Relational algebra by way of adjunctions
Gibbons, Jeremy; Henglein, Fritz; Hinze, Ralf; Wu, Nicolas

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015
1. Summary

- bulk types (sets, bags, lists) are monads
- monads have nice mathematical foundations via adjunctions
- monads support comprehensions
- comprehension syntax provides a query notation

\[
\left\{ (\text{customer}.\text{name}, \text{invoice}.\text{amount}) \\
\mid \text{customer} \leftarrow \text{customers}, \\
\text{invoice} \leftarrow \text{invoices}, \\
\text{customer}.\text{cid} = \text{invoice}.\text{customer}, \\
\text{invoice}.\text{due} \leq \text{today} \right\}
\]

- monad structure explains selection, projection
- less obvious how to explain join
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \sqsubseteq)\]

means \[f b \leq a \iff b \sqsubseteq g a\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}})\]

\[(\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives \[n \times k \leq m \iff n \leq m \div k\], and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category C consists of

- a set* $|C|$ of objects,
- a set* $C(X, Y)$ of arrows $X \to Y$ for each $X, Y : |C|$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

... $\to -2 \to -1 \to 0 \to 1 \to 2 \to ...$

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category \textbf{CMon} has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h : (M, \otimes, \epsilon) \rightarrow (M', \oplus, \epsilon')$ as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \epsilon &= \epsilon'
\end{align*}
\]

Trivially, category \textbf{Set} has sets as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A **functor** $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F \ f : F \ X \to F \ Y$ when $f : X \to Y$, and

$F \ id_X = id_{F \ X}$

$F \ (f \cdot g) = F \ f \cdot F \ g$

For example, **forgetful** functor $U : CMon \to Set$:

$U \ (M, \otimes, \epsilon) = M$

$U \ (h : (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')) = h : M \to M'$

Conversely, $Free : Set \to CMon$ generates the **free** commutative monoid (ie bags) on a set of elements:

$Free \ A = (Bag \ A, \cup, \emptyset)$

$Free \ (f : A \to B) = map \ f : Bag \ A \to Bag \ B$
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \(\mathcal{C}, \mathcal{D} \), and functors \(L : \mathcal{D} \to \mathcal{C} \) and \(R : \mathcal{C} \to \mathcal{D} \), adjunction

\[
\begin{array}{c}
\mathcal{C} \\
\downarrow \perp \\
\mathcal{D}
\end{array}
\begin{array}{c}
\mathcal{D} \\
\downarrow \perp \\
\mathcal{C}
\end{array}
\]

means* \([-] : \mathcal{C}(L X, Y) \cong \mathcal{D}(X, R Y) : [-] \)

A familiar example is given by currying:

\[
\begin{array}{c}
\mathsf{Set} \\
\downarrow \perp \\
\mathsf{Set}
\end{array}
\begin{array}{c}
\mathsf{Set} \\
\downarrow \perp \\
\mathsf{Set}
\end{array}
\]

with \(\text{curry} : \mathsf{Set}(X \times P, Y) \cong \mathsf{Set}(X, Y^P) : \text{curry}^\circ \)

hence definitions and properties of \(\text{apply} = \text{uncurry} \ id_{Y^P} : Y^P \times P \to Y \)
7. Products and coproducts

\[\text{Set} \xrightarrow{\Delta} \text{Set}^2 \xrightarrow{\Delta} \text{Set} \]

\[\text{Set}^2 \xleftarrow{\times} \text{Set} \xleftarrow{\Delta} \text{Set} \]

with

\[\text{fork} : \text{Set}^2(\Delta A, (B, C)) \simeq \text{Set}(A, B \times C) : \text{fork}^\circ \]
\[\text{junc}^\circ : \text{Set}(A + B, C) \simeq \text{Set}^2((A, B), \Delta C) : \text{junc} \]

hence

\[\text{dup} = \text{fork id}_{A,A} : \text{Set}(A, A \times A) \]
\[(\text{fst}, \text{snd}) = \text{fork}^\circ \text{id}_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C)) \]

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.
8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

\[
\text{CMon} \quad \perp \quad \text{Set} \quad \text{with} \quad [\cdot] : \text{CMon}(\text{Free} \ A, (M, \otimes, \epsilon)) \\
\cong \text{Set}(A, U (M, \otimes, \epsilon)) : [\cdot]
\]

Unit and counit:

\[
\text{single} \ A = [id_{\text{Free} \ A}] : A \to U (\text{Free} \ A) \\
\text{reduce} \ M = [id_M] : \text{Free} (U M) \to M \quad \text{-- for} \ M = (M, \otimes, \epsilon)
\]

whence, for \(h : \text{Free} \ A \to M \) and \(f : A \to U M = M \),

\[
h = \text{reduce} \ M \cdot \text{Free} \ f \iff U h \cdot \text{single} \ A = f
\]

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>([a] \rightarrow 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>([a] \rightarrow a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z}, \text{minBound}, \text{max}))</td>
<td>([a] \rightarrow a)</td>
</tr>
<tr>
<td>min</td>
<td>((\mathbb{Z}, \text{maxBound}, \text{min}))</td>
<td>([a] \rightarrow a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, \text{True}, \land))</td>
<td>([a] \rightarrow a)</td>
</tr>
<tr>
<td>any</td>
<td>((\mathbb{B}, \text{False}, \lor))</td>
<td>([a] \rightarrow a)</td>
</tr>
</tbody>
</table>

Selection is a homomorphism, to bags, using action

\[
guard : (A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A
\]

\[
\text{guard } p \ a = \text{if } p \ a \ \text{then } [a] \ \text{else } \emptyset
\]

Laws about selections follow from laws of homomorphisms
(and of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Bags form a monad \((\text{Bag}, \text{union}, \text{single})\) with

\[
\begin{align*}
\text{Bag} &= U \cdot \text{Free} \\
\text{union} &: \text{Bag} \ (\text{Bag} \ A) \to \text{Bag} \ A \\
\text{single} &: A \to \text{Bag} \ A
\end{align*}
\]

which justifies the use of comprehension notation \(\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}\).

In fact, for any adjunction \(L \dashv R\) between \(C\) and \(D\), we get a monad \((T, \mu, \eta)\) on \(D\), where

\[
\begin{align*}
T &= R \cdot L \\
\mu A &= R[\text{id}_A]L : T(TA) \to TA \\
\eta A &= [\text{id}_A] : A \to TA
\end{align*}
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the *Reader* monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

\[
\begin{align*}
\text{Map } 0 V & \simeq 1 \\
\text{Map } 1 V & \simeq V \\
\text{Map } (K_1 + K_2) V & \simeq \text{Map } K_1 V \times \text{Map } K_2 V \\
\text{Map } (K_1 \times K_2) V & \simeq \text{Map } K_1 (\text{Map } K_2 V) \\
\text{Map } K 1 & \simeq 1 \\
\text{Map } K (V_1 \times V_2) & \simeq \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}
\end{align*}
\]
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \downarrow \text{Set} \quad \downarrow \text{J} \\
\quad \downarrow \quad \quad \quad \downarrow \text{E}
\]

where \(J \) embeds, and \(E: R : A \to \text{Set} B \) for \(R: A \sim B \).
Moreover, the correspondence remains valid for bags:

\[
\text{index}: \text{Bag} (K \times V) \simeq \text{Map} K (\text{Bag} V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x_f \bowtie g y = \text{flatten} (\text{Map} K \ cp (\text{merge} (\text{groupBy} f x, \text{groupBy} g y)))
\]

\textit{groupBy}: \((V \to K) \to \text{Bag} V \to \text{Map} K (\text{Bag} V)

\textit{flatten} : \text{Map} K (\text{Bag} V) \to \text{Bag} V
13. Pointed sets and finite maps

Model *finite maps* \(\text{Map}_* \) not as partial functions, but *total* functions to a *pointed* codomain \((A, a)\), i.e. a set \(A \) with a distinguished element \(a : A \).

Pointed sets and point-preserving functions form a category \(\text{Set}_* \).

There is an adjunction to \(\text{Set} \), via

\[
\begin{array}{ccc}
\text{Set}_* & \dashv & \text{Set} \\
\text{Maybe} & \downarrow & \downarrow \\
\text{U} & \text{Set}_* & \text{Set}
\end{array}
\]

where \(\text{Maybe } A \cong 1 + A \) adds a point, and \(U (A, a) = A \) discards it.

In particular, \((\text{Bag } A, \emptyset) \) is a pointed set. Moreover, \(\text{Bag } f \) is point-preserving, so we get a functor \(\text{Bag}_*: \text{Set} \to \text{Set}_* \).

Indexing remains an isomorphism:

\[
\text{index} : \text{Bag}_* (K \times V) \cong \text{Map}_* K (\text{Bag}_* V)
\]
14. Graded monads

A catch: finite maps aren’t a monad, because

\[\eta a = \lambda k \rightarrow a : A \rightarrow \text{Map } K A \]

in general yields an infinite map.

However, finite maps are a graded monad*: for monoid \((M, \otimes, e)\),

\[\mu X : T_m (T_n X) \rightarrow T_{m \otimes n} X \]
\[\eta X : X \rightarrow T_e X \]

satisfying the usual laws. These too arise from adjunctions*.

We use the monoid \((\mathbb{K}, \times, 1)\) of finite key types under product.
15. Conclusions

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating *query optimisations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.