidenskab, typisk i hjemmet (Archer, Dawson, DeWitt, Seakins & Wong, 2015; Archer et al., 2012). Det er en anden måde at finde en forbindelse mellem forældrenes uddannelses- og erhvervsbaggrund og de unges valg. ASPIRES-projektet er i øvrigt også et eksempel på et projekt, som arbejder med identitet, og hvilke mulige identiteter der er adgang til (Archer, Dewitt & Osborne, 2015; Archer et al., 2010). Fx har det vist sig, at børn, der uafhængigt af deres families støtte, efterfølger en STEM-relateret interesse, er meget mere i risikogruppen for at miste tilknytningen til STEM-området; her er de familiebaserede forhold til STEM-området (eller rettere dele heraf) en væsentlig faktor i barnets aspiration og identitet i forhold til STEM på kort og langsigt (Archer et al., 2012). For mere om identitet i forhold til STEM se afsnit 4.

I det følgende vil hvert af de tre uddannelsesniveauer blive gennemgået i forhold til viden og udfordringer på det specifikke område. Det vil således være en kronologisk gennemgang af
børnenes vej gennem uddannelsessystemet med referencer til, hvor på deres vej de støder på de enkelte temaer.

3.4. Viden om motivation og interesse for naturfag/-videnskab

3.4.1. Viden om motivation og interesse for naturforhold i dagtilbud

Når man ser på den viden, der eksisterer omkring børns motivation og interesse for naturvidenskab, teknologi og it i dagtilbuddene, fremstår der således et billede af børn, som er overordentligt nysgerrige i forhold til emnerne og gerne omsætter deres nysgerrighed til handling. Oftest er denne handling dog ikke nok til, at børnene får en forståelse af, hvad det er for fænomener, de arbejder med.

En foreslået løsning på dette dilemma findes flere steder i brugen af en undersøgelsesbaseret tilgang til naturen og naturfænomener (Broström & Frøkjær, 2015; Elfström, 2014; Eshach, 2003). Her ses der i de gode tilfælde, at børnenes nysgerrighed og gåpåmod bliver stimuleret, og spørgelysten og undersøgelsestrangen bliver styret i retning af, at børnene får mere naturvidenskabelige arbejdsmetoder og mere accepterede forståelser af de fænomener, de arbejder med.

Udfordringen i denne didaktiske tilgang er dog oftest, at pædagogerne skal indtage en anden og uvant rolle, i forhold til hvordan de plejer at agere i forhold til børnene. I det hele taget er det ikke nødvendigvis børnenes interesse og motivation, der er den store udfordring i dagtilbud, men derimod de rammer, som børnene har mulighed for at udfolde sig under.

Udelivstilgangen er her et fællestrek for daginstitutioner. Der lægges stor vægt på, at børn kommer ud i naturen og får sanseoplevelser. Naturtilgangen er også udbredt i daginstitutioner. Her arbejdes både ude og inde med biologien i fokus. Endelig er den mindst udbredte science-tilgang, hvor der arbejdes med eksperimenter og kvantificering gennem måling og vejning. Det er især i de to sidste tilgange, at der er et udviklingspotentiale i forhold til at få børn og voksne til at arbejde mere med læringsmål frem for sanseoplevelser.

Erfaringer fra undersøgelser viser, at selv små tiltag i retning af en kvalificering af rammer for naturfag i daginstitutioner kan have gode resultater både for pædagoger (Eshach & Fried, 2005) og for pædagogstuderende.\footnote{Ahrenkiel, L., Michelsen, C. & Nielsen, J. unpub data.}

3.4.2. Viden om motivation og interesse for naturfag i grundskolen

Et andet tema, som begynder at fremkomme i grundskolens overbygning, og som bliver væsentligt mere dominerende på ungdomsuddannelserne, er fremtidigt uddannelsesvalg (Hoff, 2001; Pless & Katznelson, 2005; Ramberg & Kallerud, 2000). Temaet fremgår også som en del af ROSEundersøgelsen, hvor danske unge kommer til at fremstå som kritiske naturfagoptimister, set i den forstand at ungdommen har tiltro til, at naturvidenskaben nok skal komme op med løsninger på en række af de problemer, vi står med. Det er blot ikke de unge selv, der ønsker at være med i udviklingen af disse løsninger (H. Busch, 2005).

Interessen for naturfag, teknologi og it ser dog ud til at have en stor betydning for valg af ungdomsuddannelse, omend Pless og Katznelson (2005) i deres undersøgelse af dette valg også kommer frem til, at en ydre påvirkning fra forældre, søskende og medier kan have en væsentlig rolle i valget eller fravalget af naturfagene.

3.4.3. Viden om motivation og interesse for naturvidenskab på ungdomsuddannelsesniveau

Som nævnt bliver der på ungdomsuddannelsesniveau i væsentlig grad fokuseret på undersøgelser af motivation for at vælge naturfaglige og tekniske uddannelser. Egentlige undersøgelser af elevernes interesse i selve indholdet i fagene er få (Bøe, 2012; Dohn, 2007; Petersen, 2012a). Disse undersøgelser beskæftiger sig mest med, hvordan interessen fremstår hos de elever, der allerede er interesserede. I det hele taget virker det i litteraturen, som om eleverne på ungdomsuddannelserne allerede har truffet valg om fremtidig studieretning, når de starter, og ikke lader dette valg påvirke af eksempelvis naturvidenskabeligt grundforløb på stx (EVA, 2009; Rambøll, 2006). I forhold til rekruttering til de tekniske og naturvidenskabelige videregående uddannelser er det altså på ungdomsuddannelsesniveau mere et spørgsmål om at få færre til at falde fra, end det er et spørgsmål om at få flere til at blive interesserede. Det er dermed en udfordring for ungdomsuddannelserne at gøre eleverne bedre til at træffe velovervejede valg i forhold til fremtidig uddannelse. Som nævnt for elevernes uddannelsesvalg efter grundskolen, så er der mange andre faktorer end interesse for det enkelte fag, der spiller ind i elevernes valg. Ofte har eleverne svært ved at se, hvilke muligheder de tekniske og naturvidenskabelige studieretninger og uddannelser kan give dem, og hvad der kunne være relevant for drenge, virker ikke relevant for piger (C.J. Jensen, 2006). Som vist i figur 4 bliver kønsforskellene også endnu tydeligere på ungdomsuddannelserne. Derudover er uddannelsesernes opbygning og adgangskrav væsentlige faktorer: Hvis man skal læse en naturvidenskabelig videregående uddannelse, kræver det oftest naturvidenskab på A- eller B-niveau, og så er det sent at beslutte sig, når man er i slutningen af gymnasiet – især hvis suppleringsmulighederne begrænseres.

Samtidig er der noget, der tyder på, at det er for simpelt kun at tale om ’the leaking pipeline’; der er nogle, som kommer ind i pipeline igen. Fx fandt P.M. Sadler et al. (2012), at den største forudsigende faktor bag interesse ved udgangen af ungdomsuddannelsen var interessen ved indgangen til ungdomsuddannelsen; så det er ikke nødvendigvis futilt at gøre noget ved interesse og motivation på ungdomsuddannelsesniveau (se også Poulsen, 2015).

3.5. Viden om motivation og interesse i matematik

Meget ofte bliver matematikkens samspil med andre fag set i lyset af modellering (se eksempelvis Blomhøj & Jensen, 2003; Frejd & Årlebäck, 2011; Jensen, 2009; Michelsen & Iversen, 2009). Her bliver selve modelleringprocessen oftest anset som værende motiverende i sig selv. I de få studier, der er lavet specifikt på affektion og motivation i matematikundervisning (Hannula, 2006; Hannula et al., 2016; Kaasila, Hannula, Laine & Pehkonen, 2008), fremhæves det netop også, at det er givtigt at arbejde med meningsfyldte kontekster og konkrete materialer og problemstillinger, hvilket kan ses i samspillet med matematisk modellering.

Samlet set er der i dette review fundet en del materiale fra matematikkendere, der fremhæver matematikkens relevans over for eleverne. Dette har også været et fokuspunkt i forbindelse med den viden, der er fremkommet angående naturfagene. Men hvor naturfagene også har undersøgelser af selve indholdet og forskellige temaer, er det fraværende i litteraturen om matematikken. Her er der nærmest udelukkende fokus på måden, man arbejder med matematikken på. Når vi ser på motivation og interesse i STEM-fagene, er der altså en mulighed for, at vi skal anskue matematikfaget på en anden måde end de øvrige fag. Men her er der et hul i den eksisterende viden, som gør, at dette indtil videre blot er overvejelser.
4. Personalisering i STEM

Helle Mathiasen

4.1. Resume af litteraturstudiets genstandsfelt 4

Dette afsnit handler om reviewspørgsmål 4: Hvilke indsatser, metoder og strategier kan ifølge eksisterende forskning tilgode personalisering – ved at understøtte forskellige børne- og elevgrupper i forhold til de naturfaglige/-videnskabelige fagområder i dagtilbud og uddannelsessystemet? Litteraturstudiet viser:

- At it-brug, som fx i-bøger, adaptive træningsprogrammer og netbaserede kommunikationsfora, inviterer til en didaktisk tænkning, hvor personalisering er et udgangspunkt. Forskningslitteraturen viser, at it kan være et vigtigt pædagogisk og didaktisk redskab, når fokus er på den enkelte elevs muligheder for at lære sig det, der fordres.

- At personalisering og relaterede begreber som undervisningsspecificering, elevdifferentiering, individualisering og elevcentrering bliver koblet til en flerhed af it-anvendelser. Teknologien kan derfor understøtte en pædagogisk/didaktisk tilgang, der har fokus på den enkelte elev og dennes mulighed for at lære sig det, der er intentionen ifølge lærerplansmål.

- At koblinger mellem it-brug, personalisering og de naturfaglige/-videnskabelige fagområder typisk aktualiserer en mere tilpasset brug af it som læringsressource målrettet den enkelte elev, når det drejer sig om faglige ‘træningsprogrammer’ (adaptive læringsressourcer), i- og e-bøger samt en bred vifte af netbaserede freeware-læringsressourcer i undervisnings- og læringsmiljøet. Inden for de gymnasiale uddannelser er det bl.a. kommunikationsfora til individuel vejledning i it-brug, der ses som et didaktisk potentiale og en aktivitet, der givetvis kunne få en større udbredelse under de rette betingelser, som bl.a. inkluderer udvikling af lærernes didaktiske kompetence, nytenkning af campus, tilstedeværelsestid og økonomi.

- At koblingerne mellem it-brug, de naturfaglige/-videnskabelige fagområder og begrebet personalisering inden for både dagtilbud og uddannelsessystemet generelt bør være et forskningsmæssigt fokus fremadrettet.
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

- At der er væsentlige koblinger mellem køn, interesse for de naturfaglige/-videnskabelige fagområder og intentionen om personalisering. Litteraturstudiet har vist, at der er flere aspekter af en kønsspecifik tilgang til science-fag og til science-undervisning. Interessen viser sig at dale i løbet af tiden i uddannelsessystemet. Endvidere viser studier, at børns hverdagsforståelse inden for science-fagene ikke bliver ’udfordret’ tilstrækkeligt.

 Yderligere viser studiet, at organisationsformer og lærerbesætning (køn) kan have betydning for pigeers og drenges deltagelse i undervisningen. Inden for science-fag er der en kønsmæssig forskel på valg af fag og ligeledes en kønsrelateret tilgang til egne evner inden for de enkelte fag. Nogle fag betragtes som lettere end andre, og nogle betragtes som mere maskuline end andre.

- At kønsforskelle er en aktuel optik, men også en optik, der kan ’gøre blind’. Ofte er der tale om komplekse forhold, når det handler om elevers tilgang til STEM-fag, -undervisning og -uddannelser. Et relevant spørgsmål er derfor, hvorfor elever vælger, som de gør, set i et bredere perspektiv, hvor bl.a. kulturelle perspektiver, elevopfattelser, -erfaringer, -interesse, identitetsønsker og -idéer er i fokus.

- At institutionskultur og samfundsmæssige kulturelle implikationer har stor betydning for tilgangen til egen identitet og valg af fag. Endelig viser studiet, at personalisering i form af udvælgelse af talenter til særlige talentprogrammer og kontekst for denne talentudvikling har udfordringer.

- At der på området ofte er tale om casebaserede studier inden for de naturfaglige/-videnskabelige fagområder i dagtilbud og i uddannelsessystemet. Der er ikke fundet større nationale og internationale kvantitative forskningsstudier, hvor begrebet personalisering og relaterede begreber har været i fokus, når det specifikt handler om de naturfaglige/-videnskabelige fagområder. På den baggrund bør der opfordres til mere forskning inden for dagtilbud og i uddannelsessystemet med fokus på personalisering og kontekster for personalisering, inklusive nytænkning af læringsressourcer og indholdsmæssige tilgange til de enkelte STEM-fag.

4.2. Indledning

Dette afsnit behandler begrebet personalisering inden for det naturfaglige/-videnskabelige område – herunder differentiering, og individualisering – samt viden om it-brug, køn og talent i forbindelse med personalisering af undervisningen. Afsnittet tager specifikke temaer op, der teoretisk har vist sig at have implikationer i forhold til personalisering.

Analysefeltet, som dette afsnit behandler, er naturligvis stærkt koblet til genstandsfelt 1 og genstandsfelt 3 i relation til de grundlæggende konditioner for en intenderet styrkelse af personalisering i undervisningen. Derfor er læring, undervisning, motivation og interesse for naturvidenskab og teknologi/it knyttet til elevernes mulighed for at opleve, at lærings- og
undervisningsmiljøer inviterer til aktiviteter, der har eller vækker den enkelte elevs interesse og kan motivere til aktiv deltagelse i de undervisningsrelaterede aktiviteter. Og dermed knytter analysefeltet i dette afsnit også an til genstandsfelt 2, Udvikling af pædagogers og lærernes pædagogiske/didaktiske kompetencer.

4.3. Viden om personalisering: en begrebslig oversigt

Når genstandsfeltet er dagtilbud og uddannelsessystemet, bruges begrebet i overvejende grad som et pædagogisk og didaktisk perspektiv på læring og undervisning. Begrebet er siden 00’erne gradvist blevet noget mere anvendt i videnskabelige sammenhænge. Personalisering i denne kontekst handler om præmisser for at kunne aktualisere personaliseret læring og dermed et fokus på den enkelte elevs forudsætninger og faglige, personlige og sociale udvikling. Begrebet kobler sig således både til elevernes læringsaktiviteter og lærernes planlægning, gennemførelse og evaluering af undervisningen, og dermed har begrebet et dobbelt fokus, nemlig på henholdsvis lærernes og elevernes valg og aktiviteter. Begrebet personaliseret læringsmiljø omfatter den konkrete kontekst, som elever kan agere i. Den engelsksprogede litteratur bruger betegnelsen personal learning environment, men uden enighed om en definition, og hvilke underbegreber der skal inkluderes (Fiedler et al., 2011).

Litteraturstudiet viser, at der er forskellige tilgange til den didaktiske brug af de ofte anvendte begreber differentiering, individualisering og personalisering. Ifølge USA’s National Educational Technology Plan omfatter begrebet *personalized learning* begreberne individualisering og differentiering:

"Individualization refers to instruction that is paced to the learning needs of different learners […]
Differentiation refers to instruction that is tailored to the learning preferences of different learners. […]
Personalization refers to instruction that is paced to learning needs, tailored to learning preferences, and tailored to the specific interests of different learners […] (so personalization encompasses differentiation and individualization)” (Office of Educational Technology U.S. Department of Education, 2010, s. 12).

Udgangspunktet i litteraturen er ofte læreren og lærerens didaktiske valg. Det handler derfor om læreren i rollen som den, der tilrettelægger et undervisningsmiljø, hvor lærerens kendskab til eleverne er styrende for de konkrete didaktiske beslutninger, når det gælder elevernes mulighed for at lære sig det af læreren intenderede. Dermed aktualiseres lærerens didaktiske kompetencer generelt og it-didaktiske kompetencer specifikt.

Få publikationer relaterer personalisering til en elevs selvstyrende tilgang til egen læring, men tager udgangspunkt i, at det er lærerne, der har ’bolden’. Et eksempel på en eksplicit skelnen mellem elevfokus og lærerfokus i relation til begreberne personalisering, differentiering og individualisering er følgende tilgang: "*Differentiation* and *individualization* are teacher-centred. *Personalization* is learner-centred” (Bray & McClaskey, 2016, s. 8). Når det drejer sig om begrebet personalisering, er dette begreb dedikeret til eleven, som ”becomes a self-directed, expert learner who monitors progress and reflects on learning based on mastery of content and skills” (ibid.); mens henholdsvis differentiering og individualisering er begreber, der er knyttet til læreren – differentiering, hvor læreren ”uses data and assessments to modify instruction for groups of learners and provides feedback to individual learners to advance learning” (ibid.); og individualisering, hvor læreren ”uses data and assessments to measure progress of what the individual learner learned and did not learn to decide next step in their learning” (ibid.).

Denne tilgang inviterer til andre temaer i litteraturstudiet, som eksempelvis børn i dagtilbuds og elevers interesse for de naturfaglige/-videnskabelige fagområder, relationer mellem henholdsvis børn i dagtilbud og pædagoger og mellem elev og lærer, kønsspecifikke forskelle samt betydning af klasse-/institutionskultur.

I det følgende vil begrebet personalisering blive betragtet som samlebegreb, i den forstand at begreber som differentiering, individualisering, undervisningsdifferentiering, elevdifferentiering og elevcentrering kan indgå i referencerne, uden at der i publikationerne eksplicit nævnes begrebet personalisering.
4.4. Viden om it, STEM og personalisering

I dette afsnit vil koblinger mellem henholdsvis it-brug, de naturfaglige/-videnskabelige fagområder og begrebet personalisering blive behandlet.

Teknologianvendelse i den bredeste forstand har gennem de sidste godt 40 år været et tema, uddannelsessystemet har interesseret sig for, og et stadig større fokus på it’s muligheder for at understøtte eleverne i deres undervisningsrelaterede aktiviteter har været et udgangspunkt for både forskning, formidling og debat (fx Cuban, 2001).

4.4.1. Viden om it, STEM og personalisering i dagtilbud

Der er ikke fundet forskningspublikationer, der specifikt behandler resultater af børn i dagtilbuds brug af it inden for det naturfaglige område i forbindelse med personalisering og relaterede begreber.

4.4.2. Viden om it, STEM og personalisering i grundskolen

På grundskoleområdet har der været fokus på undervisningsdifferentiering som et princip til understøttelse af den enkelte elevs udvikling af viden, færdigheder og kompetencer i mange år. Der har også været et massivt fokus på it-inddragelse generelt i grundskolens fag, og der har også været en stor opmærksomhed på science- og teknologifag. Forskningspublikationer, der har et specifikt fokus på koblingen mellem it-anvendelser, de naturfaglige-/videnskabelige fagområder og undervisningsdifferentiering, fortæller bl.a. om fagspecifikke programpakker og deres potentialer for understøttelse af den enkelte elevs faglige progression. De senere år er der kommet stadig flere programpakker på markedet, der giver lærerne mulighed for at tilrette undervisningen og læringsressourcer, så den enkelte elev så vidt muligt bliver mødt der, hvor elevens faglige forudsætninger inden for de naturfaglige-/videnskabelige fagområder kan komme i spil.

15 Fx http://www.emu.dk/modul/hvad-falder-hurtigst-mel-eller-vat
Litteraturstudiet samt informationer fra ledende pædagogiske/didaktiske science-forskere viser, at der savnes systematisk forskning, hvad angår it-anvendelser i de naturfaglige/-videnskabelige fagområder, hvor fokus er specifikt på personalisering.

4.4.3. Viden om it, STEM og personalisering på de gymnasiale uddannelser

På de gymnasiale uddannelser har der de sidste godt 20 år været en generel interesse for begrebet undervisningsdifferentiering (fx Baandrup et al., 1996). Der har også været en stor opmærksomhed på brugen af teknologi i Danmark siden midt i 90’erne (fx Mathiasen et al., 1998; Mathiasen, 2002; Mathiasen, 2004; Mathiasen et al., 2012, 2013, 2014; Tække et al., 2016). Specifikke forskningspublicationer, der har fokus på både it-brug, de naturfaglige/-videnskabelige fagområder og personalisering (undervisningsdifferentiering) savnes. Der er litteratur, der tematiserer generelle didaktiske aspekter ved anvendelse af it, når formålet er at understøtte den enkelte elevs faglige udvikling, som fx muligheden for at vejlede den enkelte elev eller elevgruppe via net-kommunikation og specifikke synkronne medeværktøjer. Forskningsresultaterne viser, at denne form for lærer-elev-kommunikation understøtter lærerens personaliseringsbestrebelser og elevernes behov for at blive ’set’ og ’hørt’ som person og i forhold til fagligt niveau (Mathiasen et al., 2011, s. 48 f.). Tilsvarende forskningsresultater findes i forbinding med brug af fx podcast, screencast og videoproduktioner som andre formatet til ’afløveringer’ end tidligere gængse formater som fx en Word-fil. Forskellige blandinger af tilstedeværelses- og netbaseret undervisning er undersøgt, og konklusionerne her er ikke entydige. Feltet er kendegnet af en kompleksitet, der bl.a. drejer sig om dynamiske relationer mellem foranderlige elementer som elevforudsætninger (fagligt, socialt og studiekompetencemæssigt), fag, specifikke faglige aktiviteter og niveau, lærerkompetencer og teknologibrug.

Forskningslitteraturen bidrager i dag til et bredt spekter af teoretiske perspektiver på it-anvendelser i undervisningen og i undervisningsrelaterede sammenhænge (fx Andersson et al., 2016; Du et al., 2006; Fletcher et al., 2007; Jonassen, 2000; Koper, 2004; Mehrotra et al., 2001; Naidu et al., 2000; Norris et al., 2003).

Læreren som rollemodel har et fagdidaktisk perspektiv, hvilket fx et casestudie viste, som havde fokus på fysikundervisning og laboratoriearbejde (for laboratoriearbejde generelt se afsnit 1.3.3). Her oplevede fysiklæreren ikke, at han kunne træde i karakter som en god rollemodel, når undervisningen foregik i netmediere kommunikationsmiljøer og drejede sig om udvikling af såvel færdigheder og viden i forbindelse med fysikforsøg. Den netmediere undervisning gav ikke læreren mulighed for at interagere på samme måde som ved tilstedeværelsesbaserede undervisningsaktiviteter, specielt når det gjaldt laboratoriearbejde. Muligheden for ’mesterlærer’-perspektivet, som han anså for vigtigt til den form for undervisning, havde ikke de samme muligheder i en netmediert kontekst (fx Mathiasen, 2012).
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Nærværende litteraturstudie viser primært mere sporadiske studier, når det gælder koblingen mellem de naturfaglige/-videnskabelige fagområder, personalisering og it-anvendelser. Disse er ofte casestudier og kontekstbundne i den forstand, at en generalisering ud over konteksten ikke er mulig.

Inden for de gymnasiale uddannelser er der behov for systematisk at undersøge, hvordan specifikke it-anvendelser inden for de naturfaglige/-videnskabelige fagområder kan understøtte intentionen om personalisering.

4.4.4. Viden om it, STEM og personalisering på erhvervsuddannelserne

Også på erhvervsuddannelserne er it et redskab, der bruges som læringsressource, informationsplattform, produktionsværktøj, dataopsamler, simuleringsredskab og undervisningsramme.

Det er ikke lykkedes at finde forskningslitteratur, hvor koblingen mellem de tre temaer, personalisering, it-anvendelser og de naturfaglige/-videnskabelige fagområder, er behandlet. Også her er forskere inden for feltet blevet kontaktet, og meldingen har været, at det er et forskningsfelt, der savnes.

4.5. Viden om køn, kultur, interesse og personalisering

Flere publikationer tematiserer kønsmæssige udfordringer. Dette gælder både national og international forskning, når det handler om STEM. Litteraturstudiet viser, at mange artikler handler om de kønsmæssige forskelle, når temaet er interesse for STEM-fagene (fx Eccles, 2007; Bøe et al., 2011; Lindahl, 2003; Krogh, 2006; Sinding, 2007; Busch et al., 2005; Aukrust, 2008; Østergaard, 2008). Der er mange aspekter og underliggende mekanismer, der bliver tematiseret i den undersøgte litteratur. På baggrund af litteraturstudiet vil dette afsnit tage en række temaer op, som har relation til titlen på afsnittet.

Unges til- og fravalg af tekniske og naturvidenskabelige fag og uddannelser er et tema i flere publikationer (se fx Holmegaard, Madsen & Ulriksen, 2014; Holmegaard, Ulriksen & Madsen, 2014). Et gennemgående træk er, at der er store kønsforskelle i drenges og pigers valg af tekniske og naturvidenskabelige uddannelser. Fx viser et forskningsprojekt, at dette:

“[…] bunder i fundamentale forskelle såvel i baggrund for valg af fagene som i mål med senere uddannelse og i karakteristika for drenge og piger der faktisk vælger uddannelser inden for teknik og naturvidenskab. En væsentlig implication heraf er at rekruttering af henholdsvis drenge og piger til tekniske og naturvidenskabelige uddannelser må ske med forskellige midler og ud fra vidt forskellige udgangspunkter, da de to køn tilsyneladende befinder sig i hver sin uddannelsesverden. Dette rejser det fundamentale spørgsmål om de to verdener i virkeligheden er så forskellige at de bliver uforenelige” (Jensen, 2006, s. 41).
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Et projekt fandt, at kønsopdelte klasser og kønsopdelte grupper giver mulighed for, at der ”langt lettere skabes selvtillid og flere successer end i den samlede klasse”. (Frimodt-Møller et al., 2001)

Projektet finder, at det specielt i 1. g er vigtigt, at eleverne deltager i kønsopdelt undervisning, hvor et trygt miljø er en væsentlig didaktisk parameter. Projektets pointe er derudover, at det ikke er en organisationsform, der skal bruges i hele gymnasiet, men som en start på et gymnasieforløb, hvor den enkelte elev kan opbygge selvtillid, så ”de kan mødes med selvtillid og på lige fod” (ibid.).

Halvklasseundervisning, opdelt efter køn eller andre kriterier (ca. 14 på hvert hold), gav ifølge lærerne en stor forskel, idet de færre elever på holdet gav mulighed for at få en mere personlig kommunikation mellem den enkelte elev og læreren. Yderligere viste det sig, at eleverne fandt det nødvendigt at forberede sig, da de oplevede en synlighed og en større kontakt med læreren, som motiverede dem til at læse lektier. ”Og alle elever – stærke som svage – ønsker halvklasseundervisning, hvis de først har prøvet det” (ibid.).

I faget fysik viser litteraturstudiet, at piger og drenge forstår fysik forskelligt og agerer forskelligt på faglig viden:

“Boys and girls differ significantly in physics instruction: boys achieve higher grades in tests and are more interested in learning physics than girls […]. With regard to social and linguistic behaviour, we claim that boys and girls hold different notions of what it means to understand physics. Briefly, girls seem to think that they understand a concept only if they can put it into a broader world view. Boys appear to view physics as valuable in itself and are pleased if there is internal coherence within the physics concepts learned” (Stadler et al., 2000, s. 417)

Et studie af køn, oplevelse og interesse på htx fandt, at en gruppe piger valgte htx for at slippe for den pigekultur, de kendte fra folkeskolen, og som de forventede ville fortsætte på stx (Ulriksen et al., 2007). Den mere generelle pointe her er, at det er relevant at se på, hvor varieret en identitet matematik og naturfag tilbyder eleverne, og hvor inkluderende kulturen er over for forskellige måder at interessere sig for matematik og naturfag på. Dette studie peger på, at det ikke kun er matematik og naturfag, som har den udfordring. Studiet viste, at htx-kulturen inkluderede nogle, som blev ekskludered af kulturen på stx, kultur her i en generaliseret forståelse rundet af elevernes opfattelse. I et personaliseringsperspektiv ligger der en udfordring, der handler om at have fokus på såvel elevers interesse for STEM-fag som for betydningen af de rammer, der påvirker elevernes præferencer, idéer og ønsker.

Forskningen kan dokumentere, at piger vælger det, de synes er vigtigt, og at der ligger et større forklarings/-forskningspotentiale, hvis man stiller et mere overordnet spørgsmål, som handler om, hvad der påvirker en person til at vælge, som personen gør (fx Eccles, 2007). Fx viser en amerikansk undersøgelse, som har fulgt en stor gruppe amerikanske skolebørn, fra de gik i 6. klasse, og frem til de var omkring 35 år, at de opfattelser, born danner sig, påvirker senere valg. Yderligere viser undersøgelsen, at vurdering af egne evner er afhængige af køn. Piger vurderer sig som bedre i engelsk end drengene og drengene som bedre i matematik end pigerne. Uanset karakterer, så vurderer pigerne sig bedre i engelsk end i matematik. Med hensyn til vigtighed i forhold til

4.5.1. Viden om identitet

Begrebet identitet dukker op i flere publikationer som en væsentlig parameter, når det handler om den enkeltes tilgang til STEM-uddannelser. Fx viser følgende uddrag af en undersøgelse, at personlige narrativer har betydning for valg af videregående uddannelser:

“We have followed a group of students in the potential pipeline for science through their last years of upper secondary school and in the context of a university mentorship program. The student group is defined by their choice of Mathematics at A-level which is mandatory for admission to tertiary STEM education in Denmark. Rich data (repeated interviews, questionnaires (pre-and post-) and observations) from 14 target students have been collected. Using Late Modern identity theory as a lens, we have analysed students’ identity narratives in order to establish their trajectories in relation to university in general, and towards science studies and science careers in particular. We find that the diversity of students’ educational identity narratives can be characterized

and their trajectories understood in terms of a Four Factor Framework comprising: general identity process orientations (reflecting, committing, exploring), personal values, subject self-concepts and subject interests. In various ways these constructs interact and set the range and direction of the students’ searches for future education and careers. Our longitudinal study suggests that they have enough permanence to enable us to hypothesize more or less secured paths of individual students to tertiary science (or other areas of academia)” (Krogh et al., 2013, s. 711).

Litteraturstudiet viser, at der er en tendens til, at aktører i uddannelsessystemet skaber og opretholder opfattelser om en vis stereotypi, som fx at matematikere, fysikere og dataloger har en introvert attitude, har svært ved at begå sig i sociale sammenhænge, har et nørdet forhold til deres fag osv. (Eccles, 2007; Mathiasen et al., 2009).

Den enkelte elevs egenfortælling og egenopfattelse af identitet har således betydning for valg af uddannelse. Dette tema relaterer sig til den kulturelle dimension og de forventninger, der opleves at være gældende. Yderligere er temaet omkring meningsfuldhed ved specifikke fag en væsentlig parameter i de individuelle beslutninger. Dette udfoldes i det følgende.

4.5.2. Viden om interesse i forhold til køn og kultur

Eksempelvis fortæller en undersøgelse på htx-uddannelsen, at piger føler sig godt tilpas på uddannelsen, og at hver tredje dreng og hver femte pige er enig i, at ”rigtige piger interesser sig ikke for teknik- og naturvidenskab” (Ulriksen et al., 2007). Undersøgelsen viser endvidere en kønsspecifik forskel på drengen og piger inden for specifikke emneområder, i forhold til når de vælger gymnasial uddannelse. Mens drenges valg oftest handler om interesse for naturvidenskab, har pigerne flere interesser aktiveret. Piger, der fx vælger en htx-uddannelse, interesserer sig for de menneskelige dimensioner og relationer, som fx sundhed og sygdom, mens en stor del af drengenes interesser ligger på teknologifeltet. Derimod var der stor overensstemmelse i drenges og pigers interesse for bestemte kendetegn ved naturvidenskab, fx det eksperimentelle, det kreative, at det kan
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

anvendes (Ulriksen et al., 2007). En relevant udfordring er således at tænke i didaktiske rammesætninger af undervisningen, hvor alle eleveres interesser understøttes og udfordres.

Et andet forskningsprojekt, der har fokus på unges interesse for naturfagene, fortæller, at forskningsresultaterne de seneste ti år peger i retning af store forskelle i interesse på forskellige niveauer. Piger er langt mindre interesserede i naturfag end drenge, og de er interesserede i andre aspekter af naturfagene end drenge. Interessen er også forskellig i forhold til de specifikke naturfag. Grundskoleelever oplever biologi, geografi og natur/teknik som for lette fag, mens fysik/kemi er sværere fag. Undersøgelsen viser, at gymnasieeleverne mister interessen for fysikfaget, men ikke for kemifaget:

"De undervisningsmæssige konsekvenser af denne viden om unges interesse for naturfag er at undervisningen skal gøres relevant for eleverne. Kravet om relevans kan imødegås ved fx en mere elevcentreret undervisningsform, en anerkendelse af elevernes medbestemmelse i udvælgelsen af indholdet samt en inddragelse af en bred, moderne forståelse af naturvidenskab som genstand for undervisningen" (Troelsen, 2005, s. 7).

Et longitudinelt studie fortæller om den gradvise afmatning af interesse for STEM-fag:

"The aim of the study was to follow a group of pupils from the age of twelve until they leave lower secondary school at the age of sixteen to describe and analyse how their attitudes towards and interest in science and technology develop and change but also how this and other factors such as ability, understanding of scientific concepts, gender and home background influenced their choice for upper secondary school. […] Many pupils have a positive attitude towards science but often a more positive attitude towards other subjects. They have duties to their parents but these are not strongly expressed. Their self-efficacy for science follows the same pattern as their attitude; they think they are good in science but not as good as in other subjects. For most pupils it seems as if attitude together with self-efficacy are the strongest determinant for their choice. These determinants are influenced by different factors. Girls and boys perceive science teaching differently but it seems as if the boys are on their way to developing the same critical attitude as the girls have had since long ago. The social background is important as many of the pupils who choose science are from well educated homes but even this group is loosing interest. Good ability is a necessary factor but does not guarantee science will be chosen. Neither has good conceptual understanding a crucial importance but on the other hand there are many pupils who say that they would not choose science as they do not understand science in the way it is taught. Another finding is that many pupils even at Grade 5 have an idea of their future career which later on is the same as their choice for upper secondary. If science shall have a chance in their lives the pupils must have a positive experience of science from the beginning of primary school through all years. Once they have lost their interest it is very difficult to get them back. The competition for their attention is intensive and the older they get the more difficult it will be to catch their interest and allegiance” (Lindahl, 2003, s. 5).

Som citatet viser, er der tale om et komplekst problemfelt, hvor mange temaer er aktualiseret, og mange temaer relaterer gensidigt til hinanden, når fokus er på elevernes interesse og opretholdelse af interesse for STEM-fag.

Et svensk studie på grundskolens begyndertrin tager udgangspunkt i viden om, at det er vigtigt, at eleverne deltager aktivt, at temaerne skal udgå fra elevernes erfaringer og hverdagsforståelse, hvis
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

interessen skal opretholdes, og elevernes interesse for naturfag som noget, der er til stede, er udgangspunktet i studiet:

Citatet fortæller, at det bl.a. er vigtigt at være opmærksom på, at reflekterende undervisningsaktiviteter, "minds-on science", med fordel kan kobles til "hands-on science". Dette leder til et fokus på variation i undervisningsformer og sammenhænge i forhold til faglige mål. I nærværende afsnit yderligere med specifikt fokus på personaliseringsdimensionen.

4.5.3. Viden om undervisningsorganisering/-former og personalisering

Forskningen viser, at der er forskellige perspektiver og pædagogiske/didaktiske tilgange til beslutninger om valg af undervisningsorganisering og -former, når det gælder personaliseringsdimensionen. Fx:

"Males significantly outperformed females in learning of the force concept, pre- and posttest representational consistency, and pretest scientific reasoning […] indicate that the gender difference in learning gain was related to students’ abilities before the instruction. Thus, the teaching method used was equally effective for both genders. Further, our quantitative finding about the relation between representational consistency and learning of the force concept supports the assumption that multiple representations are important in science learning” (Niemenen et al., 2013, s. 1137).

En anden måde at tilgå dette felt på er, som forskningen gennem flere år har vist, at forskellige undervisningsformer rammer forskellige elever og deres forskellige præferencer.

Også læreres køn kan have betydning for elevernes deltagelse i undervisningen. Således har koblingen af lærerens køn og deltagelse i undervisningen vist sig i en norsk undersøgelse at have følgende virkning:
"The participation of girls and boys in teacher-led classroom conversations in Norway was examined across four grade levels (first, third, sixth and ninth). Boys participated more across all grade levels. The difference in girls’ and boys’ participation was least in the first grade and greatest in the ninth grade. A greater proportion of the girls’ utterances was initiated by the teacher allocating turns. The boys had more overlapping utterances with the teacher and contributed more comments that were not invited by the teacher. The difference in girls’ and boys’ participation was less in a classroom with a female rather than a male teacher. Boys made many uninvited comments in classrooms with male teachers. The discussion draws attention to relationships between conversation participation and learning, between participation and influence, and between participation and developing skills to take the floor in public” (Aukrust, 2008, s. 237).

Dette tema kan lede videre til mulige kulturelle implikationer, der kan være understøttende eller bremsende for personalisering, når det drejer sig om naturfaglige/-videnskabelige fagområder og personalisering – betydningen af lærerens køn, når det drejer sig om henholdsvis piger og drenges deltagelse i den undervisningsrelaterede kommunikation og læring, indflydelse samt udvikling af færdigheder i at "take the floor in public”.

4.5.4. Viden om kultur

Et studie viser kulturelle forskelle mellem lande i Europa, her specifikt mellem Danmark og Italien, hvad angår fysik:

"[...] we argue that national cultural historic developments influence science education and gendered teaching and scientific career paths from primary school to higher education. The argument is based on a number of field studies spanning over recent studies in physics practiced at university institutes in Denmark, Italy, Poland, Finland and Estonia to a study of physics education in primary schools in Denmark and a comparison between physics students’ possibilities for embarking on a physicist education in Denmark and Italy. The influence of national culture on the relation between gender and physics education is complex and profound. Results are not testable in any simple way; yet, we contend that the cultural diversity found affects male and female emotions and motivation to study science as well as their possibilities to become outstanding scientists” (Hasse et al., 2012, s. 237).

Studiet viste, at Danmark adskilte sig som værende domineret af mandlige studerende på fysikstudiet, og fx i Italien forholdt det sig omvendt. Et andet dansk studie af 8.- og 9.-klasser fortæller, at der ses

"mulige sammenhænge mellem danske pigers manglende interesse og motivation for fysikfaget og tilstedeværelsen af kulturelle opfattelser som ekskluderer piger fra fysik [og] at anvendelsessigget med det faglige indhold i fysikundervisningen kan have vital betydning for pigernes motivation” (Sinding, 2007, s. 18).

I ROSE-studiet (The Relevance of Science Education) var fokus på 15-åriges erfaringer, holdninger, interesser og værdier i forhold til natur og teknik i skole og samfund:

"Det viser seg at elevene i hovedsak er positive og optimistiske når det gjelder mange sider ved NT. Samtidig finnes det en ubredt (og sunn?) skepsis når det gjelder forskeres troverdighet og objektivitet og til vitenskapens muligheter og begrensninger. På bemerkelsesverdig mange områder finner vi store ulikheter mellom de to kjønns holdninger og interesser, kanskje spesielt i de nordiske land. Vårt håp og vår hensikt med ROSE-prosjektet er at det kan gi data og innsikter som vil kunne brukes til både å forstå ungdommens
prioriteringer og til å arbeide for et naturfag som på en bedre måte appellerer til den ungdomskulturen som preger dagens sen-moderne nordiske samfunn” (Sjøberg et al., 2006).

Som det tidligere er vist, har præmisser for kommunikation, måder at tematisere fagets elementer på, samt hvilke temaer og aktiviteter der aktualiseres i undervisningen, betydning for elevselveksklusion og intenderede didaktiske inklusionsbestrebelselser fra lærernes side (Hasse, 2002).

4.5.5. Viden om talent

Elever med ’talent’ forstås som en dimension af personaliseringsintentionerne. Talent bliver defineret på flere måder; her er der primært fokus på fagligt stærke elever og pædagogiske/didaktiske muligheder for personalisering.

De senere år har der været en særlig øget interesse for talentudvikling, men også en kritisk tilgang til begrebet på baggrund af teoretiske tilgange til begrebet og konsekvenserne af en udvælgelse af elever, der betegnes som talenter – fra en tilgang til begrebet inspireret af Darwins evolutionsteori, hvor tilgangen til begrebet talent handlede om noget immanent og genetisk betinget, og som specielt var koblet til adelens mulighed for at udvikle sig, til en bred vifte af tilgange (Petersen, 2014).

Den nyeste danske forskning fortæller om det problematiske i forskellige talentprogrammer i det danske uddannelsessessystem, hvor de særligt talentfulde elever tages ud af den undervisningsmæssige kontext, de har været en del af, og hvor de har vist deres særlige talent. Personaliseringsbestrebelselserne i Danmark kan fx ses i forbindelse med Science Talenter, som driver talentudvikling på skoleniveau lokalt, regionalt og på sigt nationalt (fx Sølberg et al., 2013).

17 Se fx http://www.ind.ku.dk/projekter/talent/
I Danmark har talentudvikling taget sit afsæt i intentionen om at gøre en indsats, fordi der findes elever, der ikke trives – i den forstand, at de er ’for dygtige’ og er hurtige til at tilegne sig ny viden og færdigheder – og ønsket om, at disse elever skal have andre undervisningstilbud end de ordinære. Der er både et nationalt og et globalt perspektiv på talentudvikling, der handler om, at uddannelsessystemet skal understøtte de talentfulde. Hvordan dette bedst organiseres, er der ikke i dette litteraturstudie fundet forskningsmæssigt klare budskaber om.

Et centralt spørgsmål i denne forbindelse er, hvordan uddannelsessystemet understøtter intentionen om talentudvikling og intentionen om, at talentudviklingsaktiviteter kan have afsmittende effekt på ’normal’-elever i ’normal’-klasser (fx Tanggaard et al., 2016).

Der savnes systematisk forskning inden for feltet, der udfolder pædagogiske og didaktiske begrundelser for personalisering specifikt inden for talentudviklingstiltagene.
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Referencer

Andersson, Erik, Öhman, Johan (2016). Young people’s conversations about environmental and sustainability issues in social media. In *Environmental Education Research* E-pub ahead of print

Aukrust, V. G. (2008). Boys’ and girls’ conversational participation across four grade levels in Norwegian classrooms: Taking the floor or being given the floor? in Gender and Education, 20(3)

Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Björklund, E. & Hultén, M. (2013). Primary School Teachers’ Development of Subject-Specific Knowledge in Technology during a Design Based Research Project. In J. Williams & D. Gedera (Eds.), PATT27 Technology Education for the Future: A Play on Sustainability (59-64), Christchurch, New Zealand: University of Waikato

Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Brostrøm, S. & Frøkjær, T. (2012). Danske og svenske pædagogers syn på læring i VERA. *Tidsskrift for pædagoger*

Brostrøm, S. & Frøkjær, T. (2013). Science i dagtilbud i VERA. *Tidsskrift for pædagoger*

Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Fehr, A.V.D. (2016). Exploring social networks of science education actors in Danish Science Municipalities. Ph.D. The Faculty of Science, Department of Science Education. University of Copenhagen.

Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Klaar, S., & Öhman, J. (2012). ‘To trust or not to trust, . . .’

112
Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Kruse, S. (2013). Hvor effektive er undersøgelsesbaserede strategier i naturfagsundervisningen?. MONA, (2), 24 - 48

Lavonen, Krzwicki, Koistinen, Welzel-Breuer, Erb (2012). In-service teacher education course module design focusing on usability of ICT applications in science education. NorDina, 8-2.

Mattias Lundin, Mats Lindahl (2014). Negotiating the relevance of laboratory work: Safety, procedures and accuracy brought to the fore in science education. NorDina, 10(1), 32 - 45

116

Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Osborne, J. (2015). Practical work in science: misunderstood and badly used?. School science review, 96(357), 16-24

Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

Rudberg, Öhman (2010). Pluralism in practice – experiences from Swedish evaluation, school development and research. Democracy and Values in Environmental and Sustainability Education: Research Contributions from Denmark and Sweden: Environmental Education Research, 16(1), 95 - 111

Sørvik, O. G. (2015). Multiple school science literacies. Exploring the role of text during integrated inquiry-based science and literacy instruction. Oslo, Norway: Department of Teacher Education and School Research, Faculty of Educational Sciences, University of Oslo

Litteraturstudium til arbejdet med en national naturvidenskabsstrategi

