Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

 \[
 \left(\text{customer.name, invoice.amount} \right)
 | \text{customer} \leftarrow \text{customers},
 \text{invoice} \leftarrow \text{invoices},
 \text{customer.cid} = \text{invoice.customer},
 \text{invoice.due} \leq \text{today} \right]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq)\] means \(f b \leq a \iff b \subseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\] and \[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category C consists of

- a set* $|C|$ of objects,
- a set* $C(X, Y)$ of arrows $X \to Y$ for each $X, Y : |C|$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[
\ldots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots
\]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category CMon has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category Set has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \rightarrow D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \rightarrow F Y$ when $f : X \rightarrow Y$, and

\[
F \ id_X = id_{F X} \\
F (f \cdot g) = F f \cdot F g
\]

For example, forgetful functor $U : CMon \rightarrow Set$:

\[
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'
\]

Conversely, $Free : Set \rightarrow CMon$ generates the free commutative monoid (ie bags) on a set of elements:

\[
Free A = (\text{Bag } A, \cup, \emptyset) \\
Free (f : A \rightarrow B) = \text{map } f : \text{Bag } A \rightarrow \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories C, D, and functors $L : D \to C$ and $R : C \to D$, adjunction

\[
\begin{align*}
C & \perp D \\
\downarrow & \downarrow \\
R & \circlearrowright \quad L
\end{align*}
\]

means $[-] : C(L X, Y) \simeq D(X, R Y) : [-]$.

A familiar example is given by currying:

\[
\begin{align*}
Set & \perp Set \\
\downarrow & \downarrow \\
\times & \circlearrowright \quad (\cdot)^P
\end{align*}
\]

with $curry : Set(X \times P, Y) \simeq Set(X, Y^P) : curry^\circ$.

hence definitions and properties of $apply = uncurry \ id_{Y^P} : Y^P \times P \to Y$.
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set}^2 \\
\Delta & \rightarrow & \perp \\
\downarrow & & \downarrow \\
\Delta & & \times
\end{array}
\]

with

\[\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^{\circ}\]

\[\text{junc}^{\circ} : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}\]

hence

\[\text{dup} = \text{fork} \text{id}_{A, A} : \text{Set}(A, A \times A)\]

\[(\text{fst}, \text{snd}) = \text{fork}^{\circ} \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{c}
\text{CMon} \Downarrow \text{Set} \\
\text{Free} \quad \downarrow \quad U \\
\end{array}
\]

with \([-\cdot]: \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-\cdot]\)

Unit and counit:

\[
\begin{align*}
\text{single } A & = [id_{\text{Free } A}] : A \to U (\text{Free } A) \\
\text{reduce } M & = [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h: \text{Free } A \to M\) and \(f: A \to U M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>(\llbracket a \rrbracket \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>(\llbracket a \rrbracket \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>(\llbracket a \rrbracket \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>(\llbracket a \rrbracket \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>(\llbracket a \rrbracket \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>(\llbracket a \rrbracket \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \llbracket a \rrbracket \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = \text{U} \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} & : A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \ | \ a \leftarrow x, b \leftarrow g \ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R [id_A] L : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \simeq 1$
- $\text{Map } 1 V \simeq V$
- $\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{J} \downarrow \text{Set} \xleftarrow{E} \text{Set}
\]

where \(J \) embeds, and \(E \, \text{R} : A \to \text{Set} \, B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} \, (K \times V) \simeq \text{Map} \, K \, (\text{Bag} \, V)
\]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[
x \, f \bowtie g \, y = \text{flatten} \left(\text{Map} \, K \, \text{cp} \, (\text{merge} \, (\text{groupBy} \, f \, x, \text{groupBy} \, g \, y)) \right)
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} \, V \to \text{Map} \, K \, (\text{Bag} \, V)
\]

\[
\text{flatten} : \text{Map} \, K \, (\text{Bag} \, V) \to \text{Bag} \, V
\]
13. Pointed sets and finite maps

Model \textit{finite maps} $\text{Map}_* \,$ not as partial functions, but \textit{total} functions to a \textit{pointed} codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*.

There is an adjunction to Set_*, via

\[
\begin{array}{ccc}
\text{Set}_* & \dashv & \text{Set} \\
\downarrow \text{Maybe} & & \downarrow \text{U} \\
\downarrow \text{U} & & \\
\text{Set}_* & & \text{Set}
\end{array}
\]

where $\text{Maybe } A \simeq 1 + A$ adds a point, and $\text{U } (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

\[\text{index} : \text{Bag}_* (K \times V) \simeq \text{Map}_* K (\text{Bag}_* V)\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map} K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[
\begin{align*}
\mu X &: T_m (T_n X) \to T_{m \otimes n} X \\
\eta X &: X \to T_\epsilon X
\end{align*}
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.