Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
[(\text{customer.name}, \text{invoice.amount}) \\
| \text{customer} \leftarrow \text{customers}, \\
\text{invoice} \leftarrow \text{invoices}, \\
\text{customer.cid} = \text{invoice.customer}, \\
\text{invoice.due} \leq \text{today}]
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq)\]

means \(f b \leq a \iff b \subseteq g a\)

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A *category* \(C \) consists of

- a set* \(|C| \) of *objects*,
- a set* \(C(X, Y) \) of *arrows* \(X \rightarrow Y \) for each \(X, Y : |C| \),
- *identity* arrows \(id_X : X \rightarrow X \) for each \(X \)
- *composition* \(f \cdot g : X \rightarrow Z \) of compatible arrows \(g : X \rightarrow Y \) and \(f : Y \rightarrow Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq)\) is a degenerate category, with objects \(A \) and a unique arrow \(a \rightarrow b \) iff \(a \leq b \).

\[
\cdots
\overset{\rightarrow}{-2} \overset{\rightarrow}{-1} \overset{\rightarrow}{0} \overset{\rightarrow}{1} \overset{\rightarrow}{2} \cdots
\]

Many categorical concepts are generalisations from ordered sets.
4. Concrete categories

Ordered sets are a concrete category: roughly,

- the objects are sets with additional structure
- the arrows are structure-preserving mappings

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h: (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor \(F : C \rightarrow D \) is an operation on both objects and arrows, preserving the structure: \(F f : F X \rightarrow F Y \) when \(f : X \rightarrow Y \), and

\[
F id_X = id_{F X} \\
F (f \cdot g) = F f \cdot F g
\]

For example, forgetful functor \(U : \text{CMon} \rightarrow \text{Set} \):

\[
U (M, \otimes, \epsilon) = M \\
U (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'
\]

Conversely, \(\text{Free} : \text{Set} \rightarrow \text{CMon} \) generates the free commutative monoid (ie bags) on a set of elements:

\[
\text{Free } A = (\text{Bag } A, \cup, \emptyset) \\
\text{Free } (f : A \rightarrow B) = \text{map } f : \text{Bag } A \rightarrow \text{Bag } B
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C, D, and functors $L : D \to C$ and $R : C \to D$, adjunction

![Diagram of adjunction](image)

means $\dashv : C(L X, Y) \simeq D(X, R Y) : \dashv$

A familiar example is given by *currying*:

![Diagram of currying](image)

with $\text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry} \ \text{id}_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \perp & \text{Set}^2 \\
\Delta & \Rightarrow & \perp \\
\downarrow & & \downarrow
\end{array}
\]

\[
\begin{array}{ccc}
\text{Set}^2 & \perp & \text{Set} \\
\Delta & \Rightarrow & \times \\
\downarrow & & \downarrow
\end{array}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2(((A, B), \Delta C) : \text{junc}
\]

hence

\[
\text{dup} = \text{fork} \text{id}_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{c}
\text{CMon} \\ \\
\perp \\ \\
\text{Set}
\end{array}
\xrightarrow{\text{Free}} \xleftarrow{\text{U}}
\]

\[
\text{with } [-] : \text{CMon}(\text{Free } A, (M, \otimes, \epsilon)) \cong \text{Set}(A, U (M, \otimes, \epsilon)) : [-]
\]

Unit and counit:

\[
\begin{align*}
\text{single } A &= [id_{\text{Free } A}] : A \to U (\text{Free } A) \\
\text{reduce } M &= [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \to M \) and \(f : A \to U M = M \),

\[
h = \text{reduce } M \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>(N, 0, +)</td>
<td>({a} \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>(R, 0, +)</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>(Z, minBound, max)</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>min</td>
<td>(Z, maxBound, min)</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>(B, True, \land)</td>
<td>({a} \mapsto a)</td>
</tr>
<tr>
<td>any</td>
<td>(B, False, \lor)</td>
<td>({a} \mapsto a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[guard : (A \to B) \to \text{Bag } A \to \text{Bag } A \]
\[guard \ p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset \]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(B = 1 + 1\)).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\text{Bag} = U \cdot \text{Free} \\
\text{union} : \text{Bag} (\text{Bag } A) \to \text{Bag } A \\
\text{single} : A \to \text{Bag } A
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R \ [id_A] \ L : T (T A) \to T A \\
\eta A &= [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K \ V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 \ V \simeq 1$
- $\text{Map } 1 \ V \simeq V$
- $\text{Map } (K_1 + K_2) \ V \simeq \text{Map } K_1 \ V \times \text{Map } K_2 \ V$
- $\text{Map } (K_1 \times K_2) \ V \simeq \text{Map } K_1 \ (\text{Map } K_2 \ V)$
- $\text{Map } K \ 1 \simeq 1$
- $\text{Map } K \ (V_1 \times V_2) \simeq \text{Map } K \ V_1 \times \text{Map } K \ V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[\text{Rel} \xrightarrow{\text{J}} \text{Set} \xleftarrow{\text{E}} \text{Bag} (K \times V) \]

where \(J \) embeds, and \(E \) \(R : A \rightarrow \text{Set} \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V) \]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[x f \bowtie g y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y))) \]

\(\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V) \)

\(\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V \)
13. Pointed sets and finite maps

Model \textit{finite maps} \(\text{Map}_* \) not as partial functions, but \textit{total} functions to a \textit{pointed} codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \rotatebox{90}{\(\bot\)} & \text{Set} \\
\text{Maybe} & \swarrow & \searrow \text{U} \\
\end{array}
\]

where \(\text{Maybe} \ A \cong 1 + A \) adds a point, and \(\text{U} (A, a) = A \) discards it.

In particular, \((\text{Bag} \ A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} \ f \) is point-preserving, so we get a functor \(\text{Bag}_*: \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

$$\eta \ a = \lambda k \to a : A \to \text{Map} \ K \ A$$

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

$$\mu \ X : T_m (T_n X) \to T_{m \otimes n} X$$
$$\eta \ X : X \to T_\epsilon X$$

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.