Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

 \[
 [(customer.name, invoice.amount) \\
 | customer ← customers, \\
 invoice ← invoices, \\
 customer.cid = invoice.customer, \\
 invoice.due ≤ today]
 \]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \text{ means } f b \leq a \iff b \sqsubseteq g a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \]

\[\text{floor} \quad \text{inj} \quad \times k \quad \div k\]

“Change of coordinates” can sometimes simplify reasoning; e.g., rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set $|\mathbf{C}|$ of objects,
- a set $\mathbf{C}(X, Y)$ of arrows $X \rightarrow Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \rightarrow X$ for each X
- composition $f \cdot g : X \rightarrow Z$ of compatible arrows $g : X \rightarrow Y$ and $f : Y \rightarrow Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \rightarrow b$ iff $a \leq b$.

$\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots$

Many categorical concepts are generalisations from ordered sets.

*proviso…
4. Concrete categories

Ordered sets are a *concrete category*: roughly,
- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h: (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')$ as arrows:

\[
h (m \otimes n) = h m \oplus h n \\
h \epsilon = \epsilon'
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor \(F : \mathcal{C} \to \mathcal{D} \) is an operation on both objects and arrows, preserving the structure: \(F f : F X \to F Y \) when \(f : X \to Y \), and

\[
F \ id_X = id_{F X} \\
F (f \cdot g) = F f \cdot F g
\]

For example, forgetful functor \(U : \mathbf{CMon} \to \mathbf{Set} \):

\[
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'
\]

Conversely, \(\text{Free} : \mathbf{Set} \to \mathbf{CMon} \) generates the free commutative monoid (ie bags) on a set of elements:

\[
\text{Free} A = (\text{Bag } A, \cup, \emptyset) \\
\text{Free} (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction

\[
\begin{array}{c}
C \downarrow \downarrow D \\
\circlearrowleft \quad \circlearrowleft
\end{array}
\]

means* \([-] : C(LX, Y) \simeq D(X, RY) : [-]\)

A familiar example is given by currying:

\[
\begin{array}{c}
\downarrow \downarrow \downarrow \\
\circlearrowleft \\
\downarrow \downarrow \downarrow \\
\circlearrowleft
\end{array}
\]

with \(curry : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : curry^\circ \)

hence definitions and properties of \(apply = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[
\begin{array}{c}
\text{Set} \downarrow \Delta \downarrow \text{Set}^2 \downarrow \Delta \downarrow \text{Set} \\
\sum \xrightleftharpoons{\Delta} \text{Set}^2 \xrightleftharpoons{\Delta} \text{Set} \xrightleftharpoons{\times} \text{Set} \\
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) : \text{fork}^\circ \\
\text{junc}^\circ : \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork } id_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) = \text{fork}^\circ id_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \quad \bot \quad \text{Set}
\]

with \([-]\) : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, \text{U}(M, \otimes, \epsilon)) : [-]

Unit and counit:

\[
\text{single } A = [id_{\text{Free } A}] : A \to U(\text{Free } A)
\]

\[
\text{reduce } M = [id_{M}] : \text{Free}(U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to U M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>(\llbracket a \rrbracket \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>(\llbracket a \rrbracket \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \minBound, \max))</td>
<td>(\llbracket a \rrbracket \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \maxBound, \min))</td>
<td>(\llbracket a \rrbracket \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>(\llbracket a \rrbracket \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>(\llbracket a \rrbracket \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard \ p \ a = \text{if } p \ a \text{ then } \llbracket a \rrbracket \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((Bag, union, single)\) with

\[
\begin{align*}
Bag &= U \cdot \text{Free} \\
union &: \text{Bag} (\text{Bag } A) \to \text{Bag } A \\
single &: A \to \text{Bag } A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R [id_A] L : T (T A) \to T A \\
\eta A &= [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \approx 1$
- $\text{Map } 1 V \approx V$
- $\text{Map } (K_1 + K_2) V \approx \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \approx \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \approx 1$
- $\text{Map } K (V_1 \times V_2) \approx \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{J} \downarrow \text{Set} \xleftarrow{E} \text{Rel}
\]

where \(J \) embeds, and \(E \) \(R : A \to \text{Set} \ B \) for \(R : A \sim B \).
Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x f \bowtie g y = \text{flatten} \ (\text{Map} K \ cp \ (\text{merge} \ (\text{groupBy} f x, \text{groupBy} g y)))
\]

\textit{groupBy} : \((V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V) \)

\textit{flatten} : \(\text{Map} K (\text{Bag} V) \to \text{Bag} V \)
13. Pointed sets and finite maps

Model \textit{finite maps} \(\text{Map}_\ast \) not as partial functions, but \textit{total} functions to a \textit{pointed} codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_\ast \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_\ast & \Downarrow & \text{Set} \\
\uparrow \quad \text{U} & \quad \Downarrow & \quad \text{Maybe} \\
\end{array}
\]

where \(\text{Maybe} \ A \simeq 1 + A \) adds a point, and \(\text{U} \ (A, a) = A \) discards it.

In particular, \((\text{Bag} \ A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} \ f \) is point-preserving, so we get a functor \(\text{Bag}_\ast : \text{Set} \to \text{Set}_\ast \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_\ast \ (K \times V) \simeq \text{Map}_\ast \ K \ (\text{Bag}_\ast \ V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

$$\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X$$
$$\eta X : X \rightarrow T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((K, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.