Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

 \[
 \left\{ \begin{array}{l}
 (customer.name, invoice.amount) \\
 | customer \leftarrow customers, \\
 invoice \leftarrow invoices, \\
 customer.cid = invoice.customer, \\
 invoice.due \leq today
 \end{array} \right.
 \]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \preceq) \quad \text{means } f b \leq a \iff b \preceq g a\]

For example,

\[(\mathbb{R}, \leq) \perp (\mathbb{Z}, \preceq_{\text{floor}}) \]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq_{\div k}) \]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives
\[n \times k \leq m \iff n \leq m \div k, \text{ and multiplication is easier to reason about than rounding division.}\]
3. Category theory from ordered sets

A *category* \(\mathcal{C} \) consists of

- a set* \(|\mathcal{C}| \) of *objects*,
- a set* \(\mathcal{C}(X, Y) \) of *arrows* \(X \to Y \) for each \(X, Y : |\mathcal{C}| \),
- *identity* arrows \(\text{id}_X : X \to X \) for each \(X \)
- *composition* \(f \cdot g : X \to Z \) of compatible arrows \(g : X \to Y \) and \(f : Y \to Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq) \) is a degenerate category, with objects \(A \) and a unique arrow \(a \to b \) iff \(a \leq b \).

\[
\cdots \to -2 \to -1 \to 0 \to 1 \to 2 \to \cdots
\]

Many categorical concepts are generalisations from ordered sets.

proviso...
4. Concrete categories

Ordered sets are a **concrete category**: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category **CMon** has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category **Set** has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \rightarrow D$ is an operation on both objects and arrows, preserving the structure: $Ff : F X \rightarrow F Y$ when $f : X \rightarrow Y$, and

$$F id_X = id_{FX}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : CMon \rightarrow Set$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'$$

Conversely, $Free : Set \rightarrow CMon$ generates the free commutative monoid (ie bags) on a set of elements:

$$Free A = (\text{Bag } A, \cup, \emptyset)$$
$$Free (f : A \rightarrow B) = \text{map } f : \text{Bag } A \rightarrow \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \(C, D \), and functors \(L : D \to C \) and \(R : C \to D \), adjunction

\[
\begin{array}{c}
C \\
\downarrow \leftarrow \downarrow \leftarrow D \\
\uparrow \uparrow \uparrow \uparrow R \downarrow \downarrow \downarrow L
\end{array}
\]

means \(*[-] : C(L X, Y) \simeq D(X, R Y) : [-]*

A familiar example is given by currying:

\[
\begin{array}{c}
Set \\
\downarrow \leftarrow \downarrow \leftarrow Set \\
\uparrow \uparrow \uparrow \uparrow (-)^P \downarrow \downarrow \downarrow (-\times P)
\end{array}
\]

with \(curry : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : curry^o \)

hence definitions and properties of \(apply = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

with

\[
\text{fork} : \mathbf{Set}^2(\Delta A, (B, C)) \simeq \mathbf{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \mathbf{Set}(A + B, C) \simeq \mathbf{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork } id_{A,A} : \mathbf{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ id_{B \times C} : \mathbf{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{align*}
\text{CMon} & \quad \Downarrow \quad \text{Set} \\
\text{Free} & \quad \Rightarrow \quad \text{U} \quad \Rightarrow \quad \text{CMon}(\text{Free} A, (M, \otimes, \epsilon)) \\
& \quad \Rightarrow \quad \text{Set}(A, \text{U} (M, \otimes, \epsilon)) \\
& \quad \Rightarrow \quad [-] \\
\end{align*}
\]

Unit and counit:

\[
\begin{align*}
\text{single } A & = [id_{\text{Free} A}] : A \to \text{U} \ (\text{Free} A) \\
\text{reduce } M & = [id_M] \quad : \text{Free} \ (\text{U} M) \to M \quad \text{-- for } M = (M, \otimes, \epsilon) \\
\end{align*}
\]

whence, for \(h : \text{Free} A \to M \) and \(f : A \to \text{U} M = M \),

\[
\begin{align*}
\text{reduce } M \cdot \text{Free } f \iff \text{U } h \cdot \text{single } A = f
\end{align*}
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$(\mathbb{N}, 0, +)$</td>
<td>${a} \rightarrow 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$(\mathbb{R}, 0, +)$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>max</td>
<td>$(\mathbb{Z}, \text{minBound}, \text{max})$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>min</td>
<td>$(\mathbb{Z}, \text{maxBound}, \text{min})$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>all</td>
<td>$(\mathbb{B}, \text{True}, \land)$</td>
<td>${a} \rightarrow a$</td>
</tr>
<tr>
<td>any</td>
<td>$(\mathbb{B}, \text{False}, \lor)$</td>
<td>${a} \rightarrow a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

$\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag} A \rightarrow \text{Bag} A$

$\text{guard } p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} &= U \cdot \text{Free} \\
\text{union} &: \text{Bag} (\text{Bag} A) \to \text{Bag} A \\
\text{single} &: A \to \text{Bag} A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R [\text{id}_A] L : T (T A) \to T A \\
\eta A &= [\text{id}_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{J} \text{Set} \xleftarrow{E} \text{Bag} (K \times V) \xRightarrow{\text{groupBy}} \text{Bag} V \xRightarrow{\text{flatten}} \text{Map} K (\text{Bag} V)
\]

where \(J \) embeds, and \(E \ R : A \to \text{Set} B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x f \bowtie g y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V
\]
13. Pointed sets and finite maps

Model \textit{finite maps} \(\text{Map}_* \) not as partial functions, but \textit{total} functions to a \textit{pointed} codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \cong & \text{Set} \\
\downarrow \text{Maybe} & & \downarrow \text{U} \\
\end{array}
\]

where \text{Maybe} \(A \cong 1 + A \) adds a point, and \(\text{U} (A, a) = A \) discards it.

In particular, \((\text{Bag} A, \emptyset)\) is a pointed set. Moreover, \(\text{Bag} f \) is point-preserving, so we get a functor \(\text{Bag}_* : \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a \textit{graded monad*}: for monoid \((M, \otimes, \epsilon)\),

\[
\mu X : T_m (T_n X) \to T_{m \otimes n} X \\
\eta X : X \to T_\epsilon X
\]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.