Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

 \[
 \left[\left(\text{customer.name, invoice.amount} \right) \\
 \mid \text{customer} \leftarrow \text{customers}, \\
 \text{invoice} \leftarrow \text{invoices}, \\
 \text{customer.cid} = \text{invoice.customer}, \\
 \text{invoice.due} \leq \text{today} \right]
 \]
- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq)\]

means \(f b \leq a \iff b \subseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,

such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

$$\cdots \to -2 \to -1 \to 0 \to 1 \to 2 \to \cdots$$

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category **CMon** has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category **Set** has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F id_X = id_{F X}$$

$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : CMon \to Set$:

$$U (M, \otimes, \epsilon) = M$$

$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $Free : Set \to CMon$ generates the free commutative monoid (ie bags) on a set of elements:

$$Free A = (Bag A, \cup, \emptyset)$$

$$Free (f : A \to B) = map f : Bag A \to Bag B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \mathcal{C}, \mathcal{D}, and functors $L: \mathcal{D} \to \mathcal{C}$ and $R: \mathcal{C} \to \mathcal{D}$, adjunction

$$\mathcal{C} \perp \mathcal{D} \quad \text{means}^* \quad [-]: \mathcal{C}(L X, Y) \simeq \mathcal{D}(X, R Y): [-]$$

A familiar example is given by currying:

$$\text{Set} \perp \text{Set} \quad \text{with} \quad \text{curry}: \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P): \text{curry}^\circ$$

hence definitions and properties of $\text{apply} = \text{uncurry} \ id_{Y^P}: Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set}^2 \\
\Delta & \mapsto & \Delta \\
\times & \mapsto & \\
\end{array}
\]

with

\[
\begin{align*}
\text{fork} &: \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^* \\
\text{junc}^* &: \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
dup &= \text{fork id}_{A, A} : \text{Set}(A, A \times A) \\
(fst, snd) &= \text{fork}^* \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \quad \bot \quad \text{Set}
\]

\[
\begin{aligned}
\text{CMon} & \cong \text{Set} \\
\text{Free} A & \quad \text{with} \quad [\cdot] : \text{CMon}(\text{Free} A, (M, \otimes, \epsilon)) \\
& \quad \cong \text{Set}(A, U (M, \otimes, \epsilon)) & : [\cdot]
\end{aligned}
\]

Unit and counit:

- \(\text{single} A = [\text{id}_{\text{Free} A}] : A \to U (\text{Free} A)\)
- \(\text{reduce} M = [\text{id}_M] : \text{Free} (U M) \to M \quad \text{-- for} \ M = (M, \otimes, \epsilon)\)

whence, for \(h : \text{Free} A \to M \) and \(f : A \to U M = M\),

\[
h = \text{reduce} M \cdot \text{Free} f \iff U h \cdot \text{single} A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$\mathbb{N}, 0, +$</td>
<td>${a} \rightarrow 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$\mathbb{R}, 0, +$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>max</td>
<td>$\mathbb{Z}, \text{minBound}, \text{max}$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>min</td>
<td>$\mathbb{Z}, \text{maxBound}, \text{min}$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>all</td>
<td>$\mathbb{B}, \text{True}, \land$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>any</td>
<td>$\mathbb{B}, \text{False}, \lor$</td>
<td>${a} \rightarrow a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$$\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A$$

$$\text{guard } p \ a = \text{if } p \ a \ \text{then } \{a\} \ \text{else } \emptyset$$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\text{Bag} = U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} : A \to \text{Bag} A
\]

which justifies the use of comprehension notation \(\{f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a\}\).

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
T = R \cdot L \\
\mu A = R [id_A] L : T (T A) \to T A \\
\eta A = [id_A] : A \to T A
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \textit{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{J} \text{Set} \xleftarrow{E} \]

where \(J \) embeds, and \(E \) \(R : A \to \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[x f \Join g y = \text{flatten} (\text{Map} K \text{ cp} (\text{merge} (\text{groupBy} f x, \text{groupBy} g y))) \]

\[\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \]

\[\text{flatten} \quad : \text{Map} K (\text{Bag} V) \to \text{Bag} V \]
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \\ \\
\downarrow & & \downarrow \\
\bot & & \bot \\
\text{Set} & & \text{Set}_* \\
\end{array}
\]

where \(\text{Maybe} \ A \simeq 1 + A \) adds a point, and \(U (A, a) = A \) discards it.

In particular, \((\text{Bag} \ A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} \ f \) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta \ a = \lambda k \to a : A \to \text{Map} \ K \ A \]

in general yields an infinite map.

However, finite maps are a *graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \to T_{m \otimes n} X \]
\[\eta X : X \to T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.