Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation
 \[
 \left\{ (\texttt{customer.name}, \texttt{invoice.amount}) \mid
 \texttt{customer} \leftarrow \texttt{customers},
 \texttt{invoice} \leftarrow \texttt{invoices},
 \texttt{customer.cid} = \texttt{invoice.customer},
 \texttt{invoice.due} \leq \texttt{today} \right\}
 \]
- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \]

means \(f b \leq a \iff b \subseteq g a \)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq) \]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives
\(n \times k \leq m \iff n \leq m \div k \), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \mathcal{C} consists of

- a set* $|\mathcal{C}|$ of *objects*,
- a set* $\mathcal{C}(X, Y)$ of *arrows* $X \rightarrow Y$ for each $X, Y : |\mathcal{C}|$,
- *identity* arrows $id_X : X \rightarrow X$ for each X
- *composition* $f \cdot g : X \rightarrow Z$ of compatible arrows $g : X \rightarrow Y$ and $f : Y \rightarrow Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \rightarrow b$ iff $a \leq b$.

```
... → -2 → -1 → 0 → 1 → 2 → ... 
```

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids $(M, \otimes, \varepsilon)$ as objects, and homomorphisms $h : (M, \otimes, \varepsilon) \rightarrow (M', \oplus, \varepsilon')$ as arrows:

$$h (m \otimes n) = h m \oplus h n$$
$$h \varepsilon = \varepsilon'$$

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $\text{Free} : \text{Set} \to \text{CMon}$ generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \cup, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \(\mathcal{C}, \mathcal{D} \), and functors \(L : \mathcal{D} \to \mathcal{C} \) and \(R : \mathcal{C} \to \mathcal{D} \), adjunction

\[
\begin{array}{c}
\mathcal{C} \\
\downarrow \\
\mathcal{D}
\end{array}
\quad \Downarrow_{\perp}
\quad
\begin{array}{c}
\downarrow \\
\mathcal{D} \quad \Downarrow_{\perp}
\end{array}
\mathcal{L}
\mathcal{R}

\text{means}^* \ [-] : \mathcal{C}(L X, Y) \simeq \mathcal{D}(X, R Y) : [-]

A familiar example is given by currying:

\[
\begin{array}{c}
\mathsf{Set} \\
\downarrow \\
\mathsf{Set}
\end{array}
\quad \Downarrow_{\perp}
\quad
\begin{array}{c}
\downarrow \\
\mathsf{Set} \quad \Downarrow_{\perp}
\end{array}
\mathsf{Set} \times \mathsf{P}
\mathsf{Set} \times \mathsf{P}

\text{with } curry : \mathsf{Set}(X \times P, Y) \simeq \mathsf{Set}(X, Y^P) : curry^\circ

\text{hence definitions and properties of } apply = uncurry \ id_{Y^P} : Y^P \times P \to Y
7. Products and coproducts

![Diagram]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
\text{dup} = \text{fork } \text{id}_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{c}
\text{CMon} \\
\mathsf{Free} \downarrow \mathsf{Set} \end{array}
\begin{array}{c}
\downarrow \mathsf{U} \\
\mathsf{CMon}((\mathsf{Free} A, (M, \otimes, \epsilon))) \\
\cong \mathsf{Set}(A, \mathsf{U}(M, \otimes, \epsilon))
\end{array} : [-]
\]

Unit and counit:

\[
single A = [id_{\mathsf{Free} A}] : A \to \mathsf{U}(\mathsf{Free} A)
\]

\[
reduce M = [id_M] : \mathsf{Free}(\mathsf{U} M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \mathsf{Free} A \to M \) and \(f : A \to \mathsf{U} M = M \),

\[
h = \text{reduce } M \cdot \text{Free } f \Leftrightarrow \mathsf{U} h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>([a] \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>([a] \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>([a] \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>([a] \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>([a] \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>([a] \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A \]

\[\text{guard } p \ a = \text{if } p \ a \text{ then } [a] \text{ else } \emptyset \]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & \quad = \ U \cdot \text{Free} \\
\text{union} & \quad : \text{Bag} (\text{Bag} \ A) \to \text{Bag} \ A \\
\text{single} & \quad : A \to \text{Bag} \ A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & \quad = R \cdot L \\
\mu A & \quad = R [id_A] \ L : T (T A) \to T A \\
\eta A & \quad = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\begin{align*}
\text{Rel} \quad \bot \quad \text{Set} \\
\end{align*}
\]

where \(J \) embeds, and \(E \ R : A \to \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} \ (K \times V) \simeq \text{Map} \ K \ (\text{Bag} \ V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x \ f \bowtie_g y = \text{flatten} \ (\text{Map} \ K \ cp \ (\text{merge} \ (\text{groupBy} \ f \ x, \text{groupBy} \ g \ y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} \ V \to \text{Map} \ K \ (\text{Bag} \ V)
\]

\[
\text{flatten} : \text{Map} \ K \ (\text{Bag} \ V) \to \text{Bag} \ V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category \textbf{Set}_*. There is an adjunction to \textbf{Set}, via

$$\begin{array}{ccc}
\text{Set}_* & \downarrow & \text{Set} \\
\downarrow & \uparrow & \\
\text{Maybe} & \downarrow & \text{U} \\
\end{array}$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U } (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)$$
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \to a : A \to \text{Map } K A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid $$(M, \otimes, \epsilon)$$,

$$\mu X : T_m (T_n X) \to T_{m \otimes n} X$$

$$\eta X : X \to T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid $$(\mathbb{K}, \times, 1)$$ of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.