Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus)

Nielsen, Julius; Hedeholm, Rasmus B; Heinemeier, Jan; Bushnell, Peter G; Christiansen, Jørgen S; Olsen, Jesper; Ramsey, Christopher Bronk; Brill, Richard W; Simon, Malene; Steffensen, Kirstine F; Steffensen, John Fleng

Published in:
Science (New York, N.Y.)

DOI:
10.1126/science.aaf1703

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
dissociation of this excited state, producing radicals, or by the formation of a diol radical after reaction of an excited-state fatty acid with an adjacent molecule.

Because fatty acid–covered surfaces are ubiquitous, the photochemical production of gas-phase unsaturated and functionalized compounds will affect the local oxidative capacity of the atmosphere and will lead to secondary aerosol formation. This interfacial photochemistry may exert a very large impact, especially if in general the mere presence of a surface layer of a carboxylic acid can trigger this interfacial photochemistry at ocean surfaces, cloud droplets, and the surface of evaporating aerosol particles.

REFERENCES AND NOTES

ACKNOWLEDGMENTS
This study was supported by the European Research Council (ERC) under the European Union’s Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement 290852–AIRSEA. D.J.D. acknowledges ongoing support from the Natural Sciences and Engineering Research Council of Canada. The authors are grateful to P. Mascaun and N. Cristin for the technical support provided by IRCELYON. All the data presented here can be downloaded from the supplementary materials.

SUPPLEMENTARY MATERIALS
www.sciencemag.org/content/353/6300/699/suppl/DC1
Materials and Methods
Figs. S1 to S6
Tables S1 to S3
References (21–26)
Database S1
29 January 2016; accepted 23 June 2016
10.1126/science.aaf3617

LIFE HISTORY
Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus)

Julius Nielsen,1,3,7 Rasmus B. Hedeholm,2 Jan Heinemeier,5 Peter G. Bushnell,6 Jørgen S. Christiansen,4 Jesper Olsen,9 Christopher Bronk Ramsey,7 Richard W. Brili,8,9 Malene Simon,10 Kirstine F. Steffensen,1 John F. Steffensen1

The Greenland shark (Somniosus microcephalus), an iconic species of the Arctic Seas, grows slowly and reaches >500 centimeters (cm) in total length, suggesting a life span well beyond those of other vertebrates. Radiocarbon dating of eye lens nuclei from 28 female Greenland sharks (81 to 502 cm in total length) revealed a life span of at least 272 years. Only the smallest sharks (220 cm or less) showed signs of the radiocarbon bomb pulse, a time marker of the early 1960s. The age ranges of prebomb sharks (reported as midpoint and extent of the 95.4% probability range) revealed the age at sexual maturity to be at least 156 ± 22 years, and the largest animal (502 cm) to be 392 ± 120 years old. Our results show that the Greenland shark is the longest-lived vertebrate known, and they raise concerns about species conservation.

The Greenland shark (Somniosus microcephalus) is widely distributed in the North Atlantic, with a vertical distribution ranging from the surface to at least 1816 m depth (1, 2). Females outweigh males, and adults typically measure 400 to 500 cm, making this shark species the largest fish native to Arctic waters. Because reported annual growth is ≤1 cm (3), their longevity is likely to be exceptional. In general, the biology of the Greenland shark is poorly understood, and longevity and age at first reproduction are completely unknown. The species is categorized as “Data Deficient” in the Norwegian Red List (4).

Conventional growth zone chronologies cannot be used to age Greenland sharks because of their lack of calcified tissues (5). To circumvent this problem, we estimated the age from a chronology obtained from eye lens nuclei by applying radiocarbon dating techniques in vertebrates, the eye lens nucleus is composed of metabolically inert crystalline proteins, which in the center (i.e., the embryonic nucleus) is formed during prenatal development (6, 7). This tissue retains proteins synthesized at approximately age 0: a unique feature of the eye lens that has been exploited for other difficult-to-age vertebrates (6, 8, 9).

Our shark chronology was constructed from measurements of isotopes in the eye lens nuclei from 28 female specimens (81 to 502 cm total length, table S1) collected during scientific surveys in Greenland during 2010–2013 (fig. S1) (see supplementary materials). We used radiocarbon (14C) levels [reported as percent of modern carbon (pMC) to estimate ages and stable isotopes, 13C and 18O (table S1), to estimate the carbon source (supplementary materials). Depleted 13C and enriched 18O levels established that the embryonic nucleus radiocarbon source was of dietary origin and represents a high trophic level. In other words, isotope signatures are dictated by the diet of the shark’s mother, not the sampled animals. We set the terminal date for our analyses to 2012, because samples were collected over a 3-year period. The chronology presumes that size and age are positively correlated.

Since the mid-1950s, bomb-produced radiocarbon from atmospheric tests of thermonuclear weapons has been assimilated in the marine environment, creating a distinct “bomb pulse” in carbon-based chronologies (10). The period of rapid radiocarbon increase is a well-established time stamp for age validation of marine animals (11–14). Radiocarbon chronologies of dietary origin (reflecting the food web) and chronologies reflecting dissolved inorganic radiocarbon of surface mixed and deeper waters, have shown that the timing of the bomb pulse onset (i.e., when...
As the porbeagle (*Lamna nasus*) (to those of other marine top predators such as the internal agreement between data points (i.e., early 1960s, Fig. 2). We therefore assign shark no. 3 (total length 220 cm) an age of ~50 years in 2012 and consider the remaining 25 larger animals to be of prebomb origin.

We estimated the age of prebomb sharks based on the Marine13 radiocarbon calibration curve (25), which evaluates carbon-based matter predating the bomb pulse that originates from surface mixed waters. The observed synchronicity of the bomb pulse onset (Fig. 1) supports the presumption that natural temporal changes of prebomb radiocarbon are imprinted in the marine food webs with negligible delay. We contend that the Marine13 curve can contribute to the assessment of the age of prebomb sharks despite the difficulties associated with (i) the low variation in the radiocarbon curve over the past 400 years (25); and (ii) that the degree of radiocarbon depletion in contemporaneous surface mixed waters (local reservoir age deviations, ΔR) differs between regions (26), meaning that the carbon source of the eye lens nucleus reflects food webs of potentially different ΔR levels. Consequently, radiocarbon levels of prebomb animals must be calibrated as a time series under a set of biological and environmental constraints.

We used OxCal (version 4.2) to do this calibration (27). The program uses Bayesian statistics to combine prior knowledge with calibrated age probability distributions to provide posterior age information (28, 29). We constrained age ranges with presumptions about von Bertalanffy growth, size at birth, the age of animal no. 3 deduced from the bomb pulse onset (biological constraints), and plausible ΔR levels from the recent past (environmental constraint). This makes up a Bayesian model that is detailed in the supplementary materials.

Calibrations of single pMC measurements without biological constraints are shown as probability distributions of age with very wide ranges (light blue distributions, Fig. 3). When imposing the model, constrained and narrower age estimates are produced for each prebomb individual, shown as posterior probability distributions of age (dark blue distributions) in (i) the recent past (environmental constraint). This makes up a Bayesian model that is detailed in the supplementary materials.

Calibrations of single pMC measurements without biological constraints are shown as probability distributions of age with very wide ranges (light blue distributions, Fig. 3). When imposing the model, constrained and narrower age estimates are produced for each prebomb individual, shown as posterior probability distributions of age (dark blue distributions) in (i) the recent past (environmental constraint). This makes up a Bayesian model that is detailed in the supplementary materials.

The third animal in the chronology (no. 3) is deduced from the bomb pulse onset (biological constraints), and plausible ΔR levels from the recent past (environmental constraint). This makes up a Bayesian model that is detailed in the supplementary materials.

Calibrations of single pMC measurements without biological constraints are shown as probability distributions of age with very wide ranges (light blue distributions, Fig. 3). When imposing the model, constrained and narrower age estimates are produced for each prebomb individual, shown as posterior probability distributions of age (dark blue distributions) in (i) the recent past (environmental constraint). This makes up a Bayesian model that is detailed in the supplementary materials.

Calibrations of single pMC measurements without biological constraints are shown as probability distributions of age with very wide ranges (light blue distributions, Fig. 3). When imposing the model, constrained and narrower age estimates are produced for each prebomb individual, shown as posterior probability distributions of age (dark blue distributions) in (i) the recent past (environmental constraint). This makes up a Bayesian model that is detailed in the supplementary materials.

Calibrations of single pMC measurements without biological constraints are shown as probability distributions of age with very wide ranges (light blue distributions, Fig. 3). When imposing the model, constrained and narrower age estimates are produced for each prebomb individual, shown as posterior probability distributions of age (dark blue distributions) in (i) the recent past (environmental constraint). This makes up a Bayesian model that is detailed in the supplementary materials.

Calibrations of single pMC measurements without biological constraints are shown as probability distributions of age with very wide ranges (light blue distributions, Fig. 3). When imposing the model, constrained and narrower age estimates are produced for each prebomb individual, shown as posterior probability distributions of age (dark blue distributions) in (i) the recent past (environmental constraint). This makes up a Bayesian model that is detailed in the supplementary materials.
regardless of the exact timing of the bomb pulse onset (1958–1980).

The model estimated asymptotical total length to be 546 ± 42 cm (mean ± SD), a size matching the largest records for Greenland sharks (2), and the age estimates (reported as midpoint and extent of the 95.4% probability range) of the two largest Greenland sharks to be 335 ± 75 years (no. 27, 493 cm) and 392 ± 120 years (no. 28, 502 cm). Moreover, because females are reported to reach sexual maturity at lengths >400 cm subarctic groundfish fisheries and have been strongly suggested a precautionary approach to management initiatives (33).

Fig. 3. Bayesian age ranges of prebomb sharks. The estimated year of birth against total length (TL) for prebomb sharks (nos. 4 to 28) is shown. Light blue shows the individual age probability distributions for each shark, and modeled posterior age probability distributions are shown in dark blue. Fixed age distributions (model input) of one newborn shark (42 cm, 2012 ± 1) and of shark no. 3 (220 cm, born in 1963 ± 5) are shown in orange. The red line is the model fit connecting the geometric mean for each posterior age probability distribution. (Inset) The model output; i.e., \hat{A}_{model}, \hat{L}_{max}, and range of birth for year for shark no. 28. Also see the supplementary materials.

REFERENCES AND NOTES

ACKNOWLEDGMENTS

We are grateful for the contributions from M. B. Backe throughout the manuscript. We thank the Commission of Scientific Investigations in Greenland (KVUG), Save Our Seas Foundation, National Geographic Foundation, Carlsberg Foundation, Danish Centre for Marine Research, Den Bla Planet–National Aquarium of Denmark, Greenland Institute of Natural Resources (GINR), and the Danish Council for Independent Research for financial support. We thank GINR, the University of Copenhagen and the TUNU Programme (UIT, The Arctic University of Norway) for ship time. We are grateful for the collaboration with K.P. Lange. We thank the National Geographic Foundation, Carlsberg Foundation, Danish Trade Council, Danish Ministry of Foreign Affairs 2, Copenhagen, Denmark, 2011.

SUPPORTING MATERIALS

www.sciencemag.org/content/353/6300/702/suppl/DC1

Material and Methods

Supplementary Text

Figs. S1 and S2

Tables S1 and S2

References (39–50)

29 December 2015; accepted 10 June 2016

Downloaded from http://science.sciencemag.org/ on August 18, 2016
Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (*Somniosus microcephalus*)

Julius Nielsen, Rasmus B. Hedeholm, Jan Heinemeier, Peter G. Bushnell, Jørgen S. Christiansen, Jesper Olsen, Christopher Bronk Ramsey, Richard W. Brill, Malene Simon, Kirstine F. Steffensen, and John F. Steffensen (August 11, 2016)

Editor's Summary

Deep living for centuries

We tend to think of vertebrates as living about as long as we do, give or take 50 to 100 years. Marine species are likely to be very long-lived, but determining their age is particularly difficult. Nielsen *et al.* used the pulse of carbon-14 produced by nuclear tests in the 1950s—specifically, its incorporation into the eye during development—to determine the age of Greenland sharks. This species is large yet slow-growing. The oldest of the animals that they sampled had lived for nearly 400 years, and they conclude that the species reaches maturity at about 150 years of age.

Science, this issue p. 702

This copy is for your personal, non-commercial use only.

Article Tools Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/353/6300/702

Permissions Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl