Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations via adjunctions*
- monads support *comprehensions*
- comprehension syntax provides a *query notation*

\[
\begin{array}{l}
\{ (\text{customer.name, invoice.amount}) \\
| \text{customer} \leftarrow \text{customers}, \\
\text{invoice} \leftarrow \text{invoices}, \\
\text{customer.cid} = \text{invoice.customer}, \\
\text{invoice.due} \leq \text{today} \}
\end{array}
\]

- monad structure explains *selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \quad \text{means} \quad f b \leq a \iff b \subseteq g(a)\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \quad \text{\textit{floor}}\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq) \quad \text{\textit{÷k}}\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \(\mathbf{C} \) consists of

- a set* \(|\mathbf{C}|\) of objects,
- a set* \(\mathbf{C}(X, Y) \) of arrows \(X \rightarrow Y \) for each \(X, Y : |\mathbf{C}| \),
- identity arrows \(\text{id}_X : X \rightarrow X \) for each \(X \)
- composition \(f \cdot g : X \rightarrow Z \) of compatible arrows \(g : X \rightarrow Y \) and \(f : Y \rightarrow Z \),
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set \((A, \leq)\) is a degenerate category, with objects \(A \) and a unique arrow \(a \rightarrow b \) iff \(a \leq b \).

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

$$F \ id_X = id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : \text{CMon} \to \text{Set}$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$$

Conversely, Free : Set \to CMon generates the free commutative monoid (ie bags) on a set of elements:

$$\text{Free } A = (\text{Bag } A, \uplus, \emptyset)$$
$$\text{Free } (f : A \to B) = \text{map } f : \text{Bag } A \to \text{Bag } B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \(\mathbf{C}, \mathbf{D} \), and functors \(\mathbf{L} : \mathbf{D} \to \mathbf{C} \) and \(\mathbf{R} : \mathbf{C} \to \mathbf{D} \), adjunction

\[
\xymatrix{ \mathbf{C} & \mathbf{D} \\
\downarrow L & \downarrow R \ar@{<->}[u] \\
& }
\]

means* \([-] : \mathbf{C}(L X, Y) \simeq \mathbf{D}(X, R Y) : [-] \)

A familiar example is given by currying:

\[
\xymatrix{ \text{Set} & \text{Set} \\
\downarrow (- \times P) & \downarrow (-)^P \ar@{<->}[u] \\
& }
\]

with \(\text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^{\circ} \)

hence definitions and properties of \(\text{apply} = \text{uncurry id}_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[
\begin{align*}
\text{Set} & \xrightarrow{\perp} \text{Set}^2 & \xleftarrow{\perp} \text{Set} \\
\text{Set} & \xrightarrow{\Delta} \text{Set}^2 & \xleftarrow{\Delta} \text{Set} \\
\vdots & & \vdots \\
\end{align*}
\]

with

\[
\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ
\]

\[
\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\]

hence

\[
dup = \text{fork \ id}_{A,A} : \text{Set}(A, A \times A)
\]

\[
(fst, snd) = \text{fork}^\circ \ id_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{rcl}
\text{CMon} & \perp & \text{Set} \\
\text{Free} & \Uparrow & \text{units} \\
\downarrow \quad \downarrow & & \downarrow \quad \downarrow \\
\text{U} & \Rightarrow & \text{with \ [-] : CMon(Free \ A, (M, \otimes, \epsilon))} \\
\end{array}
\]

\[
\text{CMon(Free A, (M, \otimes, \epsilon))} \cong \text{Set(A, U (M, \otimes, \epsilon))} : [-]
\]

Unit and counit:

\[\text{single A} = [id_{\text{Free A}}] : A \rightarrow \text{U (Free A)}\]

\[\text{reduce M} = [id_{M}] : \text{Free (U M)} \rightarrow M \quad \text{-- for } M = (M, \otimes, \epsilon)\]

whence, for \(h : \text{Free A} \rightarrow M \) and \(f : A \rightarrow \text{U M} = M\),

\[h = \text{reduce M} \cdot \text{Free f} \iff \text{U h} \cdot \text{single A} = f\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>$(\mathbb{N}, 0, +)$</td>
<td>${a} \mapsto 1$</td>
</tr>
<tr>
<td>sum</td>
<td>$(\mathbb{R}, 0, +)$</td>
<td>${a} \mapsto a$</td>
</tr>
<tr>
<td>max</td>
<td>$(\mathbb{Z}, \text{minBound}, \text{max})$</td>
<td>${a} \mapsto a$</td>
</tr>
<tr>
<td>min</td>
<td>$(\mathbb{Z}, \text{maxBound}, \text{min})$</td>
<td>${a} \mapsto a$</td>
</tr>
<tr>
<td>all</td>
<td>$(\mathbb{B}, \text{True}, \land)$</td>
<td>${a} \mapsto a$</td>
</tr>
<tr>
<td>any</td>
<td>$(\mathbb{B}, \text{False}, \lor)$</td>
<td>${a} \mapsto a$</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
\text{guard} : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag} \ A \rightarrow \text{Bag} \ A
\]

\[
\text{guard} \ p \ a = \text{if} \ p \ a \ \text{then} \ \{a\} \ \text{else} \ \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).
10. Monads

Bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = \mathsf{U} \cdot \text{Free} \\
\text{union} : & \text{Bag (Bag } A \text{)} \to \text{Bag } A \\
\text{single} : & A \to \text{Bag } A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a + \}\).

In fact, for any adjunction \(\mathbf{L} \dashv \mathbf{R} \) between \(\mathbf{C} \) and \(\mathbf{D} \), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D} \), where

\[
\begin{align*}
T & = \mathbf{R} \cdot \mathbf{L} \\
\mu \ A & = \mathbf{R} [\text{id}_A] \ \mathbf{L} : T \ (T \ A) \to T \ A \\
\eta \ A & = [\text{id}_A] : A \to T \ A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the \textit{Reader} monad in Haskell), so arise from an adjunction.

The \textit{laws of exponents} arise from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \simeq 1$
- $\text{Map } 1 V \simeq V$
- $\text{Map } (K_1 + K_2) V \simeq \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \simeq \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \simeq 1$
- $\text{Map } K (V_1 \times V_2) \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \downarrow \text{Set} \quad \text{E} \quad \downarrow \quad \text{J}
\]

where J embeds, and E \(R : A \to \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} (K \times V) \cong \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x f \bowtie g y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f \ x, \text{groupBy} g \ y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V)
\]

\[
\text{flatten} \quad : \text{Map} K (\text{Bag} V) \to \text{Bag} V
\]
13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (A, a), i.e. a set A with a distinguished element $a: A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

\[
\begin{array}{ccc}
\text{Set}_* & \cong & \text{Set} \\
\downarrow & & \downarrow \\
\text{Set}_* & \cong & \text{Set}
\end{array}
\]

where $\text{Maybe} \ A \cong 1 + A$ adds a point, and $U (A, a) = A$ discards it.

In particular, $(\text{Bag} \ A, \emptyset)$ is a pointed set. Moreover, $\text{Bag} \ f$ is point-preserving, so we get a functor $\text{Bag}_*: \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

\[
\text{index}: \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \to a : A \to \text{Map} \; K \; A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, \epsilon)\),

\[\mu X : T_m (T_n X) \to T_{m \otimes n} X \]
\[\eta X : X \to T_\epsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((K, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.