Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query notation*

\[
\begin{array}{l}
\left[(\text{customer}.\text{name}, \text{invoice}.\text{amount})
\right. \\
\left.| \text{customer} \leftarrow \text{customers},
\right. \\
\left.\text{invoice} \leftarrow \text{invoices},
\right. \\
\left.\text{customer}.\text{cid} = \text{invoice}.\text{customer},
\right. \\
\left.\text{invoice}.\text{due} \leq \text{today}\right]
\end{array}
\]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \quad \text{means} \quad f \; b \leq a \iff b \subseteq g \; a \]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \quad \text{inj} \quad \times k \]
\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq) \quad \text{floor} \quad \div k \]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives $n \times k \leq m \iff n \leq m \div k$, and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \(\mathbf{C}\) consists of

- a set* \(|\mathbf{C}|\) of objects,
- a set* \(\mathbf{C}(X, Y)\) of arrows \(X \rightarrow Y\) for each \(X, Y : |\mathbf{C}|\),
- identity arrows \(\text{id}_X : X \rightarrow X\) for each \(X\)
- composition \(f \cdot g : X \rightarrow Z\) of compatible arrows \(g : X \rightarrow Y\) and \(f : Y \rightarrow Z\),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq)\) is a degenerate category, with objects \(A\) and a unique arrow \(a \rightarrow b\) iff \(a \leq b\).

\[
\ldots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots
\]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A **functor** $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F \ f : F\ X \to F\ Y$ when $f : X \to Y$, and

$$F\ id_X = id_{F\ X}$$
$$F\ (f \cdot g) = F\ f \cdot F\ g$$

For example, **forgetful** functor $U : CMon \to Set$:

$$U\ (M, \otimes, \epsilon) = M$$
$$U\ (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, $Free : Set \to CMon$ generates the **free** commutative monoid (ie bags) on a set of elements:

$$Free\ A = (Bag\ A, \cup, \emptyset)$$
$$Free\ (f : A \to B) = map\ f : Bag\ A \to Bag\ B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories C, D, and functors $L : D \to C$ and $R : C \to D$, adjunction

$$C \perp D \quad \text{means}^* \quad [-] : C(L X, Y) \simeq D(X, R Y) : [-]$$

A familiar example is given by currying:

$$Set \perp Set \quad \text{with} \quad curry : Set(X \times P, Y) \simeq Set(X, Y^P) : curry^\circ$$

hence definitions and properties of $apply = uncurry \ id_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[\text{Set} \perp \Delta \text{Set}^2 \perp \Delta \text{Set} \]

with

\[
\begin{align*}
\text{fork} : \text{Set}^2(\Delta A, (B, C)) & \simeq \text{Set}(A, B \times C) : \text{fork}^\circ \\
\text{junc}^\circ : \text{Set}(A + B, C) & \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
dup & = \text{fork id}_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[\text{CMon} \Downarrow \text{Set} \]

with \([-]\) : CMon(Free \(A\), (\(M\), \(\otimes\), \(\epsilon\))) \ \sim \ \text{Set}(A, \ U \ (M, \otimes, \epsilon)) \ : \ [-] \]

Unit and counit:

\[
\text{single } A = [id_{\text{Free } A}] : A \to U \ (\text{Free } A) \\
\text{reduce } M = [id_M] : \text{Free } (U \ M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free } A \to M\) and \(f : A \to U \ M = M\),

\[h = \text{reduce } M \cdot \text{Free } f \iff U \ h \cdot \text{single } A = f \]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \wedge))</td>
<td>({a} \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \rightarrow 1)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
guard \ p \ a = \text{if } p \ a \ \text{then } \{a\} \ \text{else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} : \text{Bag} \ (\text{Bag} \ A) & \to \text{Bag} \ A \\
\text{single} : A & \to \text{Bag} \ A
\end{align*}
\]

which justifies the use of comprehension notation \([f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a] \).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R \circ [id_A] \circ L : T \ (T \ A) \to T \ A \\
\eta A & = [id_A] : A \to T \ A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K \ V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction. The laws of exponents arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 \ V \approx 1$
- $\text{Map } 1 \ V \approx V$
- $\text{Map } (K_1 + K_2) \ V \approx \text{Map } K_1 \ V \times \text{Map } K_2 \ V$
- $\text{Map } (K_1 \times K_2) \ V \approx \text{Map } K_1 (\text{Map } K_2 \ V)$
- $\text{Map } K \ 1 \approx 1$
- $\text{Map } K (V_1 \times V_2) \approx \text{Map } K \ V_1 \times \text{Map } K \ V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \quad \perp \quad \text{Set}
\]

where \(J\) embeds, and \(E R : A \rightarrow \text{Set} B\) for \(R : A \sim B\).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag}(K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x f \bowtie g y = \text{flatten} (\text{Map} K cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))
\]

\[
\text{groupBy} : (V \rightarrow K) \rightarrow \text{Bag} V \rightarrow \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \rightarrow \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

\[
\begin{array}{ccc}
\text{Set}_* & \perp & \text{Set} \\
\uparrow \text{Maybe} & & \downarrow \text{U} \\
\text{Set}_* & \perp & \text{Set}
\end{array}
\]

where $\text{Maybe } A \cong 1 + A$ adds a point, and $\text{U } (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta X : X \rightarrow T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.