Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\begin{align*}
\left[\ (\text{customer.name}, \text{invoice.amount}) \\
| \ \text{customer} \leftarrow \text{customers}, \\
\text{invoice} \leftarrow \text{invoices}, \\
\text{customer.cid} = \text{invoice.customer}, \\
\text{invoice.due} \leq \text{today} \ \right]
\end{align*}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\]

means \(f b \leq a \iff b \sqsubseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

"Change of coordinates" can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \mathcal{C} consists of

- a set* $|\mathcal{C}|$ of *objects*,
- a set* $\mathcal{C}(X, Y)$ of *arrows* $X \to Y$ for each $X, Y : |\mathcal{C}|$,
- *identity* arrows $id_X : X \to X$ for each X
- *composition* $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \rightarrow D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \rightarrow F Y$ when $f : X \rightarrow Y$, and

$$F \ id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : CMon \rightarrow Set$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'$$

Conversely, $Free : Set \rightarrow CMon$ generates the free commutative monoid (ie bags) on a set of elements:

$$Free A = (Bag A, \cup, \emptyset)$$
$$Free (f : A \rightarrow B) = map f : Bag A \rightarrow Bag B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathcal{C}, \mathcal{D}, and functors $L : \mathcal{D} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{D}$, adjunction

\[
\begin{array}{c}
\mathcal{C} & \perp & \mathcal{D} \\
\downarrow L & & \downarrow R \\
\mathcal{D} & & \mathcal{C}
\end{array}
\]

means* $[-] : \mathcal{C}(L X, Y) \simeq \mathcal{D}(X, R Y) : [-]$

A familiar example is given by *currying*:

\[
\begin{array}{c}
\mathbf{Set} & \perp & \mathbf{Set} \\
\downarrow (- \times P) & & \downarrow (\cdot)^P \\
\mathbf{Set} & & \mathbf{Set}
\end{array}
\]

with $\text{curry} : \mathbf{Set}(X \times P, Y) \simeq \mathbf{Set}(X, Y^P) : \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry } \text{id}_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[\text{Set} \xrightarrow{\Delta} \text{Set}^2 \xleftarrow{\Delta} \text{Set} \]

\[\text{Set}^2 \xrightarrow{\times} \text{Set} \]

with

\[
\begin{align*}
\text{fork} & : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) \quad : \text{fork}^\circ \\
\text{junc}^\circ & : \text{Set}(A + B, C) \quad \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
dup & = \text{fork} \ id_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^\circ \ id_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{align*}
\text{CMon} & \quad \bot \quad \text{Set} \\
\text{Free} & \quad \uparrow \quad \uparrow \quad \perp \quad \downarrow \\
U & \quad \downarrow \quad \downarrow \\
\end{align*}
\]

with \([\cdot] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \simeq \text{Set}(A, U(M, \otimes, \epsilon)) : [\cdot]

Unit and counit:

\[
\begin{align*}
single A & = [id_{\text{Free } A}] : A \to U(\text{Free } A) \\
\text{reduce } M & = [id_M] : \text{Free } (U M) \to M \quad -- \text{for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to U M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U \cdot h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count</code></td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \rightarrow 1)</td>
</tr>
<tr>
<td><code>sum</code></td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td><code>max</code></td>
<td>((\mathbb{Z}, minBound, max))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td><code>min</code></td>
<td>((\mathbb{Z}, maxBound, min))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td><code>all</code></td>
<td>((\mathbb{B}, True, \land))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td><code>any</code></td>
<td>((\mathbb{B}, False, \lor))</td>
<td>({a} \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
\text{guard } p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\text{Bag} \;=\; \mathbb{U} \cdot \text{Free}
\]

\[
\text{union} \;: \; \text{Bag} \; (\text{Bag} \; A) \rightarrow \text{Bag} \; A
\]

\[
\text{single} \;: \; A \rightarrow \text{Bag} \; A
\]

which justifies the use of comprehension notation \(\{ f \; a \; b \mid a \leftarrow x, b \leftarrow g \; a \}_+.\)

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
T \;=\; R \cdot L
\]

\[
\mu \;A \;=\; R \;\left[id_A \right] \;L \;: \; T \; (T \; A) \rightarrow T \; A
\]

\[
\eta \;A \;=\; \left[id_A \right] \;: \; A \rightarrow T \; A
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \cong 1$
- $\text{Map } 1 V \cong V$
- $\text{Map } (K_1 + K_2) V \cong \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \cong \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \cong 1$
- $\text{Map } K (V_1 \times V_2) \cong \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \quad \perp \quad \text{Set}
\]

where \(J \) embeds, and \(E \, R : A \to \text{Set} \, B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} \, (K \times V) \simeq \text{Map} \, K \, (\text{Bag} \, V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x \, f \bowtie_g \, y = \text{flatten} \, (\text{Map} \, K \, \text{cp} \, (\text{merge} \, (\text{groupBy} \, f \, x, \text{groupBy} \, g \, y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} \, V \to \text{Map} \, K \, (\text{Bag} \, V)
\]

\[
\text{flatten} \quad : \text{Map} \, K \, (\text{Bag} \, V) \to \text{Bag} \, V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

$$
\begin{array}{ccc}
\text{Set}_* & \downarrow & \text{Set} \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\text{U} & & \text{U} \\
\end{array}
$$

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $U (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$index : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map} \ K \ A \]

in general yields an infinite map.

However, finite maps are a *graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \to T_{m \otimes n} X \]
\[\eta X : X \to T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.