Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

```
[ (customer.name, invoice.amount) |
  customer ← customers,
  invoice ← invoices,
  customer.cid = invoice.customer,
  invoice.due ≤ today ]
```

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq) \] means \[f b \leq a \iff b \subseteq g a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\] \[\text{floor}\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\] \[\times k\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\] \[\div k\]

“Change of coordinates” can sometimes simplify reasoning; e.g., rhs gives \[n \times k \leq m \iff n \leq m \div k\], and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category \mathbf{C} consists of

- a set* \mathcal{C} of objects,
- a set* $\mathcal{C}(X, Y)$ of arrows $X \to Y$ for each $X, Y : |\mathcal{C}|$,
- identity arrows $\text{id}_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category **CMon** has commutative monoids \((M, \otimes, \epsilon)\) as objects, and homomorphisms \(h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')\) as arrows:

\[
\begin{align*}
h (m \otimes n) &= h m \oplus h n \\
h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category **Set** has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor $F : C \rightarrow D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \rightarrow F Y$ when $f : X \rightarrow Y$, and

$$F \ id_X \ = \ id_{F X}$$
$$F (f \cdot g) = F f \cdot F g$$

For example, forgetful functor $U : CMon \rightarrow Set$:

$$U (M, \otimes, \epsilon) = M$$
$$U (h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')) = h : M \rightarrow M'$$

Conversely, $Free : Set \rightarrow CMon$ generates the free commutative monoid (ie bags) on a set of elements:

$$Free A = (Bag A, \cup, \emptyset)$$
$$Free (f : A \rightarrow B) = map f : Bag A \rightarrow Bag B$$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories \mathcal{C}, \mathcal{D}, and functors $L : \mathcal{D} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{D}$, adjunction

\[
\begin{array}{ccc}
\mathcal{C} & \perp & \mathcal{D} \\
\downarrow & & \downarrow \\
\mathcal{D} & \perp & \mathcal{C}
\end{array}
\]

means \([-] : \mathcal{C}(L X, Y) \simeq \mathcal{D}(X, R Y) : [-]\)

A familiar example is given by currying:

\[
\begin{array}{ccc}
\mathcal{Set} & \perp & \mathcal{Set} \\
\downarrow & & \downarrow \\
\mathcal{Set} & \perp & \mathcal{Set}
\end{array}
\]

with $\text{curry} : \mathcal{Set}(X \times P, Y) \simeq \mathcal{Set}(X, Y^P) : \text{curry}^\circ$

hence definitions and properties of $\text{apply} = \text{uncurry id}_{Y^P} : Y^P \times P \to Y$
7. Products and coproducts

\[
\begin{array}{c}
\text{Set} \quad \perp \quad \text{Set}^2 \quad \perp \quad \text{Set} \\
\Delta \quad \quad \quad \Delta \\
\times \quad \quad \quad +
\end{array}
\]

with

\[
\begin{align*}
\text{fork} & : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ \\
\text{junc}^\circ & : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
dup &= \text{fork } id_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) &= \text{fork}^\circ id_{B \times C} : \text{Set}^2(\Delta(B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\begin{array}{ccc}
\text{CMon} & \perp & \text{Set} \\
\downarrow & & \downarrow \\
\text{Free} & & \text{U} \\
\end{array}
\]

with \([-]\) : \text{CMon}(\text{Free } A, (M, \otimes, \varepsilon)) \simeq \text{Set}(A, \text{U } (M, \otimes, \varepsilon)) : [-]

Unit and counit:

\[
\begin{align*}
\text{single } A & = [id_{\text{Free } A}] : A \rightarrow \text{U } (\text{Free } A) \\
\text{reduce } M = [id_M] & : \text{Free } (\text{U } M) \rightarrow M \quad \text{-- for } M = (M, \otimes, \varepsilon)
\end{align*}
\]

whence, for \(h : \text{Free } A \rightarrow M\) and \(f : A \rightarrow \text{U } M = M\),

\[
h = \text{reduce } M \cdot \text{Free } f \iff \text{U } h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>({a} \to 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>({a} \to a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>({a} \to a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>({a} \to a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>({a} \to a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>({a} \to a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \{a\} \text{ else } \emptyset
\]

Laws about selections follow from laws of homomorphisms (and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a \textit{monad} \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} & = U \cdot \text{Free} \\
\text{union} & : \text{Bag} (\text{Bag } A) \to \text{Bag } A \\
\text{single} & : A \to \text{Bag } A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \} \).

In fact, for any adjunction \(L \dashv R\) between \(\mathbf{C}\) and \(\mathbf{D}\), we get a monad \((T, \mu, \eta)\) on \(\mathbf{D}\), where

\[
\begin{align*}
T & = R \cdot L \\
\mu A & = R [id_A] L : T (T A) \to T A \\
\eta A & = [id_A] : A \to T A
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\begin{array}{c}
\text{Rel} & \downarrow & \text{Set} \\
\text{J} & \downarrow & \text{E}
\end{array}
\]

where \(J \) embeds, and \(E : R : A \to \text{Set} \ B \) for \(R : A \sim B \).

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag} \ (K \times V) \simeq \text{Map} \ K \ (\text{Bag} \ V)
\]

Together, \(\text{index} \) and \(\text{merge} \) give efficient relational joins:

\[
x \ f \bowtie g \ y = \text{flatten} \ (\text{Map} \ K \ cp \ (\text{merge} \ (\text{groupBy} \ f \ x, \text{groupBy} \ g \ y)))
\]

\[
\text{groupBy} : (V \to K) \to \text{Bag} \ V \to \text{Map} \ K \ (\text{Bag} \ V)
\]

\[
\text{flatten} : \text{Map} \ K \ (\text{Bag} \ V) \to \text{Bag} \ V
\]
13. Pointed sets and finite maps

Model finite maps Map_* not as partial functions, but total functions to a pointed codomain (A, a), i.e. a set A with a distinguished element $a : A$.

Pointed sets and point-preserving functions form a category Set_*. There is an adjunction to Set, via

\[
\begin{array}{ccc}
\text{Maybe} & \cong & 1 + A \\
\downarrow & & \downarrow \\
\text{Set}_* & \downarrow & \text{Set} \\
\downarrow & & \downarrow \\
\uparrow & & \uparrow \\
\text{U} & & \text{U}
\end{array}
\]

where $\text{Maybe } A \cong 1 + A$ adds a point, and $\text{U } (A, a) = A$ discards it.

In particular, $(\text{Bag } A, \emptyset)$ is a pointed set. Moreover, $\text{Bag } f$ is point-preserving, so we get a functor $\text{Bag}_* : \text{Set} \to \text{Set}_*$.

Indexing remains an isomorphism:

$$\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)$$
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a *graded monad*: for monoid \((M, \otimes, \varepsilon)\),

\[\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta X : X \rightarrow T_\varepsilon X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((K, \times, 1)\) of finite key types under product.
15. Conclusions

- *Monad comprehensions* for database queries
- Structure arising from *adjunctions*
- Equivalences from *universal properties*
- Fitting in *relational joins*, via indexing
- To do: Calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.