Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

 \[
 [(\text{customer.name}, \text{invoice.amount}) \\
 | \text{customer} \leftarrow \text{customers}, \\
 \quad \text{invoice} \leftarrow \text{invoices}, \\
 \quad \text{customer.cid} = \text{invoice.customer}, \\
 \quad \text{invoice.due} \leq \text{today}]
 \]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\] means \(f b \leq a \iff b \sqsubseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\] \(\text{floor}\) \(\times k\)

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\] \(\div k\)

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

$\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots$

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a **concrete category**: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category **CMon** has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category **Set** has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A **functor** \(F : C \to D \) is an operation on both objects and arrows, preserving the structure: \(F f : F X \to F Y \) when \(f : X \to Y \), and

\[
F \ id_X = id_{F X} \\
F (f \cdot g) = F f \cdot F g
\]

For example, **forgetful** functor \(U : \text{CMon} \to \text{Set} \):

\[
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, \(\text{Free} : \text{Set} \to \text{CMon} \) generates the **free** commutative monoid (ie bags) on a set of elements:

\[
\text{Free } A = (\text{Bag } A, \cup, \emptyset) \\
\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \mathbf{C}, \mathbf{D}, and functors $L : \mathbf{D} \to \mathbf{C}$ and $R : \mathbf{C} \to \mathbf{D}$, adjunction

![Diagram of adjunction]

means* $[-] : \mathbf{C}(L X, Y) \cong \mathbf{D}(X, R Y) : [-]$.

A familiar example is given by *currying*:

![Diagram of currying]

with $\text{curry} : \mathbf{Set}(X \times P, Y) \cong \mathbf{Set}(X, Y^P) : \text{curry}^\circ$.

hence definitions and properties of $\text{apply} = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y$.
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set}^2 \\
\Delta & \nearrow & \swarrow \\
\text{Set}^2 & \perp & \text{Set}
\end{array}
\]

with

\[
fork : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : fork^\circ
\]

\[
junc^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : junc
\]

hence

\[
dup = fork id_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = fork^\circ id_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[\text{CMon} \dashv \text{Set} \]

with \([-\,] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-]\)

Unit and counit:

\begin{align*}
single A &= [id_{\text{Free } A}] : A \to U (\text{Free } A) \\
reduce M &= [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}

whence, for \(h : \text{Free } A \to M \) and \(f : A \to U M = M \),

\[h = reduce M \cdot \text{Free } f \iff U h \cdot single A = f \]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$\langle \mathbb{N}, 0, + \rangle$</td>
<td>${a} \rightarrow 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$\langle \mathbb{R}, 0, + \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>max</td>
<td>$\langle \mathbb{Z}, \text{minBound, max} \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>min</td>
<td>$\langle \mathbb{Z}, \text{maxBound, min} \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>all</td>
<td>$\langle \mathbb{B}, \text{True, } \land \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>any</td>
<td>$\langle \mathbb{B}, \text{False, } \lor \rangle$</td>
<td>${a} \rightarrow a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$$guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A$$

$$guard \ p \ a = \text{if } p \ a \ \text{then } \{a\} \ \text{else } \emptyset$$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a \textit{monad} \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} \; A) \to \text{Bag} \; A \\
\text{single} & : A \to \text{Bag} \; A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \; a \; b \mid a \leftarrow x, b \leftarrow g \; a \}.\)

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu \; A & = R \; [id_A] \; L : T \; (T \; A) \to T \; A \\
\eta \; A & = [id_A] : A \to T \; A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \simeq 1$
- $\text{Map } 1 V \simeq V$
- $\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xleftarrow{\mathbf{J}} \bot \xrightarrow{\mathbf{E}} \text{Set} \]

where \(\mathbf{J} \) embeds, and \(\mathbf{E} \ R : A \to \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[x \ f \bowtie g \ y = \text{flatten} \left(\text{Map} K \ cp \left(\text{merge} \left(\text{groupBy} \ f \ x, \text{groupBy} \ g \ y \right) \right) \right) \]

\textit{groupBy} : \((V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \)

\textit{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V
13. Pointed sets and finite maps

Model finite maps Map_* not as partial functions, but total functions to a pointed codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{array}{ccc}
\text{Set}_* & \xrightarrow{\perp} & \text{Set} \\
\downarrow & & \downarrow \\
\text{Maybe} & & U
\end{array}
$$

where $\text{Maybe } A \cong 1 + A$ adds a point, and $U (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map} \ K \ A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta X : X \rightarrow T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.