Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\begin{align*}
&[(\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
&| \text{customer} \leftarrow \text{customers}, \\
&\quad \text{invoice} \leftarrow \text{invoices}, \\
&\quad \text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
&\quad \text{invoice}.\text{due} \leq \text{today}]
\end{align*}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\]

means \(f b \leq a \iff b \sqsubseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]
\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* $|\mathbf{C}|$ of objects,
- a set* $\mathbf{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathbf{C}|$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,

such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

... $\to -2 \to -1 \to 0 \to 1 \to 2 \to \cdots$

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

$$h (m \otimes n) = h m \oplus h n$$
$$h \epsilon = \epsilon'$$

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor \(F : C \to D \) is an operation on both objects and arrows, preserving the structure: \(F f : F X \to F Y \) when \(f : X \to Y \), and

\[
\begin{align*}
F \ id_X &= id_{F X} \\
F (f \cdot g) &= F f \cdot F g
\end{align*}
\]

For example, **forgetful** functor \(U : C\text{Mon} \to \text{Set} \):

\[
\begin{align*}
U (M, \otimes, \epsilon) &= M \\
U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) &= h : M \to M'
\end{align*}
\]

Conversely, \(\text{Free} : \text{Set} \to \text{CMon} \) generates the **free** commutative monoid (ie bags) on a set of elements:

\[
\begin{align*}
\text{Free } A &= (\text{Bag } A, \cup, \emptyset) \\
\text{Free } (f : A \to B) &= \text{map } f : \text{Bag } A \to \text{Bag } B
\end{align*}
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathcal{C}, \mathcal{D}, and functors $L : \mathcal{D} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{D}$, adjunction

\[
\begin{array}{ccc}
\mathcal{C} & \perp & \mathcal{D} \\
\mathcal{C}(L X, Y) & \simeq & \mathcal{D}(X, R Y)
\end{array}
\]

A familiar example is given by currying:

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set} \\
\text{Set}(X \times P, Y) & \simeq & \text{Set}(X, Y^P)
\end{array}
\]

with $\text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^*$

hence definitions and properties of $\text{apply} = \text{uncurry id}_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[\text{Set} \xleftarrow{\Delta} \text{Set}^2 \xrightarrow{\Delta} \text{Set} \]
\[\text{Set} \xleftarrow{\times} \text{Set} \]

with

\[\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ \]
\[\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc} \]

hence

\[\text{dup} = \text{fork } \text{id}_{A,A} : \text{Set}(A, A \times A) \]
\[(\text{fst}, \text{snd}) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{align*}
\text{CMon} & \quad \perp \quad \text{Set} \\
\U & \quad \downarrow \quad \downarrow \\
\end{align*}
\]

with \([_] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \simeq \text{Set}(A, \U (M, \otimes, \epsilon)) : [_]

Unit and counit:

\[
\begin{align*}
\text{single } A &= [id_{\text{Free } A}] : A \to \U (\text{Free } A) \\
\text{reduce } M &= [id_M] : \text{Free } (\U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to \U M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff \U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$(\mathbb{N}, 0, +)$</td>
<td>$\mathcal{a} \mapsto 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$(\mathbb{R}, 0, +)$</td>
<td>$\mathcal{a} \mapsto a$</td>
</tr>
<tr>
<td>max</td>
<td>$(\mathbb{Z}, \text{minBound}, \text{max})$</td>
<td>$\mathcal{a} \mapsto a$</td>
</tr>
<tr>
<td>min</td>
<td>$(\mathbb{Z}, \text{maxBound}, \text{min})$</td>
<td>$\mathcal{a} \mapsto a$</td>
</tr>
<tr>
<td>all</td>
<td>$(\mathbb{B}, \text{True}, \land)$</td>
<td>$\mathcal{a} \mapsto a$</td>
</tr>
<tr>
<td>any</td>
<td>$(\mathbb{B}, \text{False}, \lor)$</td>
<td>$\mathcal{a} \mapsto a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$$
\text{guard} : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
$$

$$
\text{guard } p \ a = \text{if } p \ a \text{ then } \mathcal{a} \text{ else } \emptyset
$$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a monad $(\text{Bag}, \text{union}, \text{single})$ with

$$\text{Bag} = U \cdot \text{Free}$$

$$\text{union} : \text{Bag} (\text{Bag} A) \to \text{Bag} A$$

$$\text{single} : A \to \text{Bag} A$$

which justifies the use of comprehension notation $\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}$. In fact, for any adjunction $L \dashv R$ between \mathbf{C} and \mathbf{D}, we get a monad (T, μ, η) on \mathbf{D}, where

$$T = R \cdot L$$

$$\mu A = R \left[id_A \right] L : T (T A) \to T A$$

$$\eta A = [id_A] : A \to T A$$
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2: \textit{merge}
\end{align*}
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{\ J \ } \downarrow \xrightarrow{\ E \ } \text{Set}
\]

where \(J \) embeds, and \(E \) \(R : A \to \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x f \bowtie g y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f \ x, \text{groupBy} g \ y)))
\]

\(\text{groupBy} : (V \to K) \to \text{Bag} \ V \to \text{Map} K (\text{Bag} V) \)

\(\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V \)
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

\[
\begin{array}{ccc}
\text{Set}_* & \cong & \text{Set} \\
\downarrow & \rotatebox{90}{\Leftarrow} & \rotatebox{90}{\Rightarrow} \\
\downarrow & \rotatebox{90}{\Downarrow} & \\
\text{Set}_* & \downarrow & \text{Set} \\
\end{array}
\]

where $\text{Maybe } A \cong 1 + A$ adds a point, and $U (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map} K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \to T_{m \otimes n} X \]
\[\eta X : X \to T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.