Next-generation biology
Rodrigues da Fonseca, Rute Andreia; Albrechtsen, Anders; Themudo, Goncalo Espregueira Cruz; Ramos Madrigal, Jazmin; Sibbesen, Jonas Andreas; Sørensen, Lasse Maretty; Zepeda Mendoza, Marie Lisandra; Campos, Paula; Heller, Rasmus; Pereira, Ricardo
Published in:
Marine Genomics

DOI:
10.1016/j.margen.2016.04.012

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Next-generation biology: Sequencing and data analysis approaches for non-model organisms

Rute R. da Fonseca a,⁎, Anders Albrechtsen a, Gonçalo Espregueira Themudo c, Jazmín Ramos-Madrigal b, Jonas Andreas Sibbesen a, Lasse Maretty a, M. Lisandra Zepeda-Mendoza b, Paula F. Campos b,d, Rasmus Heller a, Ricardo J. Pereira b

a The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
b Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
c Section of Forensic Genetics, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
d CIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal

1. Introduction

High-throughput sequencing, more broadly referred to as next-generation sequencing (NGS), has become essential for modern day research within biological sciences, particularly in evolutionary biology. Since the assembly of the first complete genome using Sanger capillary sequencing in 1977 (Sanger et al., 1977), large technological improvements have been made and different methods have been developed. These methods aim to increase the sequencing throughput as well as the quality and length of the reads, while decreasing the time and cost of the process in such a way that it seems that virtually any biological question can be asked given enough data. However, the increase in data production comes with a cost: the corresponding data analysis approaches require a more detailed knowledge on the caveats and drawbacks of each method.

The literature of evolutionary biology has traditionally been dominated by model species such as mammals and drosophilids, for which fully sequenced and well-annotated genomes have been available for years. The recent advent of high-throughput sequencing opened the use of genomic approaches to the study of non-model organisms, allowing the test of generalizations based on a limited number of model species, and unlocking new research programs in fields related to evolutionary biology, such as phylogenomics and population genomics. The choice of the sequencing approach needs to take into account the evolutionary time scale of the biological question (Fig. 1). For example, transcriptome data (RNA-seq) has been used to produce hundreds of protein alignments that resolved deep phylogenetic relationships in Metazoans (Smith et al., 2011) and in plants (Wickett et al., 2014), providing key insights into how characters such as development, morphology or genome structures evolve throughout the tree of life (Dunn et al., 2014). For taxa that have diverged at relatively deep time scales, up to hundreds of millions of years of evolution, targeted sequencing of highly conserved genomic regions (named ultra-conserved elements or UCEs) have been used to establish well-resolved phylogenies of large species radiations such as Amniotes (Faircloth et al., 2012), vertebrates (Lemmon et al., 2012), birds (Prum et al., 2015) or mammals (McCormack et al., 2012). For bacterial species, which have a simple genomic structure, whole genome sequencing has been used to ask similar questions (Ziemert et al., 2014). Targeted sequencing can be extended to micro-evolutionary time scales by designing targets specific for coding and non-coding genomic regions, based on partial genomes of
closely related species (e.g. the domestication of maize (da Fonseca et al., 2015), and diversification of palm trees (Heyduk et al., 2016)). At shorter evolutionary time scales, methods such as Restriction-site Associated DNA sequencing (RADseq), in which thousands of genomic regions spread throughout the genome are sequenced, have been used to establish phylogenetic relationships between closely related species and populations, despite the large confounding effect of interspecific gene flow and incomplete lineage sorting (e.g. diversification and hybridization in oaks (Eaton et al., 2015)). In order to generate summary statistics for population genetics in the absence of a reference genome, Gayral et al. (Gayral et al., 2013) established a pipeline for transcriptome data that controls for parologue genes and for variation in gene expression among individuals and loci. Using this method, population genomics studies across animals have shown that levels of genetic diversity within a species seem to be largely determined by its ecological strategy, such as propagule size and fecundity (Romiguier et al., 2014), rather than geographic range or invasive status. The same methods have been applied to data from multiple populations within the same species, to understand how genetic drift and positive selection contribute to divergence patterns across the genome (Tsagkogeorga et al., 2012), and to identify genes repeatedly evolving under selection across multiple independent populations (Pereira et al., n.d.). Analysis of polymorphisms (e.g. FST) estimated from transcriptome data from different species (Renaut et al., 2013) or from populations within a species (Carneiro et al., 2014) have also been used to determine genomic areas of high differentiation that could harbor genes involved in local adaptation and genetic barriers to gene flow, offering insights into the genetic basis of speciation. At a more recent evolutionary time scale, RNA-seq can be used to describe genes involved in physiological adaptation of populations to different environments (e.g. in corals (Barshis et al., 2013)) or to physiological variation between individuals or cells.

Despite these broad applications of high-throughput sequencing, choosing the most appropriate method to address a specific biological question requires considering the benefits and limitations of each method.

2. Sample quality and preparation

The type, quality and quantity of the tissue samples used in genomic analyses has a great impact in the final results, both in terms of quantity and quality of reads obtained after sequencing. The success of high-throughput sequencing approaches is highly dependent on the use of high molecular weight DNA/RNA samples, and this is only possible if fresh or carefully stored tissue samples are used for nucleic acid isolation. Frozen collection and transportation can be challenging, and in fields like marine genomics, this is not always feasible. For some species (mammals, birds, fish) tissues like blood or muscle might be a good source of DNA. Plant tissues rich in resins, gums, and polyphenolics should be avoided (Abu Almakarem et al., 2012). When the specimen size is very small (e.g. small marine invertebrates) the whole specimen or even a pool of several specimens might be required to obtain enough genetic material for subsequent analyses. For microbes (bacteria, fungi, diatoms, microalgae) single species isolates are needed to ensure the required amounts of pure DNA for NGS sequencing (but laboratorial culturing is only possible for a restricted number of species).

Ideally, when in the field, samples should be collected and immediately stored either in liquid nitrogen (preferred), at −20 °C (using a freezer or dry ice) or in a chemical preservative (RNalater type solution), a solution that rapidly permeates the tissue and protects cellular nucleic acids in unfrozen tissue samples, as these materials are susceptible to fast post-mortem degradation or degradation following collection from living specimens. If possible, several subsamples should be obtained per specimen as a back-up procedure in case something goes wrong between collection and sample processing, or to allow for high coverage sequencing. In cases where the species of interest is extinct, very rare or difficult to collect in the field, museum specimens might also be used to obtain genetic material. Such specimens are also valuable for time series analysis (e.g. (Bi et al., 2013)). Tissue samples stored in ethanol (internal organs, muscle), dried (beaks, bones), taxidermized (skin, nails, hair), or frozen in tissue banks are alternatives to freshly collected samples. The DNA obtained from these samples is usually of inferior quality (lower molecular weight and concentration) and the amount of external contaminants will be higher.

Crucial for obtaining high molecular weight DNA is also the choice of extraction method used for nucleic acid isolation, appropriate for tissue type and preservation method (Campos et al., 2009). Another extremely important preliminary step is to obtain all legal permits and documentation associated with collection of samples. Large sequencing consortia like Genome 10 K have established very strict protocols for tissue collection and storage (Wong et al., 2012) to maximize the information obtained for each specimen.

3. Restriction-site Associated DNA sequencing (RADseq)

RADseq (Restriction-site Associated DNA sequencing) was developed as a method for the simultaneous discovery and genotyping of tens of thousands of genome-wide markers through a reduced representation protocol (Baird et al., 2008). It can be used for population genetic analyses or for building genetic maps. Two features of RADseq have made it popular for population genetic studies on non-model species: i) it does not require a reference genome and ii) it provides a cost-efficient way of genotyping genome-wide markers in many individuals. RADseq is flexible in that the restriction enzyme can be chosen so as to fit the desired reduction factor, i.e. the proportion of the genome that is sequenced. Hence the whole continuum between sequencing a few loci (e.g. a few tens of thousands) at high coverage or many loci (e.g. many hundreds of thousands) at lower coverage is accessible in a RADseq study. For example, a single Illumina lane can be used to sequence 100 individuals at 150,000 RAD loci, providing up to 10 x mean coverage per locus per sample. Such data has been used to identify fresh-water adaptation in sticklebacks (Hohenlohe et al., 2010) and to infer the phylogeny of African cichlids (Wagner et al., 2013). While
RADseq is an attractive method for many applications, population genetic analyses of RADseq data are challenged by several complications. For example, it has been shown that restriction site length polymorphism and PCR duplication can introduce bias in locus sequencing depth (Davey et al., 2013; Gautier et al., 2013). Furthermore, mutations in the enzyme recognition sites can lead to allelic dropout, which can lead to underestimation of heterozygosity and other analytical artifacts. Variations of the original RADseq protocol have been proposed to alleviate some of these concerns (ddRAD (Peterson et al., 2012), ezRAD (Toonen et al., 2013), 2b-RAD (Wang et al., 2012)), and the list of studies developing improvements to RADseq pipelines is growing. Overall, the consensus is that the challenges can be overcome by prudent filtering (Davey et al., 2013) and that RADseq is a useful technique for species with little or no genomic resources. However, it still has some severe limitations deriving from the lack of positional information for each RAD locus, like other reference-free methods. This can limit the research possibility to adjust for linkage disequilibrium (LD) for commonly used measures used in population genetics, such as FST, nucleotide diversity, D-statistics, estimated admixture proportions and many others. Additionally, it will be hard to detect signs of selection since selection scans or region-wise analysis is not possible. A comprehensive study of the peculiarities of RADseq data – including biases related to genotype calling – compared with regular shotgun sequencing is still lacking and would be highly useful.

4. Targeted sequencing

Until recently, the development of genetic markers that enable macroevolutionary and population genetic studies was a significant hurdle when dealing with non-model organisms. In particular, the lack of extensive genomic resources meant that significant time and resources were placed in building and sequencing EST or BAC libraries, or in either trial-and-error primer design (as in the development of markers for phylogenetic studies, e.g. (Esprgueira Themudo et al., 2009)), or marker testing and selection. Targeted sequence capture facilitates marker development for a single species. In fact, as probe specificity does not need to be high, the same set of probes can be used for multiple related species (as was done in the plant genus Inga (Nicholls et al., 2015)). Depending on the evolutionary time scale under study, capture probes can be based on genomic regions from a reference genome of the same or a closely related species or derived from UCEs. It is important to consider how conserved the target regions will be in the species under study. High conservation will lead to higher capture efficiency but can potentially result in limiting variation for the downstream evolutionary analysis.

Several types of technologies allow for targeted sequence capture, and can be classified according to the enrichment method: hybridization-based, PCR-based or molecular inversion probe-based (Mamanova et al., 2010). Each of these has its own advantages and disadvantages, and several commercial products using any of these methods (or derivations) are available, such as Agilent’s SureSelect or Haloplex, MYcroarray’s MYbaits or Roche NimbleGen’s SeqCap. For studies that aim targeting specific candidate loci, there are several protocols available for do-it-yourself capture (see (Grover et al., 2012)) for a list of references).

As capture reduces the genomic sequence space compared to whole genome sequencing (WGS), and it enables the multiplexing of several individuals, contributing to further reducing the overall costs of sequencing per sample (Grover et al., 2012). Furthermore, it reduces the complexity of the analysis compared to WGS as only the required number of genes is sequenced. Reduction of sequencing costs per sample allows the inclusion of more taxa in any given study. In phylogenetic studies this is particularly important, as inadequate taxon sampling introduces artifacts such as long branch attraction (e.g. (Prum et al., 2015)).

By allowing better spatial (and temporal) sampling, targeted sequencing also enables more detailed reconstruction of dispersal routes and gene flow between varieties or subspecies (Nadeau et al., 2012; da Fonseca et al., 2015). This is essential to better understand the evolution of adaptive phenotypes, as we can now pinpoint when and where they developed, and how they spread.

5. Transcriptome sequencing (RNA-seq)

RNA-seq can be used both with and without a reference genome, and has different applications along the evolutionary time scale (Fig. 1). As it is composed of mostly coding regions, it can be used for reconstruction of deep-phylogenies, where often only a few transcripts with high-confidence orthologs are used. Yet, like other reduced genome representation methods mentioned above, it does not contain information about linkage among genes. Also, because coverage is dependent on gene expression, the uncertainty of genotype calling strongly varies across genes and should be taken into account (see (Gayral et al., 2013)). In addition, the breadth and amount of individual transcripts provide insight into the regulation of biochemical processes and pathways, and one can use RNA-seq to assess differential gene expression in different tissues of the same individual, between individuals with different phenotypes or under different environmental stresses. Using RNA-seq data to infer differential gene expression in non-model organisms is more challenging than to infer gene sequences. Biological variance is typically much higher in field studies compared to studies based on inbred organisms or cell lines, demanding much higher sample sizes in order to achieve similar statistical power (Todd et al., 2016). If a reference genome is available, it is possible to both call variants (e.g. (Piskol et al., 2013)) and identify differentially expressed genes (e.g. (Love et al., 2014); requires gene annotation). This can be done directly from alignments obtained using dedicated RNA-seq tools such as TopHat2 (Kim et al., 2013), HISat (Kim et al., 2015) or STAR (Dobin et al., 2013) that allow for spliced reads. It is important to note that the default behavior of splice-aware aligners is to favor splice junctions that match established human splice-site motifs. Consequently, it may be necessary to adjust the splice-site scoring parameters of the aligner if the organism under study uses splice sites that deviate from the human motifs. STAR (Dobin et al., 2013) and HISat (Kim et al., 2015) include options on how to score canonical versus non-canonical splice sites. However, if a reference genome is not available or resolution of unannotated transcripts such as alternative splice-variants is needed, full-length transcripts must first be reconstructed from the RNA-seq data. This is generally done in two steps. First, the overall gene structure is extracted from the read sequences and represented as “splice-graphs”, where nodes and vertices represent exons and exon-exon junctions, respectively. By definition, the transcripts that actually generated the data correspond to paths in these graphs. The second step is the identification of the correct transcripts among all possible paths, which is non-trivial when multiple transcripts share longer stretches of sequence e.g. due to alternative splicing or in the presence of close paralogs or contaminant orthologs.

The approach used for constructing the splice-graphs distinguishes two classes of assembly algorithms. Reference-based approaches work by first aligning the RNA-seq reads to a reference genome and then building the graph by combining reads that overlap on the reference genome. De novo assembly algorithms build the splice-graph directly by comparing read sequences and thus do not make use of a reference genome. By leveraging the reference sequence to bridge regions with low coverage, reference-based approaches, programs such as Cufflinks, as well as more recent approaches like those in Bayessembler (Maretty et al., 2014) and StringTie (Pertea et al., 2015), will generally be able to assemble more lowly expressed transcripts than de novo approaches (Trapnell et al., 2010; Maretty et al., 2014; Pertea et al., 2015). But reference-based methods generally ignore variation from the reference sequence observed in the reads (e.g. SNVs) as they are focused on
determining only the overall exon-structure of transcripts. Hence, algo-
rithms based on de novo graph construction such as Trinity, Oases, and
the more recent SOAPdenovo-Trans and Bridger, are thus preferable
when such information is required e.g. for population genetic inference
or when no suitable reference sequence is available (Grabherr et al.,
2011; Schulz et al., 2012; Xie et al., 2014; Chang et al., 2015).

Most assembly algorithms use graph optimization approaches to
find the correct transcripts in the graph. Trinity, Oases, and
SOAPdenovo-Trans use more heuristic approaches, whereas Cufflinks,
StringTie and Bridger apply more rigorously founded algorithms. The
latter three methods tend to produce simple assemblies as they explic-
itly try to find sparse solutions, whereas the former tend to produce sig-
ificantly more transcripts. Finally, the Bayessembler solves the graph
inference problem using an alternative, probabilistic approach that al-
 lows it to also estimate a confidence score for each transcript. Hence,
the larger transcriptome estimates produced by de novo assemblers
reflect both differences in graph construction (e.g. due to inclusion of
heterozygotic SNVs) and in graph inference. Finally, contaminant tran-
scripts, which may be substantial (Strong et al., 2014), may also increase
the relative complexity of de novo assembled transcriptomes as they
will likely be eliminated in the reference-based approach. Such contam-
 inants can be removed by e.g. aligning the assembled transcripts to a
database of expected contaminants before the results are used for
downstream analysis.

Comparisons between the different reference-based and de novo
approaches can be found in Hayer et al. (2015) and Yang and Smith
(2013); Li et al. (2014), respectively, although it is important to choose
the method that is the most adequate for the question and the available
sample set. Even determining which method is the most accurate is
non-trivial as good reference sets are lacking, but metrics based on
previously annotated transcripts (Maretty et al., 2014), assembly likeli-
hoods (Li et al., 2014) and in vitro transcription (Hayer et al., 2015) have
been proposed.

When using de novo assembled transcriptomes, one should also as-
sess the overall quality of the final assembly. The two most relevant
metrics are the completeness and the degree of fragmentation of the
assembly. Completeness refers to the proportion of assembled transcripts
compared to the total set of available transcripts in the cell. This mea-
sure is highly dependent on the experimental conditions and it is com-
monly assessed by determining the presence or absence of transcripts
originated from well-established housekeeping genes (O’Neil and
Emrich, 2013). The contiguity of the transcriptome assembly, which is
expected to consist of gene-sized contigs, can be estimated using e.g.
DETONATE (Li et al., 2014) and TransRate (Smith-Unna et al., 2015).

The functional annotation of de novo assembled transcriptomes
can be done with same approaches used for annotating genomic gene
sets (see below). There are also transcriptome-specific tools, such as
AnnoScript which besides using BLAST to build functional annotations
using information from several databases, also calls putative long non-
coding RNAs (Musacchia et al., 2015).

6. Sequencing platforms

Due to method-specific features, one can choose the technology that
is better suited for a given project. Sequencing platforms that produce
a large amount of short reads should be preferred for resequencing organ-
isms for which a reference sequence is already available (e.g. (Chia et al.,
2012; Bertolini et al., 2015)). On the other hand, platforms that generate
longer reads may be used in combination with the former for de novo
sequencing projects (e.g. (Denoeud et al., 2014; Berlin et al., 2015)) or
to resolve structural variants (e.g. (Wang et al., 2015; Ummat and Bashir,
2014)).

Currently, the high-throughput of Illumina and the availability of
software to analyze its data makes it ideal for projects aimed at
resequeing large sample sets. However, sequencing technology re-
search is also moving towards the production of single molecule long
reads. For example, the recently released nanopore technology (Cherf
et al., 2012) and its scalable MinION platform (Hargreaves and Mulley,
2015) have made it possible to sequence single molecules with no
length limit, and to produce data in real-time. However, high error
rates in long reads should be decreased, and software intended for cor-
responding analyses should be refined before such technologies can
compete for the leadership. Nevertheless, a combination of different
sequencing technologies is sometimes the best strategy to follow (e.g.
(Madoui et al., 2015)). Table 1 summarizes the characteristics of current
sequencing technologies.

7. De novo genome assembly

Certain projects still require a genome assembly, which very often is
no more than a low quality draft.

Early genome projects aimed at a very high accuracy and contiguity
across the genomic assemblies, and a single genome was often resulting
from the work of large groups of scientists and many years of data
uration. Biological limitations such as recent whole genome duplica-
tions and segmental duplications complicate the process of assembly,
and time and money are often limiting factors. In particular, the distinc-
tion between haplotypes and paralogs resulting from recent and some-
times partial duplication events can be a major problem in species with
high heterozygosity (e.g. sea urchin (Sodergren et al., 2006) and oyster
(Zhang et al., 2012). This can be partially overcome by using long reads
lengths and mate pairs with large insert sizes, but ideally the sample
used in genome sequencing should come from an individual with low
heterozygosity, potentially an inbred created for that single purpose.
Also, whenever possible, the sample should originate from one single
individual, given that allelic variation can be increased even more by
adding the population variation to the individual variation.

A faulty assembly can impair the evaluation of presence/absence
variation, synteny, gene size evolution and protein sequence evolution
analyses. Before starting a genome assembly, one must consider which
genome from the cell is under study: mitochondrial, plastidial, or nucle-
ar. This is relevant as the presence of mitochondrial or plastidial se-
quence insertions into the nuclear genome (du Buy and Riley, 1967;
Samaniego Castruita et al., 2015) can lead to misidentifications of
orthologous genes. Genome assemblies can be reference-based, de
ovo and hybrid, with the de novo assembly of nuclear genomes posing
the greatest laboratory and computational challenges. De novo assem-
ly consists of connecting the high-throughput sequencing reads
using algorithms based on mathematical concepts such as de Bruiijn
graphs (Compeau et al., 2011). Paired-end reads are used to obtain a
long contiguous sequence with the short reads, since they allow the
program to connect reads very distant from each other (Collins and
Weissman, 1984). Thus, high quality de novo assemblies use different
insert sizes of paired- (e.g. 170 bp, 500 bp and 800 bp) and mate-end
reads (e.g. 2 kbp, 5 kbp, 10 kbp, or even longer) (Gnerre et al., 2011;
Geng et al., 2012).

The degree of fragmentation (i.e. how many short unordered and
unconnected scaffolds) in the assembled draft genome depends on the
species genomic characteristics, such as repetitive regions (e.g. telo-
meres and centromeres), segmental duplications, GC content that
might bias the sequencing protocols, and ploidy. In particular, assem-
blying the genomes of polyploid genomes or species with recent whole
genome duplications is a big challenge. The quality of the assembly
will have an impact on the type of analyses that can be done. It has
been shown, for example, that assemblies with different qualities can
produce different gene annotations (Florea et al., 2011). However,
depending on the project goals, it might be possible to obtain enough
information from a highly fragmented but complete assembly. This is
the case if one only needs to identify SNP variation, but only a highly
contiguous assembly will be useful for identifying structural variation.

Metrics such as the number and size of the contigs or the N50
(length of a contig such that the sum of the length of all contigs larger
or equal to the N50 corresponds to half of the total assembly length) are commonly used to measure the contiguity of an assembly. However, those metrics alone may be misleading in assessing the completeness of the assembly, since incorrectly merged contigs can artificially increase contiguity (Salzberg and Yorke, 2005). In this case, completeness refers to the proportion of the genome included in the assembly and can be directly measured by the total length of the assembly, or indirectly by the number of de novo assemblers when dealing with same dataset, which in some cases produced by the different programs for the same dataset can be very different, and that some programs work better for some species than for others (Earl et al., 2011; Bradnam et al., 2013).

Better quality assemblies can be obtained through improvements both in data generation and in the algorithms used to analyze the data (Alkan et al., 2010). For instance, a recent computational and laboratory methodological approach based on a modification of the Hi-C method has been developed that significantly increases the assembly connectivity (Putnam et al., 2015). This method still requires a draft genome as an input, which can be produced by SOAPdenovo (McKernan et al., 2009), MIRA (Buermans and den Dunnen, 1842), Meraculous (van Dijk et al., 2014) and ALLPATHS-LG (Madou et al., 2015), among others (Baker, 2012; Bradnam et al., 2013). Each has assembly algorithm has its advantages and disadvantages (Bradnam et al., 2013). For example, SOAPdenovo was designed to work with Illumina short reads with low computational memory requirements, but produces highly fragmented assemblies. On the other hand, ALLPATHS-LG produces assemblies with greater contiguity, but it has high computational requirements. Competitions such as the “Assemblathon” (Earl et al., 2011) provide an evaluation of the weaknesses and strengths of a number of de novo assemblers when dealing with same dataset, which in Assemblathon 2 consisted of sequence data from different vertebrate species (a fish, a bird, and a snake) (Earl et al., 2011; Bradnam et al., 2013). Overall, the Assemblathon competitions showed that the assemblies produced by the different programs for the same dataset can be very different, and that some programs work better for some species than for others (Earl et al., 2011; Bradnam et al., 2013).

Following a de novo genome assembly, one can then annotate the regions of the genome that correspond to elements of biological relevance, such as repeat regions, non-coding RNAs or protein-coding genes. Repeat elements can be characterized with de novo identification tools (e.g. RepeatModeler (http://www.repeatmasker.org), LTR_FINDER (Xu and Wang, 2007), or with the use of homology-

Table 1

High-throughput sequencing technologies.

<table>
<thead>
<tr>
<th>Sequencing technology/Platform</th>
<th>Detection method</th>
<th>Library types</th>
<th>Maximum read length (bp)</th>
<th>Maximum reads per run (maximum)</th>
<th>Error rate (approximate)</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>454/GS FLX titanium XL + 454/GS Junior Systems</td>
<td>Pyrophosphate detection (M., 1998)</td>
<td>Single end/ Paired end</td>
<td>1000</td>
<td>1,000,000</td>
<td>0.2% (Shao et al., 2013)</td>
<td>Medium size reads.</td>
<td>Will be discontinued in 2016.</td>
</tr>
<tr>
<td>Illumina-Solexa/Hiseq 4000</td>
<td>Fluorescence, reversible terminators (Bentley et al., 2008)</td>
<td>Single end/ Paired end</td>
<td>2 × 150</td>
<td>5,000,000,000</td>
<td>0.2–0.8% (Quail et al., 2012)</td>
<td>Widely used. Flexible library preparation methods. High-throughput well suited for resequencing projects. Good characterization of biases (Schirmer et al., 2015).</td>
<td>Inaccurate homopolymer detection (M., 1998).</td>
</tr>
<tr>
<td>Life Technologies/ SOLID</td>
<td>Fluorescence di-base probes (McKernan et al., 2009)</td>
<td>Single end/ Paired end</td>
<td>1 × 75/2 × 50</td>
<td>1,400,000,000</td>
<td>0.01% (Buermans and den Dunnen, 1842)</td>
<td>Second highest throughput. Each base is read twice, thus decreasing the error rate.</td>
<td>Color space not supported by many mappers.</td>
</tr>
<tr>
<td>Life Technologies/Ion Torrent</td>
<td>Hydrogen ion (pH) sensor (Merriman et al., 2012)</td>
<td>Single end/ Paired end</td>
<td>400</td>
<td>5,500,000</td>
<td>1.8% (Quail et al., 2012)</td>
<td>Short running times.</td>
<td>Bias against AT-rich regions (Quail et al., 2012).</td>
</tr>
<tr>
<td>PacBio RS II/SMRT</td>
<td>Fluorescence phospho-linked nucleotides (Eid et al., 2009)</td>
<td>Single end</td>
<td>20,000</td>
<td>55,000</td>
<td>13% (Quail et al., 2012)</td>
<td>Longest reads. Good for improving de novo assemblies. Single molecule sequencing.</td>
<td>Low throughput.</td>
</tr>
<tr>
<td>Oxford Nanorope/ MinION</td>
<td>Electrical sensing (Cherf et al., 2012)</td>
<td>Single end</td>
<td>2000</td>
<td>60,000</td>
<td>30% (Madou et al., 2015)</td>
<td>No GC bias (Cherf et al., 2012). Portable. Scalable. Real-time data. Single molecule. It is possible to read both strands of the DNA sequence.</td>
<td>High cost-throughput ratio.</td>
</tr>
</tbody>
</table>

* The emulsion PCR step adds an extra bias. Only 1/3 of the molecules will contain exactly one molecule, and thus be useful during the sequencing process.
based tools that require a reference database, such as RepeatMasker (http://www.repeatmasker.org). When transcriptomes, ESTs or protein databases are available for species that are closely related to that corresponding to the genome assembly, the structure of the genes can be predicted from an alignment of the protein/transcript sequences against the genome by e.g. Scipio (Keller et al., 2008) (that uses BLAT (Kent, 2002)), Exonerate (Slater and Birney, 2005), or GeneSequer (Brendel et al., 2004). In case there is a large evolutionary distance to the closest annotated species, the use of ExonHunter (Brezová et al., 2009) is advised. Gene prediction can also be done ab initio with programs such as AUGUSTUS (Stanke et al., 2006) and SNAP (Korf, 2004), but these still require some type of homology-based approach for the construction of the training set (Haas et al., 2011). If both ab initio and reference-based predictions are performed, a step for building a non-redundant gene set should be included.

8. Functional annotation

Functional annotation of predicted genes and transcripts can be done by assessing their sequence similarity to proteins of known function, e.g. using approaches based on BLAST (Camacho et al., 2009). Blast2GO (Conesa et al., 2005) is a “biologist-friendly” software that provides a gene ontology (GO) (Ashburner et al., 2000) annotation, and domain-based functions from the InterPro database (Mitchell et al., 2014) (that includes information from several databases such as PROSITE (Sigrist et al., 2010), PRINTS (Attwood et al., 2003), Pfam (Finn et al., 2008), ProDom (Servant et al., 2002) and SMART (Letunic et al., 2015)). InterProScan (Zdobnov and Apweiler, 2001) can be used within Blast2GO or separately. Alternatively, one can use phylogenetic-based approaches, transferring annotations only between one-to-one orthologues and taking advantage of resources such as eggNOG, which has a large set of orthologous groups with functional annotations (Huerta-Cepas et al., 2015).

9. Mapping to a reference genome

Mapping refers to the search for the position in the reference genome that corresponds to each of the reads sequenced. The presence of repetitive regions as well as paralogs complicate that search, and often reduce the number of reads that can be mapped to one single position (uniquely mapped reads).

Table 2 lists some of the currently available programs that are adequate for short-read mapping and their most relevant characteristics.

Mapping algorithms can be broadly classified as hash-based or compression-based, depending on how they store and access the reference genome (Schbath et al., 2012). A common compression-based algorithm applied to mapping programs is the Burrows–Wheeler Transform (Burrows and Wheeler, 1994), which is used to transform (index) the reference genome sequence into a tree-like structure containing all the possible subsequences. Then the first bases of the queries (the reads) are searched on the tree, thus allowing a faster way to access the reference and perform the sequence comparisons.

Examples of such software include BWA (Li and Durbin, 2009) and Bowtie (Langmead et al., 2009). Hash-based algorithms identify all the words of a certain length in the reference genome sequence and make a table (hash) with a unique ID for each unique word with the positions of each word in the reference sequence. A similar table can also be produced from the queries and the words from this table are looked up in the reference. These programs usually have large computational memory requirements, and some allow for multi-threading. Examples of such software include MAQ (Li et al., 2008a), SHRIMP (David et al., 2011), and Mosaik (Lee et al., 2014) (Table 2).

Mapping is crucial for the success of the downstream analysis. The quality of the reference will have a great impact in the results. For example, if the assembly does not contain the entire genome, reads corresponding to the missing regions might map to other regions present in the assembly, introducing errors. This can also happen in species with a high content of copy number variants, or differences in copy number variants between individuals. The reference should contain as much unambiguously assembled genomic data as possible, including organelles, as even in targeted-sequencing experiments there is always the presence of genome-wide sequences outside the target regions. Furthermore, if the assembly corresponds to a species that is different from that of the reads, then there could be mapping with high quality scores to paralogous regions, thus it is important to take divergence into account.

10. Analysis for low depth sequencing data

In all NGS projects aiming at population genomics analyses, it is necessary to decide whether one should sequence more individuals at low depth, of fewer individuals at high depth. Often in evolutionary biology, one is interested in comparisons between many individuals, and therefore recent methods developed for low depth data are ideal for population genomic approaches. Low depth is a problem because in NGS data there is often uncertainty or errors in called genotypes. This is also often a problem when using capture methods to enrich certain regions of the genome. Capture methods or even RAD-seq sequencing will often have a very uneven depth distribution such that many of the sites will have low depth.

Calling genotypes for low or even medium depth (<8 x) data can cause considerable bias in the downstream analysis. This problem can be illustrated for one of the most useful summary statistics that can be inferred from NGS data, the site frequency spectrum (SFS). Many commonly used statistics in population genetics can be derived from the SFS such as the fraction of variable sites, F_v between populations, and neutrality test statistics (e.g. Tajima’s D). Based on the SFS it is also possible to infer complex demographic histories as well as past population size changes (Gutenkunst et al., 2009; Liu and Fu, 2015). However, the SFS is especially sensitive to the SNP and genotype calling procedure. The impact of SNP and genotype calling on the site frequency spectrum can be seen in Fig. 2. The plots correspond to results obtained in multiple studies (Nielsen et al., 2011, 2012; Han et al., 2014; Nevado et al., 2014) that are based both on simulations and real data. When calling genotypes it is often useful to first determine if a site is polymorphic based on multiple samples. However, this will bias the SFS because it is easier to call SNPs when the allele frequency is high (Fig. 2E). Therefore, SNP calling will tend to undercall the low frequency categories especially singletons. Choosing not to call SNPs prior to genotype calling will have the opposite effect (Fig. 2C). Due to sequencing errors a fraction of the non-polymorphic sites will be called as singletons and because most of the genome is non-polymorphic this will have a large effect on the SFS. Each genotype will have some quality score, often a probability, associated with the call that indicates the certainty of the genotype. The use of a stringent cutoff on the genotype quality appears to be an appropriate solution, since it increases the accuracy of the genotypes. However, this creates another bias given that it is easier to obtain a large quality for the call of a homozygotic site relative to a heterozygotic site, hence fewer polymorphic sites will be called (Fig. 2F). As shown in Nielsen et al. (2011, 2012); Han et al. (2014); Nevado et al. (2014), there is no combination of filters that will not bias the SFS for low and medium depth sequencing. The alternative is not to call SNPs and genotypes but instead to model the uncertainty of the data and to sum over all the possible genotypes without making a decision about any single genotype (Nielsen et al., 2012; Korneliussen et al., 2014) (Fig. 2B). This can be achieved by basing the analysis on so-called genotype likelihoods, which tries to capture all relevant information about the sequencing data for each site. This approach has been
successfully used in many other methods including estimation of allele frequencies (Kim et al., 2011), admixture proportion (Skotte et al., 2013), inbreeding coefficients (Vieira et al., 2013) and many other useful analysis (see (O’Rawe et al., 2015)) for a detailed review.

11. Online resources for training, problem solving and data sharing

At this point in this review, it has perhaps become obvious that genomics-based projects involve the efficient combination of many different types of software. However, it is sometimes difficult for a beginner to decide between different options of the same program, or choose the best approach. Online forums such as SEQanswers (http://seqanswers.com/) and Biostars (https://www.biostars.org/) provide useful information and guidance. Here, other software users share their experiences and one can easily find answer to questions of all levels of technical difficulty. Some websites follow a tutorial-like structure, such as the ANGUS website (angus.readthedocs.org/en/2015), which provides a compilation of lectures on various topics in NGS. Furthermore, a more comprehensive view on workflows in biological computing and the importance of reproducibility can be found in Shade and Teal (2015).

The sequence data should be made available to the scientific community, and uploaded into public databases such as the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) or the European Nucleotide Archive (http://www.ebi.ac.uk/ena). Files that contribute to reproducibility in research such as scripts used during data analysis, intermediate data files, and phylogenetic trees can also be made available in various ways (Whitlock, 2011).

Table 2
Tools for mapping short reads. For each tool, features are reported as in the publication and/or manual specifications.

<table>
<thead>
<tr>
<th>Program</th>
<th>Algorithm type</th>
<th>Gapped alignment</th>
<th>PE Read length (bp)</th>
<th>Indel size (bp)</th>
<th>Mapping quality</th>
<th>Color space</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELANDev2 (Bauer et al., 2010)</td>
<td>Hashtable of the reads (slower but more sensitive; usually has larger memory requirements).</td>
<td>Yes</td>
<td>15–32</td>
<td>1–10 bp</td>
<td>No</td>
<td>No</td>
<td>Designed for mapping Illumina reads (part of the CASAVA 1.8.2 pipeline). It is possible to map reads longer than 32 bp with additional scripts.</td>
</tr>
<tr>
<td>MAQ (Li et al., 2008a)</td>
<td>No</td>
<td>Yes</td>
<td>4–127</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td>Gapped alignment is only available for paired-end reads, where only one read has indels (Li and Homer, 2010). Originally developed to map in color space, i.e., SOLID reads. Good option for mapping to a more distantly related species (allows a larger number of polymorphisms). Calculates a score for ranking alignments analogous to a mapping quality.</td>
</tr>
<tr>
<td>SHRIMP2 (David et al., 2011)</td>
<td>Yes</td>
<td>Yes</td>
<td>30–1000</td>
<td>Defined by the user</td>
<td>No</td>
<td>Yes</td>
<td>Uses a neural-based training scheme to calculate mapping quality scores (default calibrated in the human genome). Able to map long reads from PacBio and Ion Torrent. Recommended to be used in an hybrid mode with BWA. Uses a probabilistic model to calculate mapping qualities. Developed to map reads from bisulfite-treatment experiments.</td>
</tr>
<tr>
<td>SOAP (Li et al., 2008b)</td>
<td>Hash table of the genome (slower but more sensitive; usually has larger memory requirements).</td>
<td>Yes</td>
<td>7–60</td>
<td>1–3 bp</td>
<td>No</td>
<td>No</td>
<td>In paired-end mode, gaps are allowed only in one read of each pair. High memory requirement.</td>
</tr>
<tr>
<td>BFAST (Homer et al., 2009)</td>
<td>Yes</td>
<td>Yes</td>
<td>25–100</td>
<td>1–10 bp</td>
<td>No</td>
<td>Yes</td>
<td>High sensitivity (Li and Homer, 2010). Not freely available. Not open-source. High RAM requirements. No gapped alignment for color space mapping. Uses a neural-based training scheme to calculate mapping quality, uses a neural-based training scheme to calculate mapping quality.</td>
</tr>
<tr>
<td>Novoalign.v3 (14)</td>
<td>Yes</td>
<td>Yes</td>
<td>30–950</td>
<td>Up to 60% of the read length</td>
<td>Yes</td>
<td>Yes</td>
<td>Takes into account the optimal alignment between the reads and the reference sequence. Able to map reads longer than 100 bp, but running times increase with length and error rate. Designed to find small indels. Good for long reads with high indel/mismatch rates.</td>
</tr>
<tr>
<td>Mosaik (Lee et al., 2014)</td>
<td>Yes</td>
<td>Yes</td>
<td>15–1000</td>
<td>1–15 bp</td>
<td>Yes</td>
<td>Yes</td>
<td>Takes into account the optimal alignment between the reads and the reference sequence. Able to map reads longer than 100 bp, but running times increase with length and error rate. Designed to find small indels. Good for long reads with high indel/mismatch rates.</td>
</tr>
<tr>
<td>Stampy (Lunter and Goodson, 2011)</td>
<td>Yes</td>
<td>Yes</td>
<td>4–4000</td>
<td>1–15 bp</td>
<td>Yes</td>
<td>No</td>
<td>Takes into account the optimal alignment between the reads and the reference sequence. Able to map reads longer than 100 bp, but running times increase with length and error rate. Designed to find small indels. Good for long reads with high indel/mismatch rates.</td>
</tr>
<tr>
<td>BSMAP (Xi and Li, 2009)</td>
<td>Yes</td>
<td>Yes</td>
<td>8–144</td>
<td>1–3 bp</td>
<td>No</td>
<td>No</td>
<td>Takes into account the optimal alignment between the reads and the reference sequence. Able to map reads longer than 100 bp, but running times increase with length and error rate. Designed to find small indels. Good for long reads with high indel/mismatch rates.</td>
</tr>
<tr>
<td>Bowtie (Langmead et al., 2009)</td>
<td>No</td>
<td>No</td>
<td>4–1024</td>
<td>–</td>
<td>No</td>
<td>No</td>
<td>Takes into account the optimal alignment between the reads and the reference sequence. Able to map reads longer than 100 bp, but running times increase with length and error rate. Designed to find small indels. Good for long reads with high indel/mismatch rates.</td>
</tr>
<tr>
<td>Bowtie2 (Langmead and Salzberg, 2012)</td>
<td>Yes</td>
<td>Yes</td>
<td>4–1000</td>
<td>Defined by the user</td>
<td>Yes</td>
<td>Yes</td>
<td>Takes into account the optimal alignment between the reads and the reference sequence. Able to map reads longer than 100 bp, but running times increase with length and error rate. Designed to find small indels. Good for long reads with high indel/mismatch rates.</td>
</tr>
<tr>
<td>BWA aln (Li and Durbin, 2009)</td>
<td>Yes</td>
<td>Yes</td>
<td>4–200</td>
<td>Defined by the user</td>
<td>Yes</td>
<td>No</td>
<td>Takes into account the optimal alignment between the reads and the reference sequence. Able to map reads longer than 100 bp, but running times increase with length and error rate. Designed to find small indels. Good for long reads with high indel/mismatch rates.</td>
</tr>
<tr>
<td>BWA sw (Li and Durbin, 2010)</td>
<td>Yes</td>
<td>Yes</td>
<td>70–1 × 10^6</td>
<td>Defined by the user</td>
<td>Yes</td>
<td>No</td>
<td>Takes into account the optimal alignment between the reads and the reference sequence. Able to map reads longer than 100 bp, but running times increase with length and error rate. Designed to find small indels. Good for long reads with high indel/mismatch rates.</td>
</tr>
<tr>
<td>BWA mem (Li, 2013)</td>
<td>Yes</td>
<td>Yes</td>
<td>70–1 × 10^6</td>
<td>Defined by the user</td>
<td>Yes</td>
<td>No</td>
<td>Takes into account the optimal alignment between the reads and the reference sequence. Able to map reads longer than 100 bp, but running times increase with length and error rate. Designed to find small indels. Good for long reads with high indel/mismatch rates.</td>
</tr>
<tr>
<td>SOAP2 (Li et al., 2009)</td>
<td>Yes</td>
<td>Yes</td>
<td>7–1000</td>
<td>Defined by the user</td>
<td>Yes</td>
<td>No</td>
<td>Takes into account the optimal alignment between the reads and the reference sequence. Able to map reads longer than 100 bp, but running times increase with length and error rate. Designed to find small indels. Good for long reads with high indel/mismatch rates.</td>
</tr>
<tr>
<td>GSNAP (Wu and Nacu, 2010)</td>
<td>Yes</td>
<td>Yes</td>
<td>14–no limit</td>
<td>1–9/1–30 bp</td>
<td>Yes</td>
<td>No</td>
<td>Takes into account the optimal alignment between the reads and the reference sequence. Able to map reads longer than 100 bp, but running times increase with length and error rate. Designed to find small indels. Good for long reads with high indel/mismatch rates.</td>
</tr>
</tbody>
</table>

PE: supports mapping for paired-end data. Read length: supported read length. Indel size: gap(s) size range allowed in gapped alignments. Mapping quality: computes the probability of reporting the true alignment for a mapped read. Color space: supports mapping in color space. BWT — Burrows-Wheeler Transform; PE — Paired end.
12. Concluding remarks

Evolutionary biology is undergoing an exciting transition with the possibilities presented by high-throughput sequencing. However, it is key to choose the combinations of laboratory procedures and sequencing approaches that optimize the data for addressing a specific biological question. Most of the available sequencing and analysis approaches are designed for high quality genomic datasets from model organisms, and so extra care is necessary when applying them to limited data sets. A good knowledge of the theoretical basis behind the methods is required for making the appropriate choices of parameters, which can be very project-specific. Furthermore, the classical SNP and genotype calling approaches are often inadequate and overlook a lot of useful information in the data. To take full advantage of the limited datasets characteristic of projects involving non-model organisms, a more than basic bioinformatics background is required of the biological researcher, as a considerable amount of effort must be put in obtaining an unbiased and representative dataset ready for an optimal biologically relevant analysis. Rushing into adopting new and improved NGS methods while disregarding the limitations discussed here may in fact be the largest current obstacle in answering key questions in evolutionary biology. In almost any case, sequencing methods will supply large amounts of data, and analytical methods will provide summary statistics that can be interpreted with more or less creativity. But only by being aware of the options and limitations at every stage of the NGS-based study can we truly leverage on the advantages of having a large dataset for a non-model organism and address questions that cannot be answered with model species.

Acknowledgments

RF is supported by Young Investigator grant VKR023446 from Villum Fonden. RH is supported by Young Investigator grant VKR023447 from Villum Fonden. RP has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 658706. MLZM is supported by Lundbeck Foundation grant R52-A5062.

References
